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1 Description of the Problem

Problem 1 Let X be an an invertible n � n matrix-valued function in the open right half plane,

which belongs to H

1

together with its inverse. Find conditions on the boundary function �(i!) =

X (i!)

�

X (i!) (! 2 R) which imply that the limit E = lim

�!+1

X (�) exists, and compute this

limit. Here � tends to in�nity along the positive real axis.

By mapping the right half-plane into the unit disk we obtain the following equivalent formula-

tion of our problem:

Problem 2 Let X be an an invertible n�n matrix-valued function in the open unit disk, which be-

longs to H

1

together with its inverse. Find conditions on the boundary function �(z) = X (z)

�

X (z)

(jzj = 1) which imply that the limit E = lim

�!1�

X (�) exists, and compute this limit. Here � tends

to 1 from the left along the positive real axis.

The function X is called a spectral factor of the \Popov function" �, and this spectral factor

is regular if the limit E exists. Observe that �(i!) = jX(i!)j

2

in the important scalar case. There

is also an in�nite-dimensional version of the same problem, where the values of X lie in the space

of bounded linear operators on a separable Hilbert space U . In this case, we obtain three di�erent

versions of the problem, depending on the topology we use to compute the limit E, i.e, as a uniform

operator limit, or as a strong limit, or as a weak limit. In this case we would also like to know if

E is invertible.

2 History of the Problem and Motivations

This open problem arose fairly recently out of some new results on in�nite-dimensional regulator

problems and the corresponding Riccati equations for the very general class of in�nite-dimensional

linear system known as (weakly) regular well-posed linear systems, see [5, 8, 9, 10, 14, 15, 17]. The

existence of solutions to Riccati equations is the key to solving many control problems and it is

important to prove existence for as large a class of systems as possible. The approach used here is

to reduce the regulator problem to the associated spectral factorization problem, appeal to known

results for the existence of a spectral factor X , and then to use the beautiful properties of well-

posed linear systems to construct a realization of this spectral factor from a given realization of the

original system. If the spectral factor is regular, the appropriate algebraic Riccati equations can be

derived, and the optimal solution can be constructed. The conclusions are perfect generalizations

of the corresponding �nite-dimensional conclusions (see [3]), apart from the following gaps:
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� Although, under the standard assumptions, the existence of a spectral factor is guaranteed,

it need not be regular, i.e., the limit E need not exist. This regularity property is essential

in the derivation of the Riccati equation.

� The resulting Riccati equation contains the operator (E

�

E)

�1

. Hence we need to compute

E

�

E, and E

�

E must be invertible.

3 Known Results

Di�erent sets of conditions are known that imply that the spectral factor is regular and that the

limit E can be computed. They are all in one way or another related to the smoothness of the

Popov function �, which in terms of the original system typically can be written in the form

�(i!) = R+NG(i!) + (NG(i!))

�

+G(i!)

�

QG(i!);

where G(s) = C(sI �A)

�1

B is the system transfer function and R, Q, and N are various weight-

ing operators. The corresponding Riccati equation � and the equation for the optimal feedback

operator K are in this case

A

�

�+�A+Q = (B

�

�+N)

�

(E

�

E)

�1

(B

�

�+N);

K = �(E

�

E)

�1

(B

�

�+N):

We have (partially) positive answers in the following cases (here we assume for simplicity that

A generates an exponentially stable semigroup; see [1, 4, 6, 13, 17] for more details):

� The original system has a bounded control operatorB and an admissible observation operator

C, e.g., it is of Pritchard-Salamon type;

� The dimension of the output space is �nite, and the original system has an admissible control

operator B and a bounded observation operator C;

� A generates an exponentially stable analytic semigroup, and C(�A)

�

B is bounded for some

 < 1;

� The dimension of the input and output spaces are �nite, and the impulse response of the

original system is an L

1

-funtion;

� The dimensions of the input and output spaces are �nite, and G(s) is a rational function of

e

�Ts

, for some T > 0.

Some combinations of these cases are also possible. It is known that the spectral factor need not

be regular; for an example see [17]. Some other illustrating examples are given in [7, 16]. What is

lacking are veri�able conditions under which the spectral factor is regular. In particular, it is not

known to what extent systems modelled as a boundary control problem for the wave equation in

several space dimensions have a regular spectral factor.

An abstract formula for the limit E is given in [7, 8] and, as one would expect, in the classical

case and all the �rst 4 special cases itemized above the limit satis�es E

�

E = R. What we would

like to be able to do is to compute it in all cases.

4 Related Results

The same problem appears in a more general setting where one looks for sign-inde�nite J-spectral

factors of a given boundary function, and derives the corresponding algebraic Riccati equations.

These become important in the solution of H

1

type problems; see [4, 11, 12].
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In another generalization we keep the assumption that X is invertible in the open right half

plane and \outer", but we do not require the inverse to be in H

1

. This case is related to the so

called singular regulator problem where R = 0, and clearly we expect E to be zero. Some su�cient

conditions for this to be true are given in [2].
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