

WESHI

Business Opportunities and Use Cases of Biochar

Secure-Bio Supply seminar, 27.1.2026

Joonas Ruuskanen, Commercialization Specialist
University of Eastern Finland

joonas.ruuskanen@uef.fi

+358 50 349 5751

Euroopan unionin
osarahoittama

Pohjois-Savon liitto

UNIVERSITY OF
EASTERN FINLAND

SAVONIA

Keitele Pielavesi Rautalampi Suonenjoki Tervo Vesanto

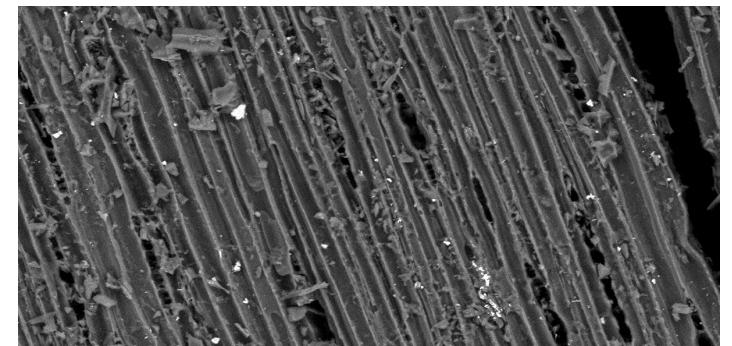
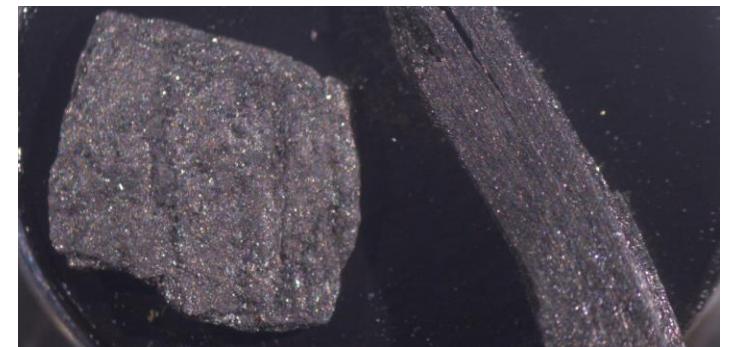
Business Opportunities and Use Cases of Biochar

1. What is biochar?
2. Vesihiiili development project
3. Business opportunity and use cases of biochar
 - Run-off water purification
 - Growing media
 - Metallurgy
 - Side-stream energy utilization
4. Biochar and circular economy

Source material: barley husk

Euroopan unionin
osarahoittama

Pohjois-Savon liitto

UNIVERSITY OF
EASTERN FINLAND

SAVONIA

SAVGROW
KEHITYSYHTIÖ
Keitele Pielavesi Rautalampi Suonenjoki Tervo Vesanto

Source material: wood chips (spruce)

1. What is biochar?

- Biochar: Porous charcoal made from biomaterial, usually wood
 - The properties of produced biochar are affected by e.g. source material, pyrolysis temperature and time, pre- and post-treatments
- Pyrolysis process: Heating the material in an oxygen-free environment, temperature 350-900°C
 - Solid biochar from slow pyrolysis: 25-40 %
 - Liquids are distilled, and solid components break down and form aerosols and gases → collection or energy

Euroopan unionin
osarahoittama

Pohjois-Savon liitto

UNIVERSITY OF
EASTERN FINLAND

SAVONIA

SAVGROW
KEHITYSYHTIÖ
Keitele Pielavesi Rautalampi Suonenjoki Tervo Vesanto

2. Vesihiiili development project

Vesihiiili development project (EU JTF, 9/2024-9/2026):

Decentralised production of biochar from various side streams and use in agriculture, water purification and carbon sequestration

- Collecting water samples from agriculture, cities and process industries: nutrient-rich waters
- Water treatment pilots at landfills → Treatment of agricultural run-off water (point sources) in next summer
- Developing and piloting of the use of biochar in berry cultivation and agriculture in general
- Business analysis and development: Profitable and sustainable production and use of biochar

**Euroopan unionin
osarahoittama**

Pohjois-Savon liitto

UNIVERSITY OF
EASTERN FINLAND

SAVONIA

SAVGROW
KEHITYSYHTIÖ
Keitele Pielavesi Rautalampi Suonenjoki Tervo Vesanto

3. Biochar business: Costs and price

- The production cost of biochar:
 - Capital investment: 300-550 €/t, size of facility
 - Source material acquisition: 0-80 €/t, waste or new raw material
 - Business operation costs: 200-300 €/t
 - Transportation of source materials and produced biochar, note environment impact also
- There is a lot of variation in the price of biochar: 400-1950 €/t, average 1000 €/t
 - In most use cases, biochar price should be ~600 €/t
 - Potential other revenue streams: Biochar itself and other pyrolysis products e.g. gas as energy (~167 €/t) and carbon sequestration (~300 €/t)

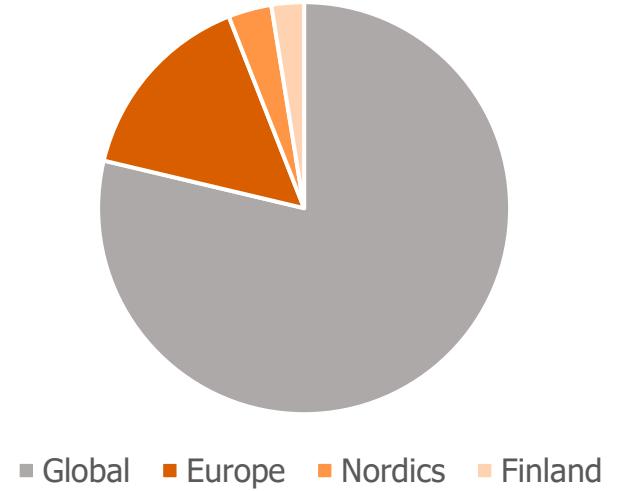
Euroopan unionin
osarahoittama

Pohjois-Savon liitto

Based on biochar TEA reports: Sweco, VTT etc.

UNIVERSITY OF
EASTERN FINLAND

SAVONIA



Keitele Pielavesi Rautalampi Suonenjoki Tervo Vesanto

3. Market estimations: Biochar production capacities

Geographical area	Volume in 2023	Volume in 2025
Finland	max. 9 000 t	max. 13 000 t
Nordics	21 000 t	35 000 t
Europe	75 000 t	114 000 t
Global	350 000 t	450 000 t

Production capacities in 2023

- About 200-250 biochar producers in Europe
- Biochar producers in Finland are e.g. Carbofex, GRK, Carbo Culture: 1 000 - 5 000 t/a
 - Joensuu Biocoal, torrefied biomass: 60 000 t/a

Euroopan unionin
osarahoittama

Pohjois-Savon liitto

UNIVERSITY OF
EASTERN FINLAND

SAVONIA

SAVGROW
KEHITYSYHTIÖ
Keitele Pielavesi Rautalampi Suonenjoki Tervo Vesanto

3. Forest industry side streams: North Savo

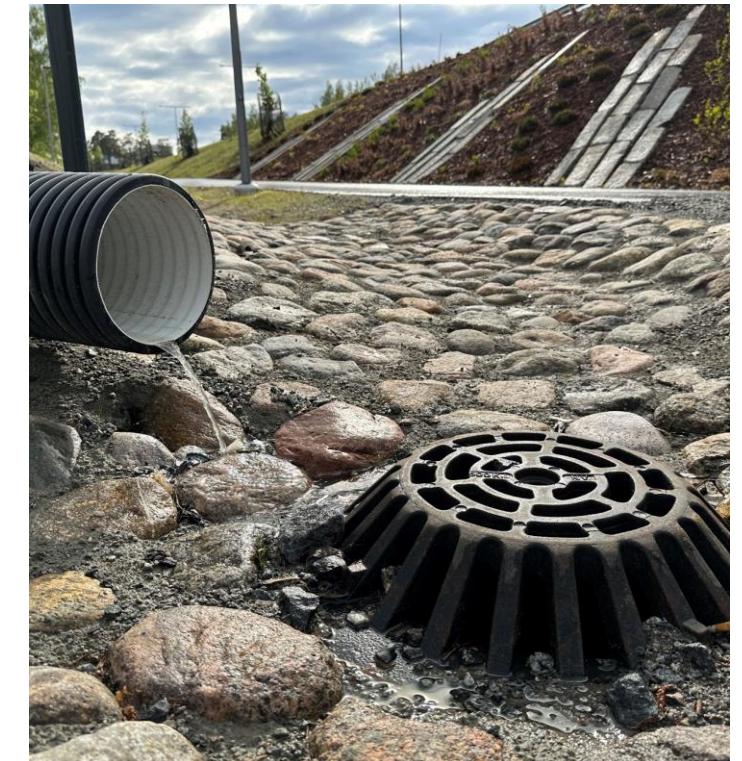
Company	Total wood side streams (t)	Biochar (t) 1/3 of the raw material
Iisalmen saha	39 480	13 160
Anaika Wood	29 610	9 870
Lunawood	17 766	5 922
Keitele	78 960	26 320
Iisveden Metsä	31 584	10 528
Stora Enso Varkauden Sawmill	51 324	17 108
Stora Enso Varkauden Containerboard*	21 000	7 000
Mondi Powerflute*	27 300	9 100
Total (~)	297 000	99 000

In addition, straw and farming residues (even 120 000 t biochar), manure and surplus grass are potential

Euroopan unionin
osarahoittama

Pohjois-Savon liitto

UNIVERSITY OF
EASTERN FINLAND


SAVONIA

Keitele Pielavesi Rautalampi Suonenjoki Tervo Vesanto

3. Biochar use case for example

- Run-off water treatment: Onsite purification and water quantity management
- Growing media: Improves the conditions for growth and moisture balancing, nutrients remain in the specific area
- Steel industry: As a raw material for stainless steel production, i.e. biocoke
- Carbon sequestration: Biomass carbon can be stored with biochar, up to 3 tons of CO₂ emission

Euroopan unionin
osarahoittama

Pohjois-Savon liitto

UNIVERSITY OF
EASTERN FINLAND

SAVONIA

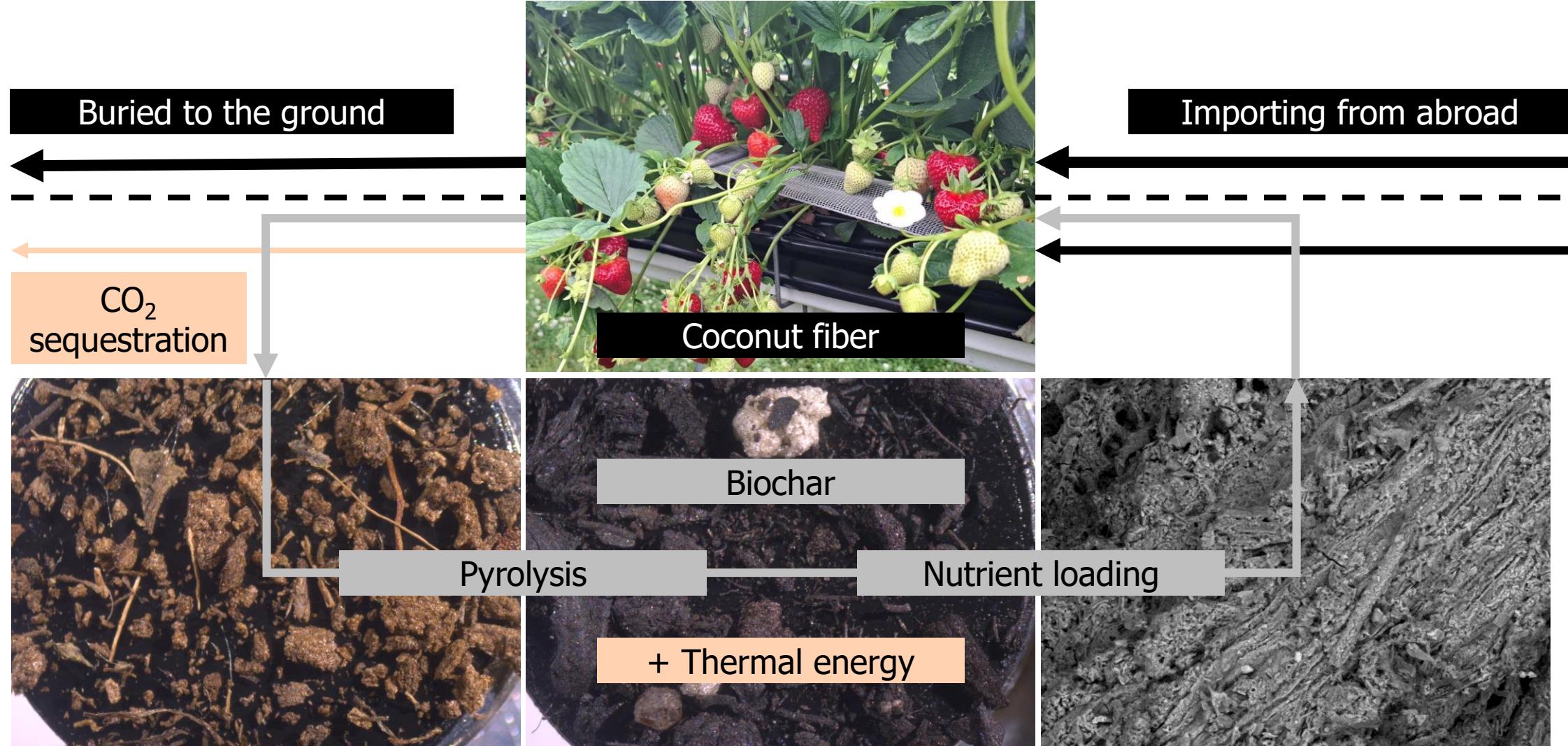
SAVGROW
KEHITYSYHTIÖ
Keitele Pielavesi Rautalampi Suonenjoki Tervo Vesanto

3. Use cases: Onsite run-off water management

- Run-off water, i.e. storm water, flows on urban surfaces and carries heavy metals, nutrients, microplastics etc. to environment – Biochar as a potential onsite filter solution
- Drivers to improve runoff water management infrastructure:
 - Urbanization and climate change affect quality and quantity of stormwater
 - Increasing environmental awareness and tighter water regulations
- Run-off water potential in Finland for biochar: 180 000 t over several years

Euroopan unionin
osarahoittama

Pohjois-Savon liitto


UNIVERSITY OF
EASTERN FINLAND

SAVONIA

Keitele Pielavesi Rautalampi Suonenjoki Tervo Vesanto

3. Use cases: Strawberry growing media

Euroopan unionin
osarahoittama

Pohjois-Savon liitto

UNIVERSITY OF
EASTERN FINLAND

SAVONIA

SAVGROW
KEHITYSYHTIÖ
Keitele Pielavesi Rautalampi Suonenjoki Tervo Vesanto

3. Use cases: Metallurgy and steel making

- Biochar can replace fossil coal or energy sources in different stages of stainless-steel production, pelletized/densified biochar i.e. biocoke is specifically used as a reductant in ferrochrome smelting
- High fixed carbon content and low impurities
- Metal industry use potential in Finland for biocoke: 150 000 – 250 000 t/a
 - Outokumpu announced two large investments
 - Rügen (Germany): 15 000 t biochar/biocarbon production starting in 2026
 - Tornio (Finland): 25 000 t biocoke pelletizing facility from biochar, operational from 2025

Euroopan unionin
osarahoittama

Pohjois-Savon liitto

UNIVERSITY OF
EASTERN FINLAND

Sources: VTT and Outokumpu

SAVONIA

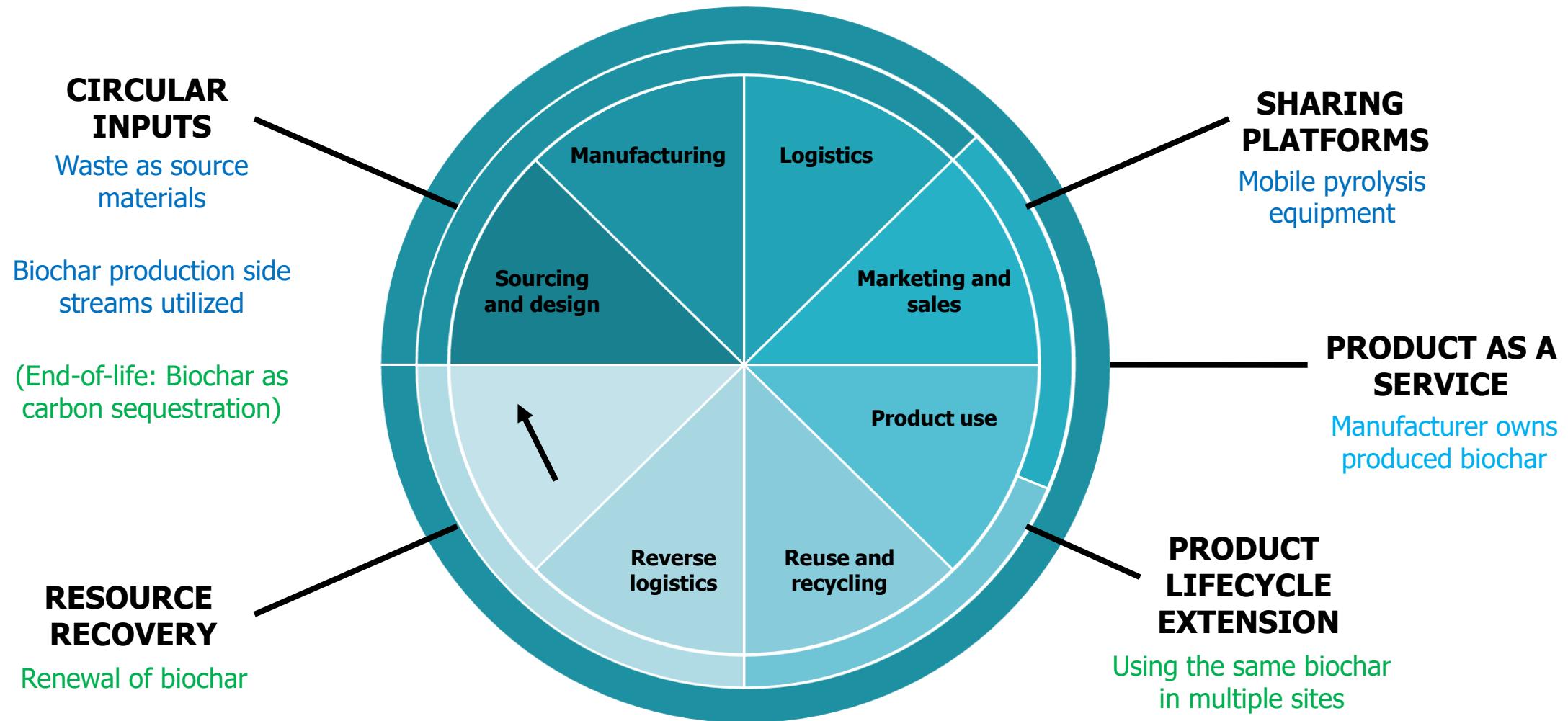
SAVGROW
KEHITYSYHTIÖ
Keitele Pielavesi Rautalampi Suonenjoki Tervo Vesanto

3. Use cases: Energy/heat production

- As mentioned, pyrolysis process generates heat and gases as side-products
- Requires integration to heating network/energy infrastructure
- 6 500 t/a biochar production facility could generate about 40 GWh heat energy
- Torrefied biomass (e.g. Joensuu Biocoal) as high energy density product for power plants
 - Uniform, low moisture content
 - Easier transport than raw biomass

Euroopan unionin
osarahoittama

Pohjois-Savon liitto


UNIVERSITY OF
EASTERN FINLAND

Source: Sweco

SAVONIA

SAVGROW
KEHITYSYHTIÖ
Keitele Pielavesi Rautalampi Suonenjoki Tervo Vesanto

4. Biochar and circular economy

Euroopan unionin
osarahoittama

Pohjois-Savon liitto

UNIVERSITY OF
EASTERN FINLAND

SAVONIA

Keitele Pielavesi Rautalampi Suonenjoki Tervo Vesanto

VEStiHulli

joonas.ruuskanen@uef.fi

+358 50 349 5751

Euroopan unionin
osarahoittama

Pohjois-Savon liitto

UNIVERSITY OF
EASTERN FINLAND

SAVONIA

SAVGROW
KEHITYSYHTIÖ
Keitele Pielavesi Rautalampi Suonenjoki Tervo Vesanto