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Abstract. We begin by discussing linear discrete time-invariant i/s/o (input/state/output) systems
that satisfy certain ‘energy’ inequalities. These inequalities involve a quadratic storage function
in the state space induced by a positive self-adjoint operatorH that may be unbounded and have
an unbounded inverse, and also a quadratic supply rate in the combined i/o (input/output) space.
The three most commonly studied classes of supply rates are called scattering, impedance, and
transmission. Although these three classes resemble each other, we show that there are still
significant differences. We then present a new class of s/s (state/signal) systems which have a
Hilbert state space and a Kreı̆n signal space. The state space is used to store relevant information
about the past evolution of the system, and the signal space is used to describe interactions
with the surrounding world. A s/s system resembles an i/s/o system apart from the fact that
inputs and outputs are not separated from each other. By decomposing the signal space into
a direct sum of an input space and an output space one gets a standard i/s/o system, provided
the decomposition is admissible, and different i/o decompositions lead to different i/o supply
rates (for example of scattering, impedance, or transmission type). In the case of non-admissible
decompositions we obtain right and left affine representations, both of the s/s system itself, and
of the corresponding transfer function. In particular, in the case of a passive system we obtain
right and left coprime representations of the generalized transfer functions corresponding to
nonadmissible decompositions of the signal space, and we end up with transfer functions which
are, e.g., generalized Potapov or Nevanlinna class functions.
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1. H -passive discrete time i/s/o systems

The evolution of a linear discrete time-invariant i/s/o (input/state/output) system
�i/s/o with a Hilbert input space U, a Hilbert state space X, and a Hilbert output
space Y is described by the system of equations

x(n+ 1) = Ax(n)+ Bu(n),

y(n) = Cx(n)+Du(n), n ∈ Z
+ = {0, 1, 2, . . .},

x(0) = x0,

(1.1)

∗This article is based on recent joint work with Prof. Damir Arov [AS05], [AS06a], [AS06b], [AS06c].
Thank you, Dima, for everything that I have learned from you!

Proceedings of the International Congress
of Mathematicians, Madrid, Spain, 2006
© 2006 European Mathematical Society



2 Olof J. Staffans

where the initial statex0 ∈ Xmay be chosen arbitrarily andA : X → X,B : U → X,
C : X → Y, and D : U → Y are bounded linear operators. Equivalently,[

x(n+ 1)
y(n)

]
=

[
A B

C D

] [
x(n)

u(n)

]
, n ∈ Z

+, x(0) = x0, (1.2)

where
[
A B
C D

] ∈ B
([

X
U

] ;
[

X
Y

])
.1 We call u = {u(n)}∞n=0 the input sequence,

x = {x(n)}∞n=0 the state trajectory, and y = {y(n)}∞n=0 the output sequence, and
we refer to the triple (u, x, y) as a trajectory of �i/s/o. The operators appearing in
(1.1) and (1.2) are usually called as follows: A is the main operator, B is the control
operator, C is the observation operator, and D is the feedthrough operator. The
transfer function or characteristic function D of this system is given by2

D(z) = zC(1X − zA)−1B +D, z ∈ �(A),
where�(A) is the set of points z ∈ C for which 1X − zA has a bounded inverse, plus
the point at infinity if A has a bounded inverse. Note that D is analytic on�(A), and
that D = D(0). We shall denote the above system by �i/s/o = ([

A B
C D

] ; U,X,Y
)
.

Since all the systems in this paper will be linear and time-invariant and have a discrete
time variable we shall in the sequel omit the words “linear discrete time-invariant”
and refer to a system of the above type by simply calling it an i/s/o system.

The i/s/o system �i/s/o is controllable if the sets of all states x(n), n ≥ 1, which
appear in some trajectory (u, x, y) of�i/s/o with x0 = 0 (i.e., an externally generated
trajectory) is dense in X. The system �i/s/o is observable if there do not exist any
nontrivial trajectories (u, x, y)where both u and y are identically zero. Finally,�i/s/o
is minimal if �i/s/o is both controllable and observable.

In this work we shall primarily be concerned with i/s/o systems which are passive
or even conservative. To define these notions we first introduce the notions of a storage
function EH which represents the (internal) energy of the state, and a supply rate j
which describes the interchange of energy between the system and its surroundings.
In the classical case the storage (or Lyapunov) function EH is bounded, and it is
given by EH(x) = 〈x,Hx〉X, where H is a bounded positive self-adjoint operator
on X (positivity of H means that 〈x,Hx〉X > 0 for all x 	= 0). However, we shall
also consider unbounded storage functions induced by some (possibly unbounded)
positive self-adjoint operator H on X. In this case we let

√
H be the positive self-

adjoint square root of H , and define the storage function EH by

EH(x) = ‖√Hx‖2
X, x ∈ D(

√
H). (1.3)

Clearly, this is equivalent to the earlier definition of EH ifH is bounded. The supply
rate j will always be a bounded (indefinite) self-adjoint quadratic form on Y ⊕ U,

1Here
[
X
U

]
is the cartesian product of X and U, and B(U; Y) is the set of bounded linear operators from U

to Y.
21X is the identity operator in X.
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i.e., it can be written in the form

j (u, y) =
〈[
y

u

]
, J

[
y

u

]〉
Y⊕U

, (1.4)

where J =
[
J11 J12
J21 J22

]
is a bounded self-adjoint operator in Y ⊕ U. For simplicity we

throughout require J to have a bounded inverse. Often J is taken to be a signature
operator (both self-adjoint and unitary), so that J = J ∗ = J−1. In the sequel
we shall always use one and the same supply rate j for a given system �i/s/o and
include this supply rate in the notation of the system, thus denoting the system by
�i/s/o = ([

A B
C D

] ; U,X,Y; j) whenever the supply rate is important.

Definition 1.1. The i/s/o system �i/s/o = ([
A B
C D

] ; U,X,Y; j) is forward H -pas-

sive, where H is a positive self-adjoint operator in X, if x(n) ∈ D(
√
H) and

‖√Hx(n+ 1)‖2
X − ‖√Hx(n)‖2

X ≤ j (u(n), y(n)), n ∈ Z
+, (1.5)

for every trajectory (u, x, y) of �i/s/o with x0 ∈ D(
√
H). If the above inequality

holds as an equality then �i/s/o is forward H -conservative.

It is not difficult to see that �i/s/o is forward H -passive if and only if3 H > 0
is a solution of the (forward) generalized i/s/o KYP (Kalman–Yakubovich–Popov)
inequality4

‖√H(Ax + Bu)‖2
X − ‖√Hx‖2

X ≤ j (u, Cx +Du), x ∈ D(
√
H), u ∈ U, (1.6)

and that �i/s/o is forward H -conservative if and only if H > 0 is a solution of the
corresponding equality. This inequality is named after Kalman [Kal63], Yakubovich
[Yak62], and Popov [Pop61] (who at that time restricted themselves to the finite-
dimensional case). There is a rich literature on the finite-dimensional version of
the KYP inequality and the corresponding equality; see, e.g., [PAJ91], [IW93] and
[LR95], and the references mentioned there. In the seventies the classical results on the
KYP inequalities were extended to infinite-dimensional systems by V. A.Yakubovich
and his students and collaborators (see [Yak74], [Yak75], and [LY76] and the refer-
ences listed there). There is now also a rich literature on this infinite-dimensional
case; see, e.g., the discussion in [Pan99] and the references cited there. However,
until recently it was assumed throughout that either H itself is bounded or H−1 is
bounded. The first study of this inequality which permits both H and H−1 to be
unbounded was done by Arov, Kaashoek and Pik in [AKP05].

Above we have defined forward H -passivity and forward H -conservativity. The
corresponding backward notions are defined by means of the adjoint i/s/o system

3The notation H > 0 means that H is a (possibly unbounded) self-adjoint operator satisfying 〈x,Hx〉X > 0
for all nonzero x ∈ D(H).

4In particular, in order for the first term in this inequality to be well-defined we require A to map D(
√
H)

into itself and B to map U into D(
√
H).
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�∗
i/s/o = ([

A∗ C∗
B∗ D∗

] ; Y,X,U; j∗
)

whose trajectories (y∗, x∗, u∗) satisfy the system
of equations

x∗(n+ 1) = A∗x∗(n)+ C∗y∗(n),
u∗(n) = B∗x∗(n)+D∗y∗(n), n ∈ Z

+,
x∗(0) = x∗0.

(1.7)

Note that this system has the same state space X, but the input and output have been
interchanged, so that Y is the input space and U is the output space. The appropriate
storage function and supply rates for the adjoint system�∗

i/s/o differ from those of the

primal system�i/s/o: H is replaced byH−1, and the primal supply rate j is replaced
by the dual supply rate

j∗(y∗, u∗) =
〈[
u∗
y∗

]
, J∗

[
u∗
y∗

]〉
U⊕Y

, (1.8)

where

J∗ =
[

0 −1U

1Y 0

]
J−1

[
0 −1Y

1U 0

]
. (1.9)

Definition 1.2. Let �i/s/o = ([
A B
C D

] ; U,X,Y; j) be an i/s/o system, and let H be
a positive self-adjoint operator in X.

(i) �i/s/o is backward H -passive if the adjoint system �∗
i/s/o is forward H−1-

passive.

(ii) �i/s/o is backwardH -conservative if the adjoint system�∗
i/s/o is forwardH−1-

conservative.

(iii) �i/s/o is H -passive if it is both forward and backward H -passive.

(iv) �i/s/o is H -conservative if it is both forward and backward H -conservative.

(v) By passive or conservative (with or without the attributes “forward” or “back-
ward”) we mean 1X-passive or 1X-conservative, respectively.

The generalized KYP inequality for the adjoint i/s/o system �∗
i/s/o with storage

function EH−1 is given by5

‖H−1/2(A∗x∗ + C∗y∗)‖2
X − ‖H−1/2x∗‖2

X ≤ j∗(y∗, B∗x∗ +D∗y∗),
x∗ ∈ (√

H
)
, y∗ ∈ Y.

(1.10)

Thus, �i/s/o is backward H -passive if and only if H is a solution of (1.10), and
�i/s/o is backwardH -conservative if and only ifH is a solution of the corresponding
equality.

5In particular, in order for the first term in this inequality to be well-defined we require A∗ to map R(
√
H)

into itself and C∗ to map Y into R(
√
H).
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2. Scattering, impedance and transmission supply rates

The three most common supply rates are the following:

(i) The scattering supply rate jsca(u, y) = −〈y, y〉Y + 〈u, u〉U with signature

operator Jsca =
[ −1Y 0

0 1U

]
. The signature operator of the dual supply rate is

Jsca∗ =
[ −1U 0

0 1Y

]
.

(ii) The impedance supply rate jimp(u, y) = 2�〈y,�u〉U with signature operator
Jimp = [

0 �
�∗ 0

]
, where� is a unitary operator U → Y. The signature operator

of the dual supply rate is Jimp∗ = [
0 �∗
� 0

]
.

(iii) The transmission supply rate jtra(u, y) = −〈y, JYy〉Y + 〈u, JUu〉U with sig-

nature operator Jtra =
[ −JY 0

0 JU

]
, where JY and JU are signature operators

in Y and U, respectively. The signature operator of the dual supply rate is

Jtra∗ =
[ −JU 0

0 JY

]
.

In the sequel when we talk about scattering H -passive or impedance H -conser-
vative, etc., we mean that the supply rate is of the corresponding type. It turns out
that although Definition 1.1 and 1.2 can be applied to all three types of supply rates,
these three cases still differ significantly from each other.

2.1. Scattering supply rate. In the case of scattering supply rate forward H -pas-
sivity is equivalent to backward H -passivity, hence to passivity. This is easy to see
in the case where H = 1X: the system �i/s/o = ([

A B
C D

] ; U,X,Y; jsca
)

is forward
passive if and only if the operator

[
A B
C D

]
is a contraction, which is true if and only

if its adjoint
[
A∗ C∗
B∗ D∗

]
is a contraction, which is true if and only if the adjoint system

�∗
i/s/o = ([

A∗ C∗
B∗ D∗

] ; U,X,Y; jsca∗
)

is forward passive. The case whereH is bounded
and has a bounded inverse is almost as easy, and the general case is proved in [AKP05,
Proposition 4.6].

The existence of an operator H > 0 such that �i/s/o is scattering H -passive is
related to the properties of the transfer function�i/s/o. To formulate this result we first
recall some definitions. The Schur class S(U,Y; D) is the unit ball inH∞(U,Y,D),
i.e., each function in S(U,Y; D) is an analytic function on the open unit disk D =
{z ∈ C | |z| < 1} whose values are contractions in B(U,Y). The restricted Schur
class S(U,Y;�), where � ⊂ D, contains all functions θ which are restrictions to �
of some function in S(U,Y; D). In other words, θ ∈ S(U,Y;�) if the (Nevanlinna–
Pick) extension (or interpolation) problem with the (possibly infinite) set of data points
(z, θ(z)), z ∈ �, has a solution in S(U,Y; D). It is known that this problem has a
solution if and only if the kernel

Kθ
sca(z, ζ ) = 1Y − θ(z)θ(ζ )∗

1 − zζ
, z, ζ ∈ �,
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is nonnegative definite on �×�, or equivalently, if and only if the kernel

Kθ∗
sca(z, ζ ) = 1U − θ(ζ )∗θ(z)

1 − ζz
, z, ζ ∈ �,

is nonnegative definite on�×� (see [RR82]). We shall here be interested in the case
where � is an open subset of D, which implies that the solution of this Nevanlinna–
Pick extension problem is unique (if it exists).

Theorem 2.1. Let�i/s/o = ([
A B
C D

] ; U,X,Y; jsca
)

be an i/s/o system with scattering
supply rate and transfer function D, and let �0(A) be the connected component of
�(A) ∩ D which contains the origin.

(i) If �i/s/o is forward H -passive for some H > 0, then �i/s/o is H -passive and
D|�0(A) ∈ S(U,Y;�0(A)).

(ii) Conversely, if �i/s/o is minimal and D|�0(A) ∈ S(U,Y;�0(A)), then �i/s/o
is H -passive for some H > 0.

In statement (ii) it is actually possible to choose the operator H to satisfy an
additional minimality requirement. We shall return to this question in Theorem 3.5.

2.2. Impedance supply rate. Also in the case of impedance supply rate forward
H -passivity is equivalent to backward H -passivity, hence to passivity. This is well
known in the case where H = 1X (see, e.g., [Aro79a]). One way to prove this is to
reduce the impedance case to the scattering case by means of the following simple
transformation.

Suppose that �i/s/o = ([
A B
C D

] ; U,X,Y; jimp
)

is a forward impedance H -pas-
sive system with signature operator Jimp = [

0 �
�∗ 0

]
. Let (u, x, y) be a trajectory

of �i/s/o. We define a new input u× by u× = 1√
2
(u + �∗y) and a new output

y× by y× = 1√
2
(�u − y), after which we solve (1.2) for x and y× in terms of x0

and u×. It turns out that for this to be possible we need � + D to have a bounded
inverse. However, this is always the case, since (1.6) (with x = 0) implies that
�∗D + D∗� ≥ 0. A direct computation shows that (y×, x, u×) is a trajectory of

another system�×
i/s/o =

([
A× B×
C× D×

]
; U,X,Y

)
, called the external Cayley transform

of �i/s/o, whose coefficients are given by

A× = A− B(� +D)−1C, B× = √
2B(� +D)−1�,

C× = −√
2�(� +D)−1C, D× = (� −D)(� +D)−1�.

(2.1)

The transfer functions of the two systems are connected by

D×(z) = (� − D(z))(� + D(z))−1�, z ∈ �(A) ∩�(A×). (2.2)
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The external Cayley transform is its own inverse in the sense that�+D× = 2�(�+
D)−1� always has a bounded inverse, and if we apply the external Cayley transform
to the system �×

i/s/o, then we recover the original system �i/s/o.
The main reason for defining the external Cayley transform in the way that we

did above is that it ‘preserves the energy exchange’ in the sense that jimp(u, y) =
jsca(y

×, u×). This immediately implies that �×
i/s/o is forward scattering H -passive

whenever �i/s/o is forward impedance H -passive.6 According to the discussion in
Section 2.1, forward scatteringH -passivity of�×

i/s/o is equivalent to backward scatter-

ing H -passivity of �×
i/s/o, and this in turn is equivalent to the backward (impedance)

H -passivity of �i/s/o. Thus, we get the desired conclusion, namely that forward
impedance H -passivity implies backward impedance H -passivity, hence impedance
H -passivity.

The same argument can be used to convert all the results mentioned in Section 2.1
into an impedance setting. For simplicity we below take Y = U and � = 1U (this
amounts to replacing the output sequence y with values in Y by the new output se-
quence �∗y with values in U)). The Carathéodory class C(U; D) (also called the
Carathéodory–Nevanlinna class, or Nevanlinna class, or Weyl class, or Titchmarsh–
Weyl class, etc.) consists of all analytic B(U)-valued functionsψ on D with nonneg-
ative ‘real part’, i.e., ψ(z) + ψ(z)∗ ≥ 0 for all z ∈ D. The restricted Carathéodory
class C(U;�), where � ⊂ D, contains all functions θ which are restrictions to �
of some function in C(U; D). In other words, θ ∈ C(U;�) if the extension prob-
lem with the set of data points (z, θ(z)), z ∈ �, has a solution in C(U;�). This is
equivalent to the requirement that the kernel

K
ψ
imp(z, ζ ) = ψ(z)+ ψ(ζ )∗

1 − zζ
, z, ζ ∈ �,

is nonnegative definite on�×� (this can be proved by reducing the impedance case
to the scattering case as explained above).

Theorem 2.2. Let �i/s/o = ([
A B
C D

] ; U,X,U; jimp
)

be an i/s/o system with impe-

dance supply rate, signature operator Jimp =
[

0 1U
1U 0

]
, and transfer function D. Let

�0(A) be the connected component of �(A) ∩ D which contains the origin.

(i) If �i/s/o is forward H -passive for some H > 0, then �i/s/o is H -passive and
D|�0(A) ∈ C(U,Y;�0(A)).

(ii) Conversely, if �i/s/o is minimal and D|�0(A) ∈ C(U,Y;�0(A)), then �i/s/o
is H -passive for some H > 0.

This theorem follows from Theorem 2.1 as explained above.

6It is also true that�×
i/s/o is forward impedanceH -passive if�i/s/o is forward scatteringH -passive, provided

(� +D) has a bounded inverse so that �×
i/s/o exists.
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Above we have reduced the impedance passive case to the scattering passive case.
Historically the development went in the opposite direction: the impedance version
is older than the scattering version. It is related to Neumark’s dilation theorem for
positive operator-valued measures (see [Bro71, Appendix 1]). In many classical and
also in some recent works (especially those where the functions are defined on a half-
plane instead of the unit disk) the impedance version is used as ‘reference system’
from which scattering and other results are derived (see, e.g., [Bro78]). Thus, one
easily arrives at the (in my opinion incorrect) conclusion that it does not really matter
which one of the two classes is used as the basic corner stone on which the theory is
built. However, there is a significant difference between the two classes: the external
Cayley transformation that converts one of the classes into the other is well-defined
for every impedanceH -passive system, but not for every scatteringH -passive system.
In other words, the external Cayley transform maps the class of impedanceH -passive
systems into but not onto the class of scatteringH -passive systems (even if we restrict
the input and output dimensions of the scattering system to be the same).

What happens if we try to apply the external Cayley transform to a scattering
H -passive system for which this transform is not defined (i.e.,�+D is not invertible)?
In this case the formal transfer function of the resulting system may take its values in
the space of closed unbounded operators in U, and it may even be multi-valued. To be
able to study this class of ‘generalized Carathéodory functions’ we need some other
more general type of linear systems than the i/s/o systems we have considered so far.
This was one of the motivations for the introduction of the notion of a state/signal
system in [AS05], to be discussed in Section 3.

2.3. Transmission supply rate. In the case of transmission supply rate forward
H -passivity is no longer equivalent to backward H -passivity. For simplicity, let us
takeH to be the identity. Arguing in the same way as in the scattering case we find that
�i/s/o = ([

A B
C D

] ; U,X,Y; jtra
)

is forward (transmission) passive if and only if the
operator

[
A B
C D

]
is a contraction7 between two Kreı̆n spaces, namely from the space[

X
U

]
with the signature operator

[
1X 0
0 JU

]
to the space

[
X
Y

]
with the signature opera-

tor
[

1X 0
0 JY

]
. In the same way we find that �i/s/o is backward (transmission) passive

if
[
A B
C D

]∗ is a contraction from the space
[

X
Y

]
with the signature operator

[
1X 0
0 JY

]
to the space

[
X
U

]
with the signature operator

[
1X 0
0 JU

]
. However, in a Kreı̆n space

setting the contractivity of an operator does not imply that the adjoint of this operator
is contractive, and hence forward transmission passivity does not imply backward
transmission passivity without any further restrictions on the system. One neces-
sary condition for the system �i/s/o to be both forward and backward (transmission)
H -passive is that the dimensions of the negative eigenspaces of JU and JY are the

7An operator A ∈ B(U; Y), where U and Y are Kreı̆n spaces, is a contraction if [Au,Au]Y ≤ [u, u]U for
all u ∈ U.
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same. If these dimensions are the same and finite, then it is true that forward H -
passivity is equivalent to backward H -passivity, hence to passivity. To prove these
statements one can use the following transformation that maps the transmission supply
rate into a scattering supply rate.

Suppose that �i/s/o = ([
A B
C D

] ; U,X,Y; jtra
)

is a forward transmission H -

passive system with signature operator Jtra =
[
JY 0
0 JY

]
. We begin by splitting the

output space Y into the orthogonal direct sum Y = −Y− [�] Y+, where Y− is the
negative and Y+ is the positive eigenspace of JY. In the same way we split the input
space U into U = −U− [�] U+, and we split the operator

[
A B
C D

]
accordingly into

[
A B

C D

]
=

⎡
⎢⎣
A B1 B1

C1 D11 D12
C2 D21 D22

⎤
⎥⎦ .

Let (u, x, y) be a trajectory of�i/s/o, and split y and u into y = [ y−
y+

]
and u = [ u−

u+
]
,

so that y− is a sequence in Y−, etc. We define a new input u� by u� = [ y−
u+

]
and

a new output y� by y� = [ u−
y+

]
, so that u� is a sequence in U� = Y− ⊕ U+ and

y� is a sequence in Y� = U− ⊕ Y+. We then solve (1.2) for x and y� in terms of
x0 and u�. It turns out that for this to be possible we need D11 to have a bounded
inverse. The forward H -passivity of �i/s/o implies that D11 is injective and has a
closed range, but it need not be surjective. However, let us suppose that D11 has a
bounded inverse. Then a direct computation shows that (u�, x, y�) is a trajectory of

another system ��

i/s/o =
([

A� B�

C� D�

] ; U�,X,Y�

)
, called the Potapov–Ginzburg

(or chain scattering) transform of �i/s/o, whose coefficients are given by

[
A� B�

C� D�

]
=

⎡
⎢⎣
A B1 B2

0 1Y− 0
C2 D21 D22

⎤
⎥⎦

⎡
⎢⎣

1X 0 0

C1 D11 D12
0 0 1U+

⎤
⎥⎦

−1

=
⎡
⎢⎣

1X −B1 0

0 −D11 0
0 −D21 1Y+

⎤
⎥⎦

−1 ⎡
⎢⎣
A 0 B2

C1 −1U− D12
C2 0 D22

⎤
⎥⎦ .

(2.3)

The transfer functions of the two systems are connected by[
D�

11(z) D�

12(z)

D�

21(z) D�

22(z)

]
=

[
(D11(z))

−1 −(D11(z))
−1D12(z)

D21(z)(D11(z))
−1 D22(z)− D21(z)(D11(z))

−1D12(z)

]
,

z ∈ �(A) ∩�(
A�

)
. (2.4)

The Potapov–Ginzburg transform is its own inverse in the sense that D�

11 = D−1
11

always has a bounded inverse, and if we apply the Potapov–Ginzburg transform to
the system ��

i/s/o, then we recover the original system �i/s/o.
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The Potapov–Ginzburg transform has been designed to ‘preserve the energy ex-
change’ in the sense that jtra(u, y) = jsca(u

�, y�). This immediately implies that
��

i/s/o is forward scattering H -passive whenever �i/s/o is forward transmission H -
passive, provided that D11 is invertible so that the transform is defined. As in the
impedance case we conclude that the forward transmission H -passive system �i/s/o
is also backwardH -passive, i.e.,H -passive, ifD11 has a bounded inverse (whereD11
is the part of the feedthrough operator D that maps the negative part of the input
space U into the negative part of the output space Y). The converse is also true: if
�i/s/o is (transmission) H -passive, then D11 has a bounded inverse. Thus, a forward
transmission H -passive system �i/s/o is H -passive if and only if D11 has a bounded
inverse, or equivalently, if and only if the Potapov–Ginzburg transform of �i/s/o is
defined.

The analogue of Theorems 2.1 and 2.2 is more complicated to formulate than in
the scattering and impedance cases. In particular, it is not immediately clear how to
define the appropriate class of transfer functions. Above we first defined the Schur
class S(U,Y; D) and the Carathéodory class C(U; D) in the full unit disk, and then
restricted these classes of functions to some subset � ⊂ D. Here it is easier to
proceed in the opposite direction, and to directly define the restricted Potapov class
P (U,Y;�) for some � ⊂ D. We now interpret U and Y as Kreı̆n spaces, i.e., we
replace the original Hilbert space inner products in Y and U by the Kreı̆n space inner
products

[y, y′]Y = 〈y, JYy
′〉Y, [u, u′]U = 〈u, JUu

′〉U.
In the sequel we compute all adjoints with respect to these Kreı̆n space inner products,
and we also interpret positivity with respect to these inner products (so that, e.g., an
operator D is nonnegative definite in U if [u,Du]U ≥ 0 for all u ∈ U). A function
ϕ : � → B(U; Y) belongs to P (U,Y;�) if both the kernels

K
ϕ
tra(z, ζ ) = 1Y − ϕ(z)ϕ(ζ )∗

1 − zζ
, z, ζ ∈ �,

K
ϕ∗
tra (z, ζ ) = 1U − ϕ∗(ζ )ϕ(z)

1 − ζz
, z, ζ ∈ �,

(2.5)

are nonnegative definite on �×�.

Theorem 2.3. Let�i/s/o = ([
A B
C D

] ; U,X,Y; jtra
)

be an i/s/o system with transmis-

sion supply rate, signature operator Jtra =
[
JY 0
0 JU

]
, and transfer function D. Let

�0(A) be the connected component of �(A) ∩ D which contains the origin.

(i) If �i/s/o is H -passive for some H > 0, then D|�0(A) ∈ P (U,Y;�0(A)).

(ii) Conversely, if �i/s/o is minimal and D|�0(A) ∈ P (U,Y;�0(A)), then �i/s/o
is H -passive for some H > 0.



Passive linear discrete time-invariant systems 11

This theorem follows from Theorem 2.1 via the Potapov–Ginzburg transforma-
tion. Note that (2.5) with z = ζ = 0 implies that both D and D∗ are Kreı̆n space
contractions, so thatD11 is invertible and the Potapov–Ginzburg transform is defined.

From what we have said so far it seems to follow that the transmission case is not
that different from the scattering and impedances cases. However, this impression is
not correct. One significant difference is that the Potapov–Ginzburg transformation is
not always defined for a forward transmission H -passive i/s/o system. Another even
more serious problem is that a function in the Potapov class may have singularities
inside the unit disk D, which means that in the definition of the (full) Potapov class
P (U,Y; D) we must take into account that the function in this class need not be
defined everywhere on D. If the negative dimensions of U and Y are the same and
finite, then this is not a serious problem, because in this case it is possible to define
the Potapov class P (U,Y; D) to be the set of all meromorphic functions on D whose
values in B(U; Y) are contractive with respect to the Kreı̆n space inner products in U
and Y at all points where the functions are defined. However, in the general case the
set of singularities of a function in P (U,Y; D)may be uncountable, and the domain
of definition of a function in P (U,Y; D) need not even be connected. For this reason
we prefer to define P (U,Y; D) in a different way. We say that a function ϕ belongs to
the (full) Potapov class P (U,Y; D) if it belongs to P (U,Y;�)where the domain�
is maximal in the sense that the function ϕ does not have an extension to any larger
domain �′ ⊂ D with the property that the two kernels in (2.5) are still nonnegative
on �′ × �′. The existence of such a maximal domain is proved in [AS06b]. This
maximal domain need not be connected, but it is still true that if we start from an open
set� ⊂ D, then the values of ϕ on� define the extension of ϕ to its maximal domain
uniquely. Moreover, as shown in [AS06b], if ϕ ∈ P (U,Y; D), then ϕ does not have
an analytic extension to any boundary point of its domain contained in the open unit
disk D.

Taking a closer look at Theorem 2.3 we observe that it puts one artificial restriction
on the transfer function D, namely that the domain of definition must contain the
origin. Not every function in the Potapov class is defined at the origin, so the class of
transfer functions covered by Theorem 2.3 is not the full Potapov class. In addition it
is possible to extend the Potapov class so that the values of the functions in this class
may be unbounded, even multivalued, operators (as in the impedance case) by taking
the formal Potapov transforms of functions in S(U,Y,D). Thus, we again see the
need of a more general class of systems than the i/s/o class that we have discussed up
to now.

3. State/signal systems

It is possible to develop a linear systems theory where the differences between the
three different types of supply rates, namely scattering, impedance, and transmission,
more or less disappear. Both the basic transforms that we have presented above,
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namely the external Cayley transform which is used to pass from an impedance H -
passive system to a scatteringH -passive system and back, and the Potapov–Ginzburg
transform that is used to pass from a transmission H -passive system to a scattering
H -passive system and back, can be regarded as simple ‘changes of coordinates in

the signal space W =
[

Y
U

]
’. The main idea is not to distinguish between the input

sequence u and the output sequence y, but to simply regard these as components of
the general ‘signal sequence’w = [

y
u

]
.

We start by combining the input space U and the output space Y into one signal

space W =
[

Y
U

]
. This signal space has a natural Kreı̆n space8 inner product obtained

from the supply rate j in (1.4), namely[[
y

u

]
,

[
y′
u′

]]
W

=
〈[
y

u

]
, J

[
y′
u′

]〉
Y⊕U

.

If we combine the input sequenceu and the output sequence y into one signal sequence
w = [

y
u

]
, then the basic i/s/o relation (1.1) can be rewritten in the form

⎡
⎣x(n+ 1)

x(n)

w(n)

⎤
⎦ ∈ V, n ∈ Z

+ = {0, 1, 2, . . .}, x(0) = x0, (3.1)

where V is the subspace of K :=
[

X
X
W

]
given by

V =
{[

z
x
w

]
∈

[
X
X
W

] ∣∣∣ z = Ax + Bu,

y = Cx +Du,
w = [

y
u

]
, x ∈ X, u ∈ U

}
. (3.2)

It is not difficult to show that the subspace V obtained in this way has the following
four properties:

(i) V is closed in K.

(ii) For every x ∈ X there is some
[
z
w

] ∈ [
X
W

]
such that

[
z
x
w

]
∈ V .

(iii) If
[
z
0
0

]
∈ V , then z = 0.

(iv) The set
{[

x
w

] ∈ [
X
W

] ∣∣ [
z
x
w

]
∈ V for some z ∈ X

}
is closed in

[
X
W

]
.

Definition 3.1. A triple � = (V ; X,W), where the (internal) state space X is a
Hilbert space and the (external) signal space W is a Kreı̆n space and V is a subspace

8Both [BS05] and [AS06a] contain short sections on the geometry of a Kreı̆n space. For more detailed
treatments we refer the reader to one of the books [ADRdS97], [AI89] and [Bog74].
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of the product space K :=
[

X
X
W

]
is called a s/s (state/signal) node if it has properties

(i)–(iv) listed above. We interpret K as a Kreı̆n space with the inner product[[
z
x
w

]
,

[
z′
x′
w′

]]
K

= −〈z, z′〉X + 〈x, x′〉X + [w,w′]W ,
[
z
x
w

]
,

[
z′
x′
w′

]
∈ K, (3.3)

and we call K the node space and V the generating subspace.

By a trajectory of � we mean a pair of sequences (x,w) satisfying (3.1). We
call x the state component and w the signal component of this trajectory. By the s/s
system � we mean the s/s node � together with all its trajectories.

The conditions (i)–(iv) above have natural interpretations in terms of the trajec-
tories of �: for each x0 ∈ X condition (ii) gives forward existence of at least one
trajectory (x,w) of� with x(0) = x0. Condition (iii) implies that a trajectory (x,w)
is determined uniquely by x0 and w, and conditions (i) and (iv) imply that the signal
part x depends continuously in XZ

+
on x0 ∈ X and w ∈ WZ

+
.

A s/s system � is controllable if the set of all states x(n), n ≥ 1, which appear in
some trajectory (x,w) of� with x(0) = 0 (i.e., an externally generated trajectory) is
dense in X. The system� is observable if there do not exist any nontrivial trajectories
(x,w) where the signal component w is identically zero. Finally, � is minimal if �
is both controllable and observable.

Above we explained how to interpret an i/s/o system �i/s/o as a s/s system. Con-
versely, from every s/s system� it is possible to create not only one, but infinitely many
i/s/o systems. The representation (3.2) is characterized by the fact that it is a graph
representation of V over

[
X
U

]
where U is one of the two components in a direct sum

decomposition of W = Y � U (not necessarily orthogonal) of W . Indeed, splitting
w into w = [

y
u

]
and reordering the components we find that (3.2) is equivalent to

V =
{[

z
y
x
u

]
∈

[
X
Y
X
U

] ∣∣∣∣
[
z

y

]
=

[
A B

C D

] [
x

u

]
,

[
x

u

]
∈

[
X
U

]}
. (3.4)

As shown in [AS05], the generating subspace of every s/s system � has at least one
(hence infinitely many) graph representation of this type. A direct sum decomposition
W = Y � U of W is called an admissible i/o (input/output) decomposition of W
for �, or simply an admissible decomposition, if it leads to a graph representation of
the generating subspace of � described above. From each such graph representation
of V we get an i/s/o system�i/s/o = ([

A B
C D

] ; U,X,Y
)

of �, which we call an i/s/o
representation of �.

The above definitions are taken from [AS05], [AS06a], and [AS06b]. It turns out
that a very large part of the proof of the H -passivity theory covered in Section 2 can
be carried out directly in the s/s setting, rather than applying the same arguments
separately with the scattering, impedance, and transmission supply rates. This leads
to both a simplification and to a unification of the whole theory. Below we present the
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most basic parts of the H -passive s/s theory, and refer the reader to [AS05]–[AS06c]
for details.

Let � = (V ; X,W) be a s/s node. The adjoint �∗ = (V∗; X,W∗) of � (intro-
duced in [AS06a, Section 4]) is another s/s node, with the same state space X as �,
and with the signal space W∗ = −W .9 The generating subspace V∗ of�∗ is given by

V∗ =
{[

x∗
z∗
w∗

] ∣∣∣ [
z∗
x∗
w∗

]
∈ V [⊥]},

where V [⊥] is the orthogonal companion to V with respect to the Kreı̆n space inner
product of K.10 The adjoint system �∗ is determined by the property that

−〈x(n+1), x∗(0)〉X+〈x(0), x∗(n+1)〉X+
n∑
k=0

[w(k),w∗(n−k)]W = 0, n ∈ Z
+,

for all trajectories (x,w) of �.
The following definition is the s/s version of Definitions 1.1 and 1.2.

Definition 3.2. Let H be a positive self-adjoint operator in the Hilbert space X. A
s/s system � is

(i) forward H -passive if x(n) ∈ D(
√
H) and

‖√Hx(n+ 1)‖2
X − ‖√Hx(n)‖2

X ≤ [w(n),w(n)]W , n ∈ Z
+,

for every trajectory (x,w) of � with x(0) ∈ D(
√
H),

(ii) forward H -conservative if the above inequality holds as an equality,

(iii) backward H -passive or H -conservative if �∗ is forward H−1-passive or
H−1-conservative, respectively,

(iv) H -passive or H -conservative if it is both forward and backward H -passive or
H -conservative, respectively,

(v) passive or conservative if it is 1X-passive or 1X-conservative.

To formulate a s/s version of Theorems 2.1, 2.2 and 2.3 we need a s/s analogue of
the transfer function of an i/s/o system. Such an analogue is most easily obtained in the
time domain (as opposed to the frequency domain), and it amounts to the introduction
of a behavior11 on the signal space W . By this we mean a closed right-shift invariant
subspace of the Fréchet space WZ

+
. Thus, in particular, the set W of all sequencesw

9Algebraically −W is the same space as W , but the inner product in −W is obtained from the one in W by
multiplication by the constant factor −1.

10Thus, V [⊥] = {k∗ ∈ K | [k, k∗]K = 0 for all k ∈ V }. Note that V∗ differs from V [⊥] only by the order of
the first two components.

11Our behaviors are what Polderman and Willems call linear time-invariant mainfest behaviors in [PW98,
Definitions 1.3.4, 1.4.1, and 1.4.2]. We refer the reader to this book for further details on behaviors induced by
systems with a finite-dimensional state space and for an account of the extensive literature on this subject.
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that are the signal parts of externally generated trajectories of a given s/s system � is
a behavior. We call this the behavior induced by�, and refer to� as a s/s realization
of W, or, in the case where � is minimal, as a minimal s/s realization of W. A
behavior is realizable if it has a s/s realization.

Two s/s systems �1 and �2 with the same signal space are externally equiv-
alent if they induce the same behavior. This property is related to the notion of
pseudo-similarity. Two s/s systems � = (V ; X,W) and �1 = (V1; X1,W) are
called pseudo-similar if there exists an injective densely defined closed linear opera-
tor R : X → X1 with dense range such that the following conditions hold:

If (x( ·), w( ·)) is a trajectory of� on Z
+ withx(0) ∈ D(R), thenx(n) ∈ D(R)

for all n ∈ Z
+ and (Rx( ·), w( ·)) is a trajectory of �1 on Z

+, and con-
versely, if (x1( ·), w( ·)) is a trajectory of �1 on Z

+ with x1(0) ∈ R(R), then
x1(n) ∈ R(R) for all n ∈ Z

+ and (R−1x1( ·), w( ·)) is a trajectory of� on Z
+.

In particular, if �1 and �2 are pseudo-similar, then they are externally equivalent.
Conversely, if �1 and �2 are minimal and externally equivalent, then they are neces-
sarily pseudo-similar. Moreover, a realizable behavior W on the signal space W has a
minimal s/s realization, which is determined uniquely by W up to pseudo-similarity.
(See [AS05, Section 7] for details.)

The adjoint of the behavior W on W is a behavior W∗ on W∗ defined as the set
of sequences w∗ satisfying

n∑
k=0

[w(k),w∗(n− k)]W = 0, n ∈ Z
+,

for all w ∈ W. If W is induced by �, then W∗ is (realizable and) induced by �∗,
and the adjoint of W∗ is the original behavior W.

The following definition is a s/s analogue of our earlier definitions of the Schur,
Carathéodory, and Potapov classes of transfer functions.

Definition 3.3. A behavior W on W is

(i) forward passive if
n∑
k=0

[w(k),w(k)]W ≥ 0, w ∈ W, n ∈ Z
+,

(ii) backward passive if W∗ is forward passive,

(iii) passive if it is realizable12 and both forward and backward passive.

It is not difficult to see that a s/s system � = (V ; X,W) is forward H -passive if
and only if H > 0 is a solution of the generalized s/s KYP (Kalman–Yakubovich–

12We do not know if the realizability assumption is redundant or not.
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Popov) inequality13

‖√Hz‖2
X − ‖√Hx‖2

X ≤ [w,w]W ,
[
z
x
w

]
∈ V, x ∈ D(

√
H), (3.5)

and that it is forward H -conservative if and only if the above inequality holds as an
equality.

The following proposition is a s/s version of parts (i) of Theorems 2.1, 2.2, and
2.3.

Proposition 3.4. Let W be the behavior induced by a s/s system �.

(i) If � is forward H -passive for some H > 0, then W is forward passive.

(ii) If � is backward H -passive for some H > 0, then W is backward passive.

(iii) If � is forward H1-passive for some H1 > 0 and backward H2-passive for
some H2 > 0, then � is both H1-passive and H2-passive, and W is passive.

The following theorem generalizes parts (ii) of Theorems 2.1, 2.2, and 2.3.

Theorem 3.5. Let W be a passive behavior on W . Then

(i) W has a minimal passive s/s realization.

(ii) Every H -passive realization � of W is pseudo-similar to a passive realiza-
tion �H with pseudo-similarity operator

√
H . The system �H is determined

uniquely by � and H .

(iii) Every minimal realization of W isH -passive for someH > 0, and it is possible
to choose H in such a way that the system �H in (ii) is minimal.

Assertion (ii) can be interpreted in the following way: we can always convert
an H -passive s/s system into a passive one by simply replacing the original norm
‖·‖X in the state space by the new norm ‖x‖H = ‖√Hx‖X, which is finite for all
x ∈ D(

√
H), and then completing D(

√
H) with respect to this new norm.

We shall end this section with a result that says that a suitable subclass of all
operators H > 0 for which a s/s system � is H -passive can be partially ordered.
Here we use the following partial ordering of nonnegative self-adjoint operators on
X: if H1 and H2 are two nonnegative self-adjoint operators on the Hilbert space X,
then we write H1 � H2 whenever D(H

1/2
2 ) ⊂ D(H

1/2
1 ) and ‖H 1/2

1 x‖ ≤ ‖H 1/2
2 x‖

for all x ∈ D(H
1/2
2 ). For bounded nonnegative operators H1 and H2 with D(H2) =

D(H1) = X this ordering coincides with the standard ordering of bounded self-
adjoint operators.

For each s/s system � we denote the set of operators H > 0 for which � is
H -passive by M� , and we let Mmin

� be the set of H ∈ M� for which the system �H
in assertion (ii) of Theorem 3.5 is minimal.

13In particular, in order for the first term in this inequality to be well-defined we require z ∈ D(
√
H)whenever[

z
x
w

]
∈ V and x ∈ D(

√
H).
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Theorem 3.6. Let � be a minimal s/s system with a passive behavior. Then Mmin
�

contains a minimal element H� and a maximal element H•, i.e., H� � H � H• for
every H ∈ Mmin

� .

The two extremal storage functionsEH� andEH• correspond to Willems’[Wil72a],
[Wil72b] available storage and required supply, respectively (there presented in an
i/s/o setting). In the terminology of Arov [Aro79b], [Aro95], [Aro99] (likewise in an
i/s/o setting), �H� is the optimal and �H• is the ∗-optimal realization of W.

4. Scattering, impedance and transmission representations of
s/s systems

The results presented in Section 2 can be recovered from those in Section 3, together
with a number of additional results. This is done by studying different i/s/o represen-
tations of a s/s system. Depending on the admissible i/o decomposition of the signal
space W into an input space U and an output space Y we get different supply rates
(inherited from the Kreı̆n space inner product in W ).

Let � = (V ; X,W) be a s/s system, and decompose W into the direct sum of an
input space U and an output space Y. Furthermore, suppose that this decomposition
is admissible, so that it gives rise to an i/s/o representation�i/s/o of�. In the case of a
fundamental decomposition W = −Y [�]U, where Y and U are Hilbert spaces (i.e.,
−Y is an anti-Hilbert space) and −Y and U are orthogonal in W , the inner product
in W is given by [[

y

u

]
,

[
y′
u′

]]
W

= −〈y, y′〉Y + 〈u, u′〉U,

which leads to a scattering supply rate for the i/s/o representation �i/s/o. In this
case we call �i/s/o an admissible scattering representation of �. In the case of a
(nonorthogonal) Lagrangian decomposition, where both Y and U are Lagrangian14

subspaces of W we get an impedance supply rate and an admissible impedance repre-
sentation of �. Finally, if W = −Y [�] U is an arbitrary orthogonal decomposition
of W (not necessarily fundamental), then we get a transmission supply rate and an
admissible transmission representation of �. Thus, in the s/s setting the external
Cayley transform and the Potapov–Ginzburg transform that we presented in Sec-
tion 2 are simply two different ways at looking at the same s/s system, via different i/o
decompositions of the signal space W into an input space U and an output space Y.

The following proposition is related to the discussions at the beginning of Sec-
tions 2.1 and 2.2.

Proposition 4.1. Let � = (V ; X,W) be a forward H -passive s/s system for some
H > 0. Then the following claims hold.

14A subspace of a Kreı̆n space is Lagrangian if it coincides with its own orthogonal companion.
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(i) � isH -passive if and only if� has an admissible scattering representation, in
which case every fundamental decomposition of W is admissible.

(ii) If � has an admissible impedance representation, then � is H -passive.

The converse of (ii) is not true: there do exist passive s/s systems which do not
have any admissible impedance representation, even if we require the positive and
negative dimensions of W to be the same. EveryH -passive s/s system does have some
admissible transmission representations (for example, every scattering representation
can be interpreted as a transmission representation), but in general there also exist
orthogonal decompositions of the signal space that are not admissible.

One way to prove many of the results listed above is to pass to some particular i/s/o
representation�i/s/o of the s/s system�, to prove the corresponding result for�i/s/o,
and to reinterpret the result for the s/s system �. In many cases the most convenient
choice is to use a scattering representation, corresponding to some admissible funda-
mental decomposition of the signal space. We recall from Proposition 4.1 that if �
is H -passive for some H > 0, then every fundamental decomposition is admissible.
However, this is not the only possible choice. If W = Y�U is an arbitrary admissible
i/o decomposition for �, then � is forward or backward H -passive if and only if the
corresponding i/s/o system �i/s/o is forward or backward H -passive with respect to
the supply rate on Y�U inherited from the inner product [ ·, ·]W . Thus, in the family
of i/s/o systems �i/s/o = ([

A B
C D

] ; U,X,Y
)

that we get from � by varying the i/o
decomposition W = Y � U the coefficients

[
A B
C D

]
vary, and so do the supply rates

j (u, y), but the set of solutions of the generalized KYP inequalities (1.6) and (1.10)
stay the same.

Up to now we have only considered admissible i/o decompositions of the signal
space W of a s/s system �. As we commented earlier, not every Lagrangian or
orthogonal decomposition need be admissible for�, even if� isH -passive for some
H > 0. However, it is still possible to study also these non-admissible decompositions
by replacing the i/s/o representations by left or right affine representations of�. These
are defined for arbitrary decompositions W = Y � U (not only for the admissible
ones). By a right affine i/s/o representation of � we mean an i/s/o system15

�ri/s/o =
([

A′ B ′
C′

Y D′
Y

C′
U D′

U

]
; L,X,

[
Y
U

])

with the following two properties: 1) D′ =
[
D′

Y

D′
U

]
has a bounded left-inverse, and

2)
(
x,

[
y
u

])
is a trajectory of � if and only if

(

, x,

[
y
u

])
is a trajectory of �ri/s/o for

some sequence 
 with values in L. By a left affine i/s/o representation of � we mean

15Here the new input space L is an auxiliary Hilbert space called the driving variable space.
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an i/s/o system16

�li/s/o =
([

A′′ B ′′
Y B ′′

U

C′′ D′′
Y D′′

U

]
;
[

Y
U

]
,X,K

)

with the following two properties: 1)D′′ = [
D′′

Y D′′
U

]
has a bounded right-inverse,

and 2)
(
x,

[
y
u

])
is a trajectory of � if and only if

([
y
u

]
, x, 0

)
is a trajectory of �li/s/o

(i.e., the output is identically zero in K). The transfer functions of these systems
are called the right, respectively left, affine transfer functions of � corresponding to
the i/o decomposition W = Y � U. Note, in particular, that the right and left affine

transfer functions are now decomposed into D′ =
[

D′
Y

D′
U

]
and D′′ = [

D′′
Y D′′

U

]
,

respectively.
Let

�(�ri/s/o) = {z ∈ �A′ | D′
U(z) has a bounded inverse},

�(�li/s/o) = {z ∈ �A′′ | D′′
Y(z) has a bounded inverse},

and let
�r(�; U,Y) be the union of the above sets �(�ri/s/o),

�l(�; U,Y) be the union of the above sets �(�li/s/o).

We can now define the notions of right and left generalized transfer functions of �
with input space U and output space Y on the sets �r(�; U,Y) and �l(�; U,Y),
respectively, by the formulas

Dr (z) = D′
Y(z)D

′
U(z)

−1, (4.1)

Dl(z) = −D′′
Y(z)

−1D′′
U(z), (4.2)

respectively.

Theorem 4.2. The right-hand side of (4.1) does not depend on the choice of �ri/s/o
as long as �(�ri/s/o) � z, and the right-hand side of (4.2) does not depend on the

choice of �li/s/o as long as �(�li/s/o) � z.
Theorem 4.3. The right and left generalized transfer functions defined by (4.1) and
(4.2), respectively, coincide on

�(�; U,Y) = �r(�; U,Y) ∩�l(�; U,Y)

(whenever this set is nonempty). If the i/o decomposition W = Y � U is admissible,
and if A is the main operator of the corresponding i/s/o representation of �, then

�r(�; U,Y) = �l(�; U,Y) = �A,

and the left and right generalized transfer functions coincide with the ordinary transfer
function corresponding to the decomposition W = Y � U

16Here the new output space K is an auxiliary Hilbert space called the error variable space.
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In the case where the s/s system� isH -passive for someH > 0 we can say more.
In this case it is possible to choose the different affine representations of � in such a
way that the right and left transfer functions are defined in the whole unit disk D and
belong toH∞, and they will even be right and left coprime inH∞, respectively. In this
way we obtain right and left coprime transmission representations of�, and in the case
that the positive and negative dimensions of the signal space W are the same we also
obtain right and left coprime impedance representations. The corresponding right and
left coprime affine transfer functions will be generalized Potapov and Carathéodory
class functions, respectively.

5. Further extensions

The results of Sections 3 and 4 are taken primarily from [AS05], [AS06a]–[AS06c].
At present they do not yet make up a complete theory that would be ready to replace
the classical i/s/o theory. However, the following additional discrete part ingredients
of the s/s theory are presently under active development:

• The study of the interconnection of two s/s systems (this is the s/s analogue of
feedback).

• Lossless behaviors and bi-lossless extensions of passive behaviors (including
the s/s analogue of Darlington synthesis).

• Additional representations of generalized Carathéodory and Potapov class func-
tions.

• External and internal symmetry of s/s systems (including reciprocal systems).

• Further studies of the stability properties of passive s/s systems.

• Conditions for ordinary similarity (as opposed to pseudo-similarity) of minimal
passive realizations.

An even larger project is still in its infancy, namely the extension of the s/s theory
to continuous time systems. Some preliminary results in this direction have been
obtained in [BS05] and [MS06a], [MS06b].
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