Forskningsgrupper
Vid ämnet matematik vid Åbo Akademi bedrivs livskraftig forskning inom funktionalanalys, stokastik och tillämpad matematik.
Funktionsanalys
Två huvudteman i funktionalanalysgruppen är analytiska funktionsrum och deras operatorer samt matematisk system- och reglerteori.
Stokastik och tillämpad matematik
Gruppens forskningsmål är utveckling av matematisk teori och analys av modeller som härrör sig från problem inom matematisk fysik, försäkrings- och finansmatematik samt populationsmodeller.
Personal
Christer Glader, universitetslektor, docent
Forskningsprofil och publikationer
Forskningsintressen:
Jag forskar i approximationsteori i komplexa talplanet, speciellt i konstruktiva metoder för interpolation och approximation med ändliga Blaschkeprodukter.
Antti Haimi, äldre universitetslektor
Forskningsprofil och publikationer
Alex Karrila, äldre universitetslektor, tjänstledig (forskardoktor vid Finlands Akademi)
Forskningsprofil och publikationer
Forskningsintressen:
Jag forskar i teman inom sannolikhetslära och matematisk (statistisk) fysik, i synnerhet inom slumpmodeller på gittergrafer samt de kontinuummodeller som åtminstone konjekturalt beskriver deras skalningsgränsvärden. Ett första exempel är slumpgången på det n-dimensionella rutnätverket delta*Z^n med rutstorlek delta, som vid kritisk stegtakt I(delta) konvergerar till den Brownska rörelsen när rutstorleken delta krymper till noll.
Mikael Kurula, ämnesansvarig, äldre universitetslektor, docent i tillämpad matematik, hemsida
Forskningsprofil och publikationer
Forskningsintressen:
Jag forskar i matematisk system- och reglerteori, dvs. hur man effektivt styr system som modelleras med differentialekvationer. Forskningen ligger i centrum av den automatisering av samhället som pågår just nu.
István Prause, professor, hemsida
Forskningsprofil och publikationer
Forskningsintressen:
Jag forskar inom komplex analys, kvasikonforma metoder, variationskalkyl och statistisk mekanik. Just nu är jag mest intresserad av gränsformfenomen, där storskaliga strukturer av många slumpmässiga system konvergerar mot en kontinuerlig deterministisk gräns. Detta liknar det sätt, som kristaller bildas på, där en jämn och facetterad form i makroskopisk skala uppstår ur grov mikroskopisk slumpmässighet.
Forskare
Göran Högnäs, professor emeritus, docent
Brita Jung, universitetslektor
Mikael Lindström, professor emeritus
Andreas Lundell, docent i tillämpad matematik
Paavo Salminen, professor emeritus
Olof Staffans, professor emeritus, hemsida
Tapio Westerlund, professor emeritus, docent i matematik med tekniska tillämpningar, hemsida
Tuomas Virtanen, doktorand