
State/Signal Linear Time-Invariant
Systems Theory, Part IV:

Affine Representations
of Discrete Time Systems

Damir Z. Arov∗

Division of Mathematical Analysis
Institute of Physics and Mathematics

South-Ukrainian Pedagogical University
65020 Odessa, Ukraine

Olof J. Staffans
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Abstract

In the paper we continue to develop the linear discrete time in-
variant state/signal systems theory that was initiated in a sequence of
earlier papers (Parts I—III). The trajectories of a state/signal system
Σ with a Hilbert state space X and a Hilbert or Krein signal space
W consists of a pair of sequences (x(·), w(·)) that after an admissible
input/output decomposition W = Y u U of the signal space can be

∗Damir Z. Arov thanks Åbo Akademi for its hospitality and the Academy of Finland
and the Magnus Ehrnrooth Foundation for their financial support during his visits to Åbo
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obtained from the set of trajectories (x(·), u(·), y(·)) of a standard in-
put/state/output system by taking w(·) = y(·) + u(·). In Part I we
studied the families of all admissible decompositions of W for a given
state/signal system Σ and the corresponding input/state/output rep-
resentations and their transfer functions, together with two other types
of representations, namely driving variable and output nulling repre-
sentations. By combining the two representations with input/output
decompositions of the signal space we here obtain right and left affine
input/state/output representations of Σ, and we also get left and right
affine transfer functions and generalized input/output transfer func-
tions. As opposed to standard transfer functions, a generalized trans-
fer function not need to be holomorphic at the origin. This makes it
possible to realize every rational matrix-valued function (even those
that has a pole at the origin) as the generalized transfer function of a
minimal state/signal system whose state space has a finite dimension
equal to the McMillan degree of the given function. We finally ap-
ply the theory to the case where Σ is passive to obtain right and left
affine transmission and impedance representations, left and right affine
transmission matrices and impedances, and generalized input/output
transmission matrices of a passive system. In particular, it is shown
that any meromorphic J-contractive matrix-valued function defined
in the unit disk, including those that have a pole at the origin, is the
generalized transmission matrix of a minimal passive state/signal sys-
tem as well as of a simple conservative state/signal system. Similar
operator-valued results presented here, too.

Keywords

System, state, signal, input, output, passive, conservative, scatter-
ing, impedance, transmission, realization, Krein space.
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1 Introduction

This article is a continuation of the articles [AS05], [AS06a], and [AS06b],
which we in the sequel refer to as “Part I”, “Part II”, and “Part III”. In Part
I we developed a linear discrete time-invariant s/s (state/signal) systems
theory in a general setting. This theory differs from the standard i/s/o
(input/state/output) systems theory in the sense that we do not distinguish
between input and output signals, but only between an “internal” state x ∈ X
and an “external” signal w ∈ W , where the state space X and signal spaceW
are vector spaces. In Part I both of these were assumed to be Hilbert spaces,
but no use was made of the specific inner product (in particular, we made no
use of orthogonality), so that all results in Part I remain valid if we replace
the inner product by another inner product that induces an equivalent norm.
This makes it possible to apply the results from Part I also in the case where
X and W are Krĕın spaces. Here, as in Parts II and III, we still take the
state space X to be a Hilbert space, but we allow the signal space W will be
a Krĕın space (this additional generality will be important only in the last
sections of this paper where we discuss passivity). When we cite a particular
result from one of Parts I–III we shall simply add a roman number “I”, “II”,
or “III” to the corresponding number appearing there. Thus, for example,
Theorem III.3.6 stands for Theorem 3.6 in Part III, and (I.6.16) stands for
formula (6.16) in Part I.

A trajectory (x(·), w(·)) of a linear time-invariant s/s system Σ in discrete
time consists of a state sequence x(n) ∈ X and a signal sequence w(n) ∈ W ,
n ∈ Z+ := 0, 1, 2, . . ., that satisfy the system of equations

x(n+ 1) = F
[

x(n)
w(n)

]
, n ∈ Z+,

x(0) = x0,
(1.1)

where F is a bounded linear operator with closed domainD(F ) in the product
space [ XW ] and range R (F ) ⊂ X . We assume throughout that D(F ) has
the property that for every x ∈ X there is at least one w ∈ W such that
[ x
w ] ∈ D(F ). This property guarantees that for every x0 ∈ X there exists

at least one trajectory (x(·), w(·)) of the system with initial state x(0) = x0.
We remark that x0 and the sequence w(·) together determine the trajectory
(x(·), w(·)) uniquely.

For any i/o (input/output) decomposition W = Y u U of the signal
space W of a s/s system Σ as the direct sum of two spaces U (the input
space) and Y (the output space) we get corresponding set of i/s/o trajectories
(x(·), u(·), y(·)) of Σ, where the sequences u(n) ∈ U and y(n) ∈ Y , n ∈
Z+, are sequences obtained from the trajectories (x(·), w(·)) of Σ by writing
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w(n) = u(n) + y(n), n ∈ Z+, i.e.,

u(n) = PY
U w(n), y(n) = P U

Y w(n), n ∈ Z+;

here PY
U is the projection onto U along Y , and P U

Y is the complementary
projection. As shown in Part I, there exists at least one decomposition
W = Y u U such that the set of i/s/o trajectories (x(·), u(·), y(·)) of Σ
constructed above coincide with the set of trajectories of a standard i/s/o

system Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y

)
defined by the system of equations

x(n+ 1) = Ax(n) +Bu(n),

y(n) = Cx(n) +Du(n), n ∈ Z+,

x(0) = x0,

(1.2)

where [ A B
C D ] ∈ B

(
[ XU ] ;

[
X
Y
])

. Such a decomposition W = Y u U is called
an admissible i/o decomposition of W for Σ, and the corresponding i/s/o
system Σi/s/o is called an i/s/o representation of Σ.

Every i/s/o system Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y

)
has an is/so (input-state/state-

output) transfer function1[
A(z) B(z)
C(z) D(z)

]
=

[
(1X − zA)−1 z(1X − zA)−1B
C(1X − zA)−1 zC(1X − zA)−1B +D

]
, z ∈ ΛA,

(1.3)
where the set ΛA consists of those z ∈ C for which 1X − zA has a bounded
inverse plus the point at infinity if A has a bounded inverse in X . Here the
block D(z) is the standard i/o transfer function

D(z) = zC(1X − zA)−1B +D, z ∈ ΛA, (1.4)

In terms of this is/so transfer function the connection between the formal
series û(z) =

∑∞
n=0 u(n)zn, x̂(z) =

∑∞
n=0 x(n)zn, ŷ(z) =

∑∞
n=0 y(n)zn, and

x0, where (x(·), u(·), y(·)) is a trajectory of (1.2), is given by[
x̂(z)
ŷ(z)

]
=

[
A(z) B(z)
C(z) D(z)

] [
x0

û(z)

]
. (1.5)

In particular,

ŷ(z) = D(z)û(z) when x0 = 0. (1.6)

1In Parts I–II we used the name four block transfer function instead of is/so transfer
function.
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Not every direct sum decomposition of W is admissible. To be able to
treat also the nonadmissible case we here introduce right and left affine gener-
alizations of the notions of i/s/o representations and their transfer functions.
These are defined for arbitrary i/o decompositions W = Y u U . By a right
affine i/s/o representation of Σ we mean an i/s/o system

Σr
i/s/o =

([ A′ B′

C′
Y D′

Y
C′
U D′

U

]
;X ,L,

[
Y
U
])

(1.7)

(where the new input space L is an auxiliary Hilbert space) with the property

that the correspondence
(
x(·), `(·),

[
y(·)
u(·)

])
→ (x(·), u(·), y(·)) is a bijective

map from the set of trajectories of the of i/s/o system Σr
i/s/o described by

the set of equations

x(n+ 1) = A′x(n) +B′`(n),

y(n) = C ′
Yx(n) +D′

Y`(n),

u(n) = C ′
Ux(n) +D′

U`(n), n ∈ Z+, `(n) ∈ L
(1.8)

onto the set of i/s/o trajectories of the s/s system Σ corresponding to the
decomposition W = Y u U . It is easily seen that Σr

i/s/o has this property if
and only if [

C ′
Y D′

Y
C ′
U D′

U

]
=

[
P U
Y C

′ P U
YD

′

PY
U C

′ PY
U D

′

]
(1.9)

and
Σdv/s/s =

([
A′ B′

C′ D′

]
;X ,L,W

)
is a driving variable representation of the s/s system Σ of the type introduced
and studied in Part I (see Section 2 for details). Explicitly, this means that
Σdv/s/s is an i/s/o system with the same state space X as Σ, the auxiliary
(Hilbert) input space L, and output space W , that

[
A′ B′

C′ D′

]
∈ B

(
[ XL ] ; [ XW ]

)
,

that D′ has a bounded left inverse (i.e., D′ is injective and has a closed
range), and that the operator F in (1.1) and its domain D(F ) are given by

D(F ) =
{
[ x
w ]
∣∣ w = C ′x+D′`, ` ∈ L, x ∈ X

}
,

F [ x
w ] = A′x+B′` if w = C ′x+D′`, ` ∈ L, x ∈ X .

The is/so transfer function of the i/s/o system Σr
i/s/o is called a right affine

is/so transfer function of the s/s system Σ corresponding to the i/o decom-
position W = Y u U of the signal space W . Likewise, the i/o transfer

function D′ =
[

D′
Y

D′
U

]
of Σr

i/s/o is called a right affine i/o transfer function of

Σ, corresponding to this decomposition.
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To each fixed i/o decomposition W = Y u U of W corresponds infinitely
many right affine i/s/o representations of the s/s system Σ, but there exist
simple connections between them that follow from the corresponding connec-
tions between different driving variable representations of Σ, obtained in Part
I. This connection will be presented in Section 2 together with the correspond-
ing connections between the different right affine is/so transfer functions of
Σ. These connections permit us to introduce the notion of a generalized is/so

transfer function
[

A(z) B(z)
C(z) D(z)

]
of Σ with domain Ω(Σ;U ,Y), corresponding to

a given i/o decomposition W = YuU of W . As we will show in Theorem 5.2,
this decomposition is admissible if and only if 0 ∈ Ω(Σ;U ,Y). In this case
the generalized is/so transfer function of Σ coincides with the is/so transfer
function of the corresponding i/s/o representation Σi/s/o, and in particular,
Ω(Σ;U ,Y) = ΛA, where A is the main operator of Σi/s/o. One way to define
the generalized is/so transfer function is to start with an arbitrary right affine
i/s/o represenation Σr

i/s/o given by (1.7), to define

Ω(Σ;Y ,U) =
{
z ∈ C

∣∣ the operator
[

1X−zA′ −zB′

C′
U D′

U

]
has a bounded inverse

}
,

(1.10)
and to define[

A(z) B(z)
C(z) D(z)

]
=

[
1X 0
C ′
Y D′

Y

] [
1X − zA′ −zB′

C ′
U D′

U

]−1

, z ∈ Ω(Σ;U ,Y).

(1.11)
As we show in Section 5, the is/so generalized transfer function and its do-
main Ω(Σ;U ,Y) are independent of the particular right affine i/s/o repre-
sentation that we use in the above definition. The block D(z) is called the
generalized i/o transfer function, and the block A(z) is called the generalized
resolvent of Σ, corresponding to the i/o decomposition W = Y u U .

The corresponding left notions are defined in an analogous way, by re-
placing the driving variable representations used above by the output nulling
representations defined in Part I. A left affine i/s/o representation of the s/s
system Σ is an i/s/o system

Σl
i/s/o =

([
A′′ B′′

Y B′′
U

C′′ D′′
Y D′′

U

]
X ,
[
Y
U
]
,K
)

(1.12)

(where the new output space K is an auxiliary Hilbert space) with the prop-

erty that the correspondence (x(·), u(·), y(·)) →
(
x(·),

[
y(·)
u(·)

]
, 0
)

is a bijective

map from the set of i/s/o trajectories of the s/s system Σ corresponding to
the decomposition W = Y u U onto the subset of trajectories

x(n+ 1) = A′′x(n) +B′′
Yy(n) +B′′

Uu(n),

k(n) = C ′′x(n) +D′′
Yy(n) +D′′

Uu(n), n ∈ Z+,
(1.13)
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of the of i/s/o system Σl
i/s/o for which the error signal k(·) vanishes identically.

As we show in Theorem 5.8, given any i/o decomposition W = YuU and any
left affine i/s/o representation Σl

i/s/o given by (1.12), the domain Ω(Σ;U ,Y)

in (1.10) of the generalized is/so transfer function may also be defined by

Ω(Σ;Y ,U) =
{
z ∈ C

∣∣ the operator
[

1X−zA′′ −zB′′
Y

−C′′ −D′′
Y

]
has a bounded inverse

}
,

(1.14)
and the generalized is/so transfer fuction in (1.11) may also be defined by
the formula[

A(z) B(z)
C(z) D(z)

]
=

[
1X − zA′′ −zB′′

Y
−C ′′ −D′′

Y

]−1 [
1X zB′′

U
0 D′′

U

]
, z ∈ Ω(Σ;Y ,U).

(1.15)

At the end of Sections 3 and 4 we also apply the results described above
to the case where the s/s system Σ is stabilizable, detectable, or LFT-
stabilizable (LFT stands for Linear Fractional Transformation). We recall
that an i/s/o system Σi/s/o = ([ A B

C D ] ;X ,U ,Y) is called stable if the trajecto-
ries (x(·), u(·), y(·)) of this system have the property that x(·) ∈ `∞(X ) and
y(·) ∈ `2(Y) whenever u(·) ∈ `2(U). A right or left affine i/s/o representation
is stable if it is stable when regarded as an i/s/o system. A s/s system Σ is
called (a) stabilizable, or (b) detectable, or (c) LFT-stabilizable if it has a sta-
ble (a) driving varialbe representation, or (b) output nulling representation,
or (c) i/s/o representation, respectively. According to Lemma I.9.2, the i/o
transfer function of a stable i/s/o system is bounded and analytic in the unit
disk, i.e., it belongs to H∞ over D. It follows in the LFT-stabilizable case
that for every i/o decomposition W = Y uU there exist corresponding right
and left affine i/o transfer functions which are bounded and analytic in D,
and such that these affine i/o transfer functions (each one consisting of one
pair of functions) are even right and left coprime in H∞ over D, respectively.

In Section 8 our general results on affine representations, affine transfer
functions, and generalized transfer functions are applied to passive s/s sys-
tems, whose theory was developed in Parts II–III. A s/s system Σ is passive
if the trajectories (x(·), w(·)) of Σ have the forward passivity property

‖x(n+ 1)‖2
X − ‖x(n)‖2

X ≤ [w(n), w(n)]W , n ∈ Z+, (1.16)

where [·, ·]W is the inner product in the Krĕın signal space W , and if also the
trajectories of the adjoint system Σ∗ of Σ have the same property. The latter
system has the same state space X as Σ, its signal space is W∗ = −W , and
the sets of trajectories (x(·), w(·)) of Σ and (x∗(·), w∗(·)) of Σ∗ are determined
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from each other through the “orthogonality relation” (see Section II.4)

−(x(n+ 1), x∗(0))X + (x(0), x∗(n+ 1))X

+
n∑

k=0

〈w(k), w∗(n− k)〉〈W,W∗〉 = 0,
(1.17)

where 〈·, ·〉〈W,W∗〉 is the duality pairing introduced in Section II.4 (see Sub-
section 2.3 for a short description of this duality pairing).

In the development of passive s/s systems theory in Parts II–III we made
essential use of known results on the geometry of Krĕın spaces. These spaces
appear naturally since the forward passivity property (1.16) holds if and
only if the graph V (defined in (2.2) below) of the operator F in (1.1) is

nonnegative in the Krĕın space K =
[
X
X
W

]
with respect to the indefinite inner

product[[
ẋ
x
w

]
,
[

ẋ′

x′

w′

]]
K

= −(ẋ, ẋ′)X + (x, x′)X + [w,w′]W ,
[

ẋ
x
w

]
,
[

ẋ′

x′

w′

]
∈ K. (1.18)

Moreover, a system is passive if and only if V is a maximal nonnegative
subspace of K, and it is conservative if and only if V is a Lagrangean subspace
of K, i.e., V is its own orthogonal companion.

Passive systems are always LFT-stabilizable, since every fundamental de-
composition W = −Y [u] U (where −Y is an anti-Hilbert space and U is
a Hilbert space) is admissible, and the corresponding i/s/o system, which
we call a scattering representation, is stable. The results obtained here for
LFT-stabilizable systems therefor applies, and it gives us H∞ coprime right
and left affine i/o transfer functions corresponding to other types of direct
sum decompositions of the signal space. The two most important cases (in
addition to the scattering case mentioned above), are the Lagrangean decom-
positions W = Y u U (where both Y and U are Lagrangean subspaces of
W), and the orthogonal decompositions W = −Y [u] U (where Y and U are
orthogonal in W , but they are not necessarily Hilbert spaces).

We use the word “impedance” in connection with an i/s/o representation,
or a right or left affine representation, or a right or left affine transfer func-
tion, or a generalized transfer function, if the underlying decomposition of
the signal space is Lagrangean. The word “scattering” is used if the decom-
position is fundamental, and the word “transmission” if the decomposition
is orthogonal. Scattering representations of passive s/s systems were studied
in Part II, and admissible i/s/o impedance and transmission representations
and transfer functions of passive systems were studied in Part III. Essential
differences exist between the scattering, impedance, and transmission cases.
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As we mentioned above, every fundamental decomposition of the signal space
of a passive s/s system is admissible. However, not every orthogonal decom-
position is admissible for a passive s/s system, and there exist s/s system
whose signal space do not have any admissible Lagrangean decomposition
(even if we require these decompositions to have the correct input and out-
put dimensions). This provides us with a motivation to develop the theory
of right and left affine i/s/o representations of the s/s system and their is/so
transfer functions. As we shall see, the notion of a generalized i/o transfer
function of the type introduced here is important in the case of orthogonal
decompositions of the signal space of a passive s/s system, but not in the
case of Lagrangean decompositions.

In Part III we among others proved the existence of simple conservative
and minimal passive i/s/o realizations of a given function D of the Potapov
class P (Ω;U ,Y) under the additional assumption that Ω contains the point
zero (by a realization of D we mean an i/s/o system whose transmission
matrix coincides with D on Ω).2 In Section 8 we extend that result to the
case where 0 /∈ Ω, replacing the earlier i/s/o realizations by s/s realizations,
and show how to realize D ∈ P (Ω;U ,Y) in the general case as the generalized
i/o transfer function of a simple conservative or minimal passive s/s system.

Notations. The following standard notations are used below. C is the
complex plane, D is the open unit disk in C, Z = {0,±1,±2, . . .}, and
Z+ = {0, 1, 2, . . .}.

The space of bounded linear operators from one Krĕın space X to another
Krĕın space Y is denoted by B(X ;Y), and we abbreviate B(X ;X ) to B(X ).
The domain, range, and kernel of a linear operator A are denoted by D(A),
R (A), and N (A), respectively. The restriction of A to some subspace Z ⊂
D(A) is denoted by A|Z . The identity operator on X is denoted by 1X . For
each A ∈ B(X ) we let ΛA be the set of points z ∈ C for which (1X − zA)
has a bounded inverse, plus the point at infinity if A is boundedly invertible.
We denote the projection onto a closed subspace Y of a space X along some
complementary subspace U by P U

Y , and by PY if Y is orthogonal to U with
respect to a Hilbert or Krĕın space inner product in X . The closed linear
span of a set of subsets Rα ⊂ X where α runs over some index set Λ is
denoted by ∨α∈ΛRα.

For a Hilbert space U the Hilbert space `2(Z+;U) contain those U -valued
sequences u(·) on Z+ which satisfy

∑
n∈Z+‖u(n)‖2 < ∞, and the Hilbert

space H2(D;U) consists of U -valued analytic functions ϕ on D for which
sup0<r<1

∫
|ζ|=1

‖ϕ(rζ)‖2
Ud|ζ| <∞. For a Banach spaces U and Y the Banach

2This is related to known results about reproducing kernel Hilbert spaces, as presented
in, e.g., [ADRdS97].
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space `∞(Z+;U) consists of all bounded U -valued sequences on Z+, and the
Banach space H∞(D;U ,Y) consists of all bounded B(U ,Y)-valued analytic
functions on D.

We denote the ordered product of the two locally convex topological vec-
tor spaces Y and U by

[
Y
U
]
. In particular, although Y and U may be Hilbert

or Krĕın spaces (in which case the product topology on
[
Y
U
]

is induced by
an inner product), we shall not require that [ Y0 ] ⊥ [ 0

U ] in
[
Y
U
]
. We identify

a vector [ y
0 ] ∈ [ Y0 ] with y ∈ Y and a vector [ 0

u ] ∈ [ 0
U ] with u ∈ U , and then

we sometimes write Y u U instead of
[
Y
U
]
, interpreting Y u U as an ordered

direct sum.
We denote the inner product in a Hilbert space X by (·, ·)X , the inner

product in a Krĕın space W by [·, ·]W . The set of all vectors that are orthog-
onal to a set G is denoted by G[⊥] in the case of a Krĕın space and by G⊥ in
the case of a Hilbert space. The orthogonal sum of two Hilbert spaces Y and
U is denoted by Y ⊕ U , and the orthogonal sum of two Krĕın spaces Y and
U is denoted by Y [u] U .

The set Ω(Σ;U ,Y) is defined in (1.10). The notations Ω(Σ) and Ω0(Σ)
are introduced in Notations 6.5 and 6.11, respectively. The notation V(z) is
introduced in (5.9), and the notations V (z), S(z), and Σ(z) in Lemma 6.1.

2 Preliminaries

2.1 Three kinds of representations

Instead of using the representation (1.1) for the trajectories (x(·), w(·)) of a
s/s system Σ with the Hilbert or Krĕın state space X and signal space W we
shall often use a graph representation[

x(n+1)
x(n)
w(n)

]
∈ V, n ∈ Z+, x(0) = x0, (2.1)

where V is the graph of the operator F , i.e.,

V =
{[

ẋ
x
w

] ∣∣∣ ẋ = F (x,w), [ x
w ] ∈ D(F )

}
. (2.2)

As shown in Section I.2, the properties that we required in the introduction
from the operator F in (1.1) and its domain are equivalent to the following
properties of the graph V of F :

(i) V is closed in the product K =
[
X
X
W

]
;
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(ii) For every x ∈ X there is some [ ẋ
w ] ∈ [ X

W ] such that
[

ẋ
x
w

]
∈ V ;

(iii) If
[

ẋ
0
0

]
∈ V , then ẋ = 0;

(iv) The set
{

[ x
w ] ∈ [ XW ]

∣∣ [ ẋ
x
w

]
∈ V for some ẋ ∈ X

}
is closed in the

product [ XW ].

A colligation Σ := (V ;X ,W) where the state space X and the signal spaceW
are Hilbert or Krĕın spaces and V is a subspace of the node space K :=

[
−X
X
W

]
with properties (i)–(iv) is called a s/s node. A pair of sequences (x(·), w(·))
of vectors x(n) ∈ X and w(n) ∈ W , n ∈ Z+, satisfying (2.1) is called a
trajectory generated by V with initial state x0, and V is called the generating
subspace. By a linear discrete time invariant s/s system we understand a s/s
node Σ together with the set of all trajectories generated by V via (2.1).
We still use the same notation Σ := (V ;X ,W) for the s/s system as for the
system node.

An i/s/o system Σdv/s/s :=
([

A′ B′

C′ D′

]
;X ,L,W

)
, where L is an auxiliar

Hilbert space (whose elements are called driving variables) and
[

A′ B′

C′ D′

]
∈

B([ XL ] ; [ XW ]) is called a driving variable representation of a s/s system Σ =
(V ;X ,W) if 1) D′ has a bounded left inverse and V is given by

V = R

A′ B′

1X 0
C ′ D′

 =

{ ẋx
w

 ∈ K

∣∣∣∣∣ ẋ = A′x+B′`,

w = C ′x+D′`,
, ` ∈ L

}
. (2.3)

This is equivalent to the following property: the correspondence
(
x(·), `(·), w(·)

)
→

(x(·), w(·), ) is a bijective map from the set of trajectories of the of i/s/o sys-
tem Σdv/s/s onto the set of trajectories of the s/s system Σ. It was proved
in Section I.3 that there exist infinite many such representations for a s/s
system, that can be parameterized by means of one fixed driving variable
representation in the following way.

Theorem 2.1. [Theorem I.3.3.] Let Σdv/s/s =
([

A′ B′

C′ D′

]
;X ,L,W

)
be a driv-

ing variable representation of a state signal system Σ, and let[
A′

1 B′
1

C ′
1 D′

1

]
=

[
A′ B′

C ′ D′

] [
1X 0
K ′ M ′

]
(2.4)

where

K ′ ∈ B(X ;L), M ′ ∈ B(L1;L), and M ′ has a bounded inverse, (2.5)
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for some Hilbert space L1. Then Σ1
dv/s/s =

([ A′1 B′
1

C′
1 D′

1

]
;X ,L1,W

)
is a driving

variable representation of Σ. Conversely, every driving variable representa-
tion Σ1

dv/s/s of Σ may be obtained from formula (2.4) for some operators K ′

and M ′ satisfying (2.5). The operators K ′ and M ′ are uniquely defined by
Σdv/s/s and Σ1

dv/s/s via

D′K ′ = C ′
1 − C ′ and D′M ′ = D′

1. (2.6)

An i/s/o system Σs/s/on =
([

A′′ B′′

C′′ D′′

]
;X ,W ,K

)
, where K is an auxiliary

Hilbert space (whose elements are called error variables) and
[

A′′ B′′

C′′ D′′

]
∈

B([ XW ] ; [ XK ]) is called an output nulling representation of a s/s system Σ =
(V ;X ,W) if 1) D′′ is surjective and 2)

V = N
([
−1X A′′ B′′

0 C ′′ D′′

])
=

{ ẋx
w

 ∈ K

∣∣∣∣∣ ẋ = A′′x+B′′w

0 = C ′′x+D′′w

}
(2.7)

This is equivalent to the following property: the correspondence
(
x(·), w(·), 0

)
→

(x(·), w(·), ) is a bijective map from the set of trajectories
(
x(·), w(·), k(·)

)
of

Σs/s/on for which k(n) = 0 for all n ∈ Z+ onto the set of trajectories of the
s/s system Σ. It was proved in Section I.4 that there exist infinite many such
representations for a s/s system, that can be parameterized by means of one
fixed output nulling representation in the following way:

Theorem 2.2 (Theorem I.4.3). Let Σs/s/on = (
[

A′′ B′′

C′′ D′′

]
;X ,W ,K) be an

output nulling representation of a s/s system Σ, and let[
A′′

1 B′′
1

C ′′
1 D′′

1

]
=

[
1X K ′′

0 M ′′

] [
A′′ B′′

C ′′ D′′

]
, (2.8)

where

K ′′ ∈ B(K,X ), M ′′ ∈ B(K,K1), and M ′′ has a bounded inverse, (2.9)

for some Hilbert space K1. Then Σ1
s/s/on = (

[
A′′1 B′′

1

C′′
1 D′′

1

]
;X ,W ,K1) is an output

nulling representation of Σ. Conversely, every output nulling representation
Σ1

s/s/on of Σ may be obtained from the formula (2.8) for some operators M ′′

and K ′′ satisfying (2.9). The operators M ′′ and K ′′ are uniquely defined by
Σs/s/on and Σ1

s/s/on via

M ′′D′′ = D′′
1 and K ′′D′′ = B′′

1 −B′′. (2.10)
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An i/s/o system Σi/s/o = ([ A B
C D ] ;X ,U ,Y), where U and Y are taken from

a direct sum decomposition W = Y uU of the signal space of the s/s system
Σ = (V ;X ,W) is called an i/s/o representation of Σ if [ A B

C D ] ∈ B([ XU ] ;
[
X
Y
]
)

and V is given by

V = R



A B
1X 0
C D
0 1U


 = N

([
−1X A 0 B

0 C −1Y D

])

=

{ ẋx
w

 ∈ K

∣∣∣∣∣ ẋ = Ax+Bu,

w = Cx+Du+ u,

} (2.11)

This is equivalent to the following property: the correspondence
(
x(·), u(·), y(·)

)
→

(x(·), w(·)) is a bijective map from the set of i/s/o trajectories of Σi/s/o onto
the set of trajectories of Σ. A decomposition W = Y u U for which such
an i/s/o representation exists is called admissible. The existence of infinitely
many admissible decompositions of W was established in Section I.5. Conse-
quently, there also exist infinitely many i/s/o representations. A description
of the connections between these representations is given in Section I.5. The
relationships between the coefficients and the is/so transfer functions of driv-
ing variable, output nulling, and i/s/o representations of a given s/s system
Σ are described in Sections I.4–6.

2.2 Passive Systems

In Parts II and III we developed the theory of passive s/s systems. The state
space of a passive system is a Hilbert space, but the signal space W is a
Krĕın space with an indefinite inner product [·, ·]W . The results from Part
I (where we took W to be a Hilbert space) are still applicable if we replace
the inner product in W by a positive inner product which induces a norm
topology on W that is equivalent to the its strong topology.

A s/s system Σ with a Hilbert state space X and a Krĕın space W is
forward passive if all its trajectories (x(·), w(·)) satisfy the forward passivity
inequality (1.16). This can be interpreted as a positivity condition of the
subspace V in (2.1) with respect to the Krĕın space inner product given by

(1.18) in the node space K := −X [u] X [u]W =
[
−X
X
W

]
. Thus, Σ is forward

passive if and only if [k, k]K ≥ 0 for all k ∈ K., i.e., if and only if V is a
nonnegative subspace of the Krĕın node space K.

The notions of backward passivity and passivity use the notion of the
adjoint of a s/s system Σ = (V ;X ,W). This is another s/s system Σ∗ =
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(V∗;X ,W∗) with the same state space X , with signal space is W∗ = −W ,
and with generating subspace

V∗ =
{
k∗ =

[
ẋ∗
x∗
w∗

]
∈ K∗

∣∣∣ [[ ẋ∗
x∗
w∗

]
,
[

x
ẋ
w

]]
K

= 0 for all
[

ẋ
x
w

]
∈ V

}
. (2.12)

A s/s system Σ is backward passive if its adjoint Σ∗ is forward passive, and Σ
is passive if it is both forward and backward passive. As shown in Theorem
II.5.6, Σ is passive if and only if its generating subspace V is a maximal
nonnegative subspace of the node space K.

By a fundamental decomposition of the Krĕın space W of a s/s system
Σ = (V ;X ,W) we mean an orthogonal decomposition W = −Y [u]U , where
U and Y are orthogonal Hilbert spaces with the induced inner products

(y, y′)Y = −[y, y′]W , y, y′ ∈ Y ,
(u, u′)U = [u, u′]W , u, u′ ∈ U .

If such a decomposition is admissible, then we call the corresponding i/s/o
representation a scattering represenation of Σ, and its i/o transfer function
is called a scattering matrix. As shown in Theorem II.5.7, a forward passive
s/s system Σ is passive if and only if its signal space has an admissible
fundamental decomposition, in which case every fundamental decomposition
is admissible.

Every scattering representation Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y

)
of a passive

s/s system is stable. Indeed, because of the passivity, every trajectory
(x(·), u(·), y(·)) of Σi/s/o satisfies

‖x(k + 1)‖2
X + ‖y(k)‖2

Y ≤ ‖x(k)‖2
X + ‖u(k)‖2

U , k ∈ Z+, (2.13)

and by summing over k = 0, 1, . . . , n we get

‖x(n+ 1)‖2
X +

n∑
k=0

‖y(k)‖2
Y ≤ ‖x(0)‖2

X +
n∑

k=0

‖u(k)‖2
U , n ∈ Z+. (2.14)

Consequently, x ∈ `∞(X ) and y ∈ `2(Y) whenever u ∈ `2(U), which shows
that Σi/s/o is stable. In particular, conditions 1)–4) in Lemma I.9.2 hold.
Thus, every passive system is LFT-stabilizable, and hence both stabilizable
and detectable.

In Parts II and III we studied, in addition to the fundamental decompo-
sitions of the signal space mentioned above, also two other types of decom-
positions, namely orthogonal and Lagrangean decompositions.
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In an orthogonal decomposition the signal space W is split into W =
−Y [u]U , where U and Y are orthogonal in W and U and Y are Krĕın spaces
with the inner products

[y, y′]Y = −[y, y′]W , [u, u′]U = [u, u′]W

inherited from W . Thus, if we decompose w, w′ ∈ W into w = y + u,
w′ = y′ + u′, where y, y′ ∈ Y and u, u′ ∈ U , then

[w,w′]W = −[y, y′]Y + [u, u′]U , (2.15)

If an orthogonal decomposition is admissible for a given s/s system Σ =
(V ;X ,W), then we call the corresponding i/s/o representation a transmission
representation of Σ, and its i/o transfer function is called a transmission
matrix.

A Lagrangean decompositions W = F u E is a direct sum decomposition
where F and E are no longer orthogonal, but both F and E are Lagrangean
subspaces of W , meaning that they coincide with their own orthogonal com-
panion. In particular, they are neutral, i.e., [f, f ]W = 0 and [e, e]W = 0 for
all f ∈ F and e ∈ E .3 As shown in Lemma III.2.3, it is possible to choose
Hilbert space inner products in F and E which are compatible with the strong
topology inherited from W in such a way that there exists a unitary operator
Ψ: E → F so that if if we decompose w, w′ ∈ W into w = f +e, w′ = f ′+e′,
where f , f ′ ∈ F and e, e′ ∈ E , then

[w,w′]W = (f,Ψe′)F + (e,Ψ∗f ′)F , (2.16)

To indicate that the inner products in F and E have been chosen in this way

we writeW = F
Ψ

+E . If a Lagrangean decompositionW = F
Ψ

+E is admissible
for a given s/s system Σ = (V ;X ,W), then we call the corresponding i/s/o
representation an impedance representation of Σ, and its i/o transfer function
is called an impedance matrix. Transmission and impedance representations
of passive s/s systems were studied in Part III. In this paper we will study
their affine counterparts.

2.3 Direct Sum Decompositions of Krĕın Spaces

In the definition of the adjoint s/s system Σ∗ we replaced the original signal
space W by the dual signal space W∗ = −W . In the sequel we shall identify

3A necessary condition for the existence of a Lagrangean decomposition is that the
positive and negative indeces ind+W and ind−W are equal. Here ind−W = dimW− and
ind+W = dimW+, where W = −W− [u]W+ is an arbitrary fundamental decomposition
of W.
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the dual of W with W∗ through the duality pairing 〈·, ·〉〈W,W∗〉 defined by

〈w,w∗〉〈W,W∗〉 = [w, Iw∗]W = [I∗w,w∗]W∗ , w ∈ W , w∗ ∈ W∗, (2.17)

where I is the identity operator fromW∗ toW . This operator is anti-unitary,
i.e., I∗ = −I−1 (see Section II.4 for details).

In the following we shall have to compute adjoints of operators which are
defined on W or take their values in W . This can be done in two ways: when-
ever we compute the adjoint with respect to the duality pairing 〈·, ·〉〈W,W∗〉
we denote the adjoint with the superscript †, and whenever we compute the
adjoints with respect to the inner product of W we use the superscript ∗.
Thus, if, for example, C ′ ∈ B(X;W) and B′′ ∈ B(W ;X ), where X is a
Hilbert space whose dual we identify with X itself in the standard way, then
for all x ∈ X , w ∈ W , and w∗ ∈ W∗,

[C ′x,w]W = (x, (C ′)∗w)X , (B′′w, x)X = [w, (B′′)∗x]W ,

〈C ′x,w∗〉〈W,W∗〉 = (x, (C ′)†w∗)X , (B′′w, x)X = 〈w, (B′′)†x〉〈W,W∗〉.

Combining this with (2.17) we find that

(C ′)† = C∗I, I(B′′)† = (B′′)∗. (2.18)

In the same way one can show (see Section II.4 for details) that if D ∈ B(W),
then

I(D)† = D∗I. (2.19)

In the affine i/s/o representations which will be presented below we fre-
quently decompose operators C ′ ∈ B(X ,W) and B′′ ∈ B(W ,X ) into blocks
of the type

C ′ =

[
C ′
Y

C ′
U

]
:=

[
P U
Y C

′

PY
U C

′

]
∈ B(X ;

[
Y
U
]
),

B′′ =
[
B′′
Y B′′

U
]

:=
[
B′′|Y B′′|U

]
∈ B(

[
Y
U
]
;X ),

(2.20)

where W = Y u U is a direct sum decomposition of W . The corresponding
block decompositions of the operators (C ′)† and (B′′)† depend on how we
interpret the duals of the spaces Y and U . Out of the different choices
available we prefer to identify the duals of Y and U by Y∗ and U∗, respectively,
given by

Y∗ = U 〈⊥〉, U∗ = Y〈⊥〉, (2.21)

where the orthogonal complements are computed with respect to the duality
pairing 〈·, ·〉〈W,W∗〉 between W and W∗ = −W introduced earlier, i.e.,

Y∗ =
{
y∗ ∈ W∗

∣∣ 〈u, y∗〉〈W,W∗〉 = 0 for all u ∈ U
}
,

U∗ =
{
u∗ ∈ W∗

∣∣ 〈y, u∗〉〈W,W∗〉 = 0 for all y ∈ Y
}
.

(2.22)
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The method by which we identify the duals of Y and U with Y∗ and U∗ will
be explained after the following lemma.

Lemma 2.3. Let W = Y u U be a direct sum decomposition of the Krĕın
space W, and define U∗ and Y∗ by (2.21), where the orthogonal complements
are computed with respect to the duality pairing (2.17) between W and W∗ =
−W. Then

1) W∗ = U∗ u Y∗,

2) (P U
Y )† = P U∗

Y∗ and (PY
U )† = PY∗

U∗ , where (P U
Y )† and (PY

U )† are the adjoints

of P U
Y ∈ B(W) and PY

U ∈ B(W), respectively, computed with respect to
the duality pairing (2.17).

Proof. The two operators PY
U and P U

Y are complementary projections in W ,
i.e., (PY

U )2 = PY
U , (P U

Y )2 = P U
Y , and PY

U + P U
Y = 1W . Taking the adjoints

of these three equations we find that (P U
Y )† and (PY

U )† are complementary
projections in W∗. Moreover, N

(
(PY

U )†
)

= (R
(
PY
U
)
)〈⊥〉 = U 〈⊥〉 = Y∗, and

in the same way N
(
(P U

Y )†
)

= U∗. Thus, W∗ = U∗ u Y∗, (P U
Y )† = P U∗

Y∗ and

(PY
U )† = PY∗

U∗ .

Every bounded linear functional on U can be extended to a bounded linear
functional on W , so it has a representation of the type u 7→ 〈u,w∗〉〈W,W∗〉 for
some w∗ ∈ W∗. But

〈u,w∗〉〈W,W∗〉 = 〈PY
U u,w∗〉〈W,W∗〉 = 〈u, (PY

U )†w∗〉〈W,W∗〉 = 〈u, PY∗
U∗ w∗〉〈W,W∗〉,

so it is possible to replace the vector w∗ ∈ W in this representation by the
vector u∗ = PY∗

U∗ w∗ ∈ U∗. Every nonzero u∗ ∈ U∗ induces a nonzero functional
on U by the above formula, because if u∗ ∈ U∗ and 〈u, u∗〉〈W,W∗〉 = 0 for all
u ∈ U , then u∗ ∈ U 〈⊥〉 ∩ U∗ = Y∗ ∩ U∗ = {0}, and hence u∗ = 0. This shows
that we can identify the dual of U with U∗ by the duality pairing

〈u, u∗〉〈U ,U∗〉 = 〈u, u∗〉〈W,W∗〉, u ∈ U , u∗ ∈ U∗. (2.23)

The same computation can be repeated with U replaced by Y , so that we
identify the dual of Y with Y∗ = U 〈⊥〉 by the duality pairing

〈y, y∗〉〈Y,Y∗〉 = 〈y, y∗〉〈W,W∗〉, y ∈ Y , y∗ ∈ Y∗. (2.24)

Note that these duality pairings do not depend in any way on any particular
inner product that we may choose to use in Y∗ and U∗. Also note that if
w ∈ W , w∗ ∈ W∗ and if we denote u = PY

U w, y = P U
Y w, u∗ = PY∗

U∗ w∗ and

y∗ = P U∗
Y∗w∗, then

〈w,w∗〉〈W,W∗〉 = 〈y, y∗〉〈Y,Y∗〉 + 〈u, u∗〉〈U ,U∗〉. (2.25)
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Lemma 2.4. Let W = Y u U be a direct sum decomposition of the Krĕın
space W, and let W∗ = U∗ u Y∗ be the dual decomposition of W∗ in Lemma
2.3, with Y∗ and U∗. Let C ′ ∈ B(X ;W) and B′′ ∈ B(W ;X ), decompose these
operators as in (2.20), and decompose the adjoint operators (C ′)† and (B′′)†

in the same way with respect to the dual decomposition W∗ = U∗ uY∗ of W∗
into

(B′′)† =

[
(B′′)†U∗
(B′′)†Y∗

]
:=

[
PY∗
U∗ (B′′)†

P U∗
Y∗ (B′′)†

]
∈ B(X ;

[ U∗
Y∗

]
),

(C ′)† =
[
(C ′)†U∗ (C ′)†Y∗

]
:=
[
(C ′)†|U∗ (C ′)†|Y∗

]
∈ B(

[ U∗
Y∗

]
;X ),

(2.26)

Then
(C ′

Y)† = (C ′)†Y∗ , (C ′
U)† = (C ′)†U∗

(B′′
Y)† = (B′′)†Y∗ , (B′′

U)† = (B′′)†U∗ ,
(2.27)

where the adjoints on the left-hande side of the equality signs are computed
with respect to the duality pairings between Y and Y∗ and between U and
U∗, and the adjoints on the right-hand side are computed with respect to the
duality pairing between W and W∗.

Proof. For each x ∈ X , y∗ ∈ Y , and u∗ ∈ U we have by (2.25)

(x, (C ′
Y)†y∗)X + (x, (C ′

U)†u∗)X = 〈C ′
Yx, y∗〉〈Y,Y∗〉 + 〈C ′

Ux, u∗〉〈U ,U∗〉

= 〈C ′x, y∗ + u∗〉〈W,W∗〉 = (x, (C ′
Y)†(y∗ + u∗))X

= (x, (C ′)†|Y∗y∗)X + (x, (C ′)†|U∗u∗)X .

This proves the first two identites in (2.27). In the same way we have for all
x ∈ X , y ∈ Y and u ∈ U ,

(y, (B′′
Y)†x)〈Y,Y∗〉 + (u, (B′′

U)†x)〈U ,U∗〉 = (B′′y, x)X + (B′′
Uu, x)X

= (B′′(y + u), x)X = (y + u, (B′′)†x)〈W,W∗〉

= (y, P U∗
Y∗ (B′′)†x)〈Y,Y∗〉 + (u, PY∗

U∗ (B′′)†x)〈U ,U∗〉.

This proves the last two identities in (2.27).

3 Right Affine Representations

As we have shown in Part III, not every orthogonal decomposition W =
−Y [u] U of the Krĕın signal space is admissible for a passive s/s system Σ,
i.e., not every such decomposition gives rise to an i/s/o (transmission) repre-
sentation of Σ. For the Lagrangean decompositions W = FuE the situation
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is even more problematic, since none of the Lagrangean decompositions may
be admissible, as shown in Example III.5.12. In this connection it is natural
to introduce and study right and left affine representations of the system.

In the introduction we defined what we mean by a right affine i/s/o
representation of a s/s system Σ, and we mentioned in passing that they
can be obtained from the corresponding driving variable representations by
splitting the signal component of a trajectory into an input and an output
component. As explained in the introduction, for any i/o decomposition
W = YuU of the signal spaceW of a s/s system Σ the trajectories (x(·), w(·))
can be written in the i/s/o form (x(·), u(·), y(·)) where

u(n) = PY
U w(n), y(n) = P U

Y w(n), n ∈ Z+.

A sequence (x(·), u(·), y(·)) obtained in this way will be called an i/s/o tra-
jectory of Σ, corresponding to the decomposition W = YuU . By first fixing
a particular i/o decomposition W = Y u U and then applying this decom-
positions to the class of all driving variable representations of a given s/s
system we get a bijective correspondence

([
A′ B′

C′ D′

]
;X ,L,W

)
→
([ A′ B′

C′
Y D′

Y
C′
U D′

U

]
;X ,L,

[
Y
U
])

from the set of all driving variable representations Σdv/s/s of Σ to the set of all
right affine i/s/o representations Σr

i/s/o of Σ, corresponding to this particular

decomposition W = Y u U , by formula (1.9).
Clearly, a right affine i/s/o representation of a s/s system Σ corresponding

to some given decomposition W = Y u U is not unique, since the driving
variable representation on which it is based is not unique. However, if we
have two such representations, the one given above, and another one

Σr,1
i/s/o :=

([ A′1 B′
1»

(C′
1)Y

(C′
1)U

– »
(D′

1)Y
(D′

1)′U

– ]
;X ,L1,

[
Y
U
])
, (3.1)

then by Theorem 2.1, there exist a bounded invertible operatorM ′ ∈ B(L1;L)
and an operator K ′ ∈ B(X ,L) such that

A′
1 B′

1

(C ′
1)Y (D′

1)Y
1X 0

(C ′
1)U (D′

1)U

 =


A′ B′

C ′
Y D′

Y
1X 0
C ′
U D′

U

[1X 0
K ′ M ′

]
. (3.2)

The converse is also true.
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In a standard i/s/o representation Σi/s/o of a s/s system node Σ =
(V ;X ,W) we can interpret the generating subspace V as the graph of the
operator [ A B

C D ] by reordering the components into the form

V =

{[[
ẋ
y

]
[ x
u ]

] ∣∣∣∣∣
[
ẋ
y

]
=

[
A B
C D

] [
x
u

]}
. (3.3)

In the right affine i/s/o representation Σr
i/s/o the subspace V has the image

representation (with the same reordering of the components)

V =



[
ẋ
y

]
[
x
u

]

∣∣∣∣∣
[
ẋ
y

]
=

[
A′ B′

C ′
Y D′

Y

] [
x
`

]
,[

x
u

]
=

[
1X 0
C ′
U D′

U

] [
x
`

]
,

[
x
`

]
∈
[
X
L

] . (3.4)

This coincides with the standard i/s/o representation (2.11) if L = U , C ′
U =

0, and D′
U = 1U . If D′

U has a bounded inverse, then `(n) may be solved in
terms of x(n) and u(n) from the last equation, and we will arrive at a standard
i/s/o representation of Σ. The condition that D′

U has a bounded inverse is
actually equivalent to the admissibility of the decomposition W = Y u U ;
see Lemma I.5.9.

The operators
[

A′ B′

C′
Y D′

Y

]
and

[
1X 0
C′
U D′

U

]
in the representation (3.4) are right

coprime in the following (Bezout) sense: there exist two operators P ′ ∈
B(
[
X
Y
]
; [ XL ]) and Q′ ∈ B([ XU ] ; [ XL ]) (called Bezout factors) such that the

following identity (often called the right Bezout identity) holds:

P ′
[
A′ B′

C ′
Y D′

Y

]
+Q′

[
1X 0
C ′
U D′

U

]
= 1[XL ]. (3.5)

Indeed, the operator [ A′ B′

C′
Y D′

Y

][
1X 0
C′
U D′

U

] ∈ B([XL
]

;

[ h
X
Y

i
[XU ]

])

is injective since D′ =
[

D′
Y

D′
U

]
∈ B(L;

[
Y
U
]
) is injective, and its range (equal to

V ) is closed. Consequently, it has a bounded left inverse

[
P ′ Q′] ∈ B([ h

X
Y

i
[XU ]

]
;

[
X
L

])
,

and (3.5) holds for the pair (P ′, Q′).
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Let (x(·), u(·), y(·)) be a trajectory of the right affine i/s/o representation
Σr

i/s/o given by (1.7) of the s/s system Σ = (V ;X ,W). Let x̂(·), û(·), and ŷ(·)
be the formal power series of x(·), u(·), and y(·), respectively, and let ˆ̀(·) be
the formal power series of the corresponding driving variable sequence `(·)
(by Proposition I.3.2, `(·) is determined uniquely by (x(·), u(·), and y(·))).
Then it follows from (1.8) that

x̂(z) = A′(z)x0 + B′(z)ˆ̀(z),

ŷ(z) = C′Y(z)x0 + D′
Y(z)ˆ̀(z),

û(z) = C′U(z)x0 + D′
U(z)ˆ̀(z),

(3.6)

where A′(z) B′(z)

C′Y(z) D′
Y(z)

C′U(z) D′
U(z)


=

 (1X − zA′)−1 z(1X − zA′)−1B′

C ′
Y(1X − zA′)−1 C ′

Yz(1X − zA′)−1B′ +D′
Y

C ′
U(1X − zA′)−1 C ′

Uz(1X − zA′)−1B′ +D′
U

 , z ∈ ΛA′ .

(3.7)

The above four block function is called the right affine is/so transfer func-
tion of the right affine i/s/o representation Σr

i/s/o of Σ, corresponding to

the decomposition W = Y u U . In particular, as a part of this is/so affine

transfer function we find the right affine i/o transfer function D′ =
[

D′
Y

D′
U

]
of Σ, corresponding to the decomposition W = Y u U . A right affine is/so
transfer function of a given s/s system Σ corresponding to an i/o decompo-
sition W = Y u U is not unique, since the right affine i/s/o representation
is not unique. The connection between two different right affine is/so trans-
fer functions can be obtained from the corresponding connection between
two driving variable representations presented in (I.6.12), and it leads to a
formula of the type[

D′
1,Y(z)

D1,U ′(z)

]
=

[
D′
Y(z)

D′
U(z)

]
m′(z), z ∈ ΛA′1

∩ ΛA′ , (3.8)

for the connection between the right affine i/o transfer functions. Here m′(z)
is a holomorphic B(L1;L)-valued function on ΛA′1

∩ ΛA′ with a (locally)
bounded inverse (this function is given by m′(z) = (1L − K ′B′(z))−1M ′;
see formula (I.6.13)). In particular, if D ⊂ ΛA′1

∩ ΛA′ (as is the case if both
representations are stable), then (3.8) holds for all z ∈ D.
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Up to now the discussion has focused on right affine representations based
on some arbitrary driving variable representation. Instead of using an arbi-
trary driving variable representation we may also use an i/s/o representation,
interpreted as a driving variable representation, in which case some of our
earlier formulas can be written in a more specific way.

Let Σ1
i/s/o =

([
A1 B1
C1 D1

]
;X ,U1,Y1

)
be an i/s/o representation of Σ =

(V ;X ,W) corresponding to some admissible decomposition W = Y1 u U1

with is/so transfer function
[

A1(z) B1(z)
C1(z) D1(z)

]
, and let W = Y u U be another

direct sum decomposition of W (not necessarily admissible). We define the
is/so decompositions Θ and Θ̃ of the identity with respect to these two de-
compositions of W in the usual way, i.e.,

Θ =

[
Θ11 Θ12

Θ21 Θ22

]
=

[
P U
Y |Y1 P U

Y |U1

PY
U |Y1 PY

U |U1

]
, (3.9)

Θ̃ =

[
Θ̃11 Θ̃12

Θ̃21 Θ̃22

]
=

[
P U1
Y1
|Y P U1

Y1
|U

PY1
U1
|Y PY1

U1
|U

]
. (3.10)

By interpreting Σ1
i/s/o as a driving variable representation of Σ with driving

variable space L = U1 we can make the following substitution in the right
affine formulas: [

A′ B′

C ′
Y D′

Y

]
=

[
A1 B1

Θ11C1 Θ11D1 + Θ12

]
,[

1X 0
C ′
U D′

U

]
=

[
1X 0

Θ21C1 Θ21D1 + Θ22

]
.

(3.11)

One particular choice of the operators P ′ and Q′ in (3.5) leads to the (right
Bezout) identity[

0 0
0 Θ̃21

] [
A1 B1

Θ11C1 Θ11D1 + Θ12

]
+

[
1X 0
0 Θ̃22

] [
1X 0

Θ21C1 Θ21D1 + Θ22

]
= 1h X

U1

i,
(3.12)

The right affine is/so transfer function (3.7) is now given by A′(z) B′(z)

C′Y(z) D′
Y(z)

C′U(z) D′
U(z)

 =

 A1(z) B1(z)

Θ11C1(z) Θ11D1(z) + Θ12

Θ21C1(z) Θ21D1(z) + Θ22

 , z ∈ ΛA1 . (3.13)
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An identity similar to (3.12) is also valid for the right affine is/so transfer
function (with the same Bezout factors), namely[

0 0
0 Θ̃21

] [
A1(z) B1(z)

Θ11C1(z) Θ11D1(z) + Θ12

]
+

[
1X 0
0 Θ̃22

] [
1X 0

Θ21C1(z) Θ21D1(z) + Θ22

]
= 1h X

U1

i, z ∈ ΛA1 .

(3.14)
From this identity we can extract the corresponding (right Bezout) identity

Θ̃21D
′
Y(z) + Θ̃22D

′
U(z) = 1U , z ∈ ΛA1 , (3.15)

for the right affine i/o transfer function[
D′
Y(z)

D′
U(z)

]
=

[
Θ11D1(z) + Θ12

Θ21D1(z) + Θ22

]
, z ∈ ΛA1 . (3.16)

Two holomorphic functions a and b on an open set Ω with values in B(L;U)
and B(L;Y), respectively, are called right (Bezout) coprime (in the space of
analytic operator-valued functions on Ω) if there exists a pair of holomorphic
functions p and q on Ω with values in B(U ;L) and B(Y ;L), respectively
(called the Bezout factors) such that

p(z)a(z) + q(z)b(z) = 1L, z ∈ Ω. (3.17)

Thus, by (3.15) and (3.16), the holomorphic functions D′
Y and D′

U on ΛA1

are right coprime (and it is even possible to choose the Bezout factors to be
constants).

We remark that the Bezout factors p(z) and q(z) in (3.17) determine the

pair
[

a(z)
b(z)

]
uniquely on Ω within the class of all pairs of the type

[
a(z)
b(z)

]
m(z),

where m(z) is a holomorphic function on Ω with values in B(L). This is true
because (3.17) gives

p(z)[a(z)m(z)] + q(z)[b(z)m(z)] = m(z), z ∈ Ω,

and here the right-hand side is the identity only if m(z) = 1L, z ∈ D. In the
same sense the Bezout factors Θ̃21 and Θ̃22 in (3.15) determine D′

Y(z) and

D′
U(z) uniquely on ΛA1 , and the Bezout factors

[
0 0
0 eΘ21

]
and

[
1 0
0 eΘ22

]
in (3.14)

determine the corresponding pair of right affine is/so transfer functions on
ΛA1 .

In the case where the s/s system Σ = (V ;X ,W) is stabilizable we can say
more about the right affine i/s/o representation of Σ. Indeed, stabilizabil-
ity is (by definition) equivalent to the existence of a stable driving variable



24

representation of Σ. For each decomposition W = Y u U we get from this
particular driving variable representation a stable right affine representation
Σr

i/s/o of Σ given in the form (1.7). According to Lemma I.9.2, its main

operator and the is/so transfer function has the following properties:

1) ‖(A′)n‖ ≤ C for some constant C > 0 all n ∈ Z+; in particular,
D ∈ ΛA′ .

2) (B′)e ∈ H2(D;X ,U),4 where (B′)e(z) = B′(z)∗.

3)
[

C′Y
C′Y

]
∈ H2(D;X ,

[
Y
U
]
).

4)
[

D′
Y

D′
Y

]
∈ H∞(D;U ,

[
Y
U
]
).

In particular, according to condition 4), the right affine i/o transfer func-
tion of Σ corresponding to the decomposition W = Y u U is holomorphic
and bounded in D.

If we impose the even stronger condition of LFT-stabilizability on the
system, then we can say more (recall, in particular, that every passive system
is LFT-stabilizable). In this case Σ has a stable i/s/o representation Σ1

i/s/o :=([
A1 B1
C1 D1

]
;X ,U1,Y1

)
. This representation can be interpreted as a stable

driving variable representation of Σ, and from this representation we get the
right affine i/s/o representation described in (3.9)–(3.16). In particular, we
now see from (3.15) that the pair (D′

Y ,D
′
U) is right coprime in H∞(D) (even

with constant Bezout factors).

We will end this section by reformulating Theorem III.3.6 on the positivity
properties of the i/o transfer function of a driving variable represenation
of a forward passive s/s system by reinterpreting this transfer function as
a right affine i/o transfer function of Σ. We treat two cases, namely the
transmission case where the decomposition W = −Y [u] U is orthogonal,

and the impedance case where the decomposition W = F
Ψ

+E is Lagrangean.

Proposition 3.1. Let Σr
i/s/o be a right affine i/s/o representation with main

operator A′ and i/o transfer function
[

D′
Y (z)

D′
U (z)

]
of a forward passive s/s system

4Here we denote by H2(D;L1,L2) the Hardy class of holomorphic B(L1,L2)-valued
functions f(·) in D such that f(·)` ∈ H2(L2) for every ` ∈ L1). By the uniform bounded-
ness principle, there exists a finite constant C such that ‖f(·)`‖H2(D;L2) ≤ C‖`‖L1 for all
` ∈ L1.
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Σ = (V ;X ,W), corresponding to an orthogonal decomposition W = −Y [u]U
of the signal space.5 Then the kernel

KD′
Y ,D′

U
(z, ζ) =

D′
U(z)∗D′

U(ζ)−D′
Y(z)∗D′

Y(ζ)

1− zζ
, z, ζ ∈ Ω′

+ (3.18)

is positive definite on the set Ω′
+×Ω′

+, where Ω′
+ = ΛA′ ∩D. If Σ is passive,

then we may choose Σr
i/s/o to be stable, in which case D ⊂ ΛA′, Ω′

+ = D,

D′
Y ∈ H∞(D;L,Y) and D′

U ∈ H∞(D;L,U). If Σr
i/s/o arises from a scattering

i/s/o representation, then the functions D′
Y and D′

U are even right coprime
in H∞(D).

Proof. By Theorem III.3.6, the kernel

KD′(z, ζ) =
D′(z)∗D′(ζ)

1− zζ
, z, ζ,∈ Ω′

+ (3.19)

is positive definite on Ω′
+ × Ω′

+, where Ω′
+ = ΛA′ ∩ D. For every `, `′ ∈ L

(where L is the driving variable space of Σr
i/s/o) we have

(D′(z)∗D′(ζ)`, `′)L = [D′(ζ)`,D′(z)`′]W

= [D′
U(ζ)`,D′

U(z)`′]U − [D′
Y(ζ)`,D′

Y(z)`′]Y

= ([D′
U(z)∗D′

U(ζ)−D′
Y(z)∗D′

Y(ζ)]`, `′)L.

Thus,

D′(z)∗D′(ζ) = D′
U(z)∗D′

U(ζ)−D′
Y(z)∗D′

Y(ζ), z, ζ ∈ Ω′
+, (3.20)

and so KD′
Y ,D′

U
(z, ζ) is positive definite since KD′(z, ζ) is positive definite.

The two final claims (about the stable cases) follow from the stability dis-
cussion earlier in this section, and from the fact that every scattering repre-
sentation of a passive s/s system is stable.

Proposition 3.2. Let Σr
i/s/o be a right affine i/s/o representation with main

operator A′ and i/o transfer function
[

D′
F (z)

D′
E(z)

]
of a forward passive system

Σ = (V ;X ,W), corresponding to a Lagrangean decomposition W = F
Ψ

+E of
the signal space. Then the kernel

KD′
F ,D′

E
(z, ζ) =

D′
E(z)

∗Ψ∗D′
F(ζ) + D′

F(z)∗ΨD′
E(ζ)

1− zζ
, z, ζ ∈ Ω′

+ (3.21)

5Recall that this transfer function is defined and holomorphic on ΛA′ .
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is positive definite on the set Ω′
+×Ω′

+, where Ω′
+ = ΛA′ ∩D. If Σ is passive,

then we may choose Σr
i/s/o to be stable, in which case D ⊂ ΛA′, Ω′

+ = D,

D′
F ∈ H∞(D;L,F) and D′

E ∈ H∞(D;L, E). If Σr
i/s/o arises from a scattering

i/s/o representation, then the functions D′
F and D′

E are even right coprime
in H∞(D).

Proof. As in the proof of Proposition 3.1 we observe that the kernel KD′(z, ζ)

in (3.19) is positive definite, where this time D′(z) =
[

D′
F (z)

D′
E(z)

]
. For all `, `′ ∈ L

we have by (2.16)

(D′(z)∗D′(ζ)`, `′)L = [D′(ζ)`,D′(z)`′]W

= [D′
F(ζ)`, ψD′

E(z)`
′]F + [D′

E(ζ)`, ψ
∗D′

F(z)`′]E

= ([D′
E(z)

∗ψ∗D′
F(ζ) + D′

F(z)∗ψD′
E(ζ)]`, `

′)L.

Thus,

D′(z)∗D′(ζ) = D′
E(z)

∗Ψ∗D′
F(ζ) + D′

F(z)∗ΨD′
E(ζ), z, ζ ∈ Ω′

+, (3.22)

which means that the kernelKD′(z, ζ) now becomes the kernel given in (3.21).

4 Left Affine Representations

The notions and results presented above for right affine i/s/o representations
of a s/s system Σ have a natural left counterpart, where the driving vari-
able representations used in the right representations are replaced by output
nulling representations. We have already defined what we mean by an out-
put nulling representation in Section 2, and what we mean by a left affine
i/s/o repersentation in Section 1. The correspondence between these is the
one induced by the i/o decomposition W = Y u U , so that (x(·), w(·), 0)
is a trajectory of the output nulling system Σs/s/on (with vanishing error
vector) if and only if (x(·), u(·), y(·)) is a trajectory of the left affine i/s/o
representation Σl

i/s/o, where

u(n) = PY
U w(n), y(n) = P U

Y w(n), n ∈ Z+.

Just as in the right affine case, a left affine i/s/o representation of a
s/s system Σ corresponding to a given i/o decomposition W = Y u U is
not unique. By Theorem 2.2, given the representation Σl

i/s/o in (1.12) and

another left affine i/s/o representation

Σl,1
i/s/o :=

([
A′′1 (B′′

1 )Y (B′′
1 )U

C′′
1 (D1)′′Y (D1)′′U

]
;X ,U ,Y ;K1

)
, (4.1)
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corresponding to the i/o decomposition W = Y u U , the latter can be ob-
tained from the former through the formula[

−1X (B′′
1 )Y A′′

1 (B′′
1 )U

0 (D1)
′′
Y C ′′

1 (D1)
′′
U

]
=

[
1X K ′′

0 M ′′

] [
−1X B′′

Y A′′ B′′
U

0 D′′
Y C ′′ D′′

U

]
. (4.2)

where M ′′ ∈ B(K;K1) is boundedly invertible and K ′′ ∈ B(K,X ). This for-
mula gives a complete parameterization of all left affine i/s/o representations
of Σ corresponding to the decomposition W = Y u U .

In the left affine i/s/o representation Σl
i/s/o the subspace V has the kernel

representation (with the same reordering of the components as in (3.4))

V =

{[[
ẋ
y

]
[ x
u ]

] ∣∣∣∣∣
[
−1X B′′

Y
0 D′′

Y

] [
ẋ
y

]
+

[
A′′ B′′

U
C ′′ D′′

U

] [
x
u

]
=

[
0
0

]}
. (4.3)

In this representation the operators
[
−1X B′′

Y
0 D′′

Y

]
and

[
A′′ B′′

U
C′′ D′′

U

]
are left coprime

in (Bezout) sense that[
−1X B′′

Y
0 D′′

Y

]
P ′′ +

[
A′′ B′′

U
C ′′ D′′

U

]
Q′′ = 1[XK ]. (4.4)

for some operators P ′′ ∈ B([ XK ] ;
[
X
Y
]
) and Q′′ ∈ B([ XK ] ; [ XU ]). Indeed, the

operator [
−1X B′′

Y A′′ B′′
U

0 D′′
Y C ′′ D′′

U

]
∈ B

([ h
X
Y

i
[XU ]

]
;

[
X
K

])
is surjective and hence has a bounded right inverse[

P ′′

Q′′

]
∈ B

([
X
K

]
;

[ h
X
Y

i
[XU ]

])
,

and (4.4) holds for this pair (P ′′, Q′′).
If (x(·), u(·), y(·)) is a trajectory of the left affine i/s/o representation

Σl
i/s/o given in (1.12) of the s/s system Σ = (V ;X ,W), and if x̂(·), û(·), and

ŷ(·) be the formal power series of (x(·), u(·), and y(·)), respectively, then it
follows from (1.13) that

x̂(z) = A′′(z)x0 + B′′
Y(z)ŷ(z) + B′′

U(z)û(z),

0 = C′′(z)x0 + D′′
Y(z)ŷ(z) + D′′

U(z)û(z),
(4.5)

where[
A′′(z) B′′

Y(z) B′′
U(z)

C′′(z) D′′
Y(z) D′′

U(z)

]
=
[

(1X−zA′′)−1 z(1X−zA′′)−1B′′
Y z(1X−zA′′)−1B′′

U
C′′(1X−zA′′)−1 C′′z(1X−zA′′)−1B′′

Y+D′′
Y C′′z(1X−zA′′)−1B′′

U+D′′
U

]
, z ∈ ΛA′′ .

(4.6)
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The above four block function is called the left affine is/so transfer function
of the left affine i/s/o representation of Σ corresponding to the decomposition
W = Y uU . In particular, as a part of this left affine is/so transfer function
we find the left affine i/o transfer function D′′ =

[
D′′
Y D′′

U
]

corresponding
to this decomposition of W . Any two left affine i/o transfer functions differ
from each other by an invertible factor to the left, i.e.,[

D′′
1,Y(z) D′′

1,U(z)
]

= m′′(z)
[
D′′
Y(z) D′′

U(z)
]
, z ∈ ΛA′′1

∩ ΛA′′ , (4.7)

where m′′(z) is a holomorphic B(K;K1)-valued function on ΛA′′1
∩ ΛA′′ with

a (locally) bounded inverse; see formula (I.6.16). In particular, if both rep-
resentations are stable, then (4.7) holds for all z ∈ D.

By interpreting an i/s/o representation Σ1
i/s/o =

([
A1 B1
C1 D1

]
;X ,U1,Y1

)
of

Σ as an output nulling representation of Σ we can make a substitution anal-
ogous to the one in (3.11) in the left affine formulas, namely[

−1X B′′
Y

0 D′′
Y

]
=

[
−1X B1Θ̃21

0 −Θ̃11 +D1Θ̃21

]
,[

A′′ B′′
U

C ′′ D′′
U

]
=

[
A1 B1Θ̃22

C1 −Θ̃12 +D1Θ̃22

]
.

(4.8)

One particular choice of the operators P ′′ and Q′′ in (4.4) leads to the (left
Bezout) identity, analogous to (3.12),[

−1X B1Θ̃21

0 −Θ̃11 +D1Θ̃21

] [
−1X 0

0 −Θ11

]
+

[
A1 B1Θ̃22

C1 −Θ̃12 +D1Θ̃22

] [
0 0
0 −Θ21

]
= 1h X

Y1

i,
(4.9)

The left affine is/so transfer function (4.6) is now given by[
A′′(z) B′′

Y(z) B′′
U(z)

C′′(z) D′′
Y(z) D′′

U(z)

]
=

[
A1(z) B1(z)Θ̃21 B1(z)Θ̃22

C1(z) −Θ̃11 + D1(z)Θ̃21 −Θ̃12 + D1(z)Θ̃22

]
, z ∈ ΛA1 ,

(4.10)

the left analogue of (3.14) is[
−1X B1(z)Θ̃21

0 −Θ̃11 + D1(z)Θ̃21

] [
−1X 0

0 −Θ11

]
+

[
A1(z) B1(z)Θ̃22

C1(z) −Θ̃12 + D1(z)Θ̃22

] [
0 0
0 −Θ21

]
= 1h X

Y1

i, z ∈ ΛA1 ,

(4.11)
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the left analogue of (3.15) is

−D′′
Y(z)Θ11 −D′′

U(z)Θ21 = 1U , z ∈ ΛA1 , (4.12)

where the left affine i/o transfer function is given by[
D′′
Y(z) D′′

U(z)
]

=
[
−Θ̃11 + D1(z)Θ̃21 −Θ̃12 + D1(z)Θ̃22

]
, z ∈ ΛA1 .

(4.13)

By definition, the s/s system Σ = (V ;X ,W) is detectable if it has a
stable output nulling representation. By decomposing this representation
in accordance with a given i/o decomposition W = Y u U we get a stable
left affine i/s/o affine i/s/o representation Σl

i/s/o given by (1.12). The same
comments that we made for the right affine case apply to this case, too. In
particular, we get the left analogues of conditions 1)–4) listed at the end of
Section 3. Among others we conclude that the left affine i/o transfer function
of Σ, corresponding to the decomposition W = YuU , obtained from a stable
left affine i/s/o representation of Σ is holomorphic and bounded in D.

The final comment on the LFT-stabilizable case in Section 3 is also valid
in the left affine setting, with right coprimeness replaced by left coprimeness
in H∞(D).

Remark 4.1. It is not difficult to see that for each i/s/o representation

Σ1
i/s/o =

([
A1 B1
C1 D1

]
;X ,U1,Y1

)
of Σ = (V ;X ,W) the two operators G and G̃

given by (with Θ and Θ̃ defined as in (3.9) and (3.10))

G =


−1X 0 A1 B1

0 −Θ11 Θ11C1 Θ11D1 + Θ12

0 0 1X 0
0 −Θ21 Θ21C1 Θ21D1 + Θ22

 ,

G̃ =


−1X B1Θ̃21 A1 B1Θ̃22

0 −Θ̃11 +D1Θ̃21 C1 −Θ̃12 +D1Θ̃22

0 0 1X 0
0 Θ̃21 0 Θ̃22

 ,
(4.14)

are inverses of each other. This implies both (3.12) and (4.9) (plus a num-
ber of additional identities). In particular, this means that the two pairs of
operators appearing in (3.11) and (4.8) are not just right or left coprime,
respectively, but they are actually bi-coprime with respect to the same Be-
zout factors that appear in (3.12) and (4.9). A similar remark applies to
the corresponding Bezout identities (3.14) and (4.11) for the affine transfer
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functions: Define Γ(z) and Γ̃(z) by

Γ(z) =


−1X 0 A1(z) B1(z)

0 −Θ11 Θ11C1(z) Θ11D1(z) + Θ12

0 0 1X 0
0 −Θ21 Θ21C1(z) Θ21D1(z) + Θ22



Γ̃(z) =


−1X B1(z)Θ̃21 A1(z) B1(z)Θ̃22

0 −Θ̃11 + D1(z)Θ̃21 C1(z) −Θ̃12 + D1(z)Θ̃22

0 0 1X 0
0 Θ̃21 0 Θ̃22

 .
(4.15)

Then Γ(z) and Γ̃(z) are inverses of each other.

We will end this section by reformulating Theorem III.3.7 on the positivity
properties of the i/o transfer function of an output nulling represenation of
a backward passive s/s system by reinterpreting the transfer function as a
left affine i/o transfer function. We again discuss only the transmission and
impedance settings.

Proposition 4.2. Let Σl
i/s/o be a left affine i/s/o representation with main

operator A′′ and left affine i/o transfer function
[
D′′
Y(z) D′′

U(z)
]

of a back-
ward passive s/s system Σ = (V ;X ,W), corresponding to an orthogonal
decomposition W = −Y [u] U of the signal space. Then the kernel

Ke
D′′
Y ,D′′

U
(z, ζ) =

D′′
U(z)D′′

U(ζ)∗ −D′′
Y(z)D′′

Y(ζ)∗

1− zζ
, z, ζ ∈ Ω′′

+ (4.16)

is positive definite on the set Ω′′
+×Ω′′

+, where Ω′′
+ = ΛA′′ ∩D. If Σ is passive,

then we may choose the output nulling variable representation Σs/s/on to be
stable, in which case D ⊂ ΛA′′, Ω′′

+ = D, D′′
Y ∈ H∞(D;Y ,K) and D′′

U ∈
H∞(D;U ,K). If Σl

i/s/o arises from a scattering i/s/o representation, then

the functions D′′
Y and D′′

U are even left coprime in H∞(D).

Proof. This proof is very similar to the proof of Proposition 3.1, with Theo-
rem III.3.6 replaced by Theorem III.3.7 and (3.20) replaced by

D′′(z)D′′(ζ)∗ = D′′
U(z)D′′

U(ζ)∗ −D′′
Y(z)D′′

Y(ζ)∗, z, ζ ∈ Ω′′
+.

Proposition 4.3. Let Σl
i/s/o be a left affine i/s/o representation with main

operator A′′ and left affine i/o transfer function
[
D′′
F(z) D′′

E(z)
]

of a back-
ward passive s/s system Σ = (V ;X ,W), corresponding to a Lagrangean de-

composition W = F
Ψ

+ E of the signal space. Then the kernel

Ke
D′′
F ,D′′

E
(z, ζ) =

D′′
E(z)Ψ

∗D′′
F(ζ)∗ + D′′

F(z)ΨD′′
E(ζ)

∗

1− zζ
, z, ζ ∈ Ω′′

+ (4.17)
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is positive definite on the set Ω′′
+×Ω′′

+, where Ω′′
+ = ΛA′′ ∩D. If Σ is passive,

then we may choose the output nulling variable representation Σs/s/on to be
stable, in which case D ⊂ ΛA′′, Ω′′

+ = D, D′′
F ∈ H∞(D;F ,K) and D′′

E ∈
H∞(D; E ,K). If Σl

i/s/o arises from a scattering i/s/o representation, then

the functions D′′
F and D′′

E are even left coprime in H∞(D).

Proof. This proof is very similar to the proof of Proposition 3.2, with Theo-
rem III.3.6 replaced by Theorem III.3.7 and (3.22) replaced by

D′′(z)D′′(ζ)∗ = D′′
E(z)Ψ

∗D′′
F(ζ)∗ + D′′

F(z)ΨD′′
E(ζ)

∗, z, ζ ∈ Ω′′
+.

5 Generalized Transfer Functions

The equations (1.8) can be rewritten as a system of equations for the formal
power series of the corresponding sequences as

(1X − zA′)x̂(z)− zB′ ˆ̀(z) = x0,

C ′
Y x̂(z) +D′

Y
ˆ̀(z) = ŷ(z),

C ′
U x̂(z) +D′

U
ˆ̀(z) = û(z).

(5.1)

Let us take a closer look at these equations on some domain Ω ⊂ C with
values in the respective Hilbert spaces (without trying to interpret x̂(z) etc.
as formal power series). Let Ω(Σ;Y ,U) be the set defined in (1.10). Then

from (5.1) we can solve
[

x̂(z)
ŷ(z)

]
in terms of

[
x̂0

û(z)

]
as follows: Clearly

[
x̂(z)
ˆ̀(z)

]
=

[
1X − zA′ −zB′

C ′
U D′

U

]−1 [
x̂0

û(z)

]
and ŷ(z) =

[
C ′
Y D′

Y
] [x̂(z)

ˆ̀(z)

]
,

and hence[
x̂(z)
ŷ(z)

]
=

[
1X 0
C ′
Y D′

Y

] [
1X − zA′ −zB′

C ′
U D′

U

]−1 [
x̂0

û(z)

]
, z ∈ Ω(Σ;U ,Y). (5.2)

As the following theorem says, the set Ω(Σ;U ,Y) defined above and the
operator function on the right-hand side of (5.2) do not depend on the par-
ticular choice of right affine i/s/o representation of Σ (only on Σ itself and
the decomposition W = Y u U). Moreover, if the decomposition is admis-
sible, then it coincides with the is/so transfer function of Σ with respect to
the same decomposition, as will be shown in Theorem 5.2. For this reason

we shall call the opearator-valued function
[

A(z) B(z)
C(z) D(z)

]
defined by (1.11) on
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Ω(Σ;Y ,U) the generalized is/so transfer function of Σ corresponding to the
decomposition W = Y u U . (Note that the domain of this function may be
empty.) The bottom right corner D(z) is called the generalized i/o transfer
function, and the top left corner A(z) is called the generalized resolvent of Σ
corresponding to this decomposition.

Theorem 5.1. Let Σ = (V ;X ,W) be a s/s system, and let W = Y u U be
an arbitrary direct sum decomposition of the signal space W. Then the do-

main Ω(Σ;U ,Y) defined in (1.10) and the is/so transfer function
[

A(z) B(z)
C(z) D(z)

]
defined in (1.11) do not depend on the particular right affine i/s/o represen-
tation Σr

i/s/o used in these definitions.

Proof. Let Σr,1
i/s/o in (3.1) be another right affine i/s/o representation of Σ,

and let M ′ and K ′ be the operators in (4.2). Then it follows from (3.2) that
1X − zA′

1 −zB′
1

(C ′
1)Y (D′

1)Y
1X 0

(C ′
1)U (D′

1)U

 =


1X − zA′ −zB′

C ′
Y D′

Y
1X 0
C ′
U D′

U

[1X 0
K ′ M ′

]
. (5.3)

In particular,
[

1X−zA′1 −zB′
1

(C′
1)U (D′

1)U

]
=
[

1X−zA′ −zB′

C′
U D′

U

] [
1X 0
K′ M ′

]
where

[
1X 0
K′ M ′

]
is in-

vertible, so
[

1X−zA′1 −zB′
1

(C′
1)U (D′

1)U

]
is invertible if and only if

[
1X−zA′ −zB′

C′
U D′

U

]
is invert-

ible, and [
1X 0
C ′
Y D′

Y

] [
1X − zA′ −zB′

C ′
U D′

U

]−1

=

[
1X 0
C ′
Y D′

Y

] [
1X 0
K ′ M ′

] [
1X 0
K ′ M ′

]−1 [
1X − zA′ −zB′

C ′
U D′

U

]−1

=

[
1X 0

(C ′
1)Y (D′

1)Y

] [
1X − zA′

1 −zB′
1

(C ′
1)U (D′

1)U

]−1

.

Theorem 5.2. Let Σ = (V ;X ,W) be a s/s system. Then the decomposi-
tion W = Y u U is admissible if and only if 0 ∈ Ω(Σ;U ,Y). In this case
Ω(Σ;U ,U) = ΛA, where A is the main operator of the i/s/o representa-
tion Σi/s/o of Σ corresponding to the decomposition W = Y u U , and the
generalized is/so transfer function of Σ corresponding to the decomposition
W = Y u U defined in (1.11) coincides with the standard is/so transfer
function of Σi/s/o defined in (1.3).

Proof. By definition, 0 ∈ Ω(Σ;U ,Y) if and only if the operator
[

1 0
C′
U D′

Y

]
has

a bounded inverse, or equivalently, if and only if D′
U has a bounded inverse.
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By Theorem I.5.9, this is equivalent to the admissibility of the decomposition
W = Y u U .

Assume that the decomposition W = Y u U is admissible. Then the
i/s/o representation Σi/s/o =

(
[ A B
C D ] ;X ,U ,Y

)
of Σ corresponding to this

representation may be interpreted as a right affine representation Σr
i/s/o =([ A B

C D
0 1U

]
;X ,U ,

[
Y
U
])

. By using this specific representation in (1.11) one finds

that Ω(Σ;U ,Y) = ΛA, and that the is/so transfer function computed from
(1.11) coincies with the one computed from (1.3), i.e., for all z ∈ ΛA,[
1X 0
C D

] [
1X − zA −zB

0 1U

]−1

=

[
(1X − zA)−1 z(1X − zA)−1B
C(1X − zA)−1 zC(1X − zA)−1B +D

]
.

Theorem 5.3. Let Σ = (V ;X ,W) be a s/s system, and let W = Y u U
be an i/o decomposition of W for which Ω(Σ;U ,Y) 6= ∅. Let [ A B

C D ] be the
generalized is/so transfer function of the s/s system Σ defined in (1.11), and
let

T(z) =

[
zA(z) B(z)
zC(z) D(z)

]
=

[
A(z) B(z)
C(z) D(z)

] [
z 0
0 1U

]
, z ∈ Ω(Σ;U ,Y).

Then T satisfies the generalized resolvent identity

zζ[T(z)− T(ζ)] = (z − ζ)T(z)

[
1X 0
0 0

]
T(ζ)

= (z − ζ)T(ζ)

[
1X 0
0 0

]
T(z), z, ζ ∈ Ω(Σ;U ,Y).

(5.4)

This identity is equivalent to the following four identites, valid for all z, ζ ∈
Ω(Σ;U ,Y):

zA(z)− ζA(ζ) = (z − ζ)A(z)A(ζ) = (z − ζ)A(ζ)A(z),

ζB(z)− ζB(ζ)) = (z − ζ)A(z)B(ζ) = (z − ζ)A(ζ)B(z),

zC(z)− ζC(ζ) = (z − ζ)C(z)A(ζ) = (z − ζ)C(ζ)A(z),

zζD(z)− zζD(ζ) = z(z − ζ)C(z)B(ζ) = ζ(z − ζ)C(ζ)B(z).

(5.5)

The same identies play a central role in Opmeer’s definition of a contin-
uous time resolvent linear system in [Opm05] (with z and ζ replaced by 1/z
and 1/ζ).

Proof. If 0 ∈ Ω(Σ;U ,Y) and z = 0 or ζ = 0, then it is easy to see that both
sides of (5.4) are zero (note that T(0) =

[
0 0
0 D(0)

]
). We therefore suppose in
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the sequel that z 6= 0 and ζ 6= 0. In this case we have

T(z)− T(ζ) =

[
1X 0
C ′
Y D′

Y

]([
1/z − A′ −B′

C ′
U D′

U

]−1

−
[
1/ζ − A′ −B′

C ′
U D′

U

]−1
)

=

[
1X 0
C ′
Y D′

Y

] [
1/z − A′ −B′

C ′
U D′

U

]−1 [
1/ζ − 1/z 0

0 0

] [
1/ζ − A′ −B′

C ′
U D′

U

]−1

= (1/ζ − 1/z)T(z)

[
ζA(ζ) B(ζ)

0 0

]
=
z − ζ

zζ
T(z)

[
1X 0
0 0

]
T(ζ).

In the last formula on the last line we can exchange the places of T(z) and
T(ζ) by simply interchanging the places of the two inverses on the second
line. Thus, (5.4) holds.

We leave the easy verification that (5.4) is equivalent to (5.5) to the
reader.

Theorem 5.4. Let Σ = (V ;X ,W) be a s/s system with the right affine
representation Σr

i/s/o given by (1.7) and with the is/so transfer function (3.7)
corresponding to a decomposition W = Y uU . Then a point z ∈ ΛA′ belongs
to the domain Ω(Σ;U ,Y) defined in (1.10) if and only if D′

U(z) has a bounded
inverse. On the set

Ω(Σr
i/s/o) = ΛA′ ∩ Ω(Σ;U ,Y) (5.6)

the generalized is/so transfer function of Σ corresponding to the decomposi-
tion W = Y u U is given by[

A(z) B(z)
C(z) D(z)

]
=

[
A′(z) B′(z)
C′Y(z) D′

Y(z)

] [
1X 0

C′U(z) D′
U(z)

]−1

, z ∈ Ω(Σr
i/s/o).

(5.7)
In particular, the generalized i/o transfer function of Σ corresponding to the
decomposition W = Y u U is given by

D(z) = D′
Y(z)D′

U(z)−1, z ∈ Ω(Σr
i/s/o). (5.8)

Proof. For all z ∈ ΛA′ we may use a LU (lower/upper triangular) factoriza-
tion to get[

1X − zA′ −zB′

C ′
U D′

U

]
=

[
1X 0

C ′
UA′(z) D′

U(z)

] [
1X − zA′ −zB′(z)

0 1L

]
.

Consequently, for z ∈ ΛA′ ,
[

1X−zA′ −zB′

C′
U D′

U

]
has a bounded inverse if and only

if D′
U(z) has a bounded inverse. By inverting the operators in the above

formula and multiplying the result to the left by
[

1X 0
C′
Y D′

Y

]
we get (5.7).
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Our definition of a generalized transfer function has been based on the
use of a right affine i/s/o representation of the system. It is also possible
to use left affine i/s/o representations. We begin the discussion of the left
version with three lemmas that lead up to Theorem 5.8 below.

Lemma 5.5. Let S = (V ;X ,W) be a s/s system, and define V(z) by

V(z) =
{[

x
x−zẋ

w

] ∣∣∣ [ ẋ
x
w

]
∈ V

}
=
[

0 1X 0
−z 1X 0
0 0 1W

]
V. z ∈ C. (5.9)

If Σdv/s/s =
([

A′ B′

C′ D′

]
;X ,L,W

)
is a driving variable representation and Σs/s/on =([

A′′ B′′

C′′ D′′

]
;X ,W ,K

)
is an output nulling representation of Σ, then

V(z) = R

 1X 0
1X − zA′ −zB′

C ′ D′

 = N
([

1X − zA′′ −1X −zB′′

C ′′ 0 D′′

])
.

(5.10)

Proof. This follows from formulas (5.9) and the definitions of a s/s node and
the properties of driving variable and output nulling representations of this
node.

Lemma 5.6. Let Σ = (V ;X ,W) be a s/s system with a right affine i/s/o
representation Σr

i/s/o given by (1.7) and a left affine i/s/o representation

Σl
i/s/o given by (1.12) corresponding to the same i/o decomposition W =

Y u U . Define

M(z) =

[
M1(z)
M2(z)

]
=

[
1X 0
C′
Y D′

Y
1X−zA′ −zB′

C′
U D′

U

]
∈ B

([
X
L

]
;

[ h
X
Y

i
[XU ]

])
, (5.11)

E(z) =
[
E1(z) E2(z)

]
(5.12)

=

[
1X − zA′′ −zB′′

Y −1X −zB′′
U

C ′′ D′′
Y 0 D′′

U

]
∈ B

([ h
X
Y

i
[XU ]

]
;

[
X
K

])
.

Then, for every z ∈ C,

1) M(z) is injective,

2) E(z) is surjective,

3) R (M(z)) = N (E(z)) =

[ 1X 0 0 0
0 0 1Y 0
0 1X 0 0
0 0 0 1U

]
V(z).
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Proof. Let C ′ =
[

C′
Y

C′
U

]
, D′ =

[
D′
Y

D′
U

]
, B′′ =

[
B′′
Y B′′

U
]
, D′′ =

[
D′′
Y D′′

U
]
.

The injectivity of M(z) follows from the injectivity of
[

1X 0
C′ D′

]
, which in turn

follows from the injectivity of D′. The surjectivity of E(z) follows from the
surjectivity of

[ −1X −zB′′

0 D′′

]
, which follows from the surjectivity of D′′. Finally,

Claim 3) follows from Lemma 5.5.

Lemma 5.7. Let K =
[ K1
K1

]
be the product of two Banach spaces, and let H

and K be two Banach spaces.

1) Let
[

M1
M2

]
∈ B(H;

[ K1
K2

]
) be injective. Then M2 has an inverse in

B(K2;H) if and only if the range of
[

M1
M2

]
is the graph of a bounded

operator A ∈ B(K2;K1), i.e., if and only if

R
([
M1

M2

])
= R

([
A

1K2

])
for some A ∈ B(K2;K1). (5.13)

In this case A = M1M
−1
2 , and A is determined uniquely by the range

of
[

M1
M2

]
.

2) Let
[
E1 E2

]
∈ B(

[ K1
K2

]
;G) be surjective. Then E1 has an inverse in

B(G;K1) if and only if the kernel of
[
E1 E2

]
is the graph of a bounded

operator A ∈ B(K2;K1), i.e., if and only if

N
([
E1 E2

])
= R

([
A

1K2

])
for some A ∈ B(K2;K1). (5.14)

In this case A = −E−1
1 E2, and A is determined uniquely by the null

space of
[
E1 E2

]
.

3) Let
[

M1
M2

]
∈ B(H;

[ K1
K2

]
) be injective, let

[
E1 E2

]
∈ B(

[ K1
K2

]
;G) be

surjective, and suppose that

R
([

M1
M2

])
= N

([
E1 E2

])
. (5.15)

Then M2 has an inverse in B(K2;H) if and only if E1 has an inverse
in B(G;K1), in which case M1M

−1
2 = −E−1

1 E2.

Proof. Proof of 1): It is easy to see that the bounded invertability of M2

implies (5.13) with A = M1M
−1
2 , so it suffices to prove the converse direc-

tion. Assume (5.13), and let
[

k1
k2

]
∈ R

([
M1
M2

])
= R

([
A

1K2

])
. Then k2 = 0

implies k1 = 0. Writing
[

k1
k2

]
=
[

M1
M2

]
h for some h ∈ H we find that

N (M2) ⊂ N (M1). Thus, N
([

M1
M2

])
= N (M2). Since

[
M1
M2

]
is supposed
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to be injective this implies that also M2 is injective. It is also clear that M2

must be surjective since R
([

M1
M2

])
= R

([
A

1K2

])
. Thus M2 is both injective

and surjective, and by the closed graph theorem, it has a bounded inverse.
Proof of 2): It is again easy to see that boundeed invertability of E1 im-

plies (5.14) with A = −E−1
1 E2, so it again suffices to prove the converse. As-

sume (5.14). Then E1 must be injective, since the graph of A cannot contain a
nontrivial subspace of the type

{[
k1
0

] ∣∣ k1 ∈ N (E1)
}
. The assumption (5.14)

implies furthermore that for all k2 ∈ E2 we have
[

Ak2
k2

]
∈ N

([
E1 E2

])
, i.e.,

(E1A + E2)k2 = 0, so that E2 = −E1A. In particular, R (E2) ⊂ R (E1),
which means that R

([
E1 E2

])
= R (E1). By assumption,

[
E1 E2

]
is sur-

jcetive, hence is so is E1. By the closed graph theorem, E1 has a bounded
inverse.

The claim 3) follows immediately from 1) and 2).

Theorem 5.8. Let Σ = (V ;X ,W) be a s/s system with a right affine i/s/o
representation Σr

i/s/o given by (1.7) and a left affine i/s/o representation

Σl
i/s/o given by (1.12) corresponding to the same i/o decomposition W =

Y u U . Then the following statements hold.

1) The definitions given in (1.10) and (1.14) of the domain Ω(Σ;U ,Y) of
the generalized transfer function are equivalent.

2) The definitions given in (1.11) and (1.15) of the generalized is/so trans-
fer function of Σ, corresponding to the decomposition W = Y u U , are
equivalent.

3) z ∈ Ω(Σ;U ,Y) if and only if the subspace V(z) defined in (5.9) is the
generating subspace of a s/s node S(z) = (V(z);X ,W) and the i/o
decomposition W = Y u U is admissible for the s/s system S(z), or
equivalently, if and only if

V(z) = R
([ Az Bz

1X 0
Cz Dz
0 1U

])
= N

([
−1X Az 0 Bz

0 Cz −1Y Dz

])
(5.16)

for some bounded linear operators Az, Bz, Cz, and Dz.

4) The generalized is/so transfer function of Σ evaluated at a point z ∈
Ω(Σ;U ,Y) is given by

[
A(z) B(z)
C(z) D(z)

]
=
[

Az Bz
Cz Dz

]
, so that i/s/o representa-

tion of S(z) corresponding to the decomposition W = Y u U is given
by

Si/s/o(z) =
([

A(z) B(z)
C(z) D(z)

]
;X ,U ,Y)

)
. (5.17)
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Thus,

V(z) = R

([
A(z) B(z)
1X 0
C(z) D(z)

0 1U

])
= N

([
−1X A(z) 0 B(z)

0 C(z) −1Y D(z)

])
.

(5.18)

Proof. Assertions 1)–2) follow from Lemmas 5.5–5.7. The remaining asser-
tions follow from 1) and 2) and the definitions of a s/s node, of admissibility
of an i/o decomposition of the signal space, and of the interpretation of an
i/s/o representation as either a driving variable representation or an output
nulling representation.

Theorem 5.9. Let Σ = (V ;X ,W) be a s/s system with the left affine rep-
resentation Σl

i/s/o given by (1.12) and with the is/so transfer function (4.6)
corresponding to a decomposition W = YuU . Then a point z ∈ ΛA′′ belongs
to the domain Ω(Σ;U ,Y) defined in (1.14) if and only if D′′

Y(z) has a bounded
inverse. On the set

Ω(Σl
i/s/o) = ΛA′′ ∩ Ω(Σ;U ,Y) (5.19)

the generalized is/so transfer function of Σ is given by[
A(z) B(z)
C(z) D(z)

]
=

[
1X −B′′

Y(z)
0 −D′′

Y(z)

]−1 [
A′′(z) B′′

U(z)
C′′(z) D′′

U(z)

]
, z ∈ Ω(Σl

i/s/o).

(5.20)
In particular, the generalized i/o transfer function is given by

D(z) = −D′′
Y(z)−1D′′

U(z), z ∈ Ω(Σl
i/s/o). (5.21)

Proof. The proof of this theorem is similar to the proof of Theorem 5.4,
taking into account assertions 1) and 2) of Theorem 5.8, and we leave it to
the reader.

The generalized is/so transfer function of a s/s system Σ = (V ;X ,W)
with respect to the decomposition W = Y u U does not have the same
direct interpretation as the standard transfer function has, in the sense that
it need not give the the formal power series of the state sequence x(·) and the
output sequence y(·) in terms of the initial state x0 and the input sequence
u(·). However, the following result is true.

Proposition 5.10. Let Σ = (V ;X ,W) be a s/s system, and define V(z)
by (5.9). Let (x(·), w(·)) be a trajectory of Σ on Z+, let R be the radius of
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convergence of the z-transform of
[

x(·)
w(·)

]
, and suppose that R > 0. Then x̂(z)x0

ŵ(z)

 ∈ V(z), |z| < R. (5.22)

In particular, if W = Y u U and if we split ŵ(z) into ŵ(z) = ŷ(z) + û(z)
where ŷ(z) ∈ Y and û(z) ∈ U , then[
x̂(z)
ŷ(z)

]
=

[
A(z) B(z)
C(z) D(z)

] [
x(0)
û(z)

]
for all z ∈ Ω(Σ;U ,Y) with |z| < R (5.23)

(whenever such z exist).

Proof. Formula (5.22) follows from (2.1) and (5.9), and (5.23) then follows
from Theorem 5.8.

It is also possible to give following alternative characterization of the is/so
transfer function of Σ, that is valid away from the origin.

Proposition 5.11. Let Σ = (V ;X ,W) be a s/s system, and let W = YuU .
A point z 6= 0 belongs to the domain Ω(Σ;U ,Y) of the generalized is/so
transfer function, corresponding to the decomposition W = Y u U , if and
only if the following property holds: For every v0 ∈ X and every u0 ∈ U
there exists a unique x0 ∈ X and a unique y0 ∈ U with the property that the
sequence

(x(n), w(n), v(n)) = z−n(x0, w0, v0), n ∈ Z, (5.24)

with w0 = u0 + y0 satisfies[
x(n+1)−v(n+1)

x(n)
w(n)

]
∈ V, n ∈ Z. (5.25)

In this case x0 and y0 are given by[
x0

y0

]
=

[
A(z) B(z)
C(z) D(z)

] [
v0

u0

]
. (5.26)

Proof. We begin by observing that (5.25) and (5.26) hold if and only if[
x0
v0
w0

]
∈ V(z), where V(z) is the subspace defined in (5.9). The require-

ment that to each x0 ∈ X and u0 ∈ U there is a unique x0 ∈ X and y0 ∈ Y
such that

[
x0
v0

u0+y0

]
∈ V(z) is equivalent to the requirement that V(z) has a

graph representation of the type (5.16), and by Theorem 5.8, this is equiv-
alent to the condition z ∈ Ω(Σ;U ,Y). Formula (5.26) also follows directly
from Theorem 5.8.
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Proposition 5.12. Let Σ = (V ;X ,W) and Σ1 = (V1;X1,W) be two similar
s/s systems with similarity operator R ∈ B(X ,X1), and let W = YuU . Then
Ω(Σ;U ,Y) = Ω(Σ1;U ,Y) and, if Ω(Σ;U ,Y) 6= ∅, then the generalized is/so
transfer functions of these two systems, corresponding to the decomposition
W = Y u U , are connected by the relation[

A1(z) B1(z)
C1(z) D1(z)

]
=

[
R 0
0 1Y

] [
A(z) B(z)
C(z) D(z)

] [
R−1 0
0 1U

]
.

Proof. This follows immediately from Proposition 5.11 and the fact that
(x1(·), w(·), v(·)) = (Rx(·), w(·), v(·)) satisfies (5.25) vith V replaced by V1 if
and only if (x(·), u(·), y(·)) satisfies (5.25).

6 Realizations of Generalized Transfer Func-

tions

There is another subspace which is closely related to the subspace V(z)
defined in Lemma 5.5, namely the subspace

V (z) =
{[

ẋ
x−zẋ

w

] ∣∣∣ [ ẋ
x
w

]
∈ V

}
=
[

1X 0 0
−z 1X 0
0 0 1W

]
V, z ∈ C, (6.1)

which in some respects behave better than V(z). In particular, V (0) = V .
Results similar to those given in Lemmas 5.5–5.6 are valid with V(z) replaced
by V (z). One way to derive these results is to observe that

V(z) =
[

z 1X 0
0 1X 0
0 0 1W

]
V (z), z ∈ C. (6.2)

For example, the analogue of (5.10) is

V (z) = R

 A′ B′

1X − zA′ −zB′

C ′ D′

 = N
([
zA′′ − 1X A′′ B′′

zC ′′ C ′′ D′′

])
. (6.3)

Lemma 6.1. Let Σ = (V ;X ,W) be a s/s system, and define V(z) and V (z)
as in (5.9) and (6.1).

1) V(z) is the generating subspace of a s/s node S(z) = (V(z);X ,W)
if and only if V (z) is the generating subspace of a s/s node Σ(z) =
(V (z);X ,W).

2) V (0) = V , and hence both V (0) and V(0) generate s/s systems Σ(0) =
Σ and S(0), respectively.
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3) Suppose that the equivalent conditions in 1) hold. Then the following
conditions are equivalent:

(a) z ∈ Ω(Σ;U ,Y);

(b) The decomposition W = Y u U is admissible for S(z);

(c) The decomposition W = Y u U is admissible for Σ(z).

If these equivalent conditions hold, then the corresponding i/s/o rep-
resentation of V(z) is given by (5.17), and the corresponding i/s/o
representation of Σ(z) is given by

Σi/s/o(z) =
([

1
z
(A(z)−1X ) 1

z
B(z)

C(z) D(z)

]
;X ,U ,Y)

)
(6.4)

if z 6= 0, and by taking the limit in (6.4) as z → 0 if z = 0.

We leave the easy proof to the reader.

Remark 6.2. The four block function appearing in the i/s/o representation
Σi/s/o(z) of Σ(z) given above can be interpreted as a is/so transfer function
in the following sense: Let (x(·), y(·), u(·)) satisfy[

x(n)
x(n−1)
w(n)

]
∈ V, n ∈ Z+, x(−1) = x−1, (6.5)

and let x̂(·), û(·), and ŷ(·) be the formal power series of x(·), u(·), and y(·).
Then

x̂(z) =
1

z
(A(z)− 1)x−1 +

1

z
B(z)û(z),

ŷ(z) = C(z)x−1 + D(z)û(z).

Theorem 6.3. Let Σ = (V ;X ,W) be a s/s system, and let W = Y u Y be
an i/s/o decomposition of W for which Ω(Σ;U ,Y) 6= ∅. Let ζ ∈ Ω(Σ;U ,Y),
define V (ζ) by (6.1) with z replaced by ζ, and define

Aζ =
1

ζ
(A(ζ)− 1X ), Bζ =

1

ζ
B(ζ),

Cζ = C(ζ), Dζ = D(ζ),

(6.6)

if ζ 6= 0 and by taking the limit as ζ → 0 if ζ = 0. Then
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1) the subspace V is given by

V =

[
1X 0 0 0
ζ 1X 0 0
0 0 1Y 0
0 0 0 1U

]
V (ζ) = R

([
Aζ Bζ

1X+ζAζ ζBζ

Cζ Dζ

0 1U

])

= N
([
−(1X + ζAζ) Aζ 0 Bζ

−ζCζ Cζ −1Y Dζ

])
,

(6.7)

and for all z ∈ C the subspace V (z), defined in (6.1), has the represen-
tation

V (z) =

[
1X 0 0 0
ζ−z 1X 0 0
0 0 1Y 0
0 0 0 1U

]
V (ζ) = R

([
Aζ Bζ

1X+(ζ−z)Aζ (ζ−z)Bζ

Cζ Dζ

0 1U

])

= N
([
−(1X + (ζ − z)Aζ) Aζ 0 Bζ

−(ζ − z)Cζ Cζ −1Y Dζ

])
.

(6.8)

2) z ∈ Ω(Σ;U ,Y) if and only if z − ζ ∈ ΛAζ
, and the generalized is/so

transfer function [ A B
C D ] of Σ can be recovered from the transfer func-

tion
[

Aζ Bζ

Cζ Dζ

]
of the i/s/o system Σζ

i/s/o :=
([

Aζ Bζ

Cζ Dζ

]
;X ,U ,Y

)
(and

conversely) from the formula[
1
z
(A(z)− 1X ) 1

z
B(z)

C(z) D(z)

]
=

[
1

z−ζ
(Aζ(z − ζ)− 1X ) 1

z−ζ
Bζ(z − ζ)

Cζ(z − ζ) Dζ(z − ζ)

]
, z ∈ Ω(Σ;U ,Y),

(6.9)

if z 6= 0 and z 6= ζ and by taking limits in this formual as z → 0 if z = 0
and as z → ζ if z = ζ. In particular, Σζ

i/s/o is an i/s/o realization of

the shifted function z 7→ D(ζ + z), i.e.,

Dζ(z) = D(z + ζ), z ∈ ΛAζ
. (6.10)

Proof. Assertion 1) follows from (6.1) and (6.3).
By Theorem 5.8, z ∈ Ω(Σ;U ,Y) if and only if (5.16) holds for some

bounded linear operators Az, Bz, Cz, and Dz, in which case the generalized

is/so transfer function of Σ is given by
[

A(z) B(z)
C(z) D(z)

]
=
[

Az Bz
Cz Dz

]
. By (6.2) and

(6.8),

V(z) = R

([
1X+ζAζ ζBζ

1X−(z−ζ)Aζ −(z−ζ)Bζ

Cζ Dζ

0 1U

])
. (6.11)
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By Lemmas 5.7 and 5.6, V(z) has a graph representation of the type (5.16)

if and only if the operator
[

1X−(z−ζ)Aζ −(z−ζ)Bζ

0 1U

]
has a bounded inverse, or

equivalently, if and only if z − ζ ∈ ΛAζ
, in which case[

Az Bz

Cz Dz

]
=

[
1X + ζAζ ζBζ

Cζ Dζ

] [
1X − (z − ζ)Aζ −(z − ζ)Bζ

0 1U

]−1

=

[
(1 + ζAζ)(1− (z − ζ)Aζ)

−1 z
z−ζ

Bζ(z − ζ)

Cζ(z − ζ) Dζ(z − ζ)

]
.

This identity is equivalent to (6.9).

Remark 6.4. If Σ = (V ;X ,W) is a s/s system and Ω(Σ;U ,Y) 6= ∅ for the
decomposition W = Y uU , then the trajectories (x(·), w(·)) satisfy a system
of equation of the type

Ex(n+ 1) = Ax(n) +Bu(n),

y(n) +Gx(n+ 1) = Cx(n) +Du(n), n ∈ Z+,
(6.12)

for some bounded linear operators A, B, C, D, E, and G. To see this
it suffices to fix some ζ ∈ Ω(Σ;U ,Y) and define (see (6.6) and the kernel
representation of the subspace V given in (6.7))

E = 1X + ζAζ , A = Aζ , B = Bζ ,

G = ζCζ , C = Cζ , D = Dζ .

Note that with this choice we have the additional relationsships A = 1
ζ
(E −

1X ) and C = 1
ζ
G with the same constant ζ in both equations. The variable

x(0) in (6.12) is free in the sense that for any given x0 ∈ X it is possible
to find some trajectory for which x(0) = x0 (but it is not always possible
to choose u(0) independently of x0); every s/s system has this property, and
it has nothing to do with the assumption that Ω(Σ;U ,Y) 6= ∅. However,
when Ω(Σ;U ,Y) 6= ∅ it is also true that the input sequence u(·) is free in the
sense that to every sequence u(·) there corresponds at least one trajectory of
Σ (but it is not always possible to choose x(0) independently of u(0)); this
follows from the range representation of the subspace V given in (6.7). The

pair
[

x(0)
u(0)

]
is free in the sense that these two variable can be chosen freely

independently of each other if and only if the decomposition W = Y u U is
admissible, and in this case we may take E = 1X and G = 0.

In the sequel the set of points where the two equivalent conditions in
part 1) of Lemma 6.1 hold will be important, and we therefore introduce the
following notation:
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Notation 6.5. Let Σ = (V ;X ,W) be a s/s system. We denote the the set
of points z ∈ C for which V (z) defined in (6.1) is the generating subspace of
a s/s node Σ(z) = (V (z),X ,W) by Ω(Σ).

By Lemma 6.1, 0 ∈ Ω(Σ), so that Ω(Σ) 6= ∅.

Lemma 6.6. The set Ω(Σ) defined above is the union of the sets Ω(Σ;U ,Y)
over all i/o decompositions W = Y u U of the signal space. In particular,
Ω(Σ) is an open subset of C.

Proof. By Theorem 5.8 and Lemma 6.1, Ω(Σ;U ,Y) ⊂ Ω(Σ) for every possible
decomposition W = Y u U . On the other hand, every s/s system has an
admissible decomposition, so that Ω(Σ) is contained in the above union.

Lemma 6.7. Let Σ = (V ;X ,W) be a s/s system with a driving variable
representation Σdv/s/s =

([
A′ B′

C′ D′

]
;X ,L,W

)
and an output nulling repre-

sentation Σs/s/on =
([

A′′ B′′

C′′ D′′

]
;X ,W ,K

)
. Then the following conditions are

equivalent.

1) z ∈ Ω(Σ),

2) The following condition is valid for at least one driving variable repre-
sentation Σdv/s/s =

([
A′ B′

C′ D′

]
;X ,L,W

)
and one output nulling repre-

sentation Σs/s/on =
([

A′′ B′′

C′′ D′′

]
;X ,W ,K

)
of Σ:[

1X − zA′ B′] is surjective and[
1X−zA′′

C′′

]
is injective and has closed range.

(6.13)

3) Condition (6.13) is valid for all driving variable representations Σdv/s/s =([
A′ B′

C′ D′

]
;X ,L,W

)
and all output nulling representations of Σ.

Proof. It is easy to see that (6.13) can be rewritten in the equvalent form
(for all z ∈ C) [

1X − zA′ −zB′] is surjective and[
1X−zA′′

−zC′′

]
is injective and has closed range.

(6.14)

By Lemma 6.1, conditions 1)–3) all hold for z = 0, so in the sequel we may
assume that z 6= 0.

If we have two different driving variable representations Σdv/s/s =
([

A′ B′

C′ D′

]
;X ,L,W

)
and Σ1

dv/s/s =
([ A′1 B′

1

C′
1 D′

1

]
;X ,L1,W

)
of Σ, then it follows from Theorem 2.1

that there exists a bounded linear operator
[

1X 0
K′ M ′

]
such that

[
1X − zA′

1 −zB′
1

]
=
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[
1X − zA′ −zB′] [ 1X 0

K′ M ′

]
. This implies that if the first half of (6.14) holds

for one driving variable representation of Σ, then it holds for all driving vari-
able representations of Σ. A similar argument with Theorem 2.1 replaced
by Theorem 2.2 shows that if the second half of (6.14) holds for one output
nuling representation of Σ, then it holds for all output nulling representa-
tions of Σ. Thus, 2) and 3) are equivalent, and we may in the sequel assume
without loss of generality that the two representations Σdv/s/s and Σs/s/on are
induced by one and the same i/s/o representations Σi/s/o =

(
[ A B
C D ] ;X ,U ,Y

)
for some i/o decomposition W = Y u U of W . Then (6.3) becomes

V (z) = R




A B
1X − zA −zB

C D
0 1U


 = N

([
zA− 1X A 0 B
zC C −1Y D

])
. (6.15)

Below when we refer to conditions (i)–(iv) we mean the conditions listed
at the beginning of Section 2. The subspace V (z) is always closed, are
required by condition (i), since V (z) is the kernel of a bounded linear operator
(see (6.15)). Condition (ii) holds if and only if

[
1X − zA −zB

]
is surjective,

and condition (iii) holds if and only if
[

1X−zA
−zC

]
is injective. Finally, condition

(iv) holds if and only if the operator
[

1X−zA −zB
C D
0 1U

]
has closed range, and this

is true if and only if the operator
[

1X−zA
−zC

]
has closed range. Thus, 1)–3) are

equivalent.

Theorem 6.3 has the following converse:

Theorem 6.8. Let W be a Krĕın space, let W = Y u U , let ζ ∈ C, and[
Aζ Bζ

Cζ Dζ

]
∈ B([ XU ] ;

[
X
Y
]
) be an (arbitrary) four block operator. Define V by

any one of the two equivalent formulas given in (6.7). Then Σ := (V ;X ,W)
is a s/s system if and only if the following condition holds:[

1X + ζAζ Bζ

]
is surjective and[

1X+ζAζ

Cζ

]
is injective and has closed range.

(6.16)

When this conditions hods, then ζ ∈ Ω(Σ;U ,Y) and formulas (6.6) hold, and
consequently, all the conclusions of Theorem 6.3 are valid.

Proof. Let Σζ be the s/s system whose i/s/o representation with respect to

the decomposition W = Y u U is Σζ
i/s/o =

([ Aζ Bζ

Cζ Dζ

]
;X ,U ,Y

)
, and let Vζ

be the generating subspace of this system. Then the space V defined by
(6.7) can be interpreted as Vζ(−ζ), where Vζ(z) is defined as in (6.1) with V
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replaced by Vζ . The conclusion of Theorem 6.8 now follows from Lemma 6.7
with Σ replaced by Σζ and z replaced by −ζ.

Theorem 6.9. Let Σ = (V ;X ,W) and Σ1 = (V1;X1,W) be two s/s system.
For all z ∈ Ω(Σ,Σ1) := Ω(Σ)∩Ω(Σ1) we define Σ(z) and Σ1(z) as in Lemma
6.1 (where we in the latter case replace Σ by Σ1). If Σ(z0) and Σ1(z0) are
externally equivalent for some z0 ∈ Ω(Σ,Σ1), then Σ(z) and Σ1(z) are exter-
nally equivalent for each z which belongs to the same connected component
of Ω(Σ,Σ1) as z0. In particular, if Σ(z0) and Σ1(z0) are externally equiva-
lent for some z0 in the connected component of Ω(Σ,Σ1) which contains the
origin, then Σ and Σ1 are externally equivalent.

Proof. Define Ω by

Ω =
{
ζ ∈ Ω(Σ) ∩ Ω(Σ1)

∣∣ Σ(ζ) is externally equivalent to Σ1(ζ)
}
.

We claim that Ω is both (relatively) open and relatively closed in Ω(Σ) ∩
Ω(Σ1).6 Assume this for the moment. By the assumption, z0 ∈ Ω, and by
definition, if we denote the connected component of Ω(Σ) ∩ Ω(Σ1) which
contains z0 by Ωz0(Σ; Σ1), then Ωz0(Σ; Σ1) is the smallest (relatively) open
and relatively closed subset of Ω(Σ) ∩ Ω(Σ1) which contains zero. Thus,
Ωz0(Σ; Σ1) ⊂ Ω, which means that Σ(z) is externally equivalent to Σ1(z) for
every z ∈ Ωz0(Σ; Σ1), proving the main claim of the theorem.

The proof of the openness of Ω is easy. Indeed, suppose that ζ ∈ Ω,
i.e., suppose that ζ ∈ Ω(Σ) and that Σ(ζ) and Σ1(ζ) are externally equiva-
lent. Then, by Theorem I.7.7, these systems have a common admissible i/o
decomposition W = Y u U of the signal space, and the corresponding i/o
transfer functions Dζ and D1

ζ of Σ(ζ) and Σ1(ζ), respectively, are defined
on and coincide in some disk V = {z ∈ C | |z| < δ}. By Lemma 6.1 and
Theorem 6.3, the same decomposition W = Y u U is admissible for both
Σ(ξ) and Σ1(ξ) for all ξ ∈ V , and for each ξ ∈ V and z + ξ − ζ ∈ V , the
corresponding i/o transfer functions of Σ(ξ) and Σ1(ξ), evaluated at z, are
given by Dξ(z) = Dζ(z + ξ − ζ) and D1

ξ(z) = D1
ζ(z + ξ − ζ), respectively. In

particular, for all ξ with |ξ − ζ| < δ/2 we have Dξ(z) = D1
ξ(z) for all z with

|z| < δ/2, and so by Theorem I.7.7, Σ(ξ) and Σ1(ξ) are externally equivalent.
This proves that Ω is open.

We next prove that Ω is a relatively closed subset of Ω(Σ) ∩ Ω(Σ1). Let
ζn ∈ Ω, n ∈ Z+, and let ζn → ζ as n→∞ with ζ ∈ Ω(Σ)∩Ω(Σ1). We claim
that this implies that ζ ∈ Ω.

6In this case “relatively open” is the same as open since Ω(Σ) ∩Ω(Σ1) is open. “Rela-
tively closed” means that Ω ∩ (Ω(Σ) ∩ Ω(Σ1)) = Ω.
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Since ζ ∈ Ω(Σ), there exists a decomposition W = Y u U which is
admissible for Σ(ζ), and hence for Σ(ζn) for all sufficiently large n. Let Dζ

and Dζn be the i/o transfer functions of Σ(ζ) and Σ(ζn), respectively, with
respect to this decomposition. Then by Theorem 6.3, Dζn(0) = Dζ(ζn − ζ).
We can repeat the same argument with Σ replaced by Σ1 to get another
decomposition W = Y ′ u U ′ which is admissible for Σ1(ζ), hence for Σ1(ζn)
for all sufficiently large n, and such that the i/o transfer functions (D1)′ζ
and (D1)′ζn

of Σ1(ζ) and Σ1(ζn), respectively, with respect to this second
decomposition satisfy (D1)′ζn

(0) = (D1)′ζ(ζn − ζ).
Recall that ζn ∈ Ω for all n, i.e., that Σ(ζn) is externally equivalent

to Σ1(ζn). By Theorem I.7.7, Σ(ζn) and Σ1(ζn) have the same admissible
decompositions and the same feedthrough operators (with respect to all pos-
sible decompositions of W). In particular, the decomposition W = Y ′ u U ′

is admissible also for Σ(ζn), and D′
ζn

(0) = (D1)′ζn
(0) where D′

ζn
(0) is the

feedthrough operator of Σ(ζn) with respect to this decomposition.

Define Θ and Θ̃ by (3.9) and (3.10), replacing U1 by U ′ and Y1 by Y ′.
Then it follows from (3.9) and (3.10) together with Theorem I.6.5 that

D′
ζn

(0) = (Θ̃11Dζn(0) + Θ̃12)(Θ̃21Dζn(0) + Θ̃22)
−1.

This combined with the fact that Θ and Θ̃ are inverses of each other implies
that

Θ21D
′
ζn

(0) + Θ22 = (Θ̃21Dζn(0) + Θ̃22)
−1.

Consequently, taking into account that D′
ζn

(0) = (D1)′ζn
(0), we get

(Θ21(D
1)′ζn

(0) + Θ22)(Θ̃21Dζn(0) + Θ̃22) = 1U ,

(Θ̃21Dζn(0) + Θ̃22)(Θ21(D
1)′ζn

(0) + Θ22) = 1U ′ .

As n→∞ we have Dζn(0) = Dζ(ζn−ζ) → Dζ(0) and (D1)′ζn
(0) = (D1)′ζ(ζn−

ζ) → (D1)′ζ(0), so by passing to the limit in the two identities above we

find that Θ̃21Dζn(0) + Θ̃22 is invertible (with inverse Θ21(D
1)′ζn

(0) + Θ22).
Therefore, by Theorem I.6.5, the decomposition W = Y ′ u U ′ is admissible
for Σ(ζ) (in addition to being admissible for Σ1(ζ)). If we denote the i/o
transfer function of Σ(ζ) with respect to the decomposition W = Y ′ u U ′ by
D′

ζ , then both D′
ζ and (D1)′ζ are analytic at zero, and

D′
ζ(ζn − ζ)− (D1)′ζ(ζn − ζ) = D′

ζn
(0)− (D1)′ζn

(0) = 0,

where ζn− ζ → 0 as n→∞. This implies that D′
ζ(z) = (D1)′ζ(z) for all z in

some neighborhood of zero. By Theorem I.7.7, Σ(ζ) and Σ1(ζ) are externally
equivalent, i.e., ζ ∈ Ω.
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We have now proved that Ω is both open and relatively closed in Ω(Σ)∩
Ω(Σ1). As we observed at the beginning of the proof, this implies that Σ(z)
and Σ1(z) are externally equivalent for each z which belongs to the same
connected component of Ω(Σ,Σ1) as z0.

The final claim about the external equivalence of Σ and Σ1 follows from
the fact that Σ(0) = Σ and Σ1(0) = Σ1.

Corollary 6.10. Let Σ = (V ;X ,W) and Σ1 = (V1;X1,W) be two s/s sys-
tem, let W = YuU , and suppose that the generalized i/o transfer fuctions D

and D1 coincide in the neighborhood of a point z0 ∈ Ω(Σ;U ,Y)∩Ω(Σ1;U ,Y).
If z0 belongs to the same connected component of Ω(Σ)∩Ω(Σ1) as the origin,
then Σ and Σ1 are externally equivalent, i.e., they induce the same behavior.
In particular, if both Σ and Σ1 is minimal, then Σ and Σ1 are pseudo-similar.

Proof. By Theorem I.7.7, with the terminology of Theorem 6.9, Σ(z) and
Σ1(z) are externally equivalent, and by Theorem 6.9, Σ and Σ1 are externally
equivalent. The pseudo-similarity of the two system in the minimal case
follows from Proposition I.7.11.

Our following results refer to the set Ω0(Σ), which is defined as follows.

Notation 6.11. Let Σ = (V ;X ,W) be a s/s system. We denote the con-
nected component of Ω(Σ) which contains the origin by Ω0(Σ).

Lemma 6.12. Let Σ = (V ;X ,W) be s/s system, and define Σ(z), z ∈ Ω(Σ)
as in Lemma 6.1. Then the reachable subspace of Σ(z) and the unobservable
subspace of Σ(z) are constant in each connected component of Ω(Σ). In
particular, for each z0 ∈ Ω0(Σ), the reachable subspace of Σ(z0) coincides
with the reachable subspace of Σ, and the unobservable subspace of Σ(z0)
coincides with the unobservable subspace of Σ.

Proof. We only prove the claim about the reachable subspace, and leave the
(slightly easier) proof of the claim about the constancy of the unobservable
subspace to the reader.

For each ζ ∈ Ω(Σ), let us denote the reachable subspace of Σ(ζ) by Rζ .
We claim that the subspace Rζ is locally constant in the sense that for each
ζ ∈ Ω(Σ) there is neighborhood V of ζ such that Rξ = Rζ for all ξ ∈ V .

Let ζ ∈ Ω(Σ), and let W = Y u U be an admissible decomposition for
Σ(ζ). Then by Lemma 6.1 and Theorem 6.3, the same decomposition is
admissible for Σ(ξ) for all ξ in some disk V = {ξ ∈ C | |ξ| < δ}. Let

Σξ
i/s/o =

([ Aξ Bξ

Cξ Dξ

]
;X ,U ,Y

)
be the corresponding i/s/o representation of

Σ(ξ), and define B̃ξ(z) = (1X−zAξ)
−1Bξ, ξ ∈ V , z ∈ ΛAξ

. By Corollary I.5.5,
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Rζ = ∨k∈Z+R
(
Ak

ζBζ

)
(here ∨ stands for the closed linar span). Equivalently,

Rζ = ∨k∈Z+R
(
B̃

(k)
ζ (0)

)
. Thus, x∗ ∈ R⊥

ζ if and only if (B̃
(k)
ζ (0)x, x∗)X = 0

for all x ∈ X and all k ∈ Z+. By the analyticity of the function z 7→
(B̃

(k)
ζ (z)x, x∗)X , this is equivalent to the requirement that (B̃

(k)
ζ (z)x, x∗)X = 0

for all x ∈ X and all z ∈ V . By Theorem 6.3, for each ξ ∈ V and z+ξ−ζ ∈ V ,
we have B̃ξ(z) = B̃ζ(z+ ξ− ζ). In particular, this implies that for all ξ with

|ξ−ζ| < δ/2 we have x∗ ∈ R⊥
ζ if and only if (B̃

(k)
ζ (z)x, x∗)X = 0 for all x ∈ X

and all z with |z| < δ/2, or eqivalently, if and only if (Bξ
(k)(0)x, x∗)X = 0

for all x ∈ X and all k ∈ Z+. The last condition is equivalent to x∗ ∈ R⊥
ξ .

Thus, R⊥
ζ = R⊥

ξ , and so Rζ = Rξ. This proves our claim that the space Rζ

is locally constant.
Fix some z0 ∈ Ω(Σ), and define

Ωz0 =
{
ζ ∈ Ω(Σ)

∣∣ Rζ = Rz0

}
.

The fact that Rζ is locally constant implies that Ωz0 is both open and rela-
tively closed in Ω(Σ). As in the proof of Theorem 6.9 we conclude that Ωz0

contains the full connected component of Σ(Ω) to which z0 belongs. The
final claim of Lemma 6.12 follows from the fact that Σ(0) = Σ.

Proposition 6.13. Let Σ = (V ;X ,W) be s/s system, let z0 ∈ Ω0(Σ), and
define Σ(z0) as in Lemma 6.1.

1) Σ is controllable if and only if Σ(z0) is controllable,

2) Σ is observable if and only if Σ(z0) is observable,

3) Σ is minimal if and only if Σ(z0) is minimal.

Proof. This follows from Lemma 6.12.

Proposition 6.14. Let Σ = (V ;X ,W) be s/s system, and let B be the
generalized i/s (input/state) transfer function of Σ, corresponding to the de-
composition W = YuU . Then, for all z0 ∈ Ω(Σ;U ,Y)∩Ω0(Σ) the reachable
subspace of Σ is the closed linear span of {R

(
B(n)(z0)

)
| n ∈ Z+}. It is also

equal to the closed linear span of {R (B(z)) | z ∈ Ω}, where Ω is an arbitrary
open subset of Ω(Σ;U ,Y) ∩ Ω0(Σ).

Proof. By Lemma 6.1, the decomposition W = Y u U is admissible for
the system Σ(z0). Denote the i/s transfer function of Σz0 by Bz0 , de-

fine B̃z0(z) = z−1Bz0(z) for z 6= 0, and B̃z0(0) = limz→0 z
−1Bz0(z). As

we observed in the proof of Lemma 6.12, the reachable subspace Rz0 of
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Σ(z0) is given by Rz0 = ∨k∈Z+R
(
B̃

(k)
z0 (0)

)
, which according to Theorem

6.3 is equal to ∨k∈Z+R
(
B̃(k)(z0)

)
, where B̃(z) = z−1B(z) for z 6= 0, and

B̃(0) = limz→0 z
−1B(z). It is not difficult to show that this is equal to

∨k∈Z+R
(
B(k)(z0)

)
. Thus, by Lemma 6.12, the reachable subspace of Σ is

equal to ∨k∈Z+R
(
B(k)(z0)

)
, as claimed.

To prove the final claim it suffices to show that Rz0 = ∨z∈VR (B(z))
whenever V is a disk centered at z0 and contained in Ω(Σ;U ,Y). That
∨z∈VR (B(z)) ⊂ Rz0 follows immediately from Lemma 6.12, and to prove
the opposite inclusion one uses the same technique as we used in the proof
of Lemma 6.12 (we have (B̃

(k)
z0 (z)x, x∗)X = 0 for all x ∈ X and all z ∈ V

if and only if x∗ is orthogonal to R
(
B̃

(k)
z0 (z)

)
for all z ∈ V). We leave the

completion of the proof to the reader.

Proposition 6.15. Let Σ = (V ;X ,W) be s/s system, and let C be the
generalized s/o (state/output) transfer function of Σ, corresponding to the
decomposition W = Y u U . Then, for all z ∈ Ω(Σ;U ,Y) ∩ Ω0(Σ), the
unobservable subspace of Σ is given by U = ∩n∈Z+N

(
C(n)(z0)

)
, and also by

U = ∩z∈ΩN (C(z)), where Ω is an arbitrary open subset of Ω(Σ;U ,Y)∩Ω0(Σ).

Proof. This proof is similar to the proof of Proposition 6.14 (but slightly
simpler), and we leave it to the reader.

Proposition 6.16. If Σ = (V ;X ,W) is a s/s system with a finite-dimensional
state space X , then for each decomposition W = Y ⊕ U the set Ω(Σ;U ,Y)
is either empty or its complement contains at most dimX points. In the
latter case the generalized is/so transfer function is rational. If Σ is minimal
and Ω(Σ;U ,Y) 6= ∅, then the McMillan degree of the generalized i/o transfer
function is equal to dimX .

Proof. We shall see later an example where Ω(Σ;U ,Y) = ∅, so let us suppose
that Ω(Σ;U ,Y) 6= ∅. Pick some ζ ∈ Ω(Σ;U ,Y), and let Σζ

i/s/o be the i/s/o

system defined in Part 2) of Theorem 6.3. Since dimX is finite, it follows
immeditately that the (standard) is/so transfer function of Σζ

i/s/o is ratio-

nal, and hence, by Theorem 6.3, the generalized is/so transfer function of Σ
is rational. Moreover, the McMillan degree of the generalized i/o transfer
function of Σ is equal to the McMillan degree of the i/o transfer function of
Σζ

i/s/o, which is equal to dimX if Σζ
i/s/o is minimal. Since dimX < ∞, the

set Ω0(Σ) is the whole complex plane with the possible exception of a finite
number of points, and it follows from Propositions 6.14 and 6.15 that the
system Σζ

i/s/o is minimal (i.e., controllable and observable) if and only if Σ is
minimal.
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Proposition 6.17. Every rational B(U ,Y)-valued function D with finite-
dimensional U and Y has a minimal s/s realization Σ(V ;X ,W) where dimX
is equal to the McMillan degree of D and W = Y u U . This realization is
unique up to a similarity transform in the state space.

Proof. Choose some point ζ which is not a pole of D. As is well-known, the

function z 7→ D(ζ+z) has a minimal i/s/o realization Σζ
i/s/o =

([
Aζ Bζ

Cζ Dζ

]
;X ,U ,Y

)
,

where dimX is equal to the McMillan degree of D. Since the realization is
minimal it is true for all z ∈ C that

[
1X − zAζ Bζ

]
is surjective and that[

1X−zAζ

Cζ

]
has a bounded left-inverse (see, e.g., [Sta05, Lemma 9.6.6], and re-

call that X is now finite-dimensional). Let Σ be the s/s system constructed
in Theorem 6.8. The uniqueness claim follows from the fact that any two
minimal externally equivalent s/s systems are pseudo-similar (see Theorem
I.7.11), which in the case of a finite-dimensional state space is equivalent to
similarity.

Example 6.18. We finish this section with a simple finite-dimensional ex-
ample. Let Σi/s/o = ([ A B

C D ] ; C2,C2,C2) be the i/s/o system whose coefficient
matrix is [

A B
C D

]
=


0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0

 ,
and let Σ = (V ; C2,C4) be the s/s system with signal space C4 =

[
C2

C2

]
for

which Σi/s/o is an i/s/o representation. It is easy to see that Σi/s/o is minimal,
hence so is Σ. The is/so transfer function of this system, defined everywhere
i C (except the point at infinity), is given by

[
A(z) B(z)
C(z) D(z)

]
=


1 0 z 0
0 1 0 z

1 0 z 0
0 1 0 z

 ,
and the generating subsapce V of Σ has the representations

V = R




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 = N

([ −1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 1
0 0 1 0 −1 0 0 0
0 0 0 1 0 −1 0 0

])
.

Let us write w ∈ C4 as a column vector with elements wi, i = 1, 2, 3, 4. In
our original representation we take [ w1

w2 ] to be the output and [ w3
w4 ] to be the
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input. If we instead take, e.g., [ w1
w3 ] to be the output and [ w2

w4 ] to be the
input, then the domain of the corresponding is/so transfer function consists
of those points where the matrix

1 0 −z 0
0 1 0 −z
0 1 0 0
0 0 0 1


is invertible. However, the determinant of this matrix is identically zero, so
that the generalized is/so transfer function corresponding to this i/o decom-
position of W is nowhere defined. On the other hand, if we, e.g., take [ w1

w4 ] to
be the output and [ w2

w3 ] to be the input, then the domain of the generalized
is/so transfer function is determined by the determinant of the matrix

1 0 −z 0
0 1 0 −z
0 1 0 0
0 0 1 0


which is equal to−z. Thus, in this case the generalized is/so transfer function
is defined for all z 6= 0 (and z 6= ∞), and it is given by

1 0 z 0
0 0 1 0

1 0 z 0
0 −1

z
0 1

z

 .
Finally, if we choose the input vector to be w multiplied by

[ α1 α2 α3 α4
β1 β2 β3 β4

]
where α and β are two linearly independent vectors, then the domain of the
generalized transfer function is determined by the the determinant of the
matrix 

1 0 −z 0
0 1 0 −z
α1 α2 α3 α4

β1 β2 β3 β4


which is equal to

(α1β2 − β2α1)z
2 + (α3β2 − α2β3 + α1β4 − α4β1)z + (α3β4 − α4β3).

By adjusting the parameters of α and β we can make this determinant vanish
at any two predescribed points in the complex plane, and thereby get an
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example where Ω(Σ;U ,Y) consist of the whole complex plane minus the set
consisting of the two prescribed points. Note that a decomposition C4 =
Y uU with this input space U is admissible (i.e., 0 ∈ Ω(Σ;U ,Y)) if and only
if α3β4 6= α4β3.

7 Affine Representations and Generalized Si/So

Transfer Functions of Adjoint Systems

In this section we shall first study relations between right and left affine
i/s/o representations of a s/s system Σ = (V ;X ,W), corresponding to the
decomposition W = YuU , and the left and right affine i/s/o representations
of the adjoint s/s system Σ∗ = (V∗;X ,W∗), corresponding to a decomposition
W∗ = U∗ u Y∗, where U∗ and Y∗ are constructed from U and Y as described
in the equivalent formulas (2.21) and (2.22).

Theorem 7.1. Let Σ = (V ;X ,W) be a s/s system, let Σr
i/s/o given by (1.7)

be a a right affine i/s/o representation, and let Σl
i/s/o given by (1.12) be a

left affine i/s/o representation of Σ, corresponding to the i/o decomposition
W = Y u U . Define U∗ and Y∗ by (2.21). Then W∗ = U∗ u Y∗,

(Σ∗)
l
i/s/o =

([
(A′)∗ −(C ′

U)† −(C ′
Y)†

−(B′)∗ (D′
U)† (D′

Y)†

]
;X ,

[ U∗
Y∗

]
,L
)

(7.1)

is a left affine i/s/o representation and

(Σ∗)
r
i/s/o =

( (A′′)∗ (C ′′)∗

(B′′
U)† (D′′

U)†

(B′′
Y)† (D′′

Y)†

 ;X ,K,
[ U∗
Y∗

])
(7.2)

is a right affine i/s/o representation of the adjoint system Σ∗ = (V∗;X ,W∗),
corresponding to the i/o decomposition W∗ = U∗ u Y∗. In the computations
of the adjoints we identify the duals of L, K, and X with themselves, and
the duals of U and Y are identified with U∗ and Y∗ via the duality pairings
(2.23) and (2.24).

Proof. That (7.1) is a left affine i/s/o representation of Σ∗ follows from
Proposition II.4.10, after we realize that the adjoints (C ′)† and (D′)† in that
proposition split into (C ′)† =

[
(C ′

U)† (C ′
Y)†
]

and (D′)† =
[
(D′

U)† (D′
Y)†
]

because of (2.23) and (2.24) and the facts that Y∗ is orthogonal to U and
U∗ is orthogonal to Y . In the same way it follows from the same proposition
that (7.2) is a right affine i/s/o representation of Σ∗, once we realize that the



54

adjoints (B′′)† and (D′′)† in that proposition split into (B′′)† =
[

(B′′
U )†

(B′′
Y )†

]
and

(D′′)† =
[

(D′′
U )†

(D′′
Y )†

]
.

Theorem 7.2. Under the assumption of Theorem 7.1 the left and right affine
is/so transfer functions corresponding to the left and right i/s/o representa-
tions (Σ∗)

l
i/s/o and (Σ∗)

r
i/s/o of Σ∗ are given in terms of the right and left

is/so transfer functions (3.7) and (4.6) by[
A′(z)∗ −C′U(z)† −C′Y(z)†

−B′(z)∗ D′
U(z)† D′

Y(z)†

]
, z ∈ ΛA′ , (7.3)

and  A′′(z)∗ C′′(z)∗

B′′
U(z)† D′′

U(z)†

B′′
Y(z)† D′′

Y(z)†

 , z ∈ ΛA′′ , (7.4)

respectively.

Proof. This follows immediately from Theorem 7.1.

Theorem 7.3. Let Σ = (V ;X ,W) be a s/s system, and let W = Y uU be a
decomposition of W for which the correspondig set Ω(Σ;U ,Y) is nonempty.
Define U∗ and Y∗ by (2.21). Then W∗ = U∗ u Y∗,

Ω(Σ∗;Y∗,U∗) =
{
z ∈ C

∣∣ z ∈ Ω(Σ;U ,Y)
}

(in particular, Ω(Σ∗;Y∗U) 6= ∅), and the generalized is/so transfer functions
of Σ and Σ∗, corresponding to the decompositions W = Y u U and W∗ =
U∗ u Y∗, respectively, are connected by the relation[

A∗(z) B∗(z)
zC∗(z) D∗(z)

]
=

[
A(ζz)∗ −zC(z)†

B(z)∗ −D(z)†

]
, z ∈ Ω(Σ∗;Y∗,U∗), (7.5)

where the blocks on the left-hand side are taken from the generalized is/so
transfer function of Σ∗ and the blocks on the right-hand side are taken from
the generalized is/so transfer function of Σ

Proof. Define Σr
i/s/o, Σl

i/s/o, (Σ∗)
l
i/s/o, and (Σ∗)

l
i/s/o as in Theorem 7.1. By

(1.10), z ∈ Ω(Σ;Y ,U) if and only if
[

1X−zA′ −zB′

C′
U D′

U

]
has a bounded inverse.

By (1.14), applied to the left affine i/s/o representation (Σ∗)
l
i/s/o of Σ∗, z ∈

Ω(Σ∗;U∗,Y∗) if and only if
[

1X−z(A′)∗ z(C′
U )†

(B′)∗ −(D′
U )†

]
has a bounded inverse. This

is true if and only if the adjoint
[

1X−zA′ B′

zC′
U −D′

U

]
of this operator is invertible.
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In particular, 0 ∈ Ω(Σ;U ,Y) if and only if 0 ∈ Ω(Σ∗;Y∗,U∗), because both
these conditions are equivalent to the bounded invertibility of D′

U . For z 6= 0
we observe that[

z 0
0 1U

] [
1X − zA′ B′

zC ′
U −D′

U

] [
1/z 0
0 −1U

]
=

[
1X − zA′ −zB′

C ′
U D′

U

]
,

and hence also for z 6= 0 we have z ∈ Ω(Σ∗;U∗,Y∗) if and only if z ∈
Ω(Σ;Y ,U).

A similar argument can be used to prove (7.5). We have from (1.11) that[
zA(z) B(z)
zC(z) D(z)

]
=

[
1X 0
C ′
Y D′

Y

] [
1X − zA′ −zB′

C ′
U D′

U

]−1 [
z 0
0 1U

]
, z ∈ Ω(Σ;U ,Y).

Passing to adjoints we have for z 6= 0,[
zA(z)∗ zC(z)†

B(z)† D(z)†

]
=

[
z 0
0 1U

] [
1X − z(A′)∗ (C ′

U)†

−z(B′)∗ (D′
U)†

]−1 [
1X (C ′

Y)†

0 (D′
Y)†

]
=

[
1/z − (A′)∗ (C ′

U)†

(B′)∗ −(D′
U)†

]−1 [
1X (C ′

Y)†

0 −(D′
Y)†

]
.

On the other hand, (1.15), applied to the left affine i/s/o representation
(Σ∗)

l
i/s/o of Σ∗, gives[
zA∗(z) B∗(z)
zC∗(z) D∗(z)

]
=

[
1X − z(A′)∗ z(C ′

U)†

(B′)∗ −(D′
U)†

]−1 [
1X −z(C ′

Y)†

0 (D′
Y)†

] [
z 0
0 1U

]
=

[
1/z − (A′)∗ (C ′

U)†

(B′)∗ −(D′
U)†

]−1 [
1X −(C ′

Y)†

0 (D′
Y)†

]
.

Comparing this formula to the one above we find that (7.5) holds for z 6= 0.
We leave the easy proof of the fact that (7.5) holds for z = 0 to the reader.

Proposition 7.4. Let Σ = (V ;X ,W) be a s/s system, and let W = −Y [u]U
be an orthogonal i/o decomposition of W. Let Σ∗ = (V∗;X ,W) be the adjoint
s/s system, and decompose W∗ into W∗ = −U [u] Y. Then the domain
Ω(Σ;U ,Y) of the generalized is/so transfer function of Σ and the domain
Ω(Σ∗;Y ,U) of the generalized is/so transfer function of Σ∗ satisfy

Ω(Σ∗;Y ,U) = {z ∈ C | z ∈ Ω(Σ;U ,Y)}, (7.6)

and the corresponding is/so transfer functions satisfy[
A∗(z) B∗(z)
zC∗(z) D∗(z)

]
=

[
A(z)∗ zC(z)∗

B(z)∗ D(z)∗

]
, z ∈ Ω(Σ∗;Y ,U). (7.7)
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Proof. If 0 ∈ Ω(Σ;U ,Y) then, by Theorem 5.2, the decomposition W =
−Y [u]U is admissible, Ω(Σ;U ,Y) = ΛA (where A is the corresponding main
operator), and the claim follows from Proposition II.4.11 and the definition
of the standard is/so transfer function.

In the general case this proposition can be deduced from Theorem 7.3 as
follows by taking U∗ = Y〈⊥〉 = U and Y∗ = U 〈⊥〉 = Y . If we use a superscript
∗ to represent adjoints with respect to the inner products in U and Y (as
opposed to the adjoints with respect to the duality pairings used in Theorem
7.3), then we get C† = −C and D† = −C∗, because for all y ∈ Y (which we
identify with the vector I−1y ∈ W∗), x ∈ X , and u ∈ U we have

(x,C†y)X = [Cx, y]W = −[Cx, y]Y = −(x,C∗y)X ,

[u,D†y]U = [Du, y]W = −[Du, y]Y = −(u,D∗y)X .

Our following proposition is a non-orthogonal version of Proposition II.4.11
and Theorem III.5.3.

Proposition 7.5. Let Σ = (V,X ,W) be a s/s node, and let W = Y u U
be an admissible decomposition of W, with the corresponding i/s/o represen-
tation Σi/s/o =

(
[ A B
C D ] ;X ,U ,Y

)
of Σ. Define Y∗ and U∗ by (2.22). Then

W∗ = U∗ uY∗ is an admissible decomposition of W∗ for the adjoint s/s node

Σ∗ = (V∗;X ,W∗) of Σ, and (Σ∗)i/s/o =
([

A∗ −C†

B† −D†

]
;X ,Y∗,U∗

)
is an i/s/o

representation of Σ∗.

Proof. We already proved above in Lemma 2.3 that W∗ = Y∗ u U∗.
Substitute z = Ax+Bu and y = Cx+Du in (2.25) and use (2.25) and the

orthogonality between V and V∗ to show that
[

z∗
x∗
w∗

]
∈ V∗ with w∗ = y∗ + u∗,

y∗ ∈ Y , u∗ ∈ U∗, if and only if

−(Ax+Bu, x∗)X + (x, z∗)X + 〈Cx+Du, y∗〉〈Y,Y∗〉 + 〈u, u∗〉〈U ,U∗〉 = 0

for all x ∈ X and all u ∈ U . Passing to adjoints we get the equivalent
condition

〈x, z∗ − A∗x∗ + C†y∗〉X + 〈u,−B†x∗ +D†y∗ + u∗〉〈U ,Y∗〉 = 0.

Letting x vary over X and u vary over U we get

z∗ = A∗x∗ − C†y∗,

u∗ = B†x∗ −D†y∗.

This is an i/s/o representation for Σ∗ of the required type.
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8 Transmission Matrices of Passive S/S Sys-

tems

Let Σ = (V ;X ,W) be a s/s system and let W = −Y [u]U be an orthogonal
i/o decomposition of W such that

Ω+ := Ω(Σ;U ,Y) ∩ D (8.1)

is nonempty. We shall denote the generalized i/o transfer function of Σ by
Dtra, and we call it the generalized transmission matrix of Σ corresponding
to this decomposition. With the help of this transmission matrix we define
the following kernels (for z 6= ζ∗ and z∗ 6= ζ, and by continuity if z = ζ∗ or
z∗ = ζ)

KDtra(z, ζ) =
1U −Dtra(z)∗Dtra(ζ)

1− ζz
, z, ζ ∈ Ω+, (8.2)

Ke
Dtra(z∗, ζ∗) =

1Y −Dtra(z∗)D
tra(ζ∗)

∗

1− ζ∗z∗
, z∗, ζ∗ ∈ Ω+, (8.3)

∆Dtra(z, z∗; ζ, ζ∗) =

[
Ke

Dtra(z∗, ζ∗)
Dtra(ζ)−Dtra(z∗)

ζ−z∗
Dtra(ζ∗)∗−Dtra(z)∗

ζ∗−z
KDtra(z, ζ)

]
, z, z∗, ζ, ζ∗ ∈ Ω+.

(8.4)

Note that these kernels are analytic with respect to ζ and z∗, and conjugate
analytic with respect of z and ζ∗.

Theorem 8.1. Let Dtra be the generalized transmission matrix of a s/s sys-
tem Σ = (V ;X ,W) corresponding to an orthogonal decomposition W =
−Y [u] U for which Ω+ defined in (8.1) is nonempty. Define KDtra, Ke

Dtra,
and ∆Dtra by (8.2)–(8.4).

1) If Σ is forward passive, then KDtra is a positive definite kernel on Ω+×
Ω+ with respect to the inner product in the Krĕın space U , i.e.,

n∑
i=1

n∑
j=1

[KDtra(zj, zi)ui, uj]U ≥ 0

for every n ≥ 1, zi ∈ Ω+ and ui ∈ U , 1 ≤ i ≤ n.

2) If Σ is backward passive, then Ke
Dtra is a positive definite kernel on

Ω+ × Ω+ with respect to the inner product in the Krĕın space Y.
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3) If Σ is passive, then ∆Dtra is a positive definite kernel on (Ω+ ×Ω+)×
(Ω+ × Ω+) with respect to the inner product in the Krĕın space W =
U [u] Y in the sense that

m∑
k=1

m∑
`=1

[(1Y −Dtra(z∗`)D
tra(z∗k)

∗)y∗k, y∗`]Y
1− z∗kz∗`

+
n∑

i=1

m∑
`=1

[(Dtra(zi)−Dtra(z∗`))ui, y∗`]Y
zi − z∗`

+
m∑

k=1

n∑
j=1

[(Dtra(z∗k)
∗ −Dtra(zj)

∗)y∗k, uj]U
z∗k − zj

+
n∑

i=1

n∑
j=1

[(1U −Dtra(zj)
∗Dtra(zi))ui, uj]U

1− zizj

≥ 0

for all sequences zi, z∗k ∈ Ω+, and ui ∈ U , and y∗k ∈ Y.

Proof. Proof of 1): Let Σr
i/s/o be the right affine i/s/o representation of Σ

corresponding to the i/o decomposition W = Y u U given by (1.7), and let
z ∈ Ω+ and u ∈ U . Then there exist unique xz,u ∈ X and `z,u ∈ L such that

(1X − zA′)xz,u − zB′`z,u = 0,

C ′
Uxz,u +D′`z,u = u,

(8.5)

and, by the definition of the generalized i/o transfer function,

Dtra(z)u = C ′Yxz,u +D′Y`z,u.

Thus,

xz,u = z[A′xz,u +B′`z,u].

Define ẋz,u = A′xz,u +B′`z,u. Then xz,u = zẋz,u, and hence

kz,u :=

[
ẋz,u

zẋz,u

Dtra(z)u
u

]
∈ V.

Consequently,

k(ζ) :=
n∑

i=1

1

1− ziζ
kzi,ui

∈ V for any zi ∈ Ω+, ui ∈ U , |ζ| = 1.
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The subspace V is nonnegative in K, since the s/s system is assumed to be
forward passive. This means that [k(ζ), k(ζ)]K ≥ 0 for every ζ with |ζ| = 1.
This inner product is given by

0 ≤ [k(ζ), k(ζ)]K =
n∑

i=1

n∑
j=1

−1 + zizj

(1− ziζ)(1− zjζ)
(ẋzi,ui

, ẋzj ,uj
)X

+
n∑

i=1

n∑
j=1

[(1U −Dtra(zj)
∗Dtra(zi))ui, uj]U

(1− ziζ)(1− zjζ)
.

By integrating this inequality around the circle |ζ| = 1 and taking into ac-
count that

1

2π

∫
|ζ|=1

|dζ|
(1− ziζ)(1− zjζ)

=
1

2πi

∫
|ζ|=1

dζ

(1− ziζ)(ζ − zj)
=

1

1− zizj

,

we get

n∑
i=1

n∑
j=1

[(1U −Dtra(zj)
∗Dtra(zi))ui, uj]U

1− zizj

≥
n∑

i=1

n∑
j=1

(ẋzi,ui
, ẋzj ,uj

)X

=
∥∥∥ n∑

i=1

ẋzi,ui

∥∥∥2

X
≥ 0.

This proves the positivity of the kernel KDtra on Ω+ × Ω+.
Proof of 2): This follows from Part 1) if we replace Σ by the adjoint

s/s system Σ∗ and use the connection between the generalized i/o transfer
functions of Σ and Σ∗ expressed in Proposition 7.4.

Proof of 3): Let m and n be positiv integers, let zi ∈ Ω+ and ui ∈ U for
1 ≤ i ≤ n, and let z∗k ∈ Ω+ and y∗k ∈ Y for 1 ≤ k ≤ m. In the proof below
we assume that zj 6= z∗k for all j and k (the case where some zj = z∗k for
some j and k can be obtained from this case by first taking zj 6= z∗k and
then letting zj → z∗k). As in the proof of 1) we find that that there to each
i there exists a vector ẋzi,ui

∈ X such that

kzi,ui
:=

[
ẋzi,ui

ziẋzi,ui

Dtra(zi)ui
ui

]
∈ V

and
n∑

i=1

n∑
j=1

[KDtra(zi, zj)ui, uj]U ≥
∥∥∥ n∑

i=1

ẋzi,ui

∥∥∥2

X
≥ 0. (8.6)
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By applying the same argument to the adjoint system we find that for each
k there exists a vector ẋz∗k,y∗k

∈ X such that

kz∗k,y∗k
:=

[
ẋz∗k,y∗k

z∗kẋz∗k,y∗k
y∗k

Dtra(z∗k)∗y∗k

]
∈ V∗

and
m∑

k=1

m∑
`=1

[Ke
Dtra(z∗k, z∗`)y∗k, y∗`]Y ≥

∥∥∥ m∑
i=1

ẋz∗k,y∗k

∥∥∥2

X
≥ 0. (8.7)

The generating subspace V∗ of the adjoint system Σ∗ is the annihilator of V

in the sense that if
[

ẋ
x
w

]
∈ V and

[
ẋ∗
x∗
w∗

]
∈ V∗, then

−(ẋ, x∗)X + (x, ẋ∗)X + 〈w,w∗〉〈W,W∗〉 = 0.

Therefore, we have for all i ∈ [1, n] and all ` ∈ [1,m],

(zi − z∗`)(ẋzi,ui
, ẋz∗`,y∗`

)X = [(Dtra(zi)−Dtra(z∗`))ui, y∗`]Y .

Dividing by zi − z∗` and adding over i and ` we get

n∑
i=1

m∑
`=1

[(Dtra(zi)−Dtra(z∗`))ui, y∗`]Y
zi − z∗`

=
n∑

i=1

m∑
`=1

(ẋzi,ui
, ẋz∗`,y∗`

)X . (8.8)

By combining (8.6), (8.7), (8.8),and the corresponding dual equation, we find
that

m∑
k=1

m∑
`=1

[(1Y −Dtra(z∗`)D
tra(z∗k)

∗)y∗k, y∗`]Y
1− z∗kz∗`

+
n∑

i=1

m∑
`=1

[(Dtra(zi)−Dtra(z∗`))ui, y∗`]Y
zi − z∗`

+
m∑

k=1

n∑
j=1

[(Dtra(z∗k)
∗ −Dtra(zj)

∗)y∗k, uj]U
z∗k − zj

+
n∑

i=1

n∑
j=1

[(1U −Dtra(zj)
∗Dtra(zi))ui, uj]U

1− zizj

≥
∥∥∥ n∑

i=1

ẋzi,ui
+

m∑
i=1

ẋz∗k,y∗k

∥∥∥2

X
≥ 0.

Remark 8.2. Part 3) is a stronger version of the inequality that is usually
found in the literature. Usually one takes m = n, and connects the primal
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variables z and ζ to the dual variables z∗ and ζ∗ to each other by taking
z = z∗ and ζ = ζ∗ (see, e.g., [ADRdS97]). This is, of course, possible only
if Ω+ ∩ Ω∗

+ 6= ∅, because this forces us to take z, ζ ∈ Ω+ ∩ Ω∗
+. We are

essentially following the tradition of Potapov, who took m = 1. In this
approach the condition Ω+ ∩ Ω∗

+ 6= ∅ is not needed. Note however, that one
of the summations is with respect to the analytic variable and the other with
respect to the co-analytic variable.

Lemma 8.3. Let Y and U be Krĕın spaces, and let D be a B(U ,Y)-valued
analytic function defined on an open subset Ω+ of D. Define the two kernels
KD and Ke

D as in (8.2) and (8.3) with Dtra replaced by D, and suppose that
(at least) one of the following two conditions holds:

1) KD is positive definite on Ω+ × Ω+ and Ke
D(z, z) ≥ 0 for all z ∈ Ω+,

2) Ke
D is positive definite on Ω+ × Ω+ and KD(z, z) ≥ 0 for all z ∈ Ω+,

Then both these conditions hold, i.e., both KD and Ke
D are positive definite

on Ω+ × Ω+.

Proof. Let

Θ =

[
Θ11 Θ12

Θ21 Θ22

]
=

[
PY |W− PY |W+

PU |W− PU |W+

]
, (8.9)

Θ̃ =

[
Θ̃11 Θ̃12

Θ̃21 Θ̃22

]
=

[
PW−|Y PW−|U
PW+ |Y PW+ |U

]
. (8.10)

where W = −W− [u]W+ is a fundamental decomposition of W . Each of the
two conditions 1) and 2) imply that both KD(z, z) ≥ 0 and Ke

D(z, z) ≥ 0 for
all z ∈ Ω+. This is equivalent to the bi-contractivity of D(z) with respect to
the indefinite inner products in the Krĕın spaces U and Y . This guarantees
that the Potapov–Ginzburg transform

S(z) = [Θ̃11D(z) + Θ̃12][Θ̃21D(z) + Θ̃22]
−1, z ∈ Ω+, (8.11)

is well-defined for all z ∈ Ω+ (see, e.g., Lemma III.4.2, [DR90, Theorem
1.3.4], or [DR96, Theorem 2.8′]).

The two kernels KD and KS are connected to each other by the relation

KS(z, ζ) = [Θ̃21D(z) + Θ̃22]
−∗KD(z, ζ)[Θ̃21D(z) + Θ̃22]

−1.

If 1) holds, then the positivity of KD on Ω+ × Ω+ in the Krĕın space U
implies the positivity of the kernel KS on Ω+×Ω+ in the Hilbert space W+.
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This guarantees that S has an extension to a Schur function (a holomorphic
function whose norm is bounded by one) defined on the full unit disk D (see
[RR82]). We still denote the extended function by S(z), z ∈ D. It is well-
known that for a Schur function both the kernels KS and Ke

S are positive
definite on D×D (see, e.g., [DR96, Theorem 5.9]). Since Ke

D can be recovered
from Ke

D via the formula

Ke
D(z, ζ) = [−D(z)Θ21 + Θ11]

−1Ke
S(z, ζ)[−D(z)Θ21 + Θ11]

−∗ (8.12)

we find that Ke
D is positive definite on Ω+×Ω+ whenever 1) holds. The same

argument applied to the function De(z) = D(z)∗ shows that the kernel KD

is positive definite on Ω∗
+ × Ω∗

+ whenever 2) holds.

As in Part III we define the Potapov class P (Ω;U ,Y), where Ω is an open
subset D and U and Y are Krĕın spaces, to be the space of B(U ;Y )-valued
holomorphic functions D on Ω for which both the kernels KD and Ke

D are
positive definite on Ω × Ω. We next present generalizations of Propositions
III.4.8 and III.4.9, considering now any function D ∈ P (Ω;U ,Y), without
the restriction that 0 ∈ Ω that we imposed in those theorems. This means
that we no longer necessarily get i/s/o realizations like those given in Part
III, but we still get realizations of the following type.

Theorem 8.4. Let Ω be an open subset of D, and let D ∈ P (Ω;U ,Y). Then
there exists a simple conservative s/s system Σ = (V ;X ,W) with Krĕın sig-
nal space W = −Y [u] U such that Ω ⊂ Ω(Σ;U ,Y) and D is the restriction
to Ω of the generalized transmission matrix of Σ, corresponding to the de-
composition W = −Y [u] U . The system Σ is determined uniquely up to a
unitary similarity transformation in the state space. The function D has a
unique extension (which we still denote by D) to a function in P (Ω+;U ,Y),
where

Ω+ := Ω(Σ;Y ,U) ∩ D,

and also the kernel ∆D defined as in (8.4) with Dtra replaced by D is positive
definite on (Ω+ × Ω+)× (Ω+ × Ω+).

Proof. As in the proof of Lemma 8.3 we let S be the Schur function which is
the extension to D of the function given in (8.11). By Proposition II.6.2,
there exists a simple conservative s/s system Σ = (V ;X ,W) such that
W = −W− [u] W+ is a fundamental decomposition of W , and such that
the corresponding scattering matrix Dsca of Σ satisfies Dsca|D = S. This sys-
tem is determined uniquely by S up to a unitary similarity transformation
in the state space (see, e.g., [ADRdS97, Theorem 2.1.3]). By Theorem 5.4



63

with the scattering representation interpreted as a driving variable represen-
tation, the generalized transmission matrix of the system Σ with respect to
the decomposition W = −Y [u]U coincides with the given function D on Ω,
and this transmission matrix is an extension of D to Ω+ with the required
properties. The uniqueness of the extension follows from the fact that the
Schur function S above is uniquely determined by D, and that any extension
of D for which the two kernels KD and Ke

D are positive definite on Ω+ ×Ω+

has the property that on Ω+ the function S is obtained from the extended
D via the formula (8.11), and hence D is obtained from S by (8.12).

It follows from Theorem 8.4 that if D is an arbitrary function in P (Ω;U ,Y),
where Ω is an open subset of D, then D has a unique extension to a func-
tion in P (Ω+;U ,Y), where Ω+ is the set defined in there. We claim that D

cannot be extended to any larger subset of D without loosing the positive
definiteness of at least one of the two kernels KD and Ke

D. This is true,
because if such an extension were possible, then it would still have to be true
that on this larger set D would still have to be given by (8.12); in particular,
−D(z)Θ21 + Θ11 must then have a bounded inverse on this larger set. But
recall that D ⊂ ΛAsca , and therefore, by Theorem 5.4, for z ∈ D, the operator
−D(z)Θ21 + Θ11 has a bounded inverse if and only if z ∈ Ω+. Thus, the set
Ω+ in Theorem 8.4 is the maximal subset of D to which D has a (unique)
extension in P (Ω+;U ,Y). We call this the natural domain of D in D.

Theorem 8.5. Let Ω be an open subset of D, let D ∈ P (Ω;U ,Y), and let
Σ be a s/s system of the type mentioned in Theorem 8.4. Let Σ◦ and Σ• be
the compressions of Σ constructed in Theorem II.7.5. Then Σ◦ and Σ• are
minimal passive s/s systems with Krĕın signal space W = −Y [u]U such that

Ω ⊂ Ω(Σ◦;U ,Y) ∩ D = Ω(Σ•;U ,Y) ∩ D (= Ω(Σ;U ,Y) ∩ D),

and D is the restriction to Ω of the generalized transmission matrices of Σ◦
and of Σ•, corresponding to the decomposition W = −Y [u] U .

Proof. We once more introduce the same fundamental decomposition W =
−W−[u]W+ as in the proof of Theorem 5.4. By Theorem III.7.3, the three s/s
systems Σ, Σ◦ and Σ• have the same behavior, and the decomposition W =
−W− [u]W+ gives us three scattering representations, one for each system.
Since these three i/s/o systems are stable and externally equivalent, their i/o
transfer functions coincide on D. It then follows from Theorem 5.4 that also
the three domains Ω(Σ◦;U ,Y)∩D, Ω(Σ•;U ,Y)∩D, and Ω(Σ;U ,Y)∩D must
coincide, and on this common domain the generalized transfer functions of
these three systems coincide.
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Proposition 8.6. Let D be a analytic B(U ,Y)-valued function defined on
a subset Ω+

D of D whose complement has no cluster points in D. Define the
kernels KD, Ke

D, and ∆D as in (8.2)–(8.4) with Dtra replaced by D. If

D(z)∗D(z) ≤ 1U and D(z)D(z)∗ ≤ 1Y for all z ∈ Ω+
D, (8.13)

then all the three kernels KD, Ke
D, and ∆D are positive definite on their

appropriate domains.

Proof. Under the condition (8.13) the transformation (8.11) is well-defined
on Ω+

D, and the corresponding function S(z) in (8.11) has a unique extension
to a B(W+;W−)-valued Schur function on D, where we use the same notation
as in the proof of Lemma 8.3. This implies that the two kernels KS and Ke

S

are positive definite on D × D. Hence, via the inverse transform (8.12) we
conclude that D ∈ P (Ω;U ,Y). By Theorem 8.4, D can be realized as the
transmission matrix of a passive s/s system, and also the kernel ∆D is positive
definite.

Proposition 8.7. Let D be a analytic B(U ,Y)-valued function defined on a
subset Ω+

D of D whose complement has no cluster points in D, and suppose
that ind−U = ind−Y <∞. If

D(z)∗D(z) ≤ 1U , z ∈ Ω+
D, (8.14)

where Ω+
D is the points of analyticity of D in D, then D is the restriction to

Ω+
D of the generalized transmission matrix corresponding to the decomposition

W = −Y [u] U of a simple conservative s/s system Σ, which is uniquely
defined by D up to unitary similarity. It is also the restriction to Ω+

D of the
generalized transmission matrix corresponding to the same decomposition of a
minimal passive s/s system Σ′, which is defined by D up to pseudo-similarity.

Proof. Since U and Y have the same negative dimension, condition (8.14) is
equivalent to the dual condition

D(z)D(z)∗ ≤ 1Y , z ∈ Ω+
D

(see, e.g., Lemma III.4.2). By Proposition 8.6, D ∈ P (Ω+
D;U ,Y). We can

take the system Σ to be the one given by Theorem 8.4, and we can take Σ′

to be either one of the two minimal passive systems Σ◦ and Σ• in Theorem
8.5.

Remark 8.8. V. Potapov studied in [Pot60] and in a number of additional
publications [KP65], [EP73], and [KP74], the class of meomorphic matrix-
valued functions D defined on D of size m × m with a determinant which
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does not vanish identically and have J-contractive values with respect to a
given signature matrix J . This is equivalent to (8.14) if we equip both the
input space U and the output space Y with the same indefinite inner product
[ξ, ξ′] = (ξ, Jξ′), ξ, ξ′ ∈ Cn.

9 Affine Transmission and Impedance rep-

resentations of Passive S/S Systems

In this section we shall take a closer look at affine transmission and impedance
representations of a passive s/s system by using a scattering representation
Σsca =

(
[ Asca Bsca

Csca Dsca ] ;X ,W+,W−
)

as a driving variable or an output nulling
representation.

We begin with the transmission case. Let Σ be a passive s/s system, let
W = −Y [u]U be an orthogonal decomposition ofW , and let Y = −Y− [u]Y+

and U = −U−[u]U+ be fundamental decompositions of Y and U , respectively.
Let W+ = Y− [u] U+ and W− = U− [u] Y+. Then W+ and W− are Hilbert
spaces, and W = −W− [u]W+ is a fundamental decomposition of W . This is
the same setting that we used in Remark III.4.6. In this setting the decom-
positions Θ and Θ̃ in (8.9) and (8.10) are given by (III.4.12) and (III.4.13).
The corresponding decomposition of the corresponding scattering representa-
tion of Σ and its is/so transfer function are given in (III.4.14) and (III.4.15).
However, this time we do not assume that the decomposition W = −Y [u]U
is admissible for Σ, i.e., we do not assume that (III.4.16) holds. Therefore,
we have to replace formulas (III.4.17), (III.4.20) and (III.4.21) by the corre-
sponding right and left affine formulas. The right affine representation (3.4)
of the generating subspace V becomes

V =


 »

ẋ
y−
y+

–
» x

u−
u+

–
 ∣∣∣∣∣

[
ẋ

y−
y+

]
=

[
Asca Bsca

1 Bsca
2

0 1Y− 0
Csca

2 Dsca
21 Dsca

22

] [
x

y−
u+

]
,[

x
u−
u+

]
=

[
1X 0 0

Csca
1 Dsca

11 Dsca
12

0 0 1U+

] [
x

y−
u+

]
,

 xy−
u+

 ∈
XY−
U+


 . (9.1)

and the corresponding left affine representation of V is

V =


 »

ẋ
y−
y+

–
» x

u−
u+

–
 ∣∣∣∣∣
[
−1X Bsca

1 0

0 Dsca
11 0

0 Dsca
21 −1U+

] [
ẋ

y−
y+

]
+

[
Asca 0 Bsca

2

Csca
1 −1U− Dsca

12
Csca

2 0 Dsca
22

] [
x

u−
u+

]
=
[

0
0
0

] .

(9.2)
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The (right Bezout) identity (3.12) becomes0 0 0
0 1Y− 0
0 0 0

Asca Bsca
1 Bsca

2

0 1Y− 0
Csca

2 Dsca
21 Dsca

22


+

1X 0 0
0 0 0
0 0 1U+

 1X 0 0
Csca

1 Dsca
11 Dsca

12

0 0 1U+

 = 1" X
Y−
U+

#, z ∈ ΛAsca

(9.3)
and the (left Bezout) identity (4.9) becomes−1X Bsca

1 0
0 Dsca

11 0
0 Dsca

21 −1Y+

−1X 0 0
0 0 0
0 0 −1Y+


+

Asca 0 Bsca
1

Csca
1 −1U− Dsca

12

Csca
2 0 Dsca

22

0 0 0
0 −1U− 0
0 0 0

 = 1" X
U−
Y+

#,
(9.4)

Formula (3.13) for the right affine is/so transfer function becomes
A′(z) B′(z)
C′Y(z) D′

Y(z)

1X 0
C′U(z) D′

U(z)

 =


[

Asca(z) Bsca
1 (z) Bsca

2 (z)

0 1Y− 0
Csca

2 (z) Dsca
21 (z) Dsca

22 (z)

]
[

1X 0 0
Csca

1 (z) Dsca
11 (z) Dsca

12 (z)
0 0 1U+

]
 , z ∈ ΛAsca . (9.5)

and formula (4.10) for the left affine is/so transfer function becomes[ −1X B′′
Y(z) A′′(z) B′′

U(z)

0 D′′
Y(z) C′′(z) D′′

U(z)

]
=

[ [
−1X Bsca

1 (z) 0

0 Dsca
11 (z) 0

0 Dsca
21 (z) −1Y+

] [
Asca(z) 0 Bsca

2 (z)

Csca
1 (z) −1U− Dsca

12 (z)
Csca

2 (z) 0 Dsca
22 (z)

] ]
, z ∈ ΛAsca .

(9.6)
In particular, the right affine i/o transmission function is given by

[
D′
Y(z)

D′
U(z)

]
=


1Y− 0

Dsca
21 (z) Dsca

22 (z)

Dsca
11 (z) Dsca

12 (z)
0 1U+

 , (9.7)

and the left affine i/o transmission function is given by[
D′′
Y(z) D′′

U(z)
]

=

[
Dsca

11 (z) 0 −1U− Dsca
12 (z)

Dsca
21 (z) −1Y+ 0 Dsca

22 (z)

]
. (9.8)
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Since D ⊂ ΛAsca , the restriction to D of the generalized transfer function is
defined on the set

Ω+(Σ;U ,Y) =
{
z ∈ D

∣∣ Dsca
11 (z) has a bounded inverse

}
, (9.9)

and at a point z ∈ Ω+(Σ;U ,Y) the is/so generalized transfer function is
given by the same formulas (III.4.20) and (III.4.21) as in the case where the
decomposition W = −Y [u] U is admissible. These formulas are the same
that we obtain from (1.11), (1.15), (5.8), and (5.20) taking into account the
specific structure of the involved operators. In particular, the generalized
transmission matrix is given by[

Dtra
11 (z) Dtra

12 (z)

Dtra
21 (z) Dtra

22 (z)

]
=
[

1Y− 0

Dsca
21 (z) Dsca

22 (z)

] [
Dsca

11 (z) Dsca
12 (z)

0 1U+

]−1

=
[
−Dsca

11 (z) 0

−Dsca
21 (z) 1Y+

]−1 [ −1U− Dsca
12 (z)

0 Dsca
22 (z)

]
=
[

(Dsca
11 (z))−1 −(Dsca

11 (z))−1Dsca
12 (z)

Dsca
21 (z)(Dsca

11 (z))−1 Dsca
22 (z)−Dsca

21 (z)(Dsca
11 (z))−1Dsca

12 (z)

]
,

z ∈ Ω+(Σ;U ,Y).

(9.10)

The difference compared to (III.4.20)–(III.4.21) is that we no longer require
0 ∈ Ω+(Σ;U ,Y).

We now turn to the impedance case, still assuming Σ be a passive s/s
system. We decopose the singal space W into a Lagrangean decomposition
W = F [u] E , and introduce the same notations as in Section III.5. In
particular, Θ and Θ̃ satisfy (III..5.4), (III.5.7), and (III.5.8). The right affine
representation (3.4) of the generating subspace V becomes

V =



[
ẋ
f

]
[
x
e

]

∣∣∣∣∣
[
ẋ
f

]
=

[
Asca Bsca

Θ11C
sca Θ11(D

sca − Φ)

] [
x
w+

]
,[

x
e

]
=

[
1X 0

Θ21C
sca Θ21(D

sca + Φ)

] [
x
w+

]
,

[
x
w+

]
∈
[
X
W+

] .

(9.11)
and the corresponding left affine representation of V is

V =

{[[
ẋ
f

]
[ x

e ]

] ∣∣∣∣∣
[
−1X BscaΘ̃21

0 (Dsca + Φ)Θ̃21

] [
ẋ
f

]
+

[
Asca BscaΘ̃22

Csca (Dsca − Φ)Θ̃22

] [
x
e

]
=

[
0
0

]}
.

(9.12)
The (right Bezout) identity (3.12) becomes[

0 0
0 Θ̃21

] [
Asca Bsca

Θ11C
sca Θ11(D

sca − Φ)

]
+

[
1X 0
0 Θ̃22

] [
1X 0

Θ21C
sca Θ21(D

sca + Φ)

]
= 1h X

W+

i, z ∈ ΛAsca

(9.13)
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and the (left Bezout) identity (4.9) becomes[
−1X BscaΘ̃21

0 (Dsca + Φ)Θ̃21

] [
−1X 0

0 −Θ11

]
+

[
Asca BscaΘ̃22

Csca (Dsca − Φ)Θ̃22

] [
0 0
0 −Θ21

]
= 1h X

W+

i,
(9.14)

Formula (3.13) for the right affine is/so impedance matrix becomes
A′(z) B′(z)
C′F(z) D′

E(z)

1X 0
C′F(z) D′

E(z)

 =


[

Asca(z) Bsca(z)
Θ11C

sca(z) Θ11(D
sca(z)− Φ)

]
[

1X 0
Θ21C

sca(z) Θ21(D
sca(z) + Φ)

]
 , z ∈ ΛAsca ,

(9.15)
and formula (4.10) for the left affine is/so impedance matrix becomes[ −1X B′′

F(z) A′′(z) B′′
E(z)

0 D′′
F(z) C′′(z) D′′

E(z)

]
=

[ [
−1X Bsca(z)Θ̃21

0 (Dsca(z) + Φ)Θ̃21

] [
Asca(z) Bsca(z)Θ̃22

Csca(z) (Dsca(z)− Φ)Θ̃22

] ]
, z ∈ ΛAsca .

(9.16)
In particular, the right affine i/o impedance matrix is given by[

D′
F(z)

D′
E(z)

]
=

[
Θ11(D

sca(z)− Φ)
Θ21(D

sca(z) + Φ)

]
, (9.17)

and the left affine i/o impedance matrix is given by[
D′′
F(z) D′′

E(z)
]

=
[
(Dsca(z) + Φ)Θ̃21 (Dsca(z)− Φ)Θ̃22

]
. (9.18)

Remark 9.1. The restriction to D of the generalized transfer function cor-

responding to a Lagrangean decomposition F
Ψ

+E of a passive s/s system will
be defined on the set

Ω+(Σ; E ,F) =
{
z ∈ D

∣∣ Dsca(z) + Φ has a bounded inverse
}
. (9.19)

However, by Theorem III.5.10, either this set is the full disc D, in which the

decompostion W = F
Ψ

+ E is admissible, or it is empty. Thus, we conclude
that the notion of a generalized transfer functions that we introduced in
Section 5 is not really applicable to the case of non-admissible Lagrangan
decompositions of the signal space of a passive s/s system. For this situation
an even more general notion of transfer function still remains to be developed.
We shall return to this elsewhere.
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