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Abstract

We prove the following theorem: Let A be a bounded linear operator
on a reflexive Banach space with the property that all forward trajectories
are bounded. Then the adjoint of A is strongly stable if and only if A
does not have a nontrivial bounded backward trajectory. The same result
is also valid in continuous time.

Let A be a bounded linear operator on a reflexive Banach space X. We
call A stable or forward bounded if it is true for every x € X’ that the sequence
{A"z}22, is bounded. It is strongly stable if it is true for every z € X that
lim,, oo A"z = 0 (in the norm of X). We shall refer the sequence z,, = A"z,
neZt:={0,1,2,...} as a forward trajectory of A (with initial value ). Thus,
A is stable if and only if all forward trajectories are bounded, and A is strongly
stable if and only if all forward trajectories tend to zero at infinity.

By a bounded backward trajectory of A we mean a bounded sequence {z, }°_
satisfying x,, = Ax,_; for all n € Z~ := {...,—2,—1,0}. This trajectory is
nontrivial if it is not identically zero. Note that if A is stable, then a nontriv-
ial bounded backward trajectory of A cannot tend to zero at —oo. Backward
trajectories appear naturally in, e.g., optimal control.

Theorem 1. Let A be a stable bounded linear operator on a reflexive Banach
space X. Then A* is strongly stable if and only if A does not have a nontrivial
bounded backward trajectory.

The significance of this theorem is that it makes it possible to characterize
the strong stability of A* entirely in terms of the original operator A, without
any formal reference to A*.

Proof of Theorem 1. We denote the adjoint of X by X*, and the value of z* €
X* applied to x € X by (z,z*).



Assume first that A* is strongly stable. Let z := {2, },cz- be a bounded
backward trajectory of A, and let {z}},cz+ be a forward trajectory of A*.
Then, for all n € Z7T,

<£L‘07.'L‘6> = <An.1',n,$6> = <‘T*n7 (A*)nx(>§> = <$*n’x;kz>' (1)

Letting n — oo and using the strong stability of A* and the boundedness of z,
we find that (zo,x§) = 0. This being true for all 2§ € X*, we must have ¢ = 0.
Shifting x k steps to the right and repeating the same argument we find that
z_ =0 for all x € Z*T. Thus, = 0, and we have shown that A does not have
a nontrivial bounded backward trajectory.

Let us begin the proof of the converse part by observing that by the uniform
boundedness principle, sup,,cz+||A"|| ;== M < oo, and hence also sup,,cz+ ||(A*)"]| =
M < oo. In particular A* is stable. Suppose that A* is not strongly stable.
Choose some z € X so that a := (A*)"zy 4 0 as n — oo. By the stability of
A*, this implies that inf,, cz+||(A*)"xg|] := € > 0. We can therefore find some
", € X with ||z™,| < 1/e such that (z7,,2%) = 1. Let 2™ denote the se-
quence {27} ez, where x = A¥="z™ for k € [-n,0] and 2} = 0 for k < —n.
Then |z}|| < M/e for all k € Z~. In particular, the sequence {z"},cz+ is
uniformly bounded in ¢>°(Z*; X'). Moreover, by construction, the elements of
each sequence z" satisfy z} = Az}, for all k € [-n + 1,0]. In particular, by
(1),

(af,25) = 1. (2)

Since the unit ball in X is weakly sequentially compact, it is possible to
find a subsequence {z"%},;cz+ such that xy"’ converges weakly to a limit xg
in X. It follows from (2) that (xg,z{) = 1, hence xg # 0. By repeating the
same argument with the original sequence {x"}, cz+ replaced by {z"17};cz+
we get another subsequence {2"27},cz+ such that both 25>’ tends weakly to
xo and m’?l’j tends weakly to x_; for some x_; € X. The operator A is norm-
continuous, hence weakly continuous, and therefore we must have o = Ax_;.
Continuing in the same way, with {2 },c4+ replaced by {229 };cz+ we get
another subsequence {2"#7};cz+ such that 2%’ tends weakly to z_; and 2%’
tends weakly to some vector z_o satisfying z_1; = Ax_5. The same process can
be repeated indefinitely to produce a sequence {zy}rez-, where ||z}|| < M/e
for all k € Z~ and x, = Az, for all k € Z~. This proves the existence of a
nontrivial bounded backward trajectory of A. O

The same result is also valid in continuous time. In this case we replace A by
a Cp semigroup t — A, t € RT :=[0,00). A forward trajectory of 2 is defined
on RT, and it is of the type t — 2tz for some initial value z¢. The semigroup
2 is bounded (or stable) if all forward trajectories are bounded, and it it strongly
stable if all forward trajectories tend to zero at infinity. A backward trajectory
is a continuous function z defined on R~ = (—o0, 0] satisfying z(t) = At ~*x(s)
for all s <t < 0. It is nontrivial if it is does not vanish identically. The adjoint
semigroup ¢ — A* is defined by A** = (AH)*, and it is also a Cy semigroup.



Theorem 2. Let t — At be a bounded Coy semigroup on a reflexive Banach
space X. Then the adjoint semigroup t — A*t is strongly stable if and only if A
does not have a nontrivial bounded backward trajectory.

Proof. Define A = 2A1. Then 21* is strongly stable if and only if A* is strongly
stable. By Theorem 1, this is true if and only if A does not have a nontrivial
bounded backward trajectory. However, there is a one-to-one correspondence
between the bounded nontrivial backward trajectories of 21 and those of A:
Given a backward trajectory ¢t — z(t), t € R, of 2 we get a backward trajec-
tory {z,}2__ . of A by defining z,, = z(n), and given a backward trajectory
{2, }0__ of A we can fill it in to get a backward trajectory of 2 by defining
x(t) = Qltfmx[t], t € R™, where [t] is the largest integer less than or equal to
t. Thus, 2 does not have a nontrivial backward trajectory if and only if 2A* is
strongly stable. O
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