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Abstract

We prove the following theorem: Let A be a bounded linear operator
on a reflexive Banach space with the property that all forward trajectories
are bounded. Then the adjoint of A is strongly stable if and only if A
does not have a nontrivial bounded backward trajectory. The same result
is also valid in continuous time.

Let A be a bounded linear operator on a reflexive Banach space X . We
call A stable or forward bounded if it is true for every x ∈ X that the sequence
{Anx}∞n=0 is bounded. It is strongly stable if it is true for every x ∈ X that
limn→∞Anx = 0 (in the norm of X ). We shall refer the sequence xn = Anx,
n ∈ Z+ := {0, 1, 2, . . .} as a forward trajectory of A (with initial value x). Thus,
A is stable if and only if all forward trajectories are bounded, and A is strongly
stable if and only if all forward trajectories tend to zero at infinity.

By a bounded backward trajectory of A we mean a bounded sequence {xn}0n=−∞
satisfying xn = Axn−1 for all n ∈ Z− := {. . . ,−2,−1, 0}. This trajectory is
nontrivial if it is not identically zero. Note that if A is stable, then a nontriv-
ial bounded backward trajectory of A cannot tend to zero at −∞. Backward
trajectories appear naturally in, e.g., optimal control.

Theorem 1. Let A be a stable bounded linear operator on a reflexive Banach
space X . Then A∗ is strongly stable if and only if A does not have a nontrivial
bounded backward trajectory.

The significance of this theorem is that it makes it possible to characterize
the strong stability of A∗ entirely in terms of the original operator A, without
any formal reference to A∗.

Proof of Theorem 1. We denote the adjoint of X by X ∗, and the value of x∗ ∈
X ∗ applied to x ∈ X by 〈x, x∗〉.
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Assume first that A∗ is strongly stable. Let x := {xn}n∈Z− be a bounded
backward trajectory of A, and let {x∗n}n∈Z+ be a forward trajectory of A∗.
Then, for all n ∈ Z+,

〈x0, x
∗
0〉 = 〈Anx−n, x∗0〉 = 〈x−n, (A∗)nx∗0〉 = 〈x−n, x∗n〉. (1)

Letting n →∞ and using the strong stability of A∗ and the boundedness of x,
we find that 〈x0, x

∗
0〉 = 0. This being true for all x∗0 ∈ X ∗, we must have x0 = 0.

Shifting x k steps to the right and repeating the same argument we find that
x−k = 0 for all x ∈ Z+. Thus, x = 0, and we have shown that A does not have
a nontrivial bounded backward trajectory.

Let us begin the proof of the converse part by observing that by the uniform
boundedness principle, supn∈Z+‖An‖ := M < ∞, and hence also supn∈Z+‖(A∗)n‖ =
M < ∞. In particular A∗ is stable. Suppose that A∗ is not strongly stable.
Choose some x∗0 ∈ X so that x∗n := (A∗)nx0 6→ 0 as n →∞. By the stability of
A∗, this implies that infn∈Z+‖(A∗)nx0‖ := ε > 0. We can therefore find some
xn
−n ∈ X with ‖xn

−n‖ ≤ 1/ε such that 〈xn
−n, x∗n〉 = 1. Let xn denote the se-

quence {xn
k}k∈Z− , where xn

k = Ak−nxn
−n for k ∈ [−n, 0] and xn

k = 0 for k < −n.
Then ‖xn

k‖ ≤ M/ε for all k ∈ Z−. In particular, the sequence {xn}n∈Z+ is
uniformly bounded in `∞(Z+;X ). Moreover, by construction, the elements of
each sequence xn satisfy xn

k = Axn
k−1 for all k ∈ [−n + 1, 0]. In particular, by

(1),
〈xn

0 , x∗0〉 = 1. (2)

Since the unit ball in X is weakly sequentially compact, it is possible to
find a subsequence {xn1,j}j∈Z+ such that x

n1,j

0 converges weakly to a limit x0

in X . It follows from (2) that 〈x0, x
∗
0〉 = 1, hence x0 6= 0. By repeating the

same argument with the original sequence {xn}n∈Z+ replaced by {xn1,j}j∈Z+

we get another subsequence {xn2,j}j∈Z+ such that both x
n2,j

0 tends weakly to
x0 and x

n2,j

−1 tends weakly to x−1 for some x−1 ∈ X . The operator A is norm-
continuous, hence weakly continuous, and therefore we must have x0 = Ax−1.
Continuing in the same way, with {xn1,j}j∈Z+ replaced by {xn2,j}j∈Z+ we get
another subsequence {xn3,j}j∈Z+ such that x

n3,j

−1 tends weakly to x−1 and x
n3,j

−2

tends weakly to some vector x−2 satisfying x−1 = Ax−2. The same process can
be repeated indefinitely to produce a sequence {xk}k∈Z− , where ‖xn

k‖ ≤ M/ε
for all k ∈ Z− and xk = Axk−1 for all k ∈ Z−. This proves the existence of a
nontrivial bounded backward trajectory of A.

The same result is also valid in continuous time. In this case we replace A by
a C0 semigroup t 7→ At, t ∈ R+ := [0,∞). A forward trajectory of A is defined
on R+, and it is of the type t 7→ Atx0 for some initial value x0. The semigroup
A is bounded (or stable) if all forward trajectories are bounded, and it it strongly
stable if all forward trajectories tend to zero at infinity. A backward trajectory
is a continuous function x defined on R− = (−∞, 0] satisfying x(t) = At−sx(s)
for all s ≤ t ≤ 0. It is nontrivial if it is does not vanish identically. The adjoint
semigroup t 7→ A∗t is defined by A∗t = (At)∗, and it is also a C0 semigroup.
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Theorem 2. Let t 7→ At be a bounded C0 semigroup on a reflexive Banach
space X . Then the adjoint semigroup t 7→ A∗t is strongly stable if and only if A
does not have a nontrivial bounded backward trajectory.

Proof. Define A = A1. Then A∗ is strongly stable if and only if A∗ is strongly
stable. By Theorem 1, this is true if and only if A does not have a nontrivial
bounded backward trajectory. However, there is a one-to-one correspondence
between the bounded nontrivial backward trajectories of A and those of A:
Given a backward trajectory t 7→ x(t), t ∈ R−, of A we get a backward trajec-
tory {xn}0

n=−∞ of A by defining xn = x(n), and given a backward trajectory
{xn}0

n=−∞ of A we can fill it in to get a backward trajectory of A by defining
x(t) = At−[t]x[t], t ∈ R−, where [t] is the largest integer less than or equal to
t. Thus, A does not have a nontrivial backward trajectory if and only if A∗ is
strongly stable.
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