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Abstract. We give an introduction to the theory of linear stationary
s/s (state/signal) systems in continuous time. A s/s system has a state
space which plays the same role as the state space of an ordinary i/s/o
(input/state/output) system, but it differs from an i/s/o systems in
the sense that the interaction signal which connects the system to the
outside world has not been divided a priori into one part which is called
the “input” and another part which is called the “output”. The class
of s/s systems can be used to model, e.g., linear time-invariant circuits
which may contain both lumped and distributed components. To each
s/s system corresponds in general an infinite number of i/s/o systems
which differ from each other by the choice of how the interaction signal
has been divided into an input part and output part. Each such i/s/o
system is called an i/s/o representation of the given s/s system.

We begin by giving an introduction to the time domain theory for
i/s/o and s/s systems, then continue by taking a brief look at the fre-
quency domain theory for i/s/o and s/s systems, and end with a short
overview of the notions of passivity or conservativity of i/s/o and s/s
systems. In all cases the s/s results that we present can be formulated in
such a way that they do not depend on any particular i/s/o representa-
tion of the s/s system, but it is still true that there is a strong connection
between the central properties of a s/s system and the corresponding
properties of its i/s/o representations.
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1. Introduction to state/signal systems

1.1. Input/state/output systems in the time domain

A “well-posed” linear stationary discrete time i/s/o (input/state/output) sys-
tem is of the form

Σi/s/o :

{
x(n+ 1) = Ax(n) +Bu(n),

y(n) = Cx(n) +Du(n),
n ∈ Z

+. (1.1)

Here the input u, the state x, and the output y take their values in three
Hilbert spaces, the input space U , the state space X , and the output space
Y, respectively, Z+ = {0, 1, 2, . . .}, and A, B, C, and D, are bounded linear
operators with the appropriate domain and range spaces. These operators
are called as follows: A is the main operator, B is the control operator, C
is the observation operator, and D is the feed-through operator. By a future

trajectory of Σi/s/o we mean a sequence
[ x
u
y

]
defined on Z

+ with values in
[X
U
Y

]
which satisfies (1.1) for all n ∈ Z+.

If we here replace the discrete time axis Z+ by the continuous time axis
R+ = [0,∞) and at the same time replace the first equation in (1.1) by the
corresponding differential equation, then we get a bounded linear stationary
continuous time i/s/o system of the form

Σi/s/o :

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
t ∈ R

+. (1.2)

The input u, the state x, and the output y still take their values in the
Hilbert spaces U , X , and Y, respectively, and the main operatorA, the control
operator B, the observation operator C, and the feed-through operatorD are
still bounded linear operators. By a classical future trajectory of Σi/s/o we

mean a triple of functions
[ x
u
y

]
which satisfies (1.2) for all t ∈ R+, with x

continuously differentiable with values in X and [ uy ] continuous with values
in

[ U
Y
]
.

Unfortunately, typical stationary i/s/o systems modelled by partial dif-
ferential equations are not bounded in the sense that even if it might be
possible to describe the dynamics of the system with an equation of the type
(1.2), the operators A, B, C, and D need not be bounded. For this rea-
son a more general version of (1.2) is needed. Clearly, equation (1.2) can be
rewritten in the form

Σi/s/o :

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R

+, (1.3)

where S is the bounded block matrix operator S = [ A B
C D ]. We get a much

more general class of linear stationary continuous time i/s/o systems by sim-
ply allowing the operator S in (1.3) bo be unbounded (but still closed) and
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rewriting (1.3) in the form

Σi/s/o :





[
x(t)
u(t)

]
∈ dom

(
S
)
,

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
,

t ∈ R
+. (1.4)

This class of systems covers “all” the standard models from mathematical
physics. We call S the generator of Σi/s/o. Usually the domain dom (S) of S

is assumed to be dense in [XU ].

Definition 1.1.

(i) By a regular (continuous time stationary) i/s/o (input/state/output)
node we mean a colligation Σi/s/o = (S;X ,U ,Y), where X , U , and Y

are Hilbert spaces, and S : [XU ] →
[X
Y
]
is a closed linear operator with

dense domain.
(ii) The main operator A of Σi/s/o (or of S) is defined by

dom(A) := {x ∈ X |[ x0 ] ∈ dom(S)} ,

Ax :=
[
1X 0

]
S [ x0 ] , x ∈ dom (A) .

(1.5)

Here
[
1X 0

]
stands for the operator which maps [ xy ] ∈

[X
Y
]
into x.

(iii) By a classical future trajectory of Σi/s/o we mean a triple of functions[ x
u
y

]
which satisfies (1.4) for all t ∈ R+, with x continuously differen-

tiable with values in X and [ uy ] continuous with values in
[ U
Y
]
.

(iv) By a generalized future trajectory of Σi/s/o we mean a triple of functions[ x
u
y

]
which is the limit of a sequence

[ xn

un

yn

]
of classical future trajectories

of Σi/s/o in the sense that xn → x in C(R+;X ) and [ un

yn
] → [ uy ] in

L2
loc(R

+;
[ U
Y
]
).

(v) By a regular (time domain) i/s/o system system we mean an i/s/o
node Σi/s/o = (S;X ,U ,Y) together with the sets of all classical and
generalized future trajectories of Σ.

Above C(R+;X ) stands for the space of continuous function on R+ with
values in X , and convergence in C(R+;X ) means uniform convergence on
each finite subinterval of R+. The space L2

loc(R
+;

[ U
Y
]
) consists of functions

which belong locally to L2 over R+ with values in
[ U
Y
]
, and convergence in

L2
loc(R

+;
[ U
Y
]
) means convergence in L2 on each finite subinterval of R+.

Note that if S is bounded, then S has a block matrix decomposition
S = [ A B

C D ], and (1.4) is equivalent to (1.2).

1.2. State/signal systems in the time domain

The idea behind the definition of a s/s (state/signal) system is to remove the
distinction between the “input” and the “output” of an i/s/o system. This
can be done in several ways. One way is to define the signal space to be the
product W =

[ U
Y
]
of X and Y, and to replace the input u and the output y

by the combined i/o (input/output) signal w = [ uy ]. After that one absorbs
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the “output” equation in (1.4) into the domain of a new operator F (whose
domain will no longer be dense in [XU ]), and rewrites (1.4) in the form

Σ:





[
x(t)
w(t)

]
∈ dom

(
F
)
,

ẋ(t) = F
([

x(t)
w(t)

])
,

t ∈ R
+, (1.6)

dom(F ) =
{[

x0

[u0
y0
]

]
∈ [ XW ]

∣∣∣ [ x0
u0

] ∈ dom (S) , y0 =
[
0 1Y

]
S [ x0

u0
]
}
,

F
[

x0

[ u0
y0
]

]
=

[
1X 0

]
S [ x0

u0
] ,

where
[
0 1Y

]
stands for the operator which maps [ xy ] ∈

[X
Y
]
into y. Note

that (1.6) can be regarded as a special case of (1.4) with U = W and Y = {0},
apart from the fact that dom (F ) need no longer be dense in [ XW ].

We can also go one step further and replace the operator F in (1.6) by
its graph V = gph (F ). More precisely, we still take W =

[ U
Y
]
, define the

node space K to be K =
[ X

X
W

]
, and rewrite (1.6) in the form

Σ:

[
ẋ(t)
x(t)
w(t)

]
∈ V, t ∈ R

+. (1.7)

The generating subspace V = gph (F ) of Σ can alternatively be interpreted
as a reordered version of the graph of the original generator S in (1.4):

V =

{[
z0
x0

[ u0
y0
]

]
∈ K

∣∣∣∣ [
x0
u0

] ∈ dom(S) , [ z0y0
] = S [ x0

u0
]

}

=

{[
z0
x0

[ u0
y0
]

]
∈ K

∣∣∣∣
[

x0

[u0
y0
]

]
∈ dom (F ) , z0 = F

[
x0

[u0
y0
]

]}
.

(1.8)

Definition 1.2.

(i) By a s/s (state/signal) node we mean a colligation Σ = (V ;X ,W),
where X and W are Hilbert spaces and V is a closed subspace of the

product space space K =
[ X

X
W

]
.

(ii) By a classical future trajectory of Σ we mean a pair of functions [ xw ]
which satisfies (1.7) for all t ∈ R

+, with x continuously differentiable
with values in X and w continuous with values in W .

(iii) By a generalized future trajectory of Σ we mean a pair of functions [ xw ]
which is the limit of a sequence [ xn

wn
] of classical future trajectories of Σ

in the sense that xn → x in C(R+;X ) and wn → w in L2
loc(R

+;W).
(iv) By a (time domain) s/s system system we mean an s/s node Σ =

(V ;X ,W) together with the sets of all classical and generalized future
trajectories of Σ.

It is also possible to go in the opposite direction, i.e., to start with a
state/signal system of the type (1.7), and to rewrite it into an i/s/o system
of the type (1.4) under some additional “regularity” assumptions on the gen-
erating subspace V . In this case we start by decomposing the signal space W
(which now is supposed to be an arbitrary Hilbert space with no particular
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structure) into a direct sum W = U∔Y, and try to rewrite (1.7) into the form
(1.4) with U as input space and Y as output space, for some closed operator S
with dense domain. This will not be possible for every possible decomposition
W = U ∔ Y. The closedness of S is not a problem (since the graph of S can
be “identified” with V after the permutation of some of the components of
V ), but the existence of a (single-valued) operator S with dense domain is
more problematic. This is equivalent to the following two conditions on V

and on the decomposition W = U ∔ Y:

(i) if
[ z
0
y

]
∈ V and y ∈ Y, then [ zy ] = 0,

(ii) the projection onto the second component of V and U along the first
component of V and Y is dense in [XU ].

The first of these conditions means that the z-component and the y-component

of a vector
[ z

x
u+y

]
∈ V is determined uniquely by x and u, and the second

conditions says that the map from [ xu ] to [ zy ] should have dense domain. If
these two conditions hold, and if we denote the linear map from [ xu ] to [ zy ]
by S, then S is the generator of a regular i/s/o node Σi/s/o, and V has the
graph representation

V :=







z

x

w


 ⊂



X
X
W



∣∣∣∣∣∣

[
x

PY
U w

]
∈ dom (S) and

[
z

PU
Y w

]
= S

[
x

PY
U w

]
 .

(1.9)
Here PY

U is the projection onto U along Y, and PU
Y is the complementary

projection.

Definition 1.3. Let Σ = (V ;X ,W) be a s/s node. By a regular i/s/o repre-
sentation of Σ we mean a regular i/s/o node Σi/s/o = (S;X ,U ,Y), where
U ∔ Y is a direct sum decomposition of W and V and S are connected to
each other by (1.9).

Not every s/s node has a regular i/s/o representation. It is not difficult
to see that if Σ = (V ;X ,W) has a regular i/s/o representation, then Σ must
be “regular” in the following sense:

Definition 1.4. A s/s node Σ = (V ;X ,W) is regular if it satisfies the following
two conditions:

(i)
[
z
0
0

]
∈ V ⇒ z = 0;

(ii) The projection of V onto its middle component is dense in X .

The two conditions (i) and (ii) above have the following interpretations:
(i) means that ẋ(t) in (1.7) is determined uniquely by x(t) and w(t), and (ii)
permits the set of all initial states x(0) of a classical future trajectory [ xw ] of
Σ to be dense in the state space X

Theorem 1.5. Every regular i/s/o node has at least one (and usually infinitely
many) regular i/s/o representations.
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The proof of this theorem is found in [AS14b, Chapter 2].
If a s/s node Σ = (V ;X ,W) has a bounded i/s/o representation, then

V must satisfy the stronger conditions (i)–(iii) listed below:

Definition 1.6. A s/s node Σ = (V ;X ,W) is bounded if it satisfies the follow-
ing conditions:

(i)
[
z
0
0

]
∈ V ⇒ z = 0;

(ii) For every x0 ∈ X there exists some [ z0w0
] ∈ [ XW ] such that

[
z0
x0
w0

]
∈ V .

(iii) The projection of V onto its second and third components is closed in
[ XW ].

The interpretation of condition (i) in Definition 1.6 is the same as in
Definition 1.4. This condition is equivalent to the condition that V has a
graph representation

V =
{[

z
x
w

]
∈
[ X

X
W

]∣∣∣ [ xw ] ∈ dom(F ) and z = F [ xw ]
}

(1.10)

for some closed operator F : [ XW ] → X . Condition (iii) says that dom (F ) is
closed in [ XW ], and hence by the closed graph theorem, F is continuous. In

other words, ẋ(t) in (1.7) depends continuously on
[

x(t)
w(t)

]
. Finally, condition

(ii) permits every x0 ∈ X to be the initial state x(0) of some classical future
trajectory [ xw ] of Σ.

Theorem 1.7. Every bounded s/s node has at least one (and usually infinitely
many) bounded i/s/o representations.

Also the proof of this theorem is found in [AS14b, Chapter 2].
As we noticed above, a s/s node Σ cannot have a regular i/s/o repre-

sentation unless Σ is regular. From time to time it is useful to also study s/s
nodes which are not regular. In that case it is still possible to obtain i/s/o
representations, but these will no longer be regular. Instead they will be i/s/o
nodes of the following type:

Definition 1.8.

(i) By a (continuous time stationary) i/s/o (input/state/output) node we
mean a colligation Σi/s/o = (S;X ,U ,Y), where X , U , and Y are Hilbert

spaces, and S : [XU ] →
[ X
Y
]
is a closed multi-valued linear operator.

(ii) The (multi-valued) main operator A of Σi/s/o (or of S) is defined by

dom (A) := {x ∈ X |[ x0 ] ∈ dom (S)} ,

z ∈ Ax ⇔ z ∈
[
1X 0

]
S [ x0 ] , x ∈ dom(A) .

(1.11)

(iii) By a classical future trajectory of Σi/s/o we mean a triple of functions[ x
u
y

]
which satisfies

Σi/s/o :





[
x(t)
u(t)

]
∈ dom

(
S
)
,

[
ẋ(t)
y(t)

]
∈ S

[
x(t)
u(t)

]
,

t ∈ R
+, (1.12)
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with x continuously differentiable with values in X and [ uy ] continuous
with values in

[ U
Y
]
.

(iv) By a generalized future trajectory of Σi/s/o we mean a triple of functions[ x
u
y

]
which is the limit of a sequence

[ xn

un

yn

]
of classical future trajectories

of Σi/s/o in the sense that xn → x in C(R+;X ) and [ un

yn
] → [ uy ] in

L2
loc(R

+;
[ U
Y
]
).

(v) By a (time domain) i/s/o system system we mean an i/s/o node Σi/s/o =
(S;X ,U ,Y) together with the sets of classical and generalized future
trajectories of Σi/s/o.

See, e.g., [AS14b] for a short introduction to the notion of a multi-valued
linear operator.

Definition 1.9. Let Σ = (V ;X ,W) be a s/s node. By an i/s/o representation
of Σ we mean an i/s/o node Σi/s/o = (S;X ,U ,Y), where U ∔ Y is a direct
sum decomposition of W and V and S are connected to each other by

V :=







z

x

w


 ⊂



X
X
W



∣∣∣∣∣∣

[
x

PY
U w

]
∈ dom (S) and

[
z

PU
Y w

]
∈ S

[
x

PY
U w

]
 .

(1.13)

See [AS14b, Chapter 2] for a more detailed description of this class of
non-regular i/s/o nodes and i/s/o representations.

1.3. Various notions for state/signal systems

The definition of a (regular or non-regular) i/s/o representation of a (regular
or non-regular) s/s node immediately implies the following results:

Lemma 1.10. Let Σ = (V ;X ,W) be a s/s node, and let Σi/s/o = (S;X ,U ,Y)
be an i/s/o representation of Σ. Then [ xw ] is a classical or generalized fu-

ture trajectory of Σ if and only if

[ x
PY

U
w

PU
Y w

]
is a classical or generalized future

trajectory of Σi/s/o.

Thanks to Lemma 1.10, it is possible to extend all those notions for
i/s/o systems that can be expressed in terms of properties of classical or
generalized future trajectories of i/s/o systems to the s/s case. In this way it
is possible to introduce and study, e.g., the following notions for s/s systems:

• driving variable and output nulling representations of s/s systems,
• existence and uniqueness of classical and generalized trajectories of s/s
systems,

• well-posedness of s/s systems,
• s/s systems of boundary control type,
• controllability and observability of s/s systems,
• stability, stabilizability, and detectability of s/s systems,
• past, future, and two-sided time domain behaviors of s/s systems,
• frequency domain analysis of s/s systems,



8 Staffans

• external equivalence of s/s systems,
• intertwinements of s/s systems.
• similarities and pseudo-similarities of s/s systems,
• restrictions, projections, compressions, and dilations of s/s systems,
• minimal s/s systems,
• the dual and the adjoint of a s/s system,
• passive past, future, and two-sided time domain behaviors,
• passive frequency domain behaviors,
• optimal and ∗-optimal s/s systems (available storage and required sup-
ply),

• passive balanced s/s systems,
• energy and co-energy preserving s/s systems,
• controllable energy-preserving and observable co-energy preserving re-
alizations of passive signal bundles,

• quadratic optimal control and KYP-theory for s/s systems,
• s/s systems with extra symmetries (reality, reciprocity, real-reciprocity),
• relationships between the symmetries of a s/s system and the symme-
tries of its i/s/o representations,

• s/s versions of the de Branges complementary spaces of type H and D.

Some of these notions are discussed in [AS14b], some of them are dis-
cussed in the other articles listed in the reference list, and some of them still
remain to be properly developed.

In this article we shall still take a closer look at

• i/s/o and s/s systems in the frequency domain,
• The characteristic node and signal bundles of a s/s system,
• J -passive and J -conservative i/s/o systems,
• passive and conservative s/s systems,
• passive signal bundles,
• conservative realizations of passive signal bundles.

2. State/Signal Systems in the Frequency Domain

2.1. Input/state/output systems in the frequency domain

Let Σi/s/o = (S;X ,U ,Y) be an i/s/o node, and let
[ x
u
y

]
be a classical future

trajectory of Σi/s/o. If x, ẋ, u, and y in (1.4) are Laplace transformable,
then it follows from (1.4) (since we assume S to be closed) that the Laplace
transforms x̂, û, and ŷ of x, u, and y satisfy the i/s/o resolvent equation
(with x0 := x(0))

Σ̂i/s/o :





[
x̂(λ)
û(λ)

]
∈ dom(S) ,

[
λx̂(λ) − x0

ŷ(λ)

]
∈ S

[
x̂(λ)
û(λ)

] (2.1)
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for all those λ ∈ C for which the Laplace transforms converge (to see this
it suffices to multiply by (1.4) by e−λt and integrate by parts in the ẋ-
component.) If Σi/s/o is regular, or more generally, if S is single-valued, then
we may replace the second inclusion “∈” in (2.1) by the equality “=”

Definition 2.1. Let Σi/s/o = (S;X ,U ,Y) be an i/s/o node.

(i) λ ∈ C belongs to the resolvent set ρ(Σi/s/o) of Σi/s/o if for every x0 ∈ X

and for every û(λ) ∈ U there is a unique pair of vectors
[
x̂(λ)
ŷ(λ)

]
∈
[X
Y
]

satisfying the i/s/o resolvent equation (2.1). This set is alternatively
called the i/s/o resolvent set of S and denoted by ρi/s/o(S).

(ii) For each λ ∈ ρ(Σi/s/o) we define the i/s/o resolvent matrix Ŝ(λ) of

Σi/s/o at λ to be the linear operator
[

x0

û(λ)

]
→

[
x̂(λ)
ŷ(λ)

]
.

Since S is assumed to be closed, also Ŝ(λ) is closed (see [AS14b, Chapter
4] for details). Therefore by the closed graph theorem, for each λ ∈ ρ(Σi/s/o)
the i/s/o resolvent matrix Ŝ(λ) is a bounded linear operator. In particular,
this implies that Ŝ(λ) has a block matrix representation

Ŝ(λ) =

[
Â(λ) B̂(λ)
Ĉ(λ) D̂(λ)

]
, λ ∈ ρ(Σi/s/o), (2.2)

where each of the components Â(λ), B̂(λ), Ĉ(λ), and D̂(λ) is a bounded linear
operator with the appropriate domain and range space. Thus, if λ ∈ ρ(Σi/s/o),
then (2.1) holds if and only if

[
x̂(λ)
ŷ(λ)

]
=

[
Â(λ) B̂(λ)
Ĉ(λ) D̂(λ)

] [
x0

û(λ)

]
. (2.3)

Conversely, if there exist four bounded linear operators Â(λ), B̂(λ), Ĉ(λ),
and D̂(λ) with the appropriate domain and ranges spaces such that (2.1) is
equivalent to (2.3), then λ ∈ ρ(Σi/s/o), and the operator Ŝ(λ) defined by
(2.2) is the i/s/o resolvent matrix of Σi/s/o at the point λ.

Definition 2.2. The components Â, B̂, Ĉ, and D̂ of the i/s/o resolvent matrix
Ŝ are called as follows:

(i) Â is the s/s (state/state) resolvent function of Σi/s/o,
(ii) B̂ is the i/s (input/state) resolvent function of Σi/s/o,
(iii) Ĉ is the s/o (state/output) resolvent function of Σi/s/o,
(iv) D̂ is the i/o (input/output) resolvent function of Σi/s/o,

The state/state resolvent function Â is the usual resolvent of the main
operator A of Σi/s/o. Here the resolvent set of A and the resolvent of A is
defined in the same way as in Definition 2.1 with U = Y = {0}, i.e., λ

belongs to the resolvent set ρ(A) of A if it is true for every x0 ∈ X that there
exists a unique zλ ∈ X such that λzλ − x0 ∈ Azλ, in which case the the
bounded linear operator which maps x0 into zλ is called the the resolvent of
A (evaluated at λ). This operator is usually denoted by (λ−A)−1 since it is
the (single-valued) inverse of the (possibly multi-valued) operator λ−A.
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The i/o resolvent function D̂ is known in the literature under differ-
ent names, such as “the transfer function”, or “the characteristic function”,
or “the Weyl function”. In operator theory the i/s resolvent function B̂ is
sometimes called the Γ-field.

The fact that (2.1) and (2.3) are equivalent to each other leads to the
following graph representations of S and S− [ λ 0

0 0 ] which will be needed later:

Lemma 2.3. Let Σi/s/o = (S;X ,U ,Y) be an i/s/o node with ρ(Σi/s/o) 6= ∅.
Then for each λ ∈ ρ(Σi/s/o) the graph of (S − [ λ 0

0 0 ]) has the representation

gph

(
S −

[
λ 0
0 0

])
= rng







−1X 0
Ĉ(λ) D̂(λ)

Â(λ) B̂(λ)
0 1U





 , (2.4)

where Ŝ =
[
Â B̂

Ĉ D̂

]
is the i/s/o resolvent matrix of Σi/s/o, and the graph of S

has the representation

gph
(
S
)
= rng







λÂ(λ)− 1X λB̂(λ)
Ĉ(λ) D̂(λ)

Â(λ) B̂(λ)
0 1U





 . (2.5)

Definition 2.1 above is both natural and simple, and it may be surpris-
ing that in the case where S is single-valued and densely defined the above
definition is equivalent to the condition that S is a so called “operator node”
in the sense of [Sta05].

Definition 2.4 ([Sta05, Definition 4.7.2]). By an operator node (in the sense
of [Sta05]) on a triple of Hilbert spaces (X ,U ,Y) we mean a linear operator
S : [XU ] →

[ X
Y
]
with the following properties:

(i) S is closed.
(ii) The main operator A of S has dense domain and nonempty resolvent

set.
(iii)

[
1X 0

]
S can be extended to a bounded linear operator

[
A−1 B

]
: [XU ] →

X−1, where X−1 is the so called extrapolation space induced by A (i.e.,
the completion of X with respect to the norm ‖x‖X−1

= ‖(α−A)−1x‖X
where α is some fixed point in ρ(A)).

(iv) dom(S) =
{
[ xu ] ∈

[ U
Y
]∣∣A−1x+Bu ∈ X

}
.

Theorem 2.5. An operator S : [XU ] →
[X
Y
]
is an operator node in the sense

of Definition 2.4 if and only if dom(S) is dense in [XU ] and ρi/s/o(S) 6=
∅. Moreover, if ρi/s/o(S) 6= ∅, then ρi/s/o(S) = ρ(A) where A is the main
operator of S.

The proof of this theorem is given in [AS14b, Chapter 4].
As the following lemma shows, it is possible to use the s/s resolvent

function Â to check the regularity of an i/s/o system Σi/s/o = (S;X ,U ,Y)
with nonempty resolvent set.
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Lemma 2.6. Let Σi/s/o = (S;X ,U ,Y) be a i/s/o node with ρ(Σi/s/o) 6= ∅,
with main operator A, and with and s/s resolvent function Â. Then

(i) The following conditions are equivalent:
(a) S is single-valued;
(b) A is single-valued;
(c) Â(λ) is injective for some λ ∈ ρ(Σi/s/o) (or equivalently, for all

λ ∈ ρ(Σi/s/o)).
(ii) Also the following conditions are equivalent:

(a) dom(S) is dense in
[ U
Y
]
;

(b) dom(A) is dense in X ;
(c) Â(λ) has dense range for some λ ∈ ρ(Σi/s/o) (or equivalently, for

all λ ∈ ρ(Σi/s/o)).

In particular, Σi/s/o is a regular i/s/o system if and only if A is single-valued
and has dense domain, or equivalently, if and only if Â(λ) is injective and has
dense range for some λ ∈ ρ(Σi/s/o) (or equivalently, for all λ ∈ ρ(Σi/s/o)).

The proof of this lemma is given in [AS14b, Chapter 4].
The i/s/o resolvent matrix has the following properties:

Lemma 2.7. Let Σi/s/o = (S;X ,U ,Y) be an i/s/o node with ρ(Σi/s/o) 6= ∅.
Then the resolvent set ρ(Σi/s/o) of Σi/s/o is open, the i/s/o resolvent matrix Ŝ
of Σi/s/o is analytic on ρ(Σi/s/o), and it satisfies the i/s/o resolvent identity

Ŝ(λ) − Ŝ(µ) = Ŝ(µ)

[
(µ− λ) 0

0 0

]
Ŝ(λ) = Ŝ(λ)

[
(µ− λ) 0

0 0

]
Ŝ(µ)

(2.6)
for all µ, λ ∈ ρ(Σi/s/o). In terms of the components of the i/s/o resolvent

matrix Ŝ =
[
Â B̂

Ĉ D̂

]
the above identity can be rewritten into the equivalent

form
Â(λ)− Â(µ) = (µ− λ)Â(µ)Â(λ) = (µ− λ)Â(λ)Â(µ),

B̂(λ)− B̂(µ) = (µ− λ)Â(µ)B̂(λ) = (µ− λ)Â(λ)B̂(µ),

Ĉ(λ) − Ĉ(µ) = (µ− λ)Ĉ(µ)Â(λ) = (µ− λ)Ĉ(λ)Â(µ),

D̂(λ) − D̂(µ) = (µ− λ)Ĉ(µ)B̂(λ) = (µ− λ)Ĉ(λ)B̂(µ).

(2.7)

The proof of this lemma is given in [AS14b, Chapter 4].
Motivated by Lemma 2.7 we make the following definition.

Definition 2.8. Let Ω be an open subset of the complex plane C. An analytic

B(
[ U
Y
]
;
[X
Y
]
)-valued function Ŝ =

[
Â B̂

Ĉ D̂

]
defined in Ω is called an i/s/o

pseudo-resolvent in (X ,U ,Y; Ω) if it satisfies the identity (2.6) for all µ, λ ∈ Ω.

Thus, the i/s/o resolvent matrix Ŝ =
[
Â B̂

Ĉ D̂

]
of an i/s/o node Σi/s/o =

(S;X ,U ,Y) with ρ(Σi/s/o) 6= ∅ is an i/s/o pseudo-resolvent in ρ(Σi/s/o).
In [Opm05] Mark Opmeer makes systematic use of the notion of an

i/s/o pseudo-resolvent, but instead of calling Ŝ an i/s/o pseudo-resolvent he
calls Ŝ a “resolvent linear system”, and calls Â the “pseudo-resolvent”, B̂
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the “incoming wave function”, Ĉ the “outgoing wave function”, and D the
“characteristic function” of the resolvent linear system Ŝ. In the same article
he also investigates what can be said about time domain trajectories (in
the distribution sense) of resolvent linear systems satisfying some additional
conditions. One of these additional set of conditions is that Ω should contain
some right-half plane and that Ŝ should satisfy a polynomial growth bound
in this right-half plane.

The converse of Lemma 2.7 is also true in the following form.

Theorem 2.9. Let Ω be an open subset of the complex plane C. Then every
i/s/o pseudo-resolvent Ŝ in (X ,U ,Y; Ω) is the restriction to Ω of the i/s/o
resolvent of some i/s/o node Σi/s/o = (S;X ,U ,Y) satisfying ρ(Σi/s/o) ⊃ Ω.
The i/s/o node Σi/s/o is determined uniquely by Ŝ(λ) where λ is some arbi-
trary point in Ω, and Ŝ has a unique extension to ρ(Σi/s/o). This extension is
maximal in the sense that Ŝ cannot be extended to an i/s/o pseudo-resolvent
on any larger open subset of C.

See [AS14b, Chapter 4] for the proof.
Theorem 2.9 is well-known in the case where the system has no input

and no output (so that S is equal to its main operator A), and where Â(λ)
is injective and has dense range for some λ ∈ Ω; see, e.g., [Paz83, Theorem
9.3, p. 36]. A multi-valued version of this theorem, still with no input and
output, is found in [DdS87, Remark, pp. 148–149].

2.2. State/signal systems in the frequency domain

Let Σ = (V ;X ,W) be a s/s node, and let [ xw ] be a classical future trajectory
of Σ. If x, ẋ, and w in (1.7) are Laplace transformable, then it follows from
(1.7) (since we assume V to be closed) that the Laplace transforms x̂, and ŵ

x and w satisfy (with x0 := x(0))

Σ̂ :



λx̂(λ)− x0

x̂(λ)
ŵ(λ)


 ∈ V (2.8)

for all those λ ∈ C for which the Laplace transforms converge (to see this
it suffices to multiply by (1.4) by e−λt and integrate by parts in the ẋ-
component.) This formula can be rewritten in the form




x0

x̂(λ)
ŵ(λ)


 ∈ Ê(λ) :=



−1X λ 0
0 1X 0
0 0 1W


V. (2.9)

Definition 2.10. The family of subspaces Ê : {Ê(λ) | λ ∈ C} of K =
[ X

X
W

]

defined in (2.8) is called the characteristic node bundle of the s/s node Σ =
(V ;X ,W).

The characteristic node bundle is a special case of a vector bundle:

Definition 2.11. Let Z be a Hilbert vector space.
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(i) By a vector bundle in Z we mean a family of subspacesG = {G(λ)}λ∈dom(G)

of Z parameterized by a complex parameter λ ∈ dom(G) ⊂ C.
(ii) For each λ ∈ dom (G), the subspace G(λ) of Z is called the fiber of G

at λ.
(iii) The vector bundle G is analytic at a point λ0 ∈ dom (G) if there exists

a neighborhood O(λ0) of λ0 and some direct sum decomposition Z =
U ∔ Y of Z such that the restriction of G to O(λ0) is the graph of an
analytic B(U ;Y)-valued function in O(λ0).

(iv) The vector bundle G is analytic if dom (G) is open and G is analytic at
every point in dom(G).

(v) The vector bundle G is entire if G is analytic in the full complex plane
C.

Lemma 2.12. The characteristic node bundle Ê of a s/s node Σ = (V ;X ,W)

is an entire vector bundle in the node space K =
[ X

X
W

]
.

This is easy to see (and proved in [AS14b, Chapter 1]).

Lemma 2.13. Let Σ = (V ;X ,W) be a s/s node with the i/s/o representation
Σi/s/o = (S;X ,U ,Y), suppose that λ ∈ ρ(Σi/s/o). Denote the characteristic

node bundle of Σ by Ê and the i/s/o resolvent matrix of Σi/s/o by Ŝ =
[
Â B̂

Ĉ D̂

]
.

Then V and Ê(λ) have the representations

V = rng





1X − λÂ(λ) −λB̂(λ)

Â(λ) B̂(λ)
IY Ĉ(λ) IU + IYD̂(λ)




 , (2.10)

Ê(λ) = rng






1X 0
Â(λ) B̂(λ)

IY Ĉ(λ) IU + IYD̂(λ)




 , (2.11)

where IU and IY are the injection operators IU : U →֒ W and IY : Y →֒ W.

This follows from (1.13), Lemma 2.3, and (2.8) (see [AS14b, Chapter 4]
for details).

Note that (2.10) can be interpreted as a graph representation of Ê(λ)
over the first copy of X and the input space U . It follows from Lemma 2.13
that V (and Ê(λ)) are determined uniquely by the decomposition W = U∔Y
and the i/s/o resolvent matrix Ŝ of Σi/s/o evaluated at some arbitrary point
λ ∈ ρ(Σi/s/o).

In i/s/o systems theory one is often interested in the “pure i/o behav-
ior”, which one gets by “ignoring the state”. More precisely, one takes the
initial state x0 = 0, and looks at the relationship between the input u and
the output y, ignoring the state x. If we in the frequency domain setting take
x0 = 0 and ignore x̂, then the full frequency domain identity (2.3) simplifies
into ŷ(λ) = D̂(λ)û(λ), where D̂(λ) is the i/o resolvent function of Σi/s/o.

The same procedure can be carried out in the case of a s/s system: We
take x0 = 0 and ignore the values of x̂(λ) in (2.7). Then it follows from (2.8)
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that ŵ(λ) ∈ F̂(λ), where

F̂(λ) =



w ∈ W

∣∣∣∣∣∣



0
z

w


 ∈ Ê(λ) for some z ∈ X



 . (2.12)

Definition 2.14. Let Σ = (V ;X ,W) be a s/s node. The family of subspaces

F̂ : {F̂(λ) | λ ∈ C} of W defined by (2.11) is called the characteristic signal
bundle of Σ.

Whereas the characteristic node bundle Ê of Σ is an entire vector bundle,
the same is not true for the signal bundle F̂ of Σ. Even the dimension of the
fibers F̂(λ) may change from one point to another. However, the following
result is true:

Lemma 2.15. If Σi/s/o = (S;X ,U ,Y) is an i/s/o representation of the s/s
node Σ = (V ;X ,W) with ρ(Σi/s/o) 6= ∅, then for each λ ∈ ρ(Σi/s/o) the fibers
of the characteristic signal bundle F̂ of Σ have the graph representation

F̂(λ) =
{
w ∈ W

∣∣PU
Y w = D̂(λ)PY

U
}
, λ ∈ ρ(Σi/s/o). (2.13)

This follows from Lemma 2.13.

Lemma 2.16. Let Σ = (V ;X ,W) be a s/s node with the i/s/o representation
Σi/s/o = (S;X ,U ,Y), suppose that λ ∈ ρ(Σi/s/o). Denote the characteristic
node bundle of Σ by Ê. Then, for each λ ∈ ρ(Σi/s/o) the fiber Ê(λ) of Ê is a

closed subspace of K =
[ X

X
W

]
, and it has the following properties:

(i)
[
0
x
0

]
∈ Ê(λ) ⇒ x = 0;

(ii) For every z ∈ X there exists some [ xw ] ∈ [ XW ] such that
[

z
x
w

]
∈ Ê(λ).

(iii) The projection of Ê(λ) onto its first and third components is closed in
[ XW ].

This follows from Lemma 2.13.
Another equivalent way of formulating Lemma 2.16 is to say that for

each λ ∈ ρ(Σi/s/o) the fiber Ê(λ) becomes a bounded s/s node after we
interchange the first and the second component of Ê(λ).

Definition 2.17. Let Σ = (V ;X ,W) be a s/s node with node bundle Ê. Then
the resolvent set ρ(Σ) of Σ consists of all those points λ ∈ C for which
conditions (i)–(iii) in Lemma 2.16 hold.

Theorem 2.18. Let Σ = (V ;X ,W) be a s/s node. Then ρ(Σ) is the union of
the resolvent sets of all i/s/o representations of Σ.

See [AS14b, Chapter 4] for the proof.

Lemma 2.19. The characteristic signal bundle F̂ of a s/s node Σ is analytic
in ρ(Σ).

This follows from Definition 2.11, Lemma 2.15, and Theorem 2.18.
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3. Passive and Conservative i/s/o and s/s systems

In this section we have, for simplicity, restricted the discussion to the regular
case, i.e., the case where both the s/s system and its i/s/o representations
are regular. As shown in [AS14b], the extension to the non-regular case is
straightforward.

3.1. J -passive and J -conservative i/s/o systems

Definition 3.1. Let Σi/s/o = (S;X ,U ,Y) be a regular i/s/o node.

(i) Σi/s/o is (forward) solvable if it is true that for every [ x0
u0

] ∈ dom(S)

there exists at least one classical future trajectory
[ x
u
y

]
of Σi/s/o with

[
x(0)
u(0)

]
= [ x0

u0
].

(ii) The adjoint of Σi/s/o is the i/s/o node Σ∗
i/s/o = (S∗;X ,Y,U), where S∗

is the adjoint of S.

Definition 3.2. Let Σi/s/o = (S;X ,U ,Y) be a regular i/s/o node with adjoint
Σ∗

i/s/o = (S∗;X ,Y,U), and suppose that both Σi/s/o and Σ∗
i/s/o are solvable.

(i) Σi/s/o is scattering conservative if all its classical future trajectories
[ x
u
y

]

satisfy the balance equation

‖x(t)‖2X +

∫ t

0

‖y(s)‖2Y ds = ‖x(0)‖2X +

∫ t

0

‖u(s)‖2U ds, t ∈ R
+, (3.1)

and the adjoint system Σ∗
i/s/o has the same property. If the above condi-

tions hold with the equality sign in (3.1) by “≤” then Σi/s/o is scattering
passive.

(ii) Let Ψ: Y → U be a unitary operator. Then Σi/s/o is Ψ-impedance con-
servative if all its classical future trajectories (u, x, y) satisfy the balance
equation

‖x(t)‖2X = ‖x(0)‖2X + 2ℜ

∫ t

0

〈u(s),Ψy(s)〉U ds, t ∈ R
+, (3.2)

and the adjoint system Σ∗
i/s/o has the same property with Ψ replaced

by Ψ∗. If the above conditions hold with the equality sign in (3.1) by
“≤” then Σi/s/o is Ψ-impedance passive.

(iii) Let JU and JY be signature operators in U respectively Y (i.e., JU =
J ∗
U = J −1

U and JY = J ∗
Y = J−1

Y ). Then Σi/s/o is (JU , JY)-transmission
conservative if all its classical future trajectories (u, x, y) satisfy the
balance equation

‖x(t)‖2X +

∫ t

0

〈y(s), JYy(s)〉Y ds

= ‖x(0)‖2X +

∫ t

0

〈u(s), JUu(s)〉U ds, t ∈ R
+,

(3.3)



16 Staffans

and the adjoint system Σ∗
i/s/o has the same property with (JU , JY) re-

placed by (JY , JU ). If the above conditions hold with the equality sign
in (3.1) by “≤” then Σi/s/o is (JU , JY)-transmission passive.

The three different balance equations in Lemma 3.3 can all be written
in the common form

‖x(t)‖2X = ‖x(0)‖2X +

∫ t

0

〈[
u(s)
y(s)

]
,J

[
u(s)
y(s)

]〉

U⊕Y
ds, t ∈ R

+, (3.4)

where J is a signature operator in the product space
[ U
Y
]
:

(i) J = Jscat =
[ 1U 0

0 −1Y

]
in the scattering case,

(ii) J = Jimp =
[

0 Ψ
Ψ∗ 0

]
in the Ψ-impedance case,

(iii) J = Jtra =
[
JU 0
0 −JY

]
in the (JU ,JY)-transmission case.

It is also possible of combine the three different parts of Definition 3.2 into one
general definition. In that definition we need two different signature operators,
one in the space

[ U
Y
]
, and the other in the space

[ Y
U
]
. The connection between

these two operators is the following: If J is a signature operator in
[ U
Y
]
, then

we define the operator J∗ by

J∗ =

[
0 −1Y
1U 0

]
J

[
0 1U

−1Y 0

]
(3.5)

It is easy to see that J∗ is a signature operator in
[ Y
U
]
whenever J is a

signature operator in
[ U
Y
]
and that (J∗)∗ = J .

Definition 3.3. Let Σi/s/o = (S;X ,U ,Y) be a regular i/s/o node with adjoint
Σ∗

i/s/o = (S∗;X ,Y,U), and suppose that both Σi/s/o and Σ∗
i/s/o are solvable.

Let J be a signature operator in
[ U
Y
]
, and define J∗ by (3.5). Then Σi/s/o is

J -conservative if all its classical future trajectories
[ x
u
y

]
satisfy the balance

equation (3.4), and the adjoint system Σ∗
i/s/o has the same property with J

replaced by J∗. If the above conditions hold with the equality sign in (3.4)
by “≤” then Σi/s/o is J -passive.

The reader is invited to check that Definition 3.2 can indeed be in-
terpreted as a special case of Definition 3.3 (with the appropriate choice of
J = Jscat, J = Jimp, or J = Jtra).

Formula (3.4) treats the input u and the output y in an equal way: the
operator J is simply a signature operator in the signal space W =

[ U
Y
]
, and

it defines a Krĕın space inner product in W . From the point of view of (3.4) it
does not matter if u is the input and y the output, or the other way around,
or if neither u nor y is the input or output.

It is well-known that one can pass from a Ψ-impedance or (JU , JY)-
transmission passive or conservative i/s/o system to a scattering passive or
conservative i/s/o system by simply reinterpreting which part of the combined
i/o signal [ uy ] is the input, and which part is the input.
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(i) If Σi/s/o is Ψ-impedance conservative, and if we take the new input and
output to be

[
uscat

yscat

]
= 1√

2

[
1U Ψ
Ψ∗ −1Y

] [
uimp

yimp

]
,

then the resulting i/s/o system is scattering conservative.
(ii) If Σi/s/o is (JU , JY)-transmission conservative, and if we take the new

input and output to be
[
uscat

yscat

]
=

[
PU+ PY−

PU− PY+

] [
utra

ytra

]
,

where (PU+ , PU−) and (PY+ , PY−) are complementary projections onto
the positive and negative subspaces of JU and JY , respectively, then the
resulting i/s/o system is again scattering conservative.

The two transforms described above have the following common interpreta-
tion: We decompose the Krĕın space W =

[ U
Y
]
with the J -inner product into

a positive part and an orthogonal negative part (= a fundamental decomposi-
tion), and choose the input to be the positive part of w = [ uy ] and the output
to be the negative part of w. Of course, these transformations lead to new
dynamic equations with new generators Sscat, which can be explicitly derived
from the original generators Simp and Stra, but the formulas for Sscat tend
to be complicated, especially when Simp and Stra are unbounded. For this
reason it makes sense to reformulate the J -passivity and J -conservativity
conditions described above into a state/signal setting.1

3.2. Passive and conservative state/signal systems

Let Σi/s/o = (S;X ,U ,Y) be a regular i/s/o system, and let Σ = (V ;X ,
[ U
Y
]
)

be the s/s system induced by Σi/s/o, i.e., the generating subspace V of Σ is
given by (1.8). If Σi/s/o is J -passive or J -conservative for some signature

operator J in
[ U
Y
]
, then what does this tell us about the s/s system Σ?

First of all, the solvability condition of Σi/s/o implies an analogous con-
dition for Σ:

Definition 3.4. A s/s node Σ = (V ;X ,W) is (forward) solvable if it is true

that for every
[

z0
x0
w0

]
∈ V there exists at least one classical future trajectory

[ xw ] of Σ satisfying

[
ẋ(0)
x(0)
w(0)

]
=

[
z0
x0
w0

]
.

It follows from Definitions 3.1 and 3.4 and Lemma 1.10 that if Σi/s/o is
a regular i/s/o representation of a s/s node Σ, then Σ is solvable if and only
if Σi/s/o is solvable.

By Lemma 1.10,
[ x
u
y

]
is a classical future trajectory of Σi/s/o if and only

if [ xx ] is a classical future trajectory Σ, where w = [ uy ]. Thus, if Σi/s/o is J -

conservative, then every classical future trajectory
[

x

[uy ]

]
of Σ satisfies (3.4).

1This was the primary motivation for the development of the s/s systems theory in the
first place.
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If instead Σi/s/o is J -passive, then every classical future trajectory
[

x

[ uy ]

]
of

Σ satisfies (3.4) with “=” replace by “≤”.
Up to this point we have throughout assumed that the signal space W

of a s/s node is a Hilbert space, but it follows from (3.4) that in the study of
passive and conservative systems it more natural to allow W to be a Krĕın
space, i.e., to allow the inner product in W to be indefinite. More precisely,
we let W be the product space

[ U
Y
]
equipped with the Krĕın space inner

product
[[

u1

y1

]
,

[
u2

y2

]]

W
=

〈[
u1

y1

]
,J

[
u2

y2

]〉

U⊕Y
,

[
u1

y1

]
,

[
u2

y2

]
∈

[
U
Y

]
. (3.6)

With this notation (3.4) becomes

‖x(t)‖2X = ‖x(0)‖2X +

∫ t

0

[w(s), w(s)]W ds, t ∈ R
+. (3.7)

Differentiating (3.7) with respect to t we get

d

dt
‖x(t)‖2X = [w(t), w(t)]W , t ∈ R

+,

or equivalently,

− 〈ẋ(t), x(t)〉X − 〈x(t), ẋ(t)〉X + [w(t), w(t)]W = 0, t ∈ R
+. (3.8)

In particular, this equation is true for t = 0. If we assume that Σ is solvable
(or equivalently, Σi/s/o is solvable), then it follows from (3.8) that

− 〈z0, x0〉X − 〈x0, z0〉X + [w0, w0]W = 0,
[

z0
x0
w0

]
∈ V. (3.9)

We can make also the node space K =
[ X

X
W

]
into a Krĕın space by introducing

the following node inner product in K:
[[

z1
x1
w1

]
,
[

z2
x2
w2

]]
K

= −(z1, x2)X − (x1, z2)X + [w1, w2]W ,
[

z1
x1
w1

]
,
[

z2
x2
w2

]
∈ K.

(3.10)
Clearly (3.9) says that V ⊂ V [⊥], where

V [⊥] :=
{[

z∗
x∗
w∗

]
∈ K

∣∣∣
[[

z∗
x∗
w∗

]
,
[

z0
x0
w0

]]
K

= 0 for all
[

z0
x0
w0

]
∈ V

}
. (3.11)

In other words, V is a neutral subspace of K. If Σi/s/o is J -passive instead of
J -conservative, then the same argument shows that

[[
z0
x0
w0

]
,
[

z0
x0
w0

]]
K

≥ 0 for all
[

z0
x0
w0

]
∈ V,

i.e., V is a nonnegative subspace of K.
Above we have used only one half of Definition 3.3, namely the half with

refers to the the i/s/o representation Σi/s/o itself, and not the half which refers
to the adjoint i/s/o node Σ∗

i/s/o. By adding the conditions imposed on Σ∗
i/s/o

to the above argument it is possible to show that

(i) Σi/s/o is J -conservative if and only if Σ satisfies V = V [⊥] (i.e., V is a
Lagrangian subspace of K), and
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(ii) Σi/s/o is J -passive if and only if V is a maximal nonnegative subspace
of K (i.e., V is nonnegative, and it is not strictly contained in any other
nonnegative subspace of K).

This motivates the following definition:

Definition 3.5.

(i) By a conservative s/s system Σ we mean a regular s/s system whose
signal space W is a Krĕın space, and whose generating subspace V is
a Lagrangian subspace of the node space K (with respect to the inner
product (3.10)).

(ii) By a passive s/s system Σ we mean a regular s/s system whose signal
spaceW is a Krĕın space, and whose generating subspace V is a maximal
nonnegative subspace of the node space K (with respect to the inner
product (3.10)).

Thus, in particular, every conservative s/s system is also passive.
Note that Definition 3.5 does not explicitly require that Σ must be solv-

able, which was assumed in the derivation of (3.9). However, it turns out
that this condition is redundant in Definitions 3.5, i.e., the regularity of Σ
combined with either the condition V = V [⊥] or the assumption that V is
maximal nonnegative implies that Σ is solvable.

3.3. Passive and conservative realizations

In i/s/o systems theory one is often interested in the “converse problem” of
finding a “realization” of a given analytic “transfer function” ϕ with some
“additional properties”. By a realization we mean an i/s/o system whose i/o
resolvent function coincides with ϕ is some specified open subset Ω of C. For
example,

(i) ϕ is a “Schur function” over C+, and one wants to construct a scattering
conservative realization Σi/s/o of ϕ,

(ii) ϕ is a “positive real function” over C+, and one wants to construct an
impedance conservative realization Σi/s/o of ϕ.

(iii) ϕ is a “Potapov function” over C+, and one wants to construct a trans-
mission conservative realization Σi/s/o of ϕ.

In the state/signal setting all these three problems collapse into one and the
same problem: Given a passive signal bundle over C+ (this notion will be de-
fined in Definition 3.7 below), we want to construct a conservative s/s realiza-
tion of this signal bundle, i.e., a conservative s/s system Σ with C+ ⊂ ρ(Σ)
such that the given passive signal bundle coincides with the characteristic
signal bundle F̂ of Σ in C+.

Theorem 3.6. Let Σ be a passive s/s system with signal space space W and
characteristic signal bundle F̂. Then

(i) C+ ⊂ ρ(Σ) (and hence F̂ is analytic in C+),
(ii) for each λ ∈ C+ the fiber F̂(λ) of F̂ is a maximal nonnegative subspace

of W.



20 Staffans

See [AS14b] for the proof of this theorem.

Definition 3.7. By a passive signal bundle in a Krĕın (signal) space W we
mean an analytic signal bundle Ψ in C+ with the property that for each
λ ∈ C+ the fiber Ψ(λ) is a maximal nonnegative subspace of W .

This leads us to the following problem:

Problem 3.8 (Conservative State/Signal Realization Problem). Given a pas-
sive signal bundle Ψ, find a conservative s/s system Σ such that the charac-
teristic signal bundle of Σ coincides with Ψ in C+.

One such construction is carried out in [AKS11]. The setting in [AKS11]
is different from the one described here, but it follows from [AKS11], e.g., that
every passive signal bundle Ψ has a “simple” conservative s/s realization, and
that such a realization is unique up to a unitary similarity transformation in
the state space. Here “simplicity” means that the system is minimal within
the class of conservative s/s systems, i.e., a conservative s/s system is simple
if and only if it does not have any nontrivial conservative compression.

4. A short history

I first met Dima (Prof. Damir Arov) at the MTNS conference 1998 in Padova
where he gave a plenary talk on “Passive Linear Systems and Scattering The-
ory”. Five years later, in the fall of 2003, Dima came to work with me in Åbo
for one month, and that was the beginning of our joint stationary state/signal
systems story. We decided to “join forces” to study the relationship between
the (external) reciprocal symmetry of a conservative linear system and the
(internal) symmetry structure of the system in three different settings, namely
the scattering, the impedance, and the transmission setting. Instead of writ-
ing three separate papers with three separate sets of results and proofs we
wanted to rationalize and to find some “general setting” that would cover
the “common part” of the theory. The basic plan was to first develop the
theory in such a “general setting” as far as far as possible, before discussing
the three related symmetry problems mentioned above in detail.

After a couple of days we realized that the “behavioral approach” of
[BS06] seemed to provide a suitable “general setting”. This setting gave us a
natural mathematical model for a “linear time-invariant circuit” which may
contain both lumped and distributed components.

To make the work more tractable from a technical point of view we
decided to begin by studying the discrete time case. As time went by the
borderline between the “general theory” and the application to the original
symmetry problem kept moving forward. Our first paper had to be split in
two because it became too long. Then the second part had to be split in two
because it became too long, then the third part had to be split in to, and so
on. Every time the paper was split into two the original symmetry problem
was postponed to the second unfinished half, and our “general solution” to
the symmetry problem was not submitted until 2011. By that time we had
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published more than 500 pages on the s/s systems theory in 13 papers (in
addition to numerous conference papers). The specific applications of our
symmetry paper to the scattering, impedance, and transmission settings is
still “work in progress”.

In 2006 Mikael Kurula joined the s/s team, and together with him we
begun to also study the continuous time problem. See the reference list for
details.

Since 2009 Dima and I have spent most of our common research time on
writing a book on linear stationary systems in continuous time. It started out
as a manuscript about s/s systems in discrete time. In 2012 we shifted the
focus to s/s systems in continuous time. After one more year the manuscript
was becoming too long to be published as a single volume, so we decided
to split the book into two volumes. A partial preliminary draft of the first
volume of this book is available as [AS14b].
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