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Abstract

This work is devoted to the study of four types of symmetries in
the class of possibly infinite-dimensional passive linear time-invariant
state/signal systems in continuous time, namely the real, the recipro-
cal, the signature, and the transpose symmetry. We are, in particular,
interested in the relationship between internal and external properties
of systems which have one or several of these symmetries. Both the
real, the reciprocal, and the transpose symmetries are well-known in
the passive input/state/output theory. In that setting reality means
that if the initial state and input are real, then the output of the sys-
tem is real, and also the state of the system remains real for all time.
The reciprocal and transpose symmetries is related to duality. The ex-
ternal characterisation of these symmetries in the input/state/output
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setting is a certain symmetry condition on the transfer function, and
the internal characterisation of reciprocity says that the system should
be unitarily similar to its adjoint.

It is not true for all classes of passive systems that external symme-
try properties are automatically reflected in internal properties. This
happens only for certain classes of systems that are uniquely deter-
mined up to unitary similarity by their external characteristics. One
such class is the class of simple conservative systems, which is by
now fairly well understood. We here introduce and study three other
classes of passive state/signal system in continuous time, namely the
classes of optimal, x-optimal, and passive balanced state/signal sys-
tems and study their symmetry properties. The optimal and *-optimal
systems are passive and extremal in a certain sense, and the passive
balanced systems are obtained by interpolation between the classes
of minimal optimal and *-optimal systems. It is true for simple sys-
tems in all of these classes that external reality or signature symmetry
implies internal reality or signature symmetry. The same statement
remains true for the reciprocal and transpose symmetries for conser-
vative systems and for passive balanced systems.

Keywords
Reality, reciprocity, available storage, required supply, optimal sys-

tem, x-optimal system, conjugation, skew-conjugation, signature op-
erator, skew-signature operator.
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1 Introduction

The roots of the passive s/s systems theory lie partially in operator theory,
partially in circuit theory, and partially in passive i/s/o (input/state/output)
systems theory. It is a well-known fact that the theories of passive and
conservative scattering, transmission, and impedance i/s/o systems in con-
tinuous and discrete time are intimately connected with the theory on the
harmonic analysis of operators in Hilbert spaces, see, e.g., [Liv73], [dBR66],
[ADRAS97], and [Sta05]. In the so called inverse problem the goal is to
a construct simple conservative, or an obersvable co-energy preserving, or
a controllable energy-preserving i/s/o (input/state/output) realization of a
given scattering, transmission, or impedance function. If the given data has
some additional symmetries, then one expects this to be reflected in some
extra symmetry properties of the constructed realizations; see, e.g., [Liv73|
Chapter 5|, [Wil72, Sections 8-9], and [ADRAS97, Section 3.5B].

A theory of passive linear time-invariant s/s (state/signal) systems in dis-
crete and continuous time has recently been developed in a series of papers
[AS05b] [(AS07h, [AS07c, [AS07d, [AS09al [AS09bL [AST0, Kurl0l [KS09, [AKST1Db!
AKS11a, [AKS11c]. Here we continue that development by introducing some
additional classes of passive s/s systems which are uniquely determined by
their external properties up to unitary similarity, namely the classes of min-
imal optimal, *-optimal, and balanced state/signal systems in continuous
time. We also study their symmetry properties, and in particular, the con-
nection between external and internal symmetry of systems belonging to the
appropriate class of systems.

The symmetry results for s/s systems that we derive here have been mo-
tivated by, and they are closely connected to the corresponding symmetry
results for i/s/o systems mentioned above. The principal connection is the
following: By decomposing the signal space W of a passive s/s system into
a direct sum W = U + Y and interpreting U as an input space and ) as an
output space one obtains different i/s/o representations of the given s/s sys-
tem. Under suitable invariance conditions on the decomposition W = U + Y
with respect to some given s/s symmetery one may then from our results
derive results about symmetries for i/s/o systems. To some extent it is also
possible to proceed in the opposite direction. Because of lack of space we
have not been able to here draw the full picture, but in Section |11} we point
out one basic connection to i/s/o symmetry results of scattering type.

A linear continuous time invariant s/s (state/signal) system X = (V; X', W)
has a Hilbert (state) space X, a Krein (signal) space W, and a closed (gener-

ating) subspace V' of the (node) space K = [V%] that satisfies some additional



conditions, among them the condition
ilev=z-o (1.1)

Condition (I.1)) means that V' is the graph of some linear operator G: [;},] —
X with domain dom(G) C [;%]. Since V is assumed to be closed, the operator

G is closed. By a classical trajectory of ¥ on the interval I C R we mean a
CHI;X)

CUW) ] satisfying

pair of functions [}] € [

Yo lz@) | eV, tel, (1.2)
w(t)
or equivalently,
2 [i)] e dom(@) and ity =G ;0] el (1.3)

By a generalised trajectory of ¥ on I we mean a pair of functions [§]| €

[ LQC(@XVL)} which is the limit in this space of a sequence [y | of classical

traljéctories of ¥ on I.

The notion of passivity of a s/s system X is used to model s/s sys-
tems which “have no internal energy sources”. More precisely, we interpret
l|lz(t)||} as the internal energy of 2, suppose that the power entering ¥ from
the surroundings via the signal w(t) is equal to %[w(t), w(t)]w, and require
all classical trajectories [§ | of ¥ on all intervals I C R to satisfy

Sl < W) wihy, el (14)

Incidentally, this explains why we need to allow the inner product in W to
be indefinite: If the inner product in W is positive, then no energy can leave
the system through the signal, and if the inner product in W is negative,
then no energy can enter the system.

By , a sufficient condition for to hold is that

~(za)r - (o)t w20, 2] eV, (1.5)

This makes it natural to introduce the following (strictly indefinite) Krein
space inner product in the node space R:

Hﬁ] ’ [gfgzﬂﬁ = —(21,22)x — (21, 22)x + [w1, waw. (1.6)

b}



Then (1.5 says that V' is a nonnegative subspace of & with respect to the
inner product (1.6]), and ([1.4)) says that all classical trajectories [ ] of ¥ on
all intervals I C R should satisfy

Higg] , Fﬁg H YR+ ), @ >0, tel (A7)
w(t) wt) ] | g dt
Thus, the generating subspace V' of a passive s/s system X should at least
be nonnegative in the node space K with respect to the inner product .
However, it turns out that it is natural to impose a somewhat stronger con-
dition, namely that it should be mazimal nonnegative in the sense that it is
not contained in any other nonnegative subspace. Thus, we call a s/s system

Y passive if its generating subspace V' is a mazimal nonnegative subspace of
the Krein node space K which satisfies (1.1]).

By taking I = R* := [0,00) in (L.2), multiplying (L.2) by e™* and
integrating over R* we find that the Laplace transform [g((;\))] of a bounded

trajectory [&] of ¥ on RT satisfies

AZ(A) — z(0)

z(\) S R > 0. (1.8)
w(A)
. . ) z(0) ~
This can equivalently be written as {E((A)J € €(A), where
WA
R To X — o
E(A) = r| eR x eV, reC. (1.9)
w w

The family € := {@()\)},\ec is called the characteristic node bundle of 3, and
cach subspace ()) is called the fiber of & at A. This bundle turns out to
be analytic in C in the sense that the orientation of the fibers @()\) depens
analytically on A. From this analytic bundle we can obtain the characteristic
signal bundle § := {F()\)}rec by taking the initial state z:(0) to be zero and

projecting each resulting fiber result onto W, i.e.,

AT
SN ={wew||z| eViorsomezeX}, AeCt. (1.10)

w

This bundle is analytic in C* := {\ € C | R\ > 0}. As will be shown below,

each fiber § (A) is a maximal nonnegative subspace of the signal space W for
each A € Ct.



After this short presentation of the class of passive s/s systems, let us
continue by discussing the symmetry properties of such systems. The exter-
nal symmetries that we are interested in can be expressed in terms of the
characteristic signal bundle § as follows. We let Jw, Cw, Zyy, and By be
a singature operator, a conjugation, a skew-signature operator, and a skew-
conjugation in W, respectively (see Sections and for the definitions
of a these classes of operators). We call

(a) externally Cyy-real if
) =0ws(x),  AecCT, (1.11)
(b) externally Zyy-reciprocal if
SO =T, xect, (1.12)
(c) eaternally Jx-signature invariant if
) =30,  Aect, (1.13)
(d) externally Byy-transpose invariant if

) =By, aect (1.14)

In and the notation /Q\E()\)M stands for the orthogonal companion
to (A) in W, i.e., the set of vectors in W which are orthogonal to F()) with
respect to the Krein space inner product in W.

The above notions of fourezternal symmetries of a passive s/s system ¥ =
(V; X, W) are related to the notions of their respective four (full) symmetries
of 3. To define these symmetries we introduce two additional operators in
X, a signature operator Jy and a conjugation Cx. We call

(a) (Cx, Jx)-real if

Cxr 0 0
V=10 Cxr 0]V, (1.15)
0 0 Cw
(b) (Jx,Zyw)-reciprocal if
-Jx 0 0
V=] 0 Jr 0]|VH (1.16)
0 0 Iy



(¢) (Tx, Iw)-signature invariant if

Jxr 0 0
v=1|0 J¢ 0|V (1.17)
0 0 Iw

(d) (Cx,Byw)-transpose invariant if

—Cy 0 0
V=| 0 Cyr 0 |VH] (1.18)
0 0 By

It is not difficult to show that the block operators on the right-hand sides
of the above equation are skew-unitary operators (which are either linear

or conjugate-linear) in the node space &, and that if V' is the generating
subspace of a passive s/s system, then each of the right-hand sides of ((1.17)),

(1.15]), (1.16)), and (1.18)) are also generating subspaces of passive s/s systems.
The subspace V+ appearing in (1.16)) and (1.18)) is related to the generating
subspace of the adjoint s/s system ¥, = (V,; X, —=W), where

—1 0 0
V. = { 0" 1y 0 }V[“, (1.19)
0 0 I(W,—W)

and Zyy,—yy) is the identity map from W to the anti-space —W. Clearly, the
two equations ([1.16) and (1.18) can be rewritten in the forms

[(Jx 0 0
V=0 Jx 0 Vi (1.20)
L0 0 ZwZiww
and ~
Cx 0 0
V=10 Cx 0 Vi, (1.21)

0 0 BwZiww

respectively. Thus, reciprocity means that the system X is signature similar
to the system that one gets from the adjoint system 3, by multiplying the
dual signal by the unitary operator ZywZ_y,y). Actually, as we shall see
in Lemma below, we can here alternatively replace “signature similar”
by wnitarily similar. Transpose invariance has a similar interpretation, as
explained in more detail in Section

As we shall show in Sections[5H3] it is always true that the full symmetries
described above imply the corresponding external symmetries. For certain
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subclasses of systems the converse is also true in the sense that external sym-
metry implies the existence of a unique signature operator Jx or conjugation
Cy in X such that the system is fully symmetric with respect to this operator
in the state space X and the originally given operator in the signal space W.
In the case of the signature and real symmetries the converse claims hold for
the classes of passive

a) simple conservative systems,

o

controllable energy preserving systems,

oL

minimal optimal systems,

@

)
)
c¢) observable co-energy preserving systems,
)
) minimal *-optimal systems,

)

f

minimal passive balanced systems.

All of these classes have the property that a passive s/s system in one of
these classes is uniquely determined by its characteristic signal bundle up to
a unitary similarity transformation in the state space. The first three classes
a)—c) have been studied in [AKS11b], and here we introduce and study the
three additional classes d)—f). In the case of the reciprocal and transpose
symmetries we have to restrict the class further and require that it is closed
under duality. This only leaves two of the above classes, namely the class a)
of simple conservative systems, and the class f) of minimal passive balanced
systems where external reciprocity implies full reciprocity.

For each one of the six classes a)-f) it is possible to construct a canonical
model such that every passive s/s system in this class is unitarily similar
to its model. The constructions of these models employ Hilbert spaces of
type H(Z), where Z is a maximal nonnegative subspace of a Krein space. A
short overview of such spaces is given in Section [2.2] These spaces were first
presented in [AS09a], and they can be regarded as coordinate free versions
of de Branges complementary spaces. Three canonical models of classes a)—
¢) were developed in [AKSIID], and they are reviewed in Section [3.6] In
Chapter {4 we here develop three additional canonical models of type d)—f).

The discussion about symmetries given above is carried out in the fre-
quency domain, because we feel that this setting is likely to be more familiar
to most readers than a time domain setting. However, all the main results
of this article are first presented in the time domain, and only in the very
last chapter we show that the time domain results that we have obtained are
equivalent to the frequency domain results that we present above.



To keep the size of this article within reasonabe limits we have not been
able to include the answer of every question that naturally arises. We shall
return to these questions elsewhere. In particular, we are thinking about,
among others, the following additional results:

e introduction and study of the classes of minimal optimal, *-optimal,
and balanced discrete time s/s systems, and their canonical models,

e the four basic symmetries for discrete time passive s/s systems,

e internal symmetry implies external symmetry in certain cases, both in
continuous and discrete time,

e input/state/output versions of the four basic symmetries in continuous
and discrete time,

e various examples of systems with symmetries,

e further studies of the characteristic node and signal bundles.

We end this section by presenting various notations and conventions that
we use.

An (inner) direct sum decomposition of a Hilbert or Krein space W into
two closed subspaces U and ) will be denoted by W = U + Y, and the
corresponding complementary projections onto &/ and ) will be denoted by
PB,} and PJZ;’ . If, in addition, & and ) are orthogonal to each other, then we
write W = U @ Y in the case of a Hilbert space and W = U H Y in the
case of a Krein space. In the orthogonal case the subspaces U and ) become
Hilbert or Krein spaces when we let them inherit the inner product from W,
and we denote the (orthogonal) projections of W onto U and ) by P, and
Py, respectively.

We denote the (external) direct sum of two Hilbert or Krein spaces U
and Y by [15’,} By this we mean the Cartesian product of & and ) equipped
with the standard algebraic operations and standard product topology. We
sometimes equip [2” with the induced Krein space inner product (in the
Krein space notation)

Y1 Y2

Hm} ’ [MHMBW = [ur, ualu + [y1, 1oy (1.22)

After identifying [¥] with ¢ and [$] with ) we can in this case identify [¥]
with orthogonal sum U H)Y of U and ). However, we shall often instead use

10



a different Krein space inner product in [%’,] of the type

) Bl gy = (B 6],

where J is a given signature operator in & H Y. With respect to this inner
product U and Y may or may not be orthogonal. Analogous notations are
used for direct sums with three or more components.

List of Notations.

R, Rt R~ R := (—o00,0), RT :=[0,00), R~ = (—00,0].

C,C* C is the complex plane and C* = {\ € C | R\ > 0}.

Q The closure of (2.

BU;Y) The space of bounded linear operators from U to ).

BU;Y) The space of bounded conjugate-linear operators from U to
V.

dom (A),im (A),ker (A): The domain, range, and kernel of the operator A.

Alz The restriction of the operator A to Z.

(-, )w The inner product in the Hilbert space X.

[ ]w The inner product in the Krein space W.

—-K The anti-space of the Krein space K. This is the same topo-
logical vector space as IC, but it has a different inner product
[l ==k

Tt (T'w)(s) = w(s+1t), s, t € R (this is a left shift if ¢ > 0).

T (Thw)(s) = w(s+1t), s, t € RT (this is a left shift if ¢ > 0).

Tt (Ttw)(s) =w(s+t)if s+t <0, (Ttw)(s) =0if s+t > 0.
Here sc R™, t € RT.

T*t (t*w)(s) = (t7'w)(s) = w(s —t), s, t € R (this is a right
shift if ¢ > 0).

Tt (T'w)(s) = w(s—t) if s—t > 0 and (77'w)(s) = 0if s—t < 0.
Here s, t € RT.

T (**w)(s) =w(s —t) for all s e R™, t € RY.

Ly Ty T (rrw)(s) = w(s) for all s € I. We abbreviate 7_ = 7~ and
Ty = TR+.

C(I;X),BUC(I;X),C'(I; X): The spaces of continuous, bounded uniformly
continuous, or continuously differentiable functions, respec-
tively, on I with values in X', with the standard norms.

11



L (1)

H?(C*; X)

The space of functions from I to W which belong locally to
L2

The space of holomorphic W-valued functions on C* with
finite H2-norm.

K2 W), K2(W), K2(W):  See (3.5).

RK2(W)
R

H(Z),H(2)
2,20, W_

See the discussion after ({10.5]).
The Krein node space 8 = X x X x W equipped with the

inner product (1.6]).

The identity operator in the topological vector space X.
The identity operator from the Krein space WV onto the anti-
space —WW.

The reflection operator (HAw)(t) = w(—t). If w is defined
on the interval I C R, then fHw is defined on the reflected
interval Al = {t e R| -t € I}.

See Section .

A passive two-sided, future, or past behaviour, respectively,
on the Krein signal space W. See Section [3.2]

o, H20,), HAH)):  See Section .
HY,HO(20,), HO(QU[}]): See Section .
K, K@Q0,), KBM)):  See Section

QJr?Qf?Q

See Section [3.4]

Loy, D(2V), L(W):  See Section

%27 Q:E
Py, PY
X®ZXBZ

[Z]

The past/present and present/future maps of the passive
system .. See Section [3.5

Py, is the orthogonal projection onto U, and PB{; is the pro-
jection onto U along ).

The orthogonal direct sum of the two subspaces X and Z
of a Hilbert or Krein space, respectively.

The Cartesian product of the Krein spaces X and Z. The
topology in [¥] is the one induced by X and Z, but [{]
and [ 2] need not be orthogonal to each other with respect
to the product of the inner products in X and Z.

Remark 1.1. If A is a bounded linear (or conjugate-linear) operator in
the Krein space W, then it induces a bounded linear (or conjugate-linear)

12



operator on the Krein space K?(W), which we also denote by A, and which
is defined point-wise by

(Aw)(t) = A(w(t)), teR, we K*W). (1.23)

The operator A on K?(W) defined in this way is shift-invariant, i.e., 7' A =
Attt € R, it commutes with the reflection operator I, i.e., AfI = SIA,
and both K% (W) and K2 (W) are invariant under A. If the original operator
A as a bounded inverse, or is unitary, or skew-unitary, or self-adjoint, or
skew-adjoint, or a signature operator, or a conjugation, or a skew-signature
operator, or a skew-conjugation, or an involution, then operator A on K?(W)
has the same property. Whenever A is invertible we have, in addition,

AKZ(W) = K3(W).

13



2 Krein Spaces

In this section we present the main notions on the geometry of Krein spaces
and related results that will be used in this article. We recall the definition
of the special Hilbert spaces of type H(Z) introduced in [AS09al, where Z
is a maximal nonnegative subspace of a Krein space. We also introduce two
classes of involution operators in the Hilbert state space X and the Krein
signal space W which are needed in our study of the real and reciprocal
symmetries.

2.1 Some properties of Krein spaces

A Krein space W is a vector space with an inner product [-, -]yy that satisfies
all the standard properties required by a Hilbert space inner product, except
that the condition [w,w]y, > 0 for nonzero w has been replaced by the
condition that YV can be decomposed into a direct sum

W=utm-y (2.1)
such that the following conditions are satisfied:

(i) U is a Hilbert space with the inner product inherited from W, i.e.,
(u,u)y = [u,uly > 0if u € U, u# 0, and U is complete with respect
to the norm |jully = ((u, u)w)"2.

(ii) —) is an anti-Hilbert space with the inner product inherited from W,
ie, [y,yl_y = [y,ylw < 0ify € Y, y # 0, and —) is complete with
respect to the norm ||ylly = (—[y, y]y)"/>.

(iii) U and —Y are orthogonal to each other with respect to the inner prod-
uct [+, Jw, i.e., [y,ulyy =0 for all w € U and all y € —=).

A decomposition ([2.1)) with properties (i)—(iii) above is called a fundamental
decomposition. Unless W itself is either a Hilbert space or an anti-Hilbert
space, then it has infinitely many such decompositions. We denote the anti-
space of —) by Y, i.e., )V is the Hilbert space which is algebraically the same
as —), but the inner product in Y is given by (+,-)y = —[,"]_y = =], " ]w-

Each fundamental decomposition can be used to define a new Hilbert
space inner product

(’LU, w/)W = (waw/>U€B3} = (u> U)M + (y, y/)y

_ : : (22)
w=u+y, u,u €U, y,y €Y.

14



An Hilbert space inner product in VW obtained in this way is called admissible.
The original inner product [-, -]yy satisfies

[UJ,U/]W = [w, w/]uaafy = (u, )y — (v, y’)y

_ : / (2.3)
w=u+vy, u,uw €U, y,y €.

Although the inner produce depends on the particular fundamental
decomposition , the norms induced by the different Hilbert space in-
ner products are all equivalent to each other. These norms are called
admissible norms in YW. The dimensions of the positive space U and the neg-
ative space —) do not depend on the particular fundamental decomposition.
These dimensions are called the positive and negative indices of VW, and they
are denoted by ind; W and ind_W.

The orthogonal companion Z™ of an arbitrary subset 2 C W with re-
spect to the Krein space inner product [+, -],y consists of all vectors in W that
are orthogonal to all vectors in Z, i.e.,

ZH = L' e W | [w',wlyy = 0 for all w € Z}.

This is always a closed subspace of W, and Z = (ZH)H if and only if Z is
a closed subspace. If W is a Hilbert space, then we write Z+ instead of ZH!.

A vector w € W is called positive, nonnegative, negative, nonpositive, or
neutral if [w, w]y > 0, [w,w]y > 0, [w,wly <0, [w,w]y <0, or [w,w]y =
0, respectively. A subspace Z of W is called positive, nonnegative, negative,
nonpositive, or neutral if all nonzero vectors in Z are positive, nonnegative,
negative, nonpositive, or neutral. It is clear that a subspace Z of W is neutral
if and only if 2 ¢ ZM. If instead ZH € Z, then Z is called co-neutral,
and if Z = ZMH then Z is called a Lagrangian (or hypermaximal neutral)
subspace of W. A nonnegative subspace which is not strictly contained in any
other nonnegative subspace is called mazimal nonnegative, and the notion of
a mazimal nonpositive subspace is defined in an analogous way. Maximal
nonnegative or nonpositive subspaces are always closed. Every nonnegative
subspace is contained in some maximal nonnegative subspace, and every
nonpositive subspace is contained in some maximal nonpositive subspace.
This follows, for example, from the following proposition.

Proposition 2.1. Let W be a Krein space with fundamental decomposition
(2.1), and let Z be a subspace of W. Then the following claims are true:

(i) The subspace Z is nonnegative if and only if it is the graph of a (unique)

linear Hilbert space contraction Ay : U — Y with domain dom (Ay) C
U. In this case Z is maximal nonnegative if and only if dom (Ay) =U.

15



(ii) The subspace Z is nonpositive if and only if it is the graph of a (unique)
linear contraction A_: Y — U with domain dom (A_) C Y. In this case
Z is mazimal nonpositive if and only if dom (A_) = ).

(iii) The subspace Z is neutral if and only if it is the graph of an isometry
A U — Y with domain dom (AL) C U, or equivalently, it is the
graph of an isometry A_:Y — U with domain dom (A_) C Y (here
A_= A;l). The subspace Z is Lagrangian if and only if, in addition,
dom (Ay) =U and dom (A_) = ).

(iv) Z is mazimal nonnegative if and only if Z is closed and Z™ is mazimal
nonpositive. More precisely, Z 1is the graph of a contraction A, €
B(U;Y) if and only if ZW is the graph of A* € B(Y;U).

(v) Z is mazximal nonnegative if and only if Z is closed and nonnegative
and ZM is nonpositive. In particular, Z is Lagrangian if and only if
Z is both maximal nonnegative and mazximal nonpositive.

Proof. See [AI89, Section 1.8, pp. 48-64] or the following results in [Bog74]:
Theorem 11.7 on p. 54, Theorems 4.2 and 4.4 on pp. 105-106, and Lemma
4.5 on p. 106. 0

In particular, it follows from this proposition that ¥V contains a La-
grangian subspace if and only if ind W = ind_W.

The fundamental decompositions that we have considered above are a
special case of orthogonal decompositions W = Wy BH W, of W, where W,
and W are orthogonal with respect to [, -]y, and both W, and W, are Krein
spaces with the inner products inherited from V. Thus, if w = w; + wy with
w; € Wi and wq € W, then

[w, ww = [wy, wilw, + (w2, walw,. (2.4)

This orthogonal decomposition is fundamental if and only if one of the two
spaces is a Hilbert space and the other an anti-Hilbert space.

2.2 The Hilbert space H(Z)

In [AS09a] a Hilbert space H(Z) was constructed, starting from an arbitrary
maximal nonnegative subspace Z of a Krein space. Below we give a short
review of this construction. It will be used in the construction of canonical
models for some special classes of passive s/s systems in Section .
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Let Z be a maximal nonnegative subspace of the Krein space K, and let
K/Z be the quotient of K modulo Z. We define H(Z) by

H(Z)={h € K/Z|sup{—[z,z]c | * € h} < c0}. (2.5)

It turns out that sup{—[z,z|xc | * € h} > 0 for all h € H(Z), that H(Z) is
a subspace of K/Z, that H(Z) is a Hilbert space with the norm

7z = (sup{=lz,alic | & € h})? hen(), (2.6)

and that H(Z) is continuously contained in I/ Z (where we use the standard
quotient topology in K/Z, induced by some arbitrarily chosen admissible
Hilbert space norm in ). We denote the equivalence class h € K/Z that
contains a particular vector x € I by h = = + Z. Thus, with this notation,

and can be rewritten in the form
HEZ)={z+ZcK/Z||z+ ZH?L[(Z) < 00}, (2.7)
Hx%—ZHi(Z) =sup{—[z+ 2,2+ z|c | z € Z}, zek. (2.8)
A very important (and easily proved fact) is that if we define
H(Z)={"+2 | PUNS ZM}, (2.9)

then H°(Z) is a subspace of H(Z). However, even more is true: H°(Z) is a
dense subspace of H(Z), and

[+ 2,20+ 2z = —[2, 2k, o+ Ze€H(Z), FfezH (210
I+ 2l = [ 21 2 e 2M) (2.11)

Thus, H(Z) may be interpreted as a completion of H°(Z). See [AS09a] for
more details.

2.3 Conjugate-linear operators and conjugations

A continuous operator A from one (complex) Krein space W, to another
Krein space W is called real-linear if

A(/\1w1 + /\ng) = MAw;, + )\QAUJQ, )\1, Ay € R, wy,wy € Wy, (212)
it is called (complex) linear if

A(/\1w1 + /\ng) = MAw; + )\QAUJQ, )\1, Ay € (C, wy, Wy € W, (213)
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and it is called (complex) conjugate-linear if
A(/\1w1 + /\ng) = )\_lAwl +)\_2Aw2, )\1, Ay € (C, wy, Wy € Wh. (214)

Note that both linear and conjugate-linear operators are real-linear. We
recall that every complex Hilbert of Krein W can be interpreted as a real
Hilbert or Krein space by restricting the scalars to be real and replacing the
original complex inner product [-, -]yy by the real inner product R[, -]y. The
notion real-linearity defined above is equivalent to linearity in this real vector
space.

We denote the set of all continuous conjugate-linear operators W; — W,
by B(Wi; Ws), and by B(W) if W, = W, = W. This is a complete (complex)
topological vector space whose topology is induced by a norm if we define
scalar multiplication and addition point-wise by

()\1141 + )\QAQ)UJ = )\_1A1w —{—)\_QU), wE Wi, A, Ay € C,

and it is a Banach space if WW; and W, are Banach spaces (the norm of A
is then defined in the same way as in the case of a linear operator). The
composition of two conjugate-linear operators is linear, and the composi-
tion of one linear and one conjugate-linear operator (in arbitrary order) is
conjugate-linear. By the closed graph theorem, an operator A € B(W;; W)
is both injective and surjective if and only it has a conjugate-linear inverse

A~ e BOWy Wy).

Definition 2.2. The adjoint of a continuous real-linear operator A: W; —
Ws is the unique real-linear operator A* which satisfies

§R[Aw1,w2]w2 = %[wl,A*wg]Wu wy € Wl, we € Ws. (215)

Thus, this is the adjoint of A when we replace the complex spaces W,
and W, by the corresponding real spaces. Clearly (A*)* = A, and if A is
invertible, then (A™!)* = (A*)~'. We denote A™* := (A71)* = (4*)~..

Lemma 2.3. Let A be a continuous real-linear bijection Wy — W,. Then
(A = A=V for each V. C Wh. In particular, if A~% = +A*, then
(AV)H = AV,

Proof. We have
wy € (AV)H]
< Rlwsq, Awilwy, =0 Yw, €V
& R[A wy, wilw, =0 Yw, €V
A*wy € VIH
wy € AV
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This proves the first claim. The second claim follows from the first. m
Definition 2.4. An continuous real-linear operator A: W; — W, is isomet-
ric if

[Aw, Awlywy, = [w, w],, w e W, (2.16)

and it is wnitary if, in addition, A is bijective (so that it has a continuous
everywhere defined inverse).

Lemma 2.5. Let A be a real-linear operator A: Wy — W.
(i) A is isometric if and only if A*A = 1yy,.
(i) A is unitary if and only if A is invertible and A~! = A*.

Proof. Tt suffices to prove (i), since (ii) is an immediate consequence of (i).
If A*A = 1yy,, then for all w € Wy,

[Aw, Aw]w, = R[Aw, Aw)yy, = Rlw, A" Aw|y, = Rw, wlw, = [w, w]w,.

Thus, A is isometric. Conversely, suppose that A is isometric. Then all
w e Wl,
[w, wlw, = [Aw, Aw]y, = Rlw, A" Aw}y, .

It follows from the polarisation formula that
%[wl,U)Q — A*Awg]wl = O, wi, W1 € Wl.

Replacing w; by tw; we find that A*Aws = wy for all wy € Wi, and hence
A*A = 1y,. O

Lemma 2.6. Let A* be the adjoint of a continuous real-linear operator

A: W — Ws.
(i) A is linear if and only if A* is linear. In this case
[Awq, waly = [wy, A"wsalw, w; € Wi, wy € Wh. (2.17)
(ii) A is conjugate-linear if and only if A* is conjugate-linear. In this case

[Awl, ’LUQ]W = [wl, A*wz]w, wy € Wl, we € Ws. (218)

Proof. The proofs of (i) and (ii) are analogous, so it suffices to prove (ii). If
we in ([2.15)) replace w; by 7w; and use the conjugate-linearity of A we get

—%[Awl, U)Q]W2 = %[wl, A*’LUQ]WI, wy € Wl, Wy € Ws.
Thus (2.18) holds. That A* is conjugate-linear follows from ([2.18)). O
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Lemma 2.7. Let A be a continuous bijection Wy — Ws, where Wy and W,
are Krein spaces.

(i) The following conditions are equivalent:

(a) A is linear and unitary;

(b) A satisfies
[Awl, AU)Q]W2 = [wl,wg]wl, wy, Wy € Wh. (219)
(ii) The following conditions are equivalent:

(a) A is conjugate-linear and unitary;
(b) A satisfies

[Awl, Aw2]w2 = [U)l,’UJQ]W w1, Ws € Wl. (220)

17

Proof. The proof is essentially the same in cases (i) and (ii), so it suffices to
prove, for example, (ii).

That (a) implies (b) follows from and the polarisation formula.
Conversely, if (b) holds, then by fixing wy and letting w; vary in (2.20)) we
find that A is conjugate-linear, and by taking w; = ws in we find that
A is unitary. m

Definition 2.8. Let A: WW — W be a continuous real-linear operator.
(i) Ais self-adjoint if A* = A.
(ii) A is skew-adjoint if A* = —A.
(iii) A is a involution if A? = 1yy.
Definition 2.9. Let W be a Krein space.

(i) By a signature operator J in W we mean a linear self-adjoint involution
in W, i.e., J is linear and invertible and

J=T"=J" (2.21)
(ii) by a conjugation C in W we mean a conjugate-linear self-adjoint invo-

lution in W, i.e., C is conjugate-linear and invertible and (2.21]) holds
with J replaced by C.
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Lemma 2.10. Let A: W — W be a continuous real-linear operator. Then
the following conditions are equivalent:

(i) A is a self-adjoint involution.
(ii) A is a unitary involution.
(iii) A is both self-adjoint and unitary.

Proof. If A is a self-adjoint involution, then A*A = AA* = A? = 1)y, and
hence A is unitary. If A is a unitary involution, then A*A = AA* = 1y, and
hence A* = A=! = A. Thus A is self-adjoint. Finally, if A is both self-adjoint
and unitary, then A* = A and A*A = AA* = 1)y, and hence A? = 1,y, which
means that A is an involution. O]

Lemma 2.11. If J s a signature operator or a conjugation in a Krein space

W, then (JV)H = JVI for all subsets V' of W.
Proof. This follows from Lemmas and [2.10] O

Definition 2.12. Let C be a conjugation in the Krein space W.

(i) A subspace Z of W is said to be C-invariant if CZ = Z,

(ii) An operator A mapping a Krein space W, with a conjugation C; into a
Krein space W, with a conjugation Cy is called (Cq,Cs)-real (or simply
C-real if W =W, and C; = Cy = C) if CoAw = ACyw for all w; € Wy,

In part (i) one can replace the condition CZ = Z by the formally weaker
condition CZ C Z, since the latter condition implies that Z = C*Z C CZ.

Lemma 2.13. If A € BWi; Ws) is (C1, Cy)-real, then ker (A) and (ker (A))H]

are Cy-invariant and im (A), im (A), and (im (A))H are Cy-invariant.

Proof. That ker (A) is Cy-invariant and im (A) is Co-invariant follows from the
intertwinement condition AC; = CyA. The Co-invariance of im (A) implies

that also im (A) is Cp-invariant. Finally, the invariance of (ker (4))"*) and
(im (A))H follows from Lemma . O
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2.4 Skew-unitary operators and skew-adjoint involu-
tions

In the sequel we shall also need the notion of an skew-unitary linear operator
between two Krein spaces.

Definition 2.14. An continuous real-linear operator A: W; — W is skew-
isometric if

[Aw, Awlw, = —[w, w]w,, w e W. (2.22)

and it is skew-unitary if, in addition, A is bijective (so that it has a continuous
everywhere defined inverse).

Clearly, the existence of a non-trivial skew-unitary operator W; — W,
implies both W; and W, cannot possibly be Hilbert or anti-Hilbert spaces. A
typical example of a linear skew-unitary operator between two Krein spaces
is the identity operator Zyy _yy) defined on a Krein space W with values in
the anti-space —WW.

Lemma 2.15. Let A be a real-linear operator A: Wy — Wh.

(i) A is skew-isometric if and only if A*A = —1yy,.

(ii) A is skew-unitary if and only if A is invertible and A™' = —A*.
Proof. The proof is essentially the same as the proof of Lemma [2.5 m

Lemma 2.16. Let A be a continuous real-linear bijection Wy — Ws, where
Wi and W, are Krein spaces.

(i) The following conditions are equivalent:

(a) A is linear and skew-unitary;

(b) A satisfies
[Awl, Aw2]w2 = —[wl, wg]wl, w1, Wy € Wi. (223)
(ii) The following conditions are equivalent:

(a) A is conjugate-linear and skew-unitary;
(b) A satisfies

[Awl, Awg]W2 = —[wl, WQ]W w1, Wy € Wl. (224)
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Proof. The proof is essentially the same as the proof of Lemma n

Definition 2.17. Let W be a Krein space.

(i) By an skew-signature operator in W we mean a linear skew-adjoint
involution in W, i.e.; a linear operator Z in W satisfying

I=-1"=1" (2.25)
(ii) By an skew-conjugation in VYW we mean a conjugate-linear skew-adjoint

involution in W, i.e., a conjugate-linear operator B in W satisfying
(2.25)) with Z replaced by B.

Lemma 2.18. Let A: W — W be a continuous real-linear operator. Then
the following conditions are equivalent:

(i) A is a skew-adjoint involution.
(ii) A is a skew-unitary involution.
(iii) A is both skew-adjoint and skew-unitary.
Proof. The proof is essentially the same as the proof of Lemma [2.10] O]

Lemma 2.19. If T is an skew-signature operator or a skew-conjugation in
a Krein space W, then (ZV)H = TV for all subsets V' of W.

Proof. This follows from Lemmas [2.3] and [2.18] O
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3 Passive State/Signal Systems

In the introduction we already gave a short description of the notion of a
passive s/s system. Here we shall present some additional notions and results
that will be needed in this article. The reader is referred to [AKSI11b| for
details and proofs.

3.1 Basic definitions and properties

Definition 3.1. Let X be a Hilbert space and W a Krein space, and let [
be one of the intervals I = RT, I =R, or [ =R™.

(i) By a passive s/s node in continuous time we mean a triple ¥ = (V; X', W)
where V' is a maximal nonnegative subspace satisfying (|1.1]) of the Krein

node space R := [;%} equipped with the inner product .

(ii) A classical trajectory generated by a subspace V' of & on an interval [
is a pair of functions [} ] € [gl((fvf)) } satisfying (1.2)).

(iii) A (generalised) trajectory generated by a subspace V' of £ on an interval

I is a pair of functions [§ ] € [ lec(éfa/)

Tn

by a sequence of classical trajectories [ | in such a way that =, — x
in X locally uniformly on 7, and w,, — w in L} _(I;W).

loc

} which can be approximated

(iv) The passive s/s node X together with its families of classical and gen-
eralised trajectories is called a passive s/s system, and it is denoted by
the same symbol ¥ as the node.

(v) By a past, two-sided (or full), or future trajectory of ¥ we mean a
trajectory of ¥ on R, R, or R*, respectively.

xT

(vi) A (generalised) trajectory [ ] of a passive s/s system ¥ = (V; X, W)
on an interval [ is externally generated if the following condition holds:
If I has a finite left end-point ¢y, then we require that z(¢y) = 0, and if
the left end-point of I is —oo, then we require that lim, , ., z(t) = 0
and that w € L*((—oo, T]; W) for every finite T € I.

(vii) A (generalised) trajectory [§ ] of a passive s/s system ¥ = (V; X, W)
is stable if z is bounded on I and w € L*(I; W).

Definition 3.2. Let X = (V; X', W) be a passive s/s systemn.
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(i) The reachable subspace Ry, of ¥ is the closure of the set

xo = z(0) for some (stable) past }

To € X . .
trajectory of ¥ with compact support

(ii) X is controllable if Ry = X.

(iii) By an unobservable future trajectory of 3 we mean a future trajectory
of ¥ of the type [§] (i-e., the signal part is identically zero).

(iv) The unobservable subspace s, of ¥ consists of all the initial states x(0)
of all unobservable future trajectories of 3.

(v) X is observable if iy, = {0}.
(vi) ¥ is simple if Uy N R = 0, or equivalently, if Ry V U = X.
(vii) X is minimal if it is both controllable and observable.

As the following lemma shows, the boundedness condition on z in Defi-
nition [3.1](vii) is often redundant.

Lemma 3.3. Let ¥ = (V; X, W) be a passive s/s system.
If [5] is a (generalised) trajectory of X on I = R, then

l= ()% < ||:L“(0)|I3c+/O [w(s),w(s)wds,  teR, (3.1)

and if [ ] is externally generated trajectory on an interval I with left end-
point —oo, then

llz(t)]3 < / [w(s),w(s)|w ds, tel. (3.2)

—00

Thus, in both cases [%] is stable if and only if w € L*(I; W).
Proof. See [AKS11bl Lemma 3.2]. O

Lemma 3.4. A generalised trajectory || of a passive s/s system ¥ on some
interval I is classical if and only if v € CY(I; X) and w € CY(I; W).

Proof. See [AKS11bl Proposition 3.7]. ]

Definition 3.5. Let X1 = (Vi; A1; W) and Xy = (Va; Xo; W) be two passive
s/s systems (with the same signal space W).
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(i)

(iii)

(iv)

(v)

A bounded linear operator E: X} — X, intertwines ¥; and X if the
formula
(x1,w) — (Exy,w) (3.3)

defines a map from the set of all stable future trajectories [%}] of 3
onto the set of all stable future trajectories |32 | of X9 satisfying x2(0) €
im (F).

Y1 and Xs are boundedly intertwined if there exists an operator FE €
B(Xy; X3) which intertwines 37 and 5. The operator E is called an
intertwining operator between ¥; and .

Y1 and X9 are contractively intertwined if there exists a contraction
E € B(X;; X,) which intertwines ¥; and Y.

Y1 and Y, are similar if there exists a boundedly invertible operator
E € B(&X; X3) which intertwines 3; and 5. The operator F is called
a similarity operator between »; and .

Y1 and X are unitarily similar if there exists a unitary operator F €
B(X;; X3) which intertwines 3, and Xs.

Definition 3.6.

(i)

(i)

The s/s system ¥ = (V; X, W) is called a restriction of the s/s system
¥ = (Vi; X, W) if X is a closed subspace of X} and the embedding
operator X — X intertwines Y and ;.

The s/s system ¥ = (V; X', W) is called an orthogonal projection of the
s/s system ¥y = (V1; X, W) if X is a closed subspace of X} and the
projection operator Py intertwines >; and ..

Definition 3.7. Let X = (V; X', W) be a passive s/s system.

()
(i)
(iii)

Y is energy preserving if V is neutral, i.e., if V C VI,
¥ is co-energy preserving if V is co-neutral, i.e., if VIH c V.

¥ is conservative if V is Lagrangian, i.e., if V = VI,
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3.2 Passive behaviours and their passive realizations

It follows from (3.1)) and (3.2)) that if [ ] is an externally generated trajectory
of a passive s/s system ¥ on one of the intervals I = R", I =R, or I =R~
with w € L*(I; W), then

/I fw(s), w(s)hwds > 0.

This can be interpreted as a nonnegativity condition in the Krein space
K?(I; W), which is defined as follows. For nontrivial interval I C R we define
the Krein space K?(I; W) to be the space which coincides with L?(I; W) as

a topological vector space, equipped with the inner product

(w1, wa k21w = /I[wl(s),wg(s)]w ds, (3.4)

and we denote

K2(W) = KA(R; W), Ki(W):= K*R*W). (3.5)
This is a Krein space, and if W = U H—) is a fundamental decomposition of
W, then K*(I; W) = L*(I;U) B —L*(I;Y) is a fundamental decomposition
of K*(I;W).
Definition 3.8. Let ¥ = (V; X, W) be a passive s/s system.

i) The future behaviour 25> of ¥ is the set
+

w is the signal part of a externally generated}

QBE = 6 K2 W
i {w +( ) stable future trajectory [ ] of 2.

(ii) The two-sided behaviour 2> of ¥ is the set

W = we K*(W
{w ( stable two-sided trajectory [ ] of X.

w is the signal part of a externally generated}

(iii) The past behaviour > of ¥ is the set

QBE = e K2 W
- {w =) stable past trajectory [, ] of X.

w is the signal part of a externally generated}
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Thus, 0%, W*, and > are nonnegative subspaces of K2 (W), K*(W),
and K2 (W), respectively. As the following lemma shows, they also have
some additional characteristic properties.

Lemma 3.9. The past, two-sided, and future behaviours 20>, 20>, and QHE
of a passive s/s system ¥ = (V; X, W) have the following properties:

(i) 0% are right-shift invariant and 20% is bilaterally shift-invariant, i.e.,

0% C W, t e R,

3.6
TI* = 95*, t e R. (36)

(ii) W% can be recovered from W by the formulas

W =7 W = {w_ € K2(W) |w_ =7_w for some w € W"},

W, =W NEKIW):={we W |w(t)=0 fort <0}
(3.7)

(iii) % is a mazimal nonnegative subspace of K%(W) and 2% is a mazimal
nonnegative subspace of K*(W).

Proof. This is [AKS11D, Lemma 3.12]. O

See the list of notations at the end of Section [Il for the definition of the
restriction operator m_.

Lemma 3.10. Let 2 be a mazimal nonnegative subspace 20 of K*(W), and
define W_ and W, by

W_ = 71_W, W, =WnN K (W), (3.8)
Then the following conditions are equivalent:
(i) 20_ is a mazimal nonnegative subspace of K*(W).
(ii) 20, is a mazimal nonnegative subspace of K2(W).

(iii) For some fundamental decomposition W = U B =) the following im-
plication is valid: If w € 20 and 7_FPyw = 0, then m_Pyw = 0.

(iv) For every fundamental decomposition W = U B =) the following im-
plication is valid: If w € 2 and m_FPyw = 0, then m_Pyw = 0.

Proof. This is [AKS11D, 3.13]. O
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Motivated by Lemmas and we make the following definition:
Definition 3.11. Let W be a Krein space.

(i) A maximal nonnegative right-shift invariant subspace of K2(W) is
called a passive past behaviour on the (signal) space W.

(ii) A maximal nonnegative right-shift invariant subspace 20, of K3 (W)
is called a passive future behaviour on the (signal) space W.

(iii) A maximal nonnegative bilaterally shift invariant subspace 20 of K?(W)
which satisfies the equivalent conditions (i)—(iv) listed in Lemma [3.10]
is called a passive two-sided behaviour on the Krein (signal) space W.

The following lemma complements Lemmas [3.9 and [3.10]
Lemma 3.12. Let W be a Krein space.
(i) If W_ is a passive past behaviour on W, and if we define 2 by
W= () {weK*W)|r_rwew_}, (3.9)
teR+

then 20 1s a passive two-sided behaviour on W and 20 = m_2].

(i) If W, is a passive future behaviour on W, and if we define 20 by

w=\/ r'w,, (3.10)

teR+
then 20 is a passive two-sided behaviour on W, and 204 = WNK2Z(W).

(iii) Let 20 be a passive two-sided behaviour on the Krein signal space W,
and define 0 _ and W, by (3.8)). Then W_ is a passive past behaviour
on W, 03, is a passive future behaviour on W, and 23 can be recovered

from W, and from W_ by means of formulas (3.9) and (3.10)).
Proof. This is [AKS11b, Lemma 3.18]. O
From Lemmas and we conclude that the future, two-sided, and

past behaviours of a passive s/s system X are passive future, two-sided, and
past behaviours, respectively.

Definition 3.13. A passive s/s system ¥ = (V; X, W) is called a realization
of a passive future behaviour 2J,, or a passive two-sided behaviour 20, or
a passive past behaviour 20_, if the corresponding behaviour of X coincides
with the given behaviour 20, 20, or 2J_, respectively.
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Theorem 3.14. Fvery passive future behaviour 2., passive two-sided be-
haviour 23, or passive past behaviour 2 _ has a passive s/s realization Y in
each of the following three classes of passive s/s systems:

a) ¥ is simple and conservative;
b) 3 is controllable and energy preserving;
c) X is observable and co-energy preserving.

Moreover, within each class the realization ¥ is determined uniquely by the
given behaviour up to unitary similarity in the sense of Definition ( v).

Proof. This follows from Theorems 8.1, 9.1, and 10.1 and Corollaries 8.7, 9.8,
and 10.7 in [AKSI1D]. O

In this article we shall expand the above list by adding the classes d), e),
and f) mentioned in the introduction.

Definition 3.15. Two passive s/s systems ¥y = (Vi; &1, W) (with the same
signal space) are externally equivalent if they realize the same past, two-sided,
and future behaviours.

Lemma 3.16. If two systems ¥; and Xy are boundedly intertwined, then
they are externally equivalent.

Proof. This follows from Definitions [3.5] [3.8 and O
Theorem 3.17. Let ¥ = (V; X, W) be a passive s/s system with reachable

subspace R and unobservable subspace 1.
(i) Define
Va=vn|&], (3.11)

then Voo =V N [v%} and X = (Vir, R, W) is a passive s/s system, and
it is the restriction of ¥ to R. The system Xy is always controllable,
and it is minimal if 3 is observable.

(ii) Define
Po 0 0
Vo=|0 Pu 0|V (3.12)
0 0 1y

then Sg1 = (Vyu; U W) is a passive s/s system, and it is the orthog-
onal projection of X to . The system Xg1 is always observable, and
it 18 manimal if X is controllable.
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Proof. The discrete time version of this theorem can be derived from [ASO7b),
Theorems 7.3 and 7.7], and the proof of the continuous time result is analo-
gous to the proof of the discrete time result (cf. [AKS11b, Remark 3.17]). O

Theorem can alternatively be derived from the corresponding i/s/o
result by means of a scattering i/s/o representation of X.

Remark 3.18. A passive s/s system is non-minimal if and only if at least
one of the two transformations described in Theorem [3.17] can be applied to
replace 2 by a “smaller” externally equivalent system.

3.3 The adjoints of passive systems and behaviours

Lemma 3.19. Let ¥ = (V; X, W) be a passive s/s system, and define V.
by (1.19), where Ly —yy is the identity map from W to the anti-space —WW.
Then ¥, = (Vi, X, —=W) is a passive s/s system.

Proof. By Proposition , VI is a maximal nonpositive subspace of the
node space K. It is easy to see that this implies that V, is maximal nonneg-
ative. It follows from [Kurl0, Corollary 4.8], condition holds with V' re-

placed by V.. Thus, V, generates a passive s/s system &, = (V,, X, -W). O

Definition 3.20. The system Y, in Lemma [3.19|is called the adjoint of the
s/s system X.

Lemma 3.21. If a bounded operator E intertwines two passive s/s systems
Y1 and Yo, then E* intertwines the dual systems Yo, and X1, of g and Xy,
respectively.

Proof. This follows from Definition and [AKSIID, Remark 4.2 and The-
orem 4.5]. O

Lemma 3.22. Let ¥ = (V; X, W) be a passive system with adjoint 3, =
(Vi; X, —=W).

(i) The adjoint of 3, is 3.

(ii) X is energy preserving if and only if ¥, is co-energy preserving.

(iii) X is co-energy preserving if and only if ¥, is energy preserving.
)

(iv) X is conservative if and only if ¥ is conservative.

Proof. All of these claims are easy consequences of ([1.19)). m
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See the list of notations at the end of Section [1] for the definition of the
reflection operator f1.

Lemma 3.23. Let 20, 2, and W_ be passive future, two-sided, and past
behaviours on W. Then also

W, = Loy AW, 90, = Ty ) AW, W, = Ty AW (3.13)

are passive future, two-sided, and past behaviours, respectively, on the anti-
space —W. If 0., W, and W_ correspond to each other in the sense that

they satisfy (3.8), (3.9), and (3.10), then W, , W,, and W,_ correspond to

each other in the same sense.
Proof. See [AKS11bl Lemma 2.3, Lemma 4.11 and Remark 4.12]. n

Definition 3.24. The passive behaviours 2,., 20,, and 20,_ in Lemma
[3.23] are called the adjoints of the behaviours 20_, 20, and 20, respectively.

Lemma 3.25. Let ¥ = (V; X, W) be a passive s/s system with future, two-
sided, and past behaviours 0., W, and W_. Then the future, two-sided,

and past behaviours of the adjoint system ¥, = (Vi, X, —W) are the adjoints
of W_, W, and W, respectively, in the sense of Definition |3.24)

Proof. See [AKS11D, Remark 4.12 and Proposition 4.16]. O

3.4 The Hilbert Spaces H(20,), H(EZUM), and D(20)

Three special canonical passive s/s realizations of the classes a)—c) in The-
orem were constructed in [AKSI1b]. These canonical realizations and
their state spaces play an important role especially in the study of the real
symmetry, and for this reason we recall the most important facts about these
state spaces. Two of these are spaces of the type H(Z) described in Section
211

Let 20, and 20_ be a passive future and past behaviour, respectively,
on the signal space W. The Hilbert space H(Z) where Z = 20, and the
underlying Krein space K is equal to K = K2 (W) will be denoted by H, :=
H(W, ), and the Hilbert space H(Z) where Z = 2™ and the underlying
Krein space K is equal to K = —K? (W) will be denoted by H_ := H(QIT[_L])
Thus, in particular, the set

HOW,) = {ul + 2w, |t e W)
is a dense subspace of H,, and the set

HO) = {w_ + 0 | w_o e}
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is a dense subspace of H_. We denote
Ky =K@Q0,) :={ue KiW)|u+20, € H,},
Ko =K = {w_ e K2W) |w_ + 0™ e 1_},
Qiwy = wy + W, wy € Ky,
Q_w_ :=w_ + QIT[_H, w_ € K_.
Thus, @4 and @Q_ are the restrictions of the quotient maps K3 (W) —
K2(W)/, and K2(W) = K2(W)/2" to K, and K_, respectively. With
+ + + 9 p y
these notations,
(W + Wy wy + W), = _[wivar]Ki(W)a wl € m[f]a wy € Ky,
(w_ + 2w w4y, = [w,,wT_]Kg(W), w_ €W_, w e K.

Let 20 be a passive two-sided behaviour on VW with the corresponding
passive past behaviour 20_ = 7_20 and passive future behaviour 9, =
QNK2(W). By definition, the past/future map gy is the unique contraction

in B(H_;H.) whose restriction to the subspace ’HO(QIY[_L ]) given by
Fm(ﬂ,wjtﬁﬂ[_”) =miw + Wy, w € 20. (3.14)

See |[AKS11Db, Lemma 5.7] for details.
For each passive two-sided behaviour 20 on WV we define the operator Ay
by

_ 1ny Tw
! oy

This is a nonnegative bounded linear operator on H, & H_, and we define
D(20) to be the range of A;{]z, with the range norm, i.e.,

il I Il

T
where (A;I/f)[*” is the pseudo-inverse of Aé{f, ie., [i:ﬁ] = (A;f)[*l] [20] is

D(W)

the unique vector in im (Agy) = im <A;1/12) which satisfies [77] = A;{f [i?‘ ]
With respect to this inner product in the range space the operator A%Q (A

is a unitary operator mapping m onto D(20). We denote
LEW) = {w e K2(W) | w+ (W, + W) e DY)},
Qu == w + (W, + W), w e L(W).
Thus, @ is the restrictions of the quotient map K*(W) — K% /(20 +Qﬁ[f]).
See [AKS11Db, Section 5.3] for details.
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3.5 The past/present and present /future maps By and
Cy

Let ¥ = (V; X, W) be a passive s/s system with past and future behaviours

20 and 20,. With the notations introduced in Section we have the

following result:

Lemma 3.26. Let ¥ = (V; X; W) be a passive s/s system with future be-
haviour Q. If [ L] is a stable future trajectory of 3, then

w e K(W,) and [|Qrwll, < [z(0)]|x. (3.16)

Proof. This is [AKS11D, Lemma 6.1]. O

Lemma 3.27. Let ¥ = (V; X; W) be a passive s/s system with future be-
haviour 20. Then the formula

w s the signal part of some stable future
Cyxg = Qrw , _ (3.17)
trajectory [ 5] of ¥ with x(0) = zg
defines a linear contraction Cs: X — H,..
Proof. This is [AKS11D, Lemma 6.2]. O

Definition 3.28. The contraction €y, defined in Lemma [3.27] is called the
present/future map of X.

Lemma 3.29. If two passive s/s systems 31 = (Vi; X1, W) and Lo = (Vo; Xy, W)
are intertwined by a bounded operator E, then their present/future maps sat-
isfy Q:gl == Q:E2E.

Proof. This follows from Definitions and |3.28| m

Lemma 3.30. Let ¥ = (V; X, W) be a passive s/s system with present/future
map Cs.

(i) The unobservable subspace Us, is equal to the null space of its present/future
map €. Thus, ¥ is observable if and only if €x is injective.

(i) If X is co-energy preserving, then Cs is co-isometric.

(iii) X is observable and co-energy preserving if and only if €x is unitary.

Proof. See Lemmas 6.6 and 6.19 and Corollary 8.8 in [AKSI1DH]. O
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Theorem 3.31. Let ¥ = (V; X, W) be a passive s/s system with present/future
map €, and let ¥ = (V1; X1, W) be an observable co-energy preserving s/s
system with present/future map €x, which is externally equivalent to 3. Then
Y and X4 are contractively intertwined by 651162. In particular, any two ez-
ternally equivalent observable and co-energy preserving s/s systems are uni-
tarily stmilar to each other.

Proof. This follows from Theorems 8.4 and 8.5 in [AKSI1bH]. O

Lemma 3.32. Let ¥ = (V; X; W) be a passive s/s system with past behaviour
2_. Then there exist a unique linear contraction Byx: H_ — X whose
restriction to H® is given by

Byr@Q-w=2x(0), weW_, (3.18)

where | 5] is the unique stable externally generated past trajectory of ¥ whose
signal part is w.

Proof. See [AKS11bl Lemmas 3.11 and 6.9]. O]

Definition 3.33. The contraction By, defined in Lemma is called the
past/present map of X.

Lemma 3.34. Let ¥ = (V; X, W) be a passive s/s system with past/present
map By.

(i) The reachable subspace Ry, is equal to the closure of the range of Bsy.
Thus, 3 is controllable if and only if By, has dense range.

(ii) If ¥ is energy preserving system, then By, is an isometry.

(iii) X is controllable and energy preserving if and only if By, is unitary.

Proof. See Lemmas 6.13 and 6.15 and Corollary 9.8 in [AKS11b]. O

Theorem 3.35. Let X = (V; X, W) be a passive s/s system with past/present
map By, and let 3 = (V1; X1, W) be a controllable energy preserving s/s sys-
tem with past/present map By, which is externally equivalent to 3. Then ¥4
and X are contractively intertwined by %E‘B;. In particular, any two exter-
nally equivalent controllable and energy preserving s/s systems are unitarily
similar to each other.

Proof. This follows from Theorems 9.5 and 9.6 in [AKS11b]. O
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Lemma 3.36. Let X = (V; X; W) be a passive s/s system with past behaviour
W_, future behaviour W, two-sided behaviour Wy, past/present map By,
and present/future map Cs.

(i) A pair of functions 5] is an externally generated stable past trajectory

of ¥ if and only if
w e W_ and x(t) = BsQ_7_7'w, teR". (3.19)

(ii) A pair of functions 5] is an externally generated stable two-sided tra-

jectory of X if and only if
w €W and z(t) = BsQ_m_1'w, teR. (3.20)

In this case
Coz(t) = Qimot'w, teR. (3.21)

(iii) A pair of functions [] is an externally generated stable future trajec-

tory of ¥ if and only if

we W, and x(t) = BeQ_n_ 1w, teR". (3.22)

In this case
Csx(t) = Qom T'w, teRT, (3.23)
Proof. This is [AKS11D, Lemma 6.11]. O

Definition 3.37. Let 20 be the two-sided behaviour of a passive s/s system
Y. Then the past/future map Iy defined by means of (3.14)) is also called
the past/future map of ¥, and it is alternatively denoted by I's.

Lemma 3.38. The past/future map s, of a passive s/s system 3 = (V; X, W)
factors into the product
Iy = Cx By, (3.24)

of the past/present map By, and the present/future map Cs of 2.
Proof. See [AKS11Db, Lemma 7.2]. O

Lemma 3.39. Let ¥ = (V; X, W) be a passive s/s system with past/present
map By, present/future map &, and past/future map Iy,

(i) If ¥ is observable, then ker (€x) = ker (I'y).

(ii) If ¥ is controllable, then im (Byx) is a dense subspace of im (I'y).
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Proof. This follows from Lemmas [3.30] [3.34] and [3.38] O

Lemma 3.40. Let ¥ = (V; X, W) be a passive s/s system with past/present
map By, present/future map Cx, and past/future map Us, and let X, =
(Vi; X, =W) be the adjoint of ¥ with past/present map By, present/future
map Csx,, and past/future map I's,. Then

By, = CHALw —wy), Cs, = Lo w)ABs, TI's, = Loy w)ALGAL ).
Proof. See Remark 4.2, Lemma 6.18, and Lemma 7.6 in [AKS11b]. O

Lemma 3.41. If two passive s/s systems 31 = (V1; X1, W) and Xg = (Va; Xy, W)
are intertwined by a bounded operator E, then their past/present maps satisfy
By, = EDBy, .

Proof. This follows from Lemmas [3.21] [3.29] and [3.40] [

Lemma 3.42. Let ¥ = (V; X, W) be a passive s/s system with reachable
subspace Ry, and unobservable subspace Us,. Then the reachable and un-
observable subspaces of the adjoint system ¥, = (Vi; X, —=W) are equal to
Ry, = Us and Uy, = Ry, respectively.

Proof. This follows from Lemmas and |3.40| O

3.6 Canonical models of passive state/signal systems

Throughout this subsection 20, , 2J, and 2QJ_ are passive, future, two-sided,
and past behaviours on a Krein space which are related to each other by

(13.8)), (3.9), and (3.10), and T'yy stands for the corresponding past/future

map.

Theorem 3.43. Let 03, be a passive future behaviour on the Krein space VW
with the corresponding two-sided passive behaviour 2. With the notations

introduced in Section define

wy € Ky is locally absolutely

Qiw H . . . 2
Vs [ini} c [Hi] continuous with wy € K¥ (W), and (3.25)
w+(0) w ! ; L
tl_l)%}r ¥Q+(T+w+ —wy) exists in H,.
Then Y8+ = (VOQCI;*;HJF,W) is a passive observable co-energy preserving

s/s system with future behaviour 23,.. The past/present map of L2+ is the

past/future map Cay of W, and the present/future map of L2+ is the identity
on H.
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Proof. See [AKS11bl Theorem 8.1]. ]

Theorem 3.44.

(i) Two externally equivalent observable passive s/s systems ¥, = (V1; X1, W)
and Yo = (Vo; X, W) are unitarily similar if and only if their present /future
maps satisfy €s, €5, = €, €, .

(ii) Two externally equivalent controllable passive s/s systems 3y = (Vi; X1, W)
and Yo = (Vo; Xo, W) are unitarily similar if and only if their past/present
maps satisfy B5, By, = BY, By, .

Proof. The necessity of the two conditions €y, €5, = €, &5, and BS, By, =
By Cx, for unitary similarity follows from Lemmas and

In order to prove the sufficiency of the condition €y, &5, = €5, & we as-
sume that this condition holds and let 20 be the common two-sided behaviour
of ¥; and Xy, and let ¥+ = (VE+: 1, W) be the observable co-energy pre-
serving system in Theorem [3.43] By Theorem [3.31] for i = 1,2, the operator
Cy, intertwines the system X; and X3¢ (recall that the present/future map
of ¥+ is the identity on H.,). Explicitly, this means [ ] is a stable future
trajectory of ¥;, i« = 1,2, if and only if [QEJJ“] is a stable future trajec-
tory of % whose initial state is contained in im (€y,). By assumption,
€y, €5, = &y, ¢, and therefore

im (Cs,) = im ((€x, €%, )"?) = im ((€5,€%,)"?) = im (€s,) .

In particular, the operator V := ¢§21€21 is well-defined. It follows from, for
example, the polar decompositions of €y, and €y, (see [Kat80, pp. 334-335])
that V is a unitary operator X; — X,. Moreover, [7}] is a stable future
trajectory of ¥ if and only if [£21] is a stable future trajectory of 5. Thus,
Y1 and 35 are unitarily similar with similarity operator E.

Claim (ii) follows from Claim (i) applied to the adjoint system ¥,. [

Theorem 3.45. Let 20_ be a passive past behaviour on the Krein space
W, and let 23 be the corresponding two-sided passive behaviour. With the
notations introduced in Section define

w € 1m ([ﬂf ]) 15 locally absolutely
V- — 8:::Z c [Z: continuous with w € K*(W), and
cep w(0) W

1
lim —Q_n_(t'w — ] ) .
t_l}IOIi_tQ m_(T'w — w) exists in H

(3.26)
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Then zgr; = (VC%II];;?—L,W) is a passive controllable energy preserving s/s
system with past behaviour W _. The past/present map of nglg 15 the identity

on H_ and the present/future map of X~ is the past/future map oy of 2.

cep

Proof. See [AKS11Dh, Theorem 9.1]. O

Theorem 3.46. The operator Ty intertwines the two s/s systems Lo and
D Moohe

oce *

Proof. This follows from Theorems and and and combined with
Theorem [3.31] or Theorem [B.35] ]

Theorem 3.47. Let 20T be a passive two-sided behaviour on the Krein space
W. With the notations introduced in Section define
w € L(2V) is locally absolutely
Vo _ [ 85 ] c [ggg;] continuous with w € K*(W), and (3.27)
lim 1Q(Ttw —w) exists in D(2T).

t—0 t

Then the following claims are true:

(i) =% = (VZ,D(W),W) is a simple conservative s/s system with two-
sided behaviour 20. The past/present map of X3 is Byw = [11;;"11 } with
(BI)* = I pay), the present/future map of ST s Cow = 1L 1 p o)

e [
with ngg = Fg;

(ii) Ewvery simple conservative s/s system ¥ = (V; X, W) with two-sided
behaviour 20 is unitarily similar to XX . The unitary similarity operator
is the so called two-sided state/signal map

bil . [ €
bl = [%;’] (3.28)
where By, and Cx, are the past/present and present/future maps of 3.
Proof. See [AKS11b, Theorems 10.1, 10.2, and 10.5]. O

Corollary 3.48. Any two externally equivalent simple conservative s/s sys-
tems are unitarily similar to each other.

Proof. This follows from part (ii) of Theorem [3.47| O
In view of Theorems [3.31], [3.35], [3.43] [3.45], and the passive systems

Qﬁ QH_ m . . . .
Yoot s Yeep » and X are called canonical models of passive s/s systems within

one of the classes a)-c) listed in Theorem [3.14]
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3.7 Simple passive s/s systems

Example 3.49. A conservative s/s system > = (V; X, W) may be similar
to itself with a nontrivial unitary similarity operator Vy. This can be seen
as follows. Take W = {0}, so that the signal part of the system is missing,
and let V = [ 1] X for some skew-adjoint operator A € B(X). Then ¥ =
(V;X,{0}) is a conservative s/s system. Choose some arbitrary operator
Vy # ly (for example, Vy = —1y), such that VyA = AVy. Then A =

VAV, so that A is similar to itself with similarity operator Vy, and

R kv e

C[VrAl L, [V AV |4 B
P PR e [y

Thus, ¥ is unitarily similar to itself with the non-trivial similarity operator

Vx.

The above example was based on the fact that the s/s system in this
example is not simple. As we show below, for a simple conservative system
this cannot happen.

Lemma 3.50. Let V' be the generating subspace of a simple passive system
¥ =(V; X, W), and suppose that

(VSimV) Ve 0 0
V=0 Vv 0|V (3.29)
0 0 Vy

for some unitary operators Vy: X — X and Vy: W — W, where either
both Vx and YV are linear or both Vy and V\y, are conjugate-linear. Then
the following claims are true.

(1) If Vx is linear and Vyy = 1y, then Vy = 1y.

(i) If Vx is linear and Vyy is a signature operator, then Vx is a signature
operator.

(i) If Vx is conjugate-linear and Vyy is a conjugation, then Vy is a conju-
gation.

Proof of (i). 1t follows from ({3.29) that if [ ] is an arbitrary trajectory of X,
then Vyx = x. Consequently, Vyz = x for all x in the reachable subspace
R. Since Vy is unitary, also Vyx = Vi Vyax = o for all z € A.
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If we repeat the same argument with the original system replaced by
the dual system, then we find that Vy (and V%) also is the identity on £+,
where 4t is the reachable subspace of the adjoint system. By the simplicity
assumption, the span of SR and 4+ is dense in X, and hence Vy = 1.

Proof of (ii). Tt follows from ([3.29)) that

Vi 00 Vi 0 0
V=0 V' 0|V=]|0 Vi 0|V
00 V) 0 0 Vy
Vi 0 01 [Vyt 0 0 Vivyt o0 0
=[0 Vi 0 0 Vi 0 |V=]| 0 WV 0|W
00 Vw0 0 W, 0 0 1w

By part (i), V3V = lx, and thus Vy is a signature operator.
Proof of (iii). This proof is essentially the same as the proof of (ii).
Observe that Vi V3! is linear also in the case where Vy is conjugate-linear.
O

Lemma 3.51. Let 1 = (V; X1, Wy) and 3o = (Va; Xo, Ws) be two simple
passive s/s systems whose generating subspaces satisfy

(VeSimVi) Ve 0 0
Vo=|0 Ve 0|W (3.30)
0 0 Vy

for some unitary operators Vy: X1 — X5 and Vyy: Wi — Ws, where either
both Vx and Vyy are linear or both Vx and Vy are conjugate-linear. Then
the operator Vy is uniquely determined by Vi, Vo, and Vyy.

Proof. Suppose that (3.30) is true for two different unitary operators Vx and
Vy, but with the same operator V. It follows from (3.30)) that

Vi 00 Vi) 0 01 [ve 0 0
Vi=| 0 V' 0 |Ve=|0 V' 0 0 Vo 0|V
00 W 0 0 V'l [0 0 Wy

ViVe 00
= 0 ViV 0|W.
0 0 1y

By part (i), 17;(11};( = 1y, and thus Vy = )7;(. O
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4 Optimal, x-Optimal, and Passive Balanced
Systems

In this section we study two extremal minimal passive realizations of a
passive behaviour, namely minimal optimal and minimal x-optimal pas-
sive s/s systems. The corresponding extremal minimal passive realizations
for i/s/o systems with scattering supply rate have been studied in, e.g.,
[Aro79 Nud92 [Sta05l [ASO7h, [AKPO06] in discrete time and in [AN96, [Sta05]
in continuous time. A system in either of these classes is determined uniquely
by its behaviours (future, two-sided, or past) up to a unitary similarity trans-
formation in the state space.

By doing a half-way interpolation between a minimal optimal and a min-
imal x-optimal system we get another type of systems, namely the passive
balanced s/s systems. Systems in this class are also determined uniquely by
their behaviours up to unitary similarity. The corresponding i/s/o systems
have been studied in [Sta05] in continuous time and in [ASQO7a] in discrete
time.

4.1 Optimal and *-optimal passive s/s systems

Definition 4.1. Let ¥ = (V; X, W) be a passive s/s system.

(i) ¥ is called optimal if it satisfies the following condition: If 3; =
(Vi; X1, W) is a passive s/s system with the same past behaviour as X, if
[&] and [%} ] are two externally generated past trajectories of ¥ and ¥,
respectively, with the same signal part w, then ||z(0)||x < ||z1(0)||x,-

(ii) ¥ is called *-optimal if the (causal) adjoint X, of 3 is optimal.

Lemma 4.2. Let ¥ = (V; X, W) be a passive s/s system with reachable
subspace R and unobservable subspace 1.

(i) X is optimal if and only if its restriction to R is optimal.

(i) If X is optimal, then | C Ut. In particular, an optimal system is
manimal if and only if it s controllable.

(iii) X 4s *-optimal if and only if its orthogonal projection onto Ut is *-
optimal.

(iv) If ¥ is = optimal, then Ut C M. In particular, a *-optimal system is
manimal if and only if it is observable.
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Proof. 1t suffices to prove claims (i) and (ii), since (iii) and (iv) then follows
by duality.
Proof of (i). Let us denote the restricted system in Claim (i) by Xg. Then X
and g have the same stable past trajectories, and consequently X is optimal
if and only if g is optimal.
Proof of (ii) Denote the orthogonal projection of 3 onto Ut by Y., and
choose the system ¥; in Definition to be X 1. Then, by the optimality
of ¥ and the fact that [P uﬂfﬂ is the past externally generated trajectory of
Yy corresponding to the externally generated past trajectory [i ]| of ¥, we
find that ||z(0)|| < ||Pyrx(0)]| for all externally generated past trajectories
[&] of 3. This will be true if and only if the restriction of Py1 to R is the
identity, or equivalently, if and only if & C U+.

Proofs of (iii) and (iv). Claims (iii) and (iv) follow from (i) and (ii)
combined with Definition [4.1] and Lemma [3.42] O

Theorem 4.3. Let ¥ = (V; X, W) be a passive s/s system with two-sided
behaviour 23, past/future map Ty, past/present map By, present/future map
€y, and reachable subspace R. Denote the restriction of ¥ onto R by L.
Then

Folan < BBy, Dyly < s, (4.1)

and the following conditions are equivalent.
(i) X is optimal,

(i) If £y = (Vi; X1, W) is a passive s/s system with the same two-sided
behaviour 2 and past/present map By, , then BEL By, < B%, By, .
(iii) BBy, = DLy,

(iv) X, is minimal and if ¥, = (Vi; X1, W) is a passive controllable s/s
system with the same two-sided behaviour 2 and present/future map
Q:El; then QﬁngﬁQﬁ*E Z Q:Zh *21.

(V) Ee is minimal and s Pr€s, = Prp .

(vi) €x|n maps R unitarily onto im (Tyy).

(vii) Xy is unitarily similar to the restriction onto its reachable subspace
im (Cgy) of the canonical model X% of an observable and co-energy

preserving s/s system with two-sided behaviour 2.

If these equivalent conditions holds, then the unitary similarity operator in
(vii) is equal to Cx|x with inverse (Cx|n) ™' = Pm€§|m.
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Proof. By Lemmas 6.2 and 7.2 in [AKSI1Db], Bys and €y are contractions,
and 'y = €xBy,. Consequently,

Tl = BLELES By < BEBy, Dyl = CeBeBLEL < EoCL.

This proves .

(i) < (ii): Condition (i) is equivalent to the statement that || BxQ_w|| <
B, Q_w| for all w € W_. Since Q_W_ is a dense subspace of H_, this
means that (i) and (ii) are equivalent.

(i1i) < (vi): The inequality BLELC By < BLVBy, becomes an equality if
and only if €x|x is isometric on the range of By, or equivalently, on R, since
the range of By, is a dense subspace of 8. For the same reason im (I'yy) =
im (€xVBy) is a dense subspace of im (Cx|x).

(v) < (vi): Ly is minimal if and only if €y, = €x|x is injective. The
operator €x, &, = € Pres, is a self-adjoint contraction on H, whose range
is contained in im (€x|x) C im (I'y), and it is equal to P if and only if
(vi) holds.

(i1) = (iii): Take system ¥ in Definition 4.1/ to be the canonical model
YW = (VE:H.,; W) of a controllable passive co-energy preserving s/s system
with two-sided behaviour 20. The past/present map of this system is equal
to gy, and hence by condition (ii), B5By < I'j;ly. On the other hand, by
([41), BEBs > ilap. Thus (i) = (iii).

(i) = (it): This follows from (4.1)).

(iv) = (v): We choose the system 3 in (iv) to be the system in (vii).
The present/future map of this system is P, and hence (iv) implies that
CsPr€s, > P,y On the other hand, QEP%CE is a self-adjoint contraction,

1

whose range is contained in im (€x|R) C im (I'yy), and therefore €y Prey <

Ijlm( o) Thus QﬁngQ:Z Pm

(vi) = (vit): This follows from Theorem [3.44]

(vii) = (w) If (vii) holds, then g is minimal and €x|x is unitarily
similar to P—7— Consequently, Cy Pres, = Pﬁ. The operator €y, is a

contraction Whose range is contained in im (Tyy) (because ¥ is controllable),
and hence (iv) holds.
0

Proposition 4.4.

(i) Every observable passive and co-enerqy preserving s/s system is opti-
mal.

(ii) Ewvery controllable passive and enerqy preserving s/s system is x-optimal.
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Proof. 1t suffices to prove Part (i), since Part (ii) then follows by duality.
Suppose that ¥ is observable and co-energy preserving. By Lemma |3.30
¢y is unitary. Thus,

BLBy = BLELEBy, = [yl
By Theorem [£.3], ¥ is optimal. O

Theorem 4.5. Let ¥ = (V, X, W) be a controllable passive s/s system. Then
the following conditions are equivalent:

(i) X is optimal,

)

(ii) Cx is an isometry,

(iii) Cx|lm maps X unitarily onto im (Lyy).
)

(iv) For all zg € X,

(AvailStor)
zol|% = |€szolla, = sup —[w, w]kz o). (4.2)
welxzg

Moreover, such a system is automatically minimal.

Proof. The equivalence of (i), (ii), and (iii) follows from the equivalence of
(i) and (vi) in Theorem [4.3] The equivalence of (iii) and (iv) follows from the

fact that the right-hand side of (4.2)) is equal to [|€sxo|[3,, , by the definition
of the norm in ‘H,. The minimality follows from Lemma 4.2 ]

Theorem 4.6. Let ¥ = (V; X, W) be a controllable passive s/s system with
present/future map Cyx, and let ¥ = (Vi; X1, W) be a minimal optimal s/s
system with present/future map s, which is externally equivalent to 3. Then
im (€x) C im (Cyx,), and X and Sy are contractively intertwined by €5 Cs.
In particular, any two externally equivalent minimal optimal s/s systems are
unitarily similar to each other.

Proof. Let 20, be the common future behaviour of 3 and X, and let X2+ =
EV_OQC%“;HJF,W) be the co-energy preserving observable system in Theorem
3.43, By Theorem , ¥ and X% are intertwined by €, whereas ¥ and

Y%+ are intertwined by €y, (recall that the present/future map of L2+ is

oce oce
x

the identity on Hy). Explicitly, this means [, ] is a stable future trajectory
of 3 if and only if [®*] is a stable future trajectory of ¥20+ whose initial
state is contained in im (€yx), and that [} ] is a stable future trajectory of ¥,

if and only if [Q%x] is a stable future trajectory of ¥+ whose initial state is
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contained in im (€y, ). By Theorem , im (Cy, ) = im (I'yy), and by Lemma
, im (€y,) C im (I'yy). Since €y, is a unitary map of X; onto im (I'y),
we can define F by E = Q:glle:z. Then F is a contraction from X to Xj, and
[&] is a stable future trajectory of ¥ if and only if [£*] is a stable future
trajectory of 3; whose initial state is contained in im (E). Consequently F
intertwines > and ;. O

Theorem 4.7. Let ¥ = (V; X, W) be a passive s/s system with two-sided
behaviour 23, past/future map Ty, past/present map By, present/future map
Cy, and unobservable subspace . Denote the orthogonal projection of ¥ onto
UL by Xyu. Then the following conditions are equivalent.

(i) X is x-optimal,

(i) If £y = (Vi; X1, W) is a passive s/s system with the same two-sided
behaviour 2 and present/future map Cx,, then €x€% < &y, 5, -

(iii) €x€% = Loyl

(iv) Eyo is minimal and if ¥, = (Vi; X1, V) is a passive observable s/s
system with the same two-sided behaviour 23 and past/present map

%21, then %gPHL%Z Z %%1%21.
(v) Byr is minimal and B5LPy1 By, = Plyer(rgy)) L -
(Vi) B3 maps UL unitarily onto (ker (Tgp))?t.

(vil) Syu is unitarily similar to the orthogonal projection onto (ker (Fgy))*t

of the canonical model ng of a controllable and energy preserving s/s

system with two-sided behaviour 3.

If these equivalent conditions holds, then the unitary similarity operator in
(vii) is equal to B3 with inverse (%’gml)*l = Py1 B (ker(Ign)) - -

Proof. This follows from Theorem [4.3] by duality, taking into account Lem-
mas [3.40] and 3.42] O

Theorem 4.8. Let ¥ = (V, X, W) be an observable passive system. Then
the following conditions are equivalent:

(i) X is x-optimal.
(i) By is a co-isometry.

(iii) Bs maps (ker (Toy)) L unitarily onto X.
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(iv) For all zg € im (By),

(ReqSupply) .
lzolZ = inf  [w_,w_]gz o). (4.3)
w_eW_
20=BxQ_w_

(v) If £y = (V1; X1, W) is a passive observable s/s system with the same
two-sided behaviour 2, if [§] and [%] are two externally generated
past trajectories of ¥ and Y, respectively, with the same signal part w,
then |[x(0)[|x = [|21(0)]|x, -

Moreover, such a system is automatically minimal.

Proof. The equivalence of (i), (ii) and (iii) follows from the equivalence of
(i) and (vi) in Theorem [4.7] The equivalence of (iii) and (iv) follows from
the fact that the set {Q_w_ | w_ € Q_} is dense in H_, plus the definition
of the norm in #_. Finally, the equivalence of (i) and (v) follows from the
equivalence of (i) and (iv) in Theorem [£.7 Also the minimality follows from
Theorem O

Remark 4.9. The identities and mean that the square of the
norms of in the states of a minimal optimal system and minimal x-optimal
system coincide, in the terminology of [Wil72], with the available storage and
required supply, respectively, of a minimal system with two-sided behaviour

20.

Theorem 4.10. Let ¥ = (V; X, W) be an observable passive s/s system
with past/present map By, let ¥; = (Vi; X1, W) be a minimal x-optimal
s/s system with past/present map By, which is externally equivalent to 3,
and denote the common past/future map of ¥ and X1 by T'ay. Then ¥y and
Y. are contractively intertwined by %g(%gl‘(ker(rm))L)*l. In particular, any
two externally equivalent controllable and energy preserving s/s systems are
unitarily similar to each other.

Proof. This follows from Theorem [4.6] by duality. O

Remark 4.11. Since, by Lemma [AKS11Dbl 5.5], the subspace
’Hg(?m[_“) = {Q_w_ | w_ € W_ has compact support}

is dense in H_, it is possible to further restrict the signal w_ in Definition 4.1
and in so that it has compact support. This implies that our definition
of optimality is the natural s/s counterpart of the definition of optimality
given in [AN96] in a scattering i/s/o setting (there the argument is based
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on trajectories defined on R* instead of R™). However, our definition of *-
optimality is more general than the corresponding definition of x-optimality
in [AN9G], since the x-optimal systems in [AN9G] are required to be observ-
able, and hence minimal.

Definition 4.12.

(i)

By the canonical model X%, = (V2. im (Ty), W) of a minimal optimal

s/s system with two- sided beha,mour 20 we mean the restriction of the

observable co-energy preserving model X%+ onto its reachable subspace

im (Tyy).

By the canonical model ©%,, = (V2 : (ker (Tgy)), W) of a minimal

m*0?

x-optimal s/s system with two-sided behaviour 20 we mean the orthog-
onal projection of the controllable energy preserving model 2225 onto

the orthogonal complement (ker (I'yy))* of its unobservable subspace
ker (I'gy).

Lemma 4.13.

(i)

(i)

The past/present map ‘Bmo of X8 is Tay with the original range space

H of Tay replaced by im (Tyy), and the present/future map €% of ¥

18 Lo gy~ Lhe adjoints of these operators are (BL ) = = ip it

and (Q:?nn())* - Pm

The past/present map BE.  of ¥ s Plxer(ron)) > and the present/future
map €T - of X s Lan|(ker(ryg))- - The adjoint of B is [y with

the original range space H_ of Ty replaced by (ker (Tay))™, and the

W \k
(Cnco)™ = 1 on(ram

Proof. These claims follow from the Theorems [3.43] and [3.45] O

Theorem 4.14. The operator sy, interpreted as an operator defined on
(ker T'gy)® with values in im (Tgy), intertwines the two s/s systems L2 and

2
U

Proof. This follows from Theorems and and and combined with
Theorem B.31] or Theorem B.35] ]

48



4.2 Passive balanced state/signal systems

There is another class of passive s/s system, the class of so called passive bal-
anced s/s systems, which we have not yet looked at, but which will be impor-
tant in our discussion of the reciprocal symmetry of a s/s system. The corre-
sponding i/s/o counterparts are found in, e.g., [Wil72] (for finite-dimensional
impedance systems) and [Sta05 Section 11.8] (for infinite-dimensional scat-
tering systems). (There also exists another type of balanced i/s/o systems
that we shall not discuss here, namely Hankel balanced. For various version of
Hankel balanced i/s/o systems, see e.g., [You86], [OMS90], [OW93], [OW96],
and [Sta0b, Section 9.5].)

Definition 4.15. A passive s/s system X = (V; X, W) with past/present
map By and present/future map Cy is passive balanced if ByBE = €4 Cx.

Lemma 4.16. A passive s/s system X is balanced if and only if its adjoint
>, 18 balanced, in which case

By, By, = ByBy,, ¢5 ¢y, = C s,
Proof. This follows from Definition and Lemma [3.40] O

Lemma 4.17. Let ¥ = (V; X, W) be a passive balanced s/s system with two-
sided behaviour 20, past/present map By, present/future map s, reachable
subspace R, and unobservable subspace 1. Then the following claims hold:

(i) X =RDU, and consequently, ¥ is minimal if and only if it is control-
lable, or equivalently, if and only if it is observable.

(ii) The restriction of 3 onto R is a minimal passive balanced realization
of W. This restriction coincides with the orthogonal projection of X
onto Ut.

(iil) BEBy = (TTaw)/? and €€ = (Tylyy) /2.

(iv) If ¥ is minimal, then ¥ is uniquely determined by 20 up to unitary
similarity. More precisely, if X1 and s are two minimal balanced ex-
ternally equivalent s/s systems, then 3y and ¥y are unitarily similar
with similarity operator 6521@21.

Proof of (i). 1t follows from Definition that
U = ker (€x) = ker (B%) = im (By) " .

Thus, R = im (By) = Y+, and so X = R D .
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Proof of (i1). Denote the restriction of ¥ to R by Yx. By (i), Y is
minimal. Moreover, By, is equal to By, interpreted as an operator with
values in R, B3, = Bj|n, €x, = Culn, and & is equal to €y interpreted
as an operator with values in im (€%) = R. Thus,

* * * *
%Em Sw %Z%zb‘i = €2€E|Sﬁ = zm€2ma

This proves that X is balanced passive.
Proof of (iii). We have

[l = BECLEs DBy = BEBBEDBy = (BLBy)2

Since BLVBy, is nonnegative, this implies that BEBy, = (TiTaw)/2 An
analogous computation shows that €x€% = (Taylyy,) Y2
Proof of (). This follows from (iii) and Theorem [3.44] O

The main question that still remains to be answered concerns the ex-
istence of a minimal balanced s/s realization of a given passive two-sided
behaviour. In order to prepare for a positive answer to this question we first
map the canonical *-optimal model X%, with state space (ker (I'yy))* onto
another canonical x-optimal model whose state space is equal to im (Iy)
with the range norm of I'yy.

Lemma 4.18. Let 20 be a passive two-sided behaviour on W with past/future

map Lag, and let X% = (V= im (Tay), W) and B¥,, = (V2_; (ker (Tgy)) =, W)

be the canonical models of a minimal optimal and minimal *-optimal s/s sys-
tem with two-sided behaviour 0. Let X, := im (I'yy) with the norm inherited

from H., denote V, = VB and denote |Tjy| := (Donliy) /2.

mo’

(i) Denote X, :=im (I'y), and equip X, with the range norm

xe = [yl y € (ker (Tay))™.

oy

Then X, is a Hilbert space which is contractively and densely embedded
in X,, and Lag|ker(rgy)) L > T€9arded as an operator with values in X,, is a
unitary map from (ker (Igy))* onto X,. The adjoint of the embedding
map X — X, is the restriction to X, of the operator |Tis|> = Toglhy.

(ii) Define

Tyl 0 0
Vo=1| 0 | oW
0 0 1y

Then 3¢ = (Vo; Xo; W) is a minimal x-optimal realization of 203, which
is unatarily similar to X%, with similarity operator (Tapjker(ry))t) -

m*o
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(iii) The past/present map By, of Xe is equal to Ty, regarded as an op-
erator with values in X,, and the present/future map Cx, of Xe is
the embedding operator X, — Hy. The adjoint of By, is By, =
(Can|(ker(rap))2) "5 and the adjoint of €, is €, = Twlyy;, regarded as
an operator with values in X,.

Proof of (i). It is easy to see that I'yyjer(ryy)) L, T€garded as an operator with
values in X,, is a unitary map from (ker (I'yy))* onto X,, and hence X, is a
Hilbert space. The embedding is dense since im (I'yy) is dense in im (I'yy).
Since im (I'yy) = im (|I'}y]), we can also interpret A, as the range space of
IUsgl, and ||, interpreted as an operator with values in A, is a unitary
map of X, onto X,.

To compute the adjoint of the embedding X, — X, we let z, € X, and
Yo € Xo, and compute

(1035l 7e, yo) s = (To, [Tiglto) . = (ITiyl e, [Lal*yo) v,
Since im (|I'3y[) y, is dense in A, we find that for all z, € A, and y, € X,

(xoa yO)Xo = ($07 |F§U|2yO)X.~

This proves that the adjoint of the embedding X, < X, is equal to |[3;|? R
The embedding is contractive since |Tjy|? is contractive.

Proof of (ii)-(iit). This follows from (i) and Theorem [4.10] O
Theorem 4.19. Introduce the same notations as in Lemma .

(i) Denote X :=im (|T4y|"/?) = im ((Taslhy)'/?), and equip Xy with the
range norm

152yl = Nyl € (ker (Tan))*,

Then Xs is a Hilbert space, X, is contractively and densely embedded
n Xo, and Xy 1s contractively and densely embedded in X,. The re-
striction of |Tyg|V/? to X, is a unitary map of X, onto Xs, and the
restriction of |I'}y 112 to X is a unitary map of X, onto X,. The ad-
joint of the embedding map Xo — Xy is the restriction to Xy of [Ty,
and the adjoint of the embedding map X5 — X, is the restriction to

Xo of [Pyl
(ii) Define
T /2 0 0
Vi = 0 Tyl 0 | Vi (4.4)
0 0 1w

Then Yo = (Vo; Xo; W) is a minimal balanced realization of 20.
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(ili) The past/present map By, of Xe is equal to I'yy, regarded as an op-
erator with values in Xg, and the present/future map Cs, of Mg is
the embedding operator Xo — H.. The adjoint of By, is B, =
(Can|(er(rap))t) " Taglixe, and the adjoint of &5, 1s equal to [Tyl re-
garded as an operator with values in Xy .

Proof of (i). The proof of part (i) is analogous to the proof of part (i) of
Lemma [£.18]

Proof of (ii). Let W = U B —)Y be a fundamental decomposition of the
signal space WW. If we denote the node spaces of >, ¥, and ¥, by R,, Ko,
and R,, respectively, then we get the three fundamental decompositions

Ro=Ro it H-Ro, Ro=RotH-Ro-, Re=RH-R.,
where

Roy = {[E”xé)ﬁo, Wy EU}, Roo = {[wg_”xeXo, w_ Ey},
and Ko+ and RK,. are defined analogously. We know that V, is maximal
nonnegative in K,, and that V, is maximal nonnetagive in K,, since ¥, and
Yo are passive. By Proposition (i), this implies that V, and V, have graph
representations over K., and R, with contractive angle operators A,, and
A, , respectively. Since V, C V,, we find that A, is the restriction of A,
to Rey, and it follows from the definitions of V, and V,; that V is the graph
of the operator A, that one gets by interpolating between A,, and A, in
the sense of [AS05a, Lemma 3.2]. By that lemma, As is a contraction, and
consequently, by Proposition 2.1} V, is maximal nonnegative in £. Since
Vo C V,, it is clear that V; inherits property from V,. Consequently,
Vi, generates a passive s/s system.

The inclusions V, C Vi C V, implies that every classical trajectory of
Y, is also a classical trajectory of ¥, and that every classical trajectory
of ¥ is also a classical trajectory of 3,. These two inclusions of classical
trajectories imply the corresponding inclusions for generalised trajectories.
Since ¥, and Y, have the same behaviour 2, also the behaviour of ¥, must
coincide with 2. Thus, these three systems are externally equivalent. Since
Y is controllable and A, is dense in X}, the system 3, is controllable, and
since Y., is observable also X is observable.

That X is balanced follows from (iii), which will be proved next.

Proof of (iii). By the same argument which we used above to prove (ii)
we find that By, is equal to By, composed with the embedding operator
Xo — Ay, and that €5, = &, . This combined with (i) and Lemmas
.13 and [4.18] leads to the characterisations of By, and €y, given in the
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statement of the theorem. We further conclude that 9B%,  is equal to the
adjoint of the embedding operator X, — X composed with B5, and that
€5, s equal to € composed with the adjoint of the embedding operator
Xo — X,. This combined with (i) and Lemmas and leads to the
characterisations of B3, and €5, given in the statement of the theorem. [J
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5 Passive Real State/Signal Systems and Be-
haviours

We are now ready to turn to the main subject of this paper, namely four
different types of symmetries that a passive s/s system may possess. In this
chapter we deal with real symmetry, and in the next three chapters we shall
discuss reciprocal symmetry, signature invariance, and transpose invariance.

We begin by discussion conjugate-linear unitary similarity between two
passive s/s systems.

Lemma 5.1. Let ¥ = (V; X, W) be a passive s/s system, let X1 and W, be a
Hilbert and a Krein space, respectively, and let Vx and Vyy be two conjugate-
linear unitary operators in B(X; Xy) and B(W; W), respectively. Define V}
by

Ve 0 0
Vi=|0 Ve 0]V (5.1)
0 0 VY

Then the following statements are true.
(i) X1 = (Vi; X1, Wh) is a passive s/s system.

(i) [&] is a classical trajectory of ¥ on some interval I if and only if [
is a classical trajectory of %1 on I

Vo

(iii) [3] is generalised trajectory of ¥ on some interval I if and only if

Hjxﬂ 1s a generalised trajectory of X1 on I.

(iv) If we denote the past, two-sided, and future behaviours of ¥ by W_,
20, and 20, respectively, then the corresponding behaviours of 1 are
equal to VW _, VWA, and VWA, respectively.

Proof. That V; is maximal nonnegative follows from the maximal nonnegativ-

Vi 0 0
ity of V together with the fact that the conjugate-linear operator [ g V6y VO }
w

is a unitary map from the node space of ¥ onto the node space of ;. That
(ii) holds follows immediately from (j.1]), and (iii) follows from (ii). Finally,

(iv) follows from (iii). O

We shall be especially interested in the case where the two systems ¥ and
Y1 in Lemma [5.1] coincide and the operators Vy and V), are conjugations
(i.e., conjugate-linear unitary involutions).
Definition 5.2. A passive s/s system ¥ = (V; X, W) is called (Cy;Cyy)-real
if (1.15)) holds, where Cx and Cyy are conjugations in X and W, respectively.

o4



Instead of using the characterisation in Definition for reality of a
system we can also use the following alternative characterisations.

Lemma 5.3. Let ¥ = (V; X, W) be a passive s/s system, let Cx and Cy, be
conjugations in X and VW, respectively, and let I C R be a nontrivial interval
with finite left end-point. Then the following conditions are equivalent:

(i) X is (Cx;Cyw)-real;

Cyx

wa} 1s a classical

(ii) [&] is a classical trajectory of ¥ on I if and only if |
trajectory of ¥ on I.

Cxx

(iii) [ ] is generalised trajectory of > on I if and only if [wa} is a gener-

alised trajectory of X2 on 1.

Proof. That (i) = (ii) = (iii) is seen as in the proof of Lemma [5.1]
Conversely, since a generalised trajectory is classical if and only if it has
the necessary smoothness (see Lemma [3.4)), (iii) = (ii). Finally, (i) = (i)

since the generating subspace is the set of all initial values of [ﬂ at the left

w
end-point of I for the set of all classical trajectories [ | at the interval I. [

Lemma 5.4. If ¥ = (V; X, W) is a simple passive s/s (Cx;Cyw)-real system,
then Cy 1s uniquely determined by 3 and Cyy.

Proof. This follows from Lemma [3.50| O]

Lemma 5.5. Let ¥ = (V; X, W) be a passive (Cx;Cy)-real system, and let
¥y = (Vi; X1, W) be unitarily similar to X2 with similarity operator V. Then
¥ is (Cay; Cy)-real with Cx, = VCx VL.

Proof. This follows from the fact that

CX1 0 0 _VCval 0 0
0 CX1 0| V= 0 VCXV_I 0|W
0 0 Cw 0 0 Cw
[VCy 0 0 Yy 0 0
=10 VCy O0|V=|0V 0|V=V. O
0 0 Cw 0 0 1y

Lemma 5.6. A passive s/s system ¥ = (V; X, W) is (Cx;Cw)-real if and
only if the adjoint system 3, = (Vi; X, —=W) is (Cx;C_w)-real, where C_y, =
Zow,-w)CwZ—w w)-

Proof. This follows from Lemma [2.11] and Definitions and [5.2] ]
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Lemma 5.7. If the passive s/s system ¥ = (V; X, W) is (Cx,Cy)-real, then
the reachable subspace Ry, the unobservable subspace s, and their orthogonal
complements are invariant under Cx, i.e.,

Ry = CxRy, Us =Cally, RE=CrRs, Ry =CrNRi. (5.2)

Thus, the restriction of Cx to each of these subspaces is a conjugation in the
corresponding subspace.

Proof. By Lemma [5.3] [§ ] is an externally generated stable past trajectory

of ¥ if and only if [c o i)} is an externally generated stable past trajectory of

3. This implies that the image of H°(20™) = {Q_w | w € Y} under By is
invariant under Cy. The reachable subspace R is the closure of this image
in X, and consequently fR is invariant under Cy.

That 4 is invariant under Cy follows immediately from Lemma [5.3] Fi-
nally, the invariance of &+ and ¢ follows from Lemma [2.11] O

Lemma 5.8. Let ¥ = (V; X, W) be a passive (Cx,Cy)-real s/s system.

(i) The restriction Yx = (Vir; B/, W) of £ onto its reachable subspace R is
(Cor, Cyy)-real, where Cox = Cx|m.

(i) The orthogonal projection X = (Vi ; U W) of ¥ onto the orthogo-
nal complement to its unobservable subspace i is (Cy1,Cyy)-real, where
CML - C)(mL.

Proof. This follows from Lemma and formulas and . O
Definition 5.9. Let Cyy be a conjugation in the Krein space W.
(i) A passive two-sided behaviour 20 on W is called Cyy-real if
W =W (5.3)

(here the conjugation Cyy on K%(W) induced by the conjugation Cyy €
B(W) is defined as in Remark [L.1]).

(ii) A passive s/s system ¥ = (V; X, W) is called externally Cyy-real if its
two-sided behaviour is Cyy-real.

It follows from (3.8)—(3.9) that the equality (5.3) is equivalent to each of

the following equalities:

Q;U_A,_ — CWQU.H QU_ - wa_, (54)
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where 20, and 20_ are the passive future and past behaviours on WV defined
in terms of 20U by (3.8)). Moreover, (5.3) and (5.4) are equivalent to the

corresponding relations
wit = ¢t wlH = ¢t (5.5)
for the orthogonal complements.

Lemma 5.10. If ¥ = (V; X, W) is a passive (Cx,Cy)-real s/s system, then
it is externally Cyy-real.

Proof. Let 20, be the passive future behaviour of ¥, and let w, € 20,.
Then there exists a unique stable externally generated future trajectory [w/ ]

of ¥ (with signal part w, ). By Lemma this implies that [CX o } is an

externally generated stable future traJectory of 3. Consequently, Cyw, €
25, . This proves that /20, C Q.. By applying Cyy to both sides of this
inclusion and taking into account that C3), = 1yy, we find that C,,20, C 20, .
Thus Gy, =W, , and by the comment after Definition [5.9] 3 is externally
Cyy-real. O

Lemma 5.11. A passive two-sided behaviour 20 on the Krein space W is
Cw-real if and only if the adjoint behaviour 2, is C_yy-real, where C_yy =
TZov,-mCwZi—wwy)- In particular, a passive s/s system ¥ = (V; X, W) is
externally Cyy-real if and only if the adjoint system 3. is externally C_yy-
real.

Proof. This follows from Lemma [2.11] and [3.25] and Definitions [3.24] and [5.9] .

Lemma 5.12. Let 2 be a Cyy-real passive two-sided behaviour on W, with
the corresponding past and future behaviours W and W, .

(i) w- € (W )zfcmd only if Cyw_ GIC(QIT ) In this case, ||Q_Cyw_||_ =

1Q-w_ ..

(i) wy € K(2Wy) if and only if Cwwy € K(W). In this case |Q1Cywy |3, =
Qw3 -

(ili) w € L(2W) if and only if Cww € L(W). In this case ||QChw|pay) =
1Qu[pa)
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Proof of (i). We have for each w_ € K?(W),

1Q-Cww-|3,

sup {[wa, + 2z, Cw_ + Z]KE(W)‘ z € QU[_L]}

sup {[wa + Cywz, Cyw + sz]Kz(W)’ Cwz € QU[_L]}

= sup {[w+z,w+z]K3(W)‘ z € QU[,“} = |Q_w_|3, .

Thus, Cyw_ € KM if and only if w_ € KM, and |Q_Cpyw-_|5_ =
1Q-w—|[3_.

Proof of (ii). This proof is analogous to the one above.

Proof of (iii). Let w € L£(20), and choose z,,, € D°(2J) such that x,, — Qw
in D(20) as m — oo. Let R be a bounded right-inverse of the quotient map
Q, and define w,, := w + R(z,, — Qw). Then Qu,, = x,, = Qw in D(2),
wy, € L°(2), and w,, — w in K*(W) as m — oco. Each w,, can be written
in the form w,, = 2z, + zin, where z,, € 20 and zjn e WM, and since both
20 and 20 are invariant under Cyy, we conclude that Cyyw,, € £°(20), and
Cwwp, — Cyw in K*(W) as m — oco. Moreover,

Hﬂfm”%)(an) = HmeHZD(QB) = [W*Zmaﬂfzm]KE(W) - [7T+2L77T+ZMK1(W)

= [W—CWZm,W—CWZm]KE(W) - [7T+szjn7 7T+CWZIn]KJ2r(W)

= ||chwm||%(mw)~

Applying the same identity to x,, — z, we find that QCw,, is a Cauchy
sequence in D(2), and hence it converges to some limit, that we denote by
Cx. Since the restriction of @ to £(20) is closed as an operator with values
in D(W), and since Cpw,, — Cpw in K*(W) as m — oo, we find that
Cx = QCyw. This proves that Cyyw € L(2). Letting m — oo in the equality
|m D@y = |QCww || p@s) we find that [|z[|pan = [[QCww||pan).- O

Lemma 5.13. Let 203 be a Cyy-real passive two-sided behaviour on W, with
the corresponding past and future behaviours 2 and W, .

(1) There is a unique conjugation Cy_ in H_ such that Cy_Q_w_ = Q_Cyw_
for all w_ € K(QoH).

(i) Thereis a unique conjugation Cy, in Hy such that Cy, Qrwy = Q1 Cphwy
for all wy € K(20,).

iii) There is a unique conjugation Cpuy in D(Q) such that CpuonQw =
(20) (20)
QCww for all w € L().
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Proof. By Lemma M(i), w_ € KM if and only if Cyw_ € K(QUM), in
which case ||Q_Cyww_||3_ = ||@-w_||3_. This enables us to define a unitary
operator Cy_ in H_ by the formula Cy_ Q_w_ by Cy4_ Q_w_ = Q_Cyw_,
w_ € K(W_). This operator is conjugate-linear since )_ is linear and Cy_
is conjugate-linear. Thus, Cy_ is a conjugation in H_.

The operators Cy, and Cpgy) are defined analogously, and the proofs
that also these two operators are conjugations are the same as the proof

given above, with part (i) of Lemma replaced by parts (ii) and (iii). O

Theorem 5.14. Let X = (V; X, W) be a simple conservative externally Cyy-
real s/s system. Then there ezists a unique conjugation Cx in X such that 3
is (Cx,Cyy)-real.

Proof. Let xg € X, and choose some stable two-sided trajectory [ | of ¥ such
that x(0) = xo (this is possible since ¥ is both forward and backward well-
posed; see [AKSIID, Remark 4.2]). Then w € £(2). By Lemma [5.12{(iii),
also Cyyw € L(20). To this trajectory corresponds a unique stable two-sided
trajectory [, ] of X. Define Cxxg := #(0). We claim that this is a well-
defined operator which is a conjugation.

First of all, we need to check that Cy is well-defined. However, this follows
from the fact that it preserves norms, and this is true because the conjugation
Cyy does not change the norm in K?(W), and

zol|3 = [w, w]r2on) = [Cww, Cww]r2pny = [|2(0)]%-

Thus Cyy is isometric. It is also easy to see that Cyy is an involution, and
that Cyy is conjugate-linear. Being an involution, Cyy is surjective, and hence
unitary. By Lemma Cyy is a conjugation.

By construction, if [J] is a stable two-sided trajectory of ¥, then the
stable two-sided trajectory [, | whose signal part is Cyyw satisfies #(0) =
Cxx(0). The set of stable two-sided trajectories of ¥ is shift-invariant, and
by applying the same argument to a shifted trajectory we find that [gxfu]
is a stable two-sided trajectory of X if and only if [ ] is a stable two-sided
trajectory of 2. In particular, the same statement applies to classical stable

two-sided trajectories also. Evaluating such trajectories at zero, we find that
z Cxz
[d € V if and only if [Cﬁm } € V. This shows that X is (Cy,Cyy)-real.

Cyww

The uniqueness of Cy follows from Lemma [5.4] O

Theorem 5.15. Let ¥ = (V; X, W) be a observable co-energy preserving
externally Cyy-real s/s system. Then there exists a unique conjugation Cy in
X such that ¥ is (Cx,Cyy)-real.
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Proof. This proof is analogous to the proof of Theorem (with two-sided
trajectories replaced by future trajectories), and it is left to the reader. (Re-
call that the present/future map of an observable and co-energy preserving
system is unitary.) O

Theorem 5.16. Let ¥ = (V; X, W) be a passive controllable enerqy preserv-
ing simple conservative externally Cyy-real s/s system. Then there exists a
unique conjugation Cy in X such that 3 is (Cx,Cy)-real.

Proof. Let zq € X, and choose some stable past trajectory [4- ] with w_ €
IC(QB[_H) such that z_(0) = x¢; this is possible since the past/present map By,
is a unitary map of #_ onto X. By Lemma m(i), also Cyyw_ € K,

To this trajectory corresponds a unique stable past trajectory Ci;_] of 3.

Define Cyzo := #(0). As in the proof of Theorem we see that Cy is a
conjugation.

Let w € 20. and let [{ ] be the unique externally generated stable two-
sided trajectory of ¥ with signal part w. Then by the preceding argument,
Cxx(0) = BxCyym_w. By shifting the trajectory [§ ] to the left or right we
find that the stable two-sided trajectory whose signal part is Cyyw is equal
to [gj\jm The set of initial states x(0) of the type x(0) = Byr_w for some
w € W is dense in X, and consequently, it is true that if [} ] is an arbitrary

X

stable future trajectory of X, then also [g is a stable future trajectory

wwy

of ¥. By Lemma , this implies that X is (Cy; Cyy)-real. O

Corollary 5.17. Let 23 be a Cyy-real passive two-sided behaviour on W, with
the corresponding past and future behaviours 0 and W, .

(i) The canonical controllable energy preserving realization 2225 of W s
(Cy_, Cyy)-real.

(ii) The canonical observable co-energy preserving realization Y22+ of 27 is
(Cy,  Cyy)-real.

(iii) The canonical simple conservative realization X2 of 1 is (Cowy, Cw)-
real.

Proof. That these three canonical models are real for some conjugations in
their state spaces follows from Theorems [5.16] [5.15] and applied to these
models. That the conjugations are precisely those listed above can be seen
by comparing the proofs of the cited theorems with Lemma [5.13 [
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Corollary 5.18. The unique state space conjugation Cx in Theorem|5.14) is
given by

Cx = (BY) 'Coam By = &' Copm) (€3) 7 (5.6)
here €21 and BY = (€Y1)* are the two-sided present/future and past/present
maps of the simple conservative system 3.

Proof. This follows from Theorem [3.47} Lemma [5.5] and Corollary [5.17, O

Theorem 5.19. Let ¥ = (V; X, W) be a passive (Cx,Cy)-real system with
past/present map By, present/future map Cyx, two-sided behaviour WW, and
past/future map yg. Let Cy_ and Cyy, be the conjugations in parts (i) and
(it) of Lemma[5.13 Then By is (Cy_,Cx)-real, €x is (Cx,Cy, )-real, and
Loy is (Cy_,Cy, )-real.

Proof. 1f [ 7] is an externally generated stable past trajectory of 3, then by
Lemma also [ ccv)f, fu} is an externally generated stable past trajectory of >..
This implies that BQ_Cyyw = Cx+BQ _w for all w € WW_. Here we can replace
Q_Cyww by Cy_Q_w to get BCy_Q_w = CxBQ_w for all w € W_. Since
Q_2_ is dense in H_ we find that BCy_ = CxB, i.e., By is (Cy_,Cx)-real.

Likewise, if [ ] is a stable future trajectory of 3, then by Lemma also
[Ccv’;fv] is a stable future trajectory of ¥, i.e., Q@ Cyyw = €xCrx(0). Here we
can replace Q4Cyy by Cy, Q4w. This implies that €sCx = Cy, €x, and so
Cy is (Cx, CH+)—real.

Finally, I'yy = €xBy; is (Cy_, Cy, )-real since By is (Cy_, Cx)-real and Cx,
is (Cx,Cy_ )-real. O

Corollary 5.20. Let ¥ = (V; X, W) be a passive (Cx,Cy)-real s/s system
with past/present map By, and present/future map Cy.

(i) If = is observable, then Cx = €5'Cy, Cs.
(ii) If ¥ is controllable, then C is the closure of the operator
ByCor_ (B ter(ma))t) s
which is defined on im (By).

(i) If X is simple, then Cx is the closure of the operator which is defined
on im (By) + (ker (€x))* by

Cote — @glcy+€zl‘0, To € (ker (Q:E))J‘,
o BCi_ (B (ker(my)) L) o, o € im (By)).
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Proof. By Theorem[5.19| Cx*By, = BxCy and €xCy = CyCyx. From this claim
(iii) follows immediately. Claims (i) and (ii) are special cases of (iii). O

Theorem 5.21. Let ¥ = (V; X, W) be a minimal optimal externally Cyy-real
s/s system. Then there exists a unique conjugation Cx in X such that 3 is
(Cx,Cyw)-real.

Proof. The uniqueness claim follows from Lemma [5.4] so it suffices to prove
that X is (Cy, Cyy)-real for some conjugation Cy. By Theorem 4.6/and Lemma
to do this it suffices to prove the corresponding statement for the canon-
ical minimal optimal model % = and by Lemma , it then suffices to prove

the same statement for the canonical observable co-energy preserving model
Y8+ But according to Theorem m, 2+ s (Ca, , Cyy)-real. ]

oce oce

Theorem 5.22. Let ¥ = (V; X, W) be a minimal x-optimal externally Cyy-
real s/s system. Then there exists a unique conjugation Cy in X such that ¥
is (Cx, Cyy)-real.

Proof. The proof of Theorem [5.22] is analogous to the proof of Theorem
L.211 O

Theorem 5.23. Let 3 = (V; X, W) be a minimal passive balanced externally
Cyy-real s/s system. Then there exists a unique conjugation Cx in X such
that 3 is (Cx, Cyy)-real.

Proof. The uniqueness of Cx again follows from Lemma [5.4] so it suffices to
prove the existence of Cy, and by Lemma [5.9] it suffices to prove that the
minimal optimal system ¥, = (Vg; X5, W) constructed in Theorem is
(Cx,,Cw)-real for some conjugation Cy, in Xg. As we shall see below, Cx,
is the restriction to Xy of Cy, .

By Lemma [5.19, I'yCy_ = Cy T'ap. As can easily be seen, this implies
that Tyl commutes with Cyy, . Since |Thy|/2 = (Dggl'gy)/* can be obtained
as a uniform limit of powers of I'yl'yy, this implies that Cy, commutes with
[T3y]"/%, and hence also with the inverse of the restriction of [Tg;|"/? to X, =
im (Tay) = (ker (|T3y))* = (ker (|T3y]*2))*. It follows from the definition of
Xy that Xy is invariant under Cy, . Moreover, with the notations of Lemma
and Theorem for all x € X, we have

ICs, %, = I(Taplia) ™ *Cov, %, = l1Coe, (ITali) ™23,
= [I(ITagljx,) ™

Thus, the restriction Cx, of Cy, to Xy is an isometric operator in X, and
hence a conjugation in Xy. That Xg is (Cx,,Cw)-real follows from ({4.4)
and the fact that X, is (Cx,,Cy)-real, where Cy, is the restriction of Cy, to
X. O

% = llzl, .
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6 Passive Reciprocal State/Signal Systems and
Behaviours

Earlier in this article we have seen two types of transformations of passive
systems, namely the transformation which takes a system ¥ to its dual X,
introduced in Lemma [2.6] and the conjugate-linear unitary transformation
in Lemma [5.1 Here we shall study a third type of transformations which
contains the duality transformation in Lemma [2.6] as a special case.

Lemma 6.1. Let X = (V; X, W) be a passive s/s system with adjoint 3, =
(Vi; X, =W), let Xy and Wy be a Hilbert and a Krein space, respectively, let
Vy be a linear unitary operator in B(X; X1), and let Ryy be a linear skew-
unitary operator in B(W;W,).

(i) Define V; by

~Vy 0 0
Vi=| 0 Vy 0 |VH] (6.1)
0 0 Rw

Then ¥y = (Vi; X1, Wh) is a passive s/s system.

(i) [&] is a classical trajectory of 3. on some interval I if and only if

|: Vxx

R W)w} 15 a classical trajectory of ¥y on I.

(iii) [&] s a generalised trajectory of ¥. on some interval I if and only if

[RWIKX&W)UJ} s a generalised trajectory of X1 on I.

(iv) If we denote the past, two-sided, and full behaviours of ¥ by WW_, W,
and W, respectively, then the corresponding behaviours of X1 are equal

to RWHQU[JFL], RwAWH and RWHQLIT[}], respectively.

Proof. This follows from Lemmas[2.6]and and the fact that both Vx and
IwZ—w,w) are unitary operators in B(X; X;) and B(—W, W)), respectively.
]

We shall be especially interested in the case where the two systems > and
>1 in Lemma 6.1 coincide and both Vy and R,y are involutions, i.e., Vy is a
signature operator and R,y is a skew-signature operator.

Definition 6.2. A passive s/s system ¥ = (V; X, W) is called (Jx;Lw)-
reciprocal if (1.16) (or equivalently, (1.20))) holds, where Jx is a signature
operator in X and Zy is a skew-signature operator in W.
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Instead of using the characterisation give above for reciprocity of a system
we can also use the following alternative characterisations.

Lemma 6.3. Let ¥ = (V; X, W) be a passive s/s system, let Tx be a sig-
nature operator in X, let Tyy be and skew-signature operator in W, and let
I C R be a nontrivial interval with finite left end-point. Then the following
conditions are equivalent:

(i) X is (Jx;Lyw)-reciprocal;

(i) [&] is a classical trajectory of ¥ on I if and only if [IWI({);\:;:,W)W] s a
classical trajectory of ¥ on I
(iii) [3] is a generalised trajectory of ¥, on I if and only if [IWI({/\;/\T,W)W}

15 a generalised trajectory of X on 1.

Proof. The proof is analogous to the proof of Lemma [5.3 m

Lemma 6.4. Let ¥ = (V; X, W) be a passive (Jx;Ly)-reciprocal system,
and let 1 = (Vi; X1, W) be unitarily similar to 3 with similarity operator V.
Then Yy is (Jx,; Tyw)-reciprocal with Ty, = VIV

Proof. The proof is analogous to the proof of Lemma [5.5] m

Lemma 6.5. A passive s/s system X = (V; X W) is (Jx; Lw)-reciprocal
if and only if the adjoint system 3, = (Vi; X, W) is (Jx; Z_w)-reciprocal,
where I,W = I(W,—W)ZWZ(—W,W)-

Proof. The proof is analogous to the proof of Lemma [5.6 O]

Lemma 6.6. If the passive s/s system ¥ = (V; X, W) is (JTx, Ly)-reciprocal,
then the reachable subspace Ry, and the unobservable subspace Us, of ¥ satisfy

TRy =4S, Talls =Ry, TR =Us, Tails = Ry (6.2)

In particular, > is minimal if and only if ¥ is controllable, or equivalently,
if and only if X is observable.

Proof. The proof is analogous to the proof of Lemma [5.7] O

Lemma 6.7. Let X be a simple passive s/s system which satisfies for
some unitary operator Jy and some skew-signature operator Lyy. Then Jx
is a signature operator, and hence ¥ is (Jx;Iw)-reciprocal. Moreover, Jx
15 determined uniquely by > and ZLyy.
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-Jx 0 0
Proof. Denote D = [ 0 T

] It follows from ((1.16) that

v =p-ly.

0
Iy

On the other hand, it is easy to check that D is skew-unitary, and hence by
by (1.16) and Lemma with V replaced by VI,

Vi = (pyHhH = pv.
Thus, DV = D~ 'V. Here

~Jst 00 ~J: 0 0
D'V=| 0 J 0|V=]0 J 0|V
0 0 I, 0 0 Iy

Multiplying this identity by D~! to the left we get

J' Ty 0 0
V= 0  J¢J: 0|V
0 0 Iy

By Lemma j;lj; = ly, i.e., Jy is a signature operator.
By comparing ([L.16)) to (L.19) we find that (1.20) holds. By Lemma[3.51]

Jx is determined uniquely by V', V., and ZyyZ(_yyy), and hence by V' and
Tyy. m

Definition 6.8. Let 7,y be a skew-signature operator in the Krein space W.
(i) A passive two-sided behaviour 20 on W is called Zyy-reciprocal if
W = T,y AWH (6.3)

(here the skew-signature operator Zy, on K%(W) induced by the skew-
signature operator Zyy € B(W) is defined as in Remark [L.1)).

(ii) A passive s/s system X = (V; X, W) is called externally Tyy-reciprocal
if its two-sided behaviour is Zyy-reciprocal.

It follows from (3.8)—(3.9) that the equality (6.3) is equivalent to each of
the following equalities:

W, = TyAw™, W = 1,Aw" (6.4)

where 20, and 20_ are the passive future and past behaviours on W defined
in terms of 20 by (3.8)).

65



Lemma 6.9. If ¥ = (V; X, W) is a passive (Tx,y)-reciprocal s/s system,
then it is externally Ty -reciprocal.

Proof. The proof if analogous to the proof of Lemma [5.10] m

Lemma 6.10. A passive two-sided behaviour X3 on the Krein space VW is
Ty -reciprocal if and only if the adjoint behaviour W, s L _y-reciprocal,
where Z_yy = Loy, -y IwZi—ww). In particular, a passive s/s system ¥ =
(V; X, W) is externally Tyy-reciprocal if and only if the adjoint system %, is
externally Z_yy-reciprocal.

Proof. This follows from Lemma and and Definitions and
]

Lemma 6.11. Let 20 be a Iy -reciprocal passive two-sided behaviour on W,
with the corresponding past and future behaviours W _ and W, .

(i) w_ € K™Y if and only if TyAw_ € K(20,). In this case, |Q TysAw_|5, =
1Q-w—]l3_.

(i) wy € K(20,) if and only if CywfTw,, € K(B™). In this case ||Q_TyysTw, |2
Qw3

(ili) w € L(W) if and only if TyAw € L(2V). In this case ||QLyAw || pay) =
|Qullpaw).

Proof. The proof is analogous to the proof of Lemma [6.11] O

Lemma 6.12. Let 0T be a Lyy-reciprocal passive two-sided behaviour on W,
with the corresponding past and future behaviours 20_ and W, .

(i) There is a unique unitary operator Viy_ .,y in B(H_;Hy) such that
Viu @ w- = Q. Insw_ for all w_ € K(W).

(i) There is a unique unitary operator Vi, 3y in B(Hy;H-) such that
Vo, ) Qrwy = Q-TywSAw, for all wy € K(2,). This operator is
the adjoint of the operator Viy_ .y in (i).

(ili) There is a unique signature operator Jpey) in D(20) such that Tp ey Qw =
QZwSAw for all w € L(2V).

Proof. The proof is analogous to the proof of Lemma [5.13] O
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Theorem 6.13. Let ¥ = (V; X, W) be a simple conservative externally Tyy-
reciprocal s/s system. Then there exists a unique signature operator Jx in
X such that ¥ is (Jx, Ly)-reciprocal.

Proof. The uniqueness of Jx follows from Lemma [6.7] so it suffices to prove
the existence of Jy.

The system ¥ = (V;AX;W) is a simple conservative realization of its
behaviour 20, and hence X, = (V,; X', W) is a simple conservative realization
of the dual behaviour 20, = I(W7,W)HQIT[L]. Recall that V, is given by

(1.19)). Consequently, the s/s system whose generating subspace is equal to
—Tx 0 0

[ 8X 165 I0 } VH s a simple conservative realization of Z,yf20,, which is
14%

assumed to be equal to 2. Since two simple conservative realizations of the
same passive behaviour are unitarily similar, there exists a unitary operator

Jx in X such that (1.16)) holds. By Lemma , J~ is a signature operator
which is uniquely determined by ¥ and Zyy. O

Corollary 6.14. Let 25 be a Zyy-reciprocal passive two-sided behaviour on
W. Then the canonical simple conservative realization X2 of 27 is (Ip@), Iw)-
reciprocal, where Jpey) is the operator in Lemma[6.13,

Proof. The proof is analogous to the proof of Corollary [5.17] [

Corollary 6.15. The unique signature operator Jx in Theorem|6.15 is given
by

jX — (%Eﬂ>_1j’D(Qﬂ)€Bbll — Q:EIID’D(QU)(Q:E:H)_I; (65)
here €21 and B = (€Y)* are the two-sided present/future and past/present

maps of the simple conservative system X and Jpqy) is the signature operator
in Lemma [6.12.

Proof. This follows from Theorem [3.47} Lemma [6.4] and Corollary [6.14 O

Theorem 6.16. Let ¥ = (V; X, W) be a passive (Tx, Lyy)-reciprocal system
with past/present map By, present/future map Cx, and two-sided behaviour
0. Let Viu_,) and Vi, 3y = V(*H77H+) be the unitary operators in Lemma
0.12. Then

By = IxC:Vu_ny, € =Vau, n)B5Tx, Taw=Vo_ u TV,

Proof. The proof of the formula By = Jx€:V3_ »,) is analogous to the
proof of Theorem [5.19, Taking the adjoint of this formula we get the second
formula €z = Vi3, 5 yB5LJx. Finally, these two formulas together with the
fact that ij = Q:E%E gives the third formula Fm} = V(H_,H+)F§nv(?{_,7{+)~ L]
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Theorem 6.17. Let > = (V; X, W) be a minimal passive balanced externally
Tyy-reciprocal s/s system. Then there erists a unique signature operator Jx
in X such that 3 is (Jx, Ly)-reciprocal.

Proof. The proof is essentially the same as the proof of Theorem [6.13] [
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7 Passive Signature Invariant and Decompos-
able State/Signal Systems and Behaviours

In this section we study yet another class of symmetries of passive s/s systems
and passive behaviours, where the symmetry is with respect to two signature
operators Jy and Jyy in the Hilbert state space X and the Krein signal space
W, respectively. It turns out that this class of symmetries is related to the
question when a passive s/s system can be decomposed into two independent
subsystems.

Definition 7.1. A passive s/s system X = (V; X, W) is called (Jx; Jw)-
signature invariant if ((1.17)) holds, where Jx and Jy are signature operators
in X and W, respectively.

Definition 7.2. Let Jy be a signature operator in the Krein space W.

(i) A passive two-sided behaviour 20 on W is called Jy-signature invariant
if
W = Jw (7.1)

(here the signature operator Jy on K?*(W) induced by the signature
operator Jyy € B(W) is defined as in Remark [L.1)).

(i) A passive s/s system X = (V; X, W) is called externally Jw-signature
wwvariant if its two-sided behaviour is Jyy-signature invariant.

Remark 7.3. It is possible to develop a symmetry theory which is com-
pletely analogous to the one in Section [5| by replacing all conjugate-linear
operators appearing in that section by linear operators, but keeping the other
properties of the operators intact. This has the effect of converting all the
conjugations used in Section [5| to signature operators, and it converts the
notions of (Jx, Jw)-reality and Jy-reality introduced in Definitions and
into the notions of (Jx, Jw)-signature invariance and Jy-signature in-
variance introduced in Definitions and [7.2] In particular, all the lemmas,
theorems, and corollaries in Section [5| remain with these replacements. All
the proofs remain the same.

In particular, the following results are true:

Lemma 7.4. If ¥ = (V; X, W) is a simple passive s/s (Tx; Jw)-signature
mvariant system, then Jx is uniquely determined by > and Jyy.

Proof. This is the linear analogue of Lemma [5.4] O
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Lemma 7.5. Let ¥ = (V; X, W) be a passive (Tx; Tw)-signature invariant
system, and let X1 = (V1; X1, W) be unitarily similar to 3 with similarity
operator V. Then 3y is (Jx,; Jw)-signature invariant with Ty, = VIV L.

Proof. This is the linear analogue of Lemma [5.5] [

Lemma 7.6. If ¥ = (V; X, W) is a passive (Jx, Jw)-signature invariant
s/s system, then it is externally Jw-signature invariant.

Proof. This is the linear analogue of Lemma [5.10] O

Theorem 7.7. Let ¥ = (V; X, W) be a passive externally Jy-signature
invariant s/s system which belongs to one of the classes a)—f) listed in Section
[1. Then there exists a unique signature operator Jx in X such that X is
(Tx, Jw)-signature invariant.

Proof. This is the linear analogue of Theorems [5.14] [5.15] [5.16], [5.21], [5.22]
and and it can be proved in the same way as the analogous results were
proved in Section [5]

For completness, let us also outline a slightly different proof which can be
used in the cases where the system is observable and co-energy preserving, or
controllable and energy preserving, or simple and conservative. The unique-
ness still follows from Lemma [7.4, Thanks to Lemma [7.5] for the proof of
existence of the operator Jy it suffices to prove existence in the case where
¥ is one of the canonical models presented in Sections [3} In the case of the
observable co-energy preserving model ¥+ the controllable energy preserv-
ing model X3, and the simple conservative model £33 one can again start
by proving the analogue of Lemma (with the same proof as in Section
5)), and after that one gives a direct proof of the analogue of Corollary
by appealing to the explicit descriptions , , and that we

have for the generating subspaces of these three canonical models. O]

As we mentioned at the beginning of this section, signature invariance is
related to the decomposability of a passive s/s system or behavior.

Definition 7.8.

(i) A passive s/s system ¥ = (V; X, W) is decomposable if there exist
orthogonal decompositions X = &} & &, and W = W; B W,, out
of which at least one is nontrivial, such that, with respect to these
decompositions, V' has the representation

21+ 29 Zi X
V= T+ To ZT; G‘/;va XZ ,i:1,2 . (72)
w1 + w9 Ww; W@
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The system ¥ is non-decomposable if it such a decomposition does not
exist.

(ii) A passive two-sided behavior on a Krein space W # {0} is decomposable
if there exists some nontrivial orthogonal decomposition W = W, HW,
(nontrivial means that neither W; = {0} nor W, = {0}, or equivalently,
neither W; = W nor W, = W) such that 20 has the representation

W = {w; + wo|w; € W, :==WNK*W,), i =1,2}. (7.3)

A passive future or past behavior is decomposable if the correspond-
ing two-sided behavior is decomposable in the above sense. A passive
behavior (two-sided, future, or past) is non-decomposable if it is not
decomposable in the above sense.

Lemma 7.9. Let X = (V; X, W) be a passive s/s system, and let 2 be a
passive two-sided behavior in VW

(i) If ¥ is decomposable, then ¥; = (Vi; X;, W), i = 1,2, where X;, W,
and V; are as in Deﬁm’tion are passive S/s systems.

(ii) If 20 is decomposable, then 2W;, i = 1,2, where W; and 2, are as
in Definition |7.8, are passive two-sided behaviors in WW. The same
statemet is also true for passive future and past behaviors.

The easy proof of this lemma is left to the reader.

Thus, a passive s/s system or a passive two-sided behavior is decompos-
able if and only if it can be split into two independent passive subsystems or
passive sub-behaviors, respectively. The same statement is true for passive
future and past behaviors, too.

The following theorem establishes a connection between signature invari-
ance and decomposability of a passive system or behavior. It uses the fol-
lowing agreement:

Agreement 7.10. A signature operator [Jyy, in the Krein space is nontriv-
ial if Jw # +lw. A pair of signature operators (Jx, Jw) is nontrivial if

(Lx, bw) # (Tx, Iw) # (—1a, —1w).
Theorem 7.11.

(i) A passive s/s system is (Jx, Jyw)-signature invariant for some nontriv-
ial pair (Jx, Jw) of signature operators if and only if ¥ is decompos-

able.
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(ii) A passive two-sided behavior 20 is Jy-signature invariant for some
nontrivial operator Jy if and only if W is decomposable. The same
statemet is also true for passive future and past behaviors.

Proof. Proof of (i). Suppose first that X is decomposable, and define X;, W,
and V;, i = 1,2, as in Definition [7.8 Define Jy and Jy in block matrix form
with respect to the decompositions X = X} & Xy and W, H W, by

a0 |l O
Jx = l 0 _12(2} ; Jw = l 0 _12(2} . (7.4)
1y, 0 0
Since [ 8 *10»@ 10 } Vo = Vs, it follows from Definitions and that
“lyy,

Y is (Jx, Jw)-signature invariant. Moreover, the (Jx, Jy) is nontrivial.
Coversely, suppose that ¥ is (Jx, Jw)-signature invariant. Moreover,
supose furthermore that at least one of the operators Jy and Jyy is nontrivial
(i.e., not equal to +1x or +1yy. Let X7 and X, be the eigenspaces of Jx
with respect to the eighenvalues +1 and —1, respectively, and let W, and
W, be the eigenspaces of Jy, with respect to the eighenvalues +1 and —1,
respectively. Then at least one of the decompositions X = A} & A5 and
W = Wi W, is nontrivial, and with respect to these decompositions, Jy and
Jw has the block decomposition . From this decomposition follows that

Vi=VnN [§ ] C V, and that holds. Thus X is decomposable in this
case. '

If instead (j;(,jw) = (1;(,—11/\;) or (jx,jw) = (_1X71W) then both
the above decompositions are trivial, and we have to proceed differently. In
these cases it follows from the signature invariance of ¥ that holds in
both cases with

X {0}
Vi=Vn | X | cVand Vo=V n |[{0} CcW
{0} W

Hence, also in this case 3 is decomposable (into two noninteracting systems,
one with a zero state space, and the other with a zero signal space).

Proof of (ii). The proof of (ii) is analogous to the proof of (i) (but slightly
simpler), and it is left to the reader. H

Theorem 7.12. If ¥ = (V; X, W) is a passive s/s system which belongs to
one of the classes a)-f) listed in Section |1, then X is non-decomposable if
and only if its two-sided behavior is non-decomposable (or equivalently, its
future or past behavior is non-decomposable).

Proof. This follows from Theorems [7.7 and [7.11] O
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8 Passive Transpose Invariant State/Signal
Systems and Behaviours

In this section we present one final class of symmetries of passive s/s systems
and passive behaviours, called transpose invariance. This notion is can be
regarded as a slightly modified version reciprocity, where one has replaced
the adjoint ¥, of a system X by a transpose 7 of 3. The difference between
YT and X, is analogous to the difference between a transpose A of a matrix
A and the Hermitian adjoint A* of A. The mapping from A into A7 is linear,
whereas the mapping of A into A* is conjugate-linear. One way to define the
matrix A7 is to identify it with the operator that one gets by multiplying the
operator induced by A* by conjugation operators to the left and the right.
The same idea can be used to define the notion of a transpose of a general
operator A € B(U;Y), where U and Y are Krein (or Hilbert) spaces: one fixes
two conjugation operators C;; and Cy in U and ), respectively, and calls the
operator AT = CyA*Cy € B(Y;U) a transpose of A. Clearly AT depends not
only on A, but also on the two conjugation operators Cy; and Cy. The notion
of a transpose X1 of a passive s/s system ¥ = (V; X, W) can be defined in
an analogous way by fixing a conjugation Cy in X and a skew-conjugation
operator Byy in X and W, respectively, and letting ¥ = (VT; X, W) be the
s/s system whose generating subspace is

Cy 0 0
VIi=10 Gy 0 V..
0 0 BwIww

where V, is the generating subspace of the adjoint X, of ¥ and BwZ_yw,w)
is a unitary conjugate-linear operator from —W to W. It is easy to see that
YT is a passive s/s system. According to (1.18)) and (1.21)), ¥ is (Cx, Byy)-
transpose invariant if V' = V7. Comparing this to the definition of reciprocal
symmetry of 3, wee see that the difference between the transpose symmetry
and the reciprocal symmetry is that we replace the signature operator Jx
and the anti-signature operator Zyy in ([1.16)) and (1.20) by a conjugation Cy
and a anti-conjugation By, respectively.
Motivated by this discussion, we arrive at the following definition.

Definition 8.1. A passive s/s system X = (V; X, W) is called (Cx; Bwy)-
transpose invariant if ((1.18]) (or equivalently, (1.21))) holds, where Cy is a
conjugation Cy in X and By is a skew-conjugation in W.

Definition 8.2. Let By be a skew-conjugation in the Krein space W.
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(i) A passive two-sided behaviour 20 on W is called Byy-transpose invariant
if
2 = By, AW (8.1)

(here the skew-conjugation By, on K*(W) induced by the skew-conjugation
By € B(W) is defined as in Remark [L.1)).

(ii) A passive s/s system 3 = (V; X, W) is called externally Byy-transpose
invariant if its two-sided behaviour is Byy-transpose invariant.

Remark 8.3. It is possible to develop a symmetry theory which is completely
analogous to the one in Section [6] by replacing the signature operator Jx by
a conjugation Cy and the skew-signature operator Zyy by a skew-conjugation
Byy. This has the effect of converting the notions of (Jx,Zy)-reciprocity
and Zyy-reciprocity introduced in Definitions [6.2] and into the notions
of (Cy,By)-transpose invariance and Byy-transpose invariance introduced
in Definitions and 8.2l In particular, all the lemmas, theorems, and
corollaries in Section [6] remain valid with these replacements. All the proofs
remain essentially the same.

In particular, the following results are true:

Lemma 8.4. If ¥ = (V; X, W) is a simple passive s/s (Cx; By)-transpose
mvariant system, then Cy is uniquely determined by X and Byy.

Proof. This is the conjugate-linear analogue of Lemma [6.7] O]

Lemma 8.5. Let ¥ = (V; X, W) be a passive (Cx; Byy)-transpose invariant
system, and let X1 = (Vi; X1, W) be unitarily similar to ¥ with similarity
operator V. Then Yy is (Cx,; By )-transpose invariant with Cx, = VCxV 7L,

Proof. This is the conjugate-linear analogue of Lemma [5.5] O

Lemma 8.6. If X = (V; X, W) is a passive (Cx, By)-transpose invariant
s/s system, then it is externally Byy-transpose invariant.

Proof. This is the conjugate-linear analogue of Lemma [6.9] O]

Theorem 8.7. Let X = (V; X, W) be a passive externally Byy-transpose
invariant s/s system which is either simple and conservative or minimal and
passive balanced. Then there exists a unique conjugation Cyx in X such that
Y is (Cx, Bw)-transpose invariant.

Proof. This is the conjugate-linear analogue of Theorems and [6.17. O
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9 Doubly Symmetric Passive State/Signal Sys-
tems and Behaviours

In this section we study passive s/s systems and behaviours that are invariant
with respect to two different symmetries of the types that we have consid-
ered in Sections and in addition, the operators associated with the two
symmetries commute with each other. We show that in this case the given
system or behavior is invariant also with respect to a third symmetry, namely
the product of the operators that define the two original symmetries.

In order to be able to discuss all the different types of symmetries in a
coherent way we start by making the following agreement.

Agreement 9.1. Let VW be a Krein space.

(i) In this section, by a symmetry in YW we mean an operator G which is a
signature operator, or a conjugation, or a skew-signature operator, or
a skew-conjugation.

(ii) Let G be a symmetry in W. We call a two-sided passive behavior 20
on W G-symmetric if

(a) 20 is G-real in the case where G is a conjugation;
(b) 27 is G-reciprocal in the case where G is a skew-signature operator;

(c) W is G-signature invariant in the case where G is a signature
operator;

(d) 27 is G-transpose invariant in the case where G is a skew-conjugation.

Lemma 9.2. If G is a symmetry of one of the types listed in Agreement[9.1],
then —G is a symmtery of the same type.

This is obvious.

Agreement 9.3. Let G; and G, be two symmetries of the type listed in
Agreement[0.1] We we say that G; and G, are essentially different if G; # +Gs.

As the following lemma shows, a commuting product of two symmetries
is again a symmetry.

Lemma 9.4. Let Gy and Gy be two symmetries of the type listed in Agreement
and suppose that GiGo = GoGi. Then also Gz = G1Gy = G2Gy is a
symmetry of the type listed in Agreement [9.1. All the symmetries G;, i =
1,2, 3, commmute with each other, and the product of two of these symmetries
15 equal to the third. The exact type of the three symmetries G;, + = 1,2,3
can be determined from the following rules:
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(i) All the above symmetries are of the same type if and only if they are
all signature operators;

(ii) Two of the above symmetries are of the same type if and only if the
third symmetry is a signature operator;

(iii) The above symmetries are all of different type if and only if one of them
1s a conjugation, another is a skew-signature operator, and the third is
a skew-conjugation.

The easy proof is left to the reader.

Theorem 9.5. Let 2 be a passive behavior in VYV, and suppose that 2T is both
G1-symmetric and Go-symmetric, where each of these symmetries belongs to
one of the classes listed in Agreement[9.1]. In addition, suppose that G1Gy =
G2Gy. Then 20 is also Gs-symmetric, where Gs = G1Gy = GoGy. The type of
the third symmetry can be determined from Lemma[9.4)

Proof. The proofs of the different subcases are analogous to each other, so
let us only prove the case which is maybe most interesting, namely the one
where G; is a conjugation and G, is a skew-signature operator (or the other
way around), which means that 20 is both Gj-real and Gy-reciprocal. In
this case Theorem claims that 20 is also Gs-transpose symmetric, where
Gs = G1Gy = GoGy. This can be shown as follows. For simplicity, let us
denote G; by Cy, G2 by Tyy, and G5 by Byy. By Lemma[0.4] By, = CwIy is
a skew-conjugation. Moreover, by Definitions 5.9 and [6.8]

By AW = C Ty A0 = €90 = 90,

According to Definition this means shows that 20 is Byy-transpose in-
variant. n

Above we have been looking at passive two-sided behaviors which are
doubly symmetric in the sense that they are invariant with respect to two
commuting symmetries. An analogous result is true for passive s/s systems
with two commuting symmetries.

Agreement 9.6. Let ¥ = (V; X, W) be a passive s/s system, let Gy be a
signature operator or a conjugation in X', and let Gy, be a symmetry in W.
We call ¥ (Gx, Gw)-symmetric if

(i) X is (Gx, Gw)-real in the case where Gy and Gy are conjugations;

(ii) X is (Gw, Gy )-reciprocal in the case where Gy is a signature operator
and Gy is a skew-signature operator;
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(iii) ¥ is (G, G)-signature invariant in the case where Gy and Gy are
signature operators;

(iv) X is (G, Gw)-transpose invariant in the case where Gy is a conjugation
operator and Gyy is a skew-conjugation.

Theorem 9.7. Let ¥ = (V; X, W) be a passive s/s system, and suppose
that ¥ is both (QS),Q%))-symmetric and ( fg),gf/i))—symmetric, where each
of these symmetries belongs to one of the classes listed in Agreement[9.0,

() If GG = GGy and GYGY = gx gx  then % is (gX ' G)-
symmetric, where QS = g(”g)f) = QX and QW = QW 9(2)
Q 2) g“). All the symmetries g,f\',, | = 1,2,3 commmute with each
other, and the product of two of these symmetries is equal to the third,
and the same result holds for the three symmetries QX ; 1 = 1,2,3,

too. The exact type of the three pairs of symmetries (QX ,QW) can be
determined from the following rules:

(a) All the above symmetries are of the same type if and only if they
are all signature invariances;

(b) Two of the above symmetries are of the same type if and only if
the third symmetry is a signature invariance;

(¢) The above symmetries are all of different type if and only if one
of them 1is a reality, another is a reciprocity, and the third is a
transpose invartance.

(i) If gﬁ)g%) = gﬁf}gﬁ) and Y is simple, then gf‘})gﬁf) = gﬁf)ggj) (and
hence the conclusion of (i) holds).

Proof. Proof of (i). The proofs of the different subcases are again analogous
to each other, so let us only prove, for example, the case where ¥ is both
(Cx,Cyy)-real and (Jx, Zyy)-reciprocal, and we claim that X is also (CS’), By )-
transpose invariant, where CS) = CxJ~x and By, := CyZyy. By Lemma
CS’) is a conjugation and B,y is a skew-conjugation. Moreover, by Definitions

and B2

¥ 0 o0 Cx 0 0] [-Jxr 0 0
0o ¢ o|VH=]0 Cx 0 0 Jr 0[|VH
Cx 0 0
=10 Cx 0|V=V
0 0 Cw
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According to Definition , this means shows that X is (CS), Byy)-transpose
invariant.

Proof of (ii). Let us again only prove the case where ¥ is simple and both
(Cx,Cyy)-real and (Jx, Zyy)-reciprocal. We can continue the computation in

(9-1) to get

_CXJX 0 0 C)( 0 0
0 CxJxr O |VH=v=|0 Cy 0|VH
0 0 By 0 0 Cw

—TJv 0 07 [Cxr 0 0

0 Jr O 0 Cy 0 |VH
| 0 0 Iy |0 0 Cw
[—JxCxr O 0

_ 0 JIvCry 0 | VI,

0 0 By

The equality between the first and last terms in this chain can be rewritten

CxJx 0 0 JxCx 0 0
0 JxCx 0 | Vi= 0 CxJx 0 | V.
0 0 By 0 0  Bw
By Lemma [3.51} CxJx = JxCx. O

As the following theorem shows, it is also true that double external sym-
metry of a passive s/s systems which is either simple and conservative or
minimal and balanced implies double full symmetry.

Theorem 9.8. Let ¥ = (V; X, W) be a passive s/s system which is ei-
ther simple and conservative or minimal and balanced, and suppose that
the behavior W of of ¥ is both gl(/\l,)—symmetric and Ql(,%j—symmetric, where
gﬁ}gﬁ) = gﬁf}gw and each of these symmetries belongs to one of the classes
listed in Agreement . Then there exists unique symmetries QS) and gﬁf)
in X such that ¥ is both (QS),QS))—symmetric and (gg),g%))—symmetric.
Moreover, g (1) g 2) _ gﬁf)ggj’, and ¥ is also ( g?),gf/?,))—symmetm’c, where
G = g§j>g(2) g@)gg;) and GI¥) = GA)GE) = GRG\) . All the symmetries
gV@, 1 =1,2,3, commmute with each other, and the product of two of these
symmetmes 18 equal to the third, and the same result holds for the three sym-
metries QX ,1=1,2,3, too. The exact type of the three pairs of symmetries
(QX ,QW) can be determined from Theorem .

Proof. This follows from Theorems [5.14] [5.23] [6.13] [6.17} [7.7 8.7} and -
combined with Lemma [0.4]
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Theorem 9.9. Let ¥ = (V; X, W) be a passive s/s system which belongs to
one of the classes a)-f) listed in Section If the beham’orﬁﬁ of ¥ is both Q(l)

symmetmc and Qév)—symmetmc where QW Q’W = Q QW and each ofgW and
QW 15 either a signature operator or a conjugation, then there exists unique
symmetries QS) and gﬁf) in X, which are either signature operators or conju-
gations such that X is both ( $)7 gl(,\l,))—symmetric and (gﬁf), Q%))—symmetrz'c.
Moreover, gﬁj)ggf) = gﬁf)gﬁj’, and ¥ is also ( S),gﬁ))—symmetric, where
Qg?) = S)gﬁf) = Q/(\?)QS) and QS\? = gﬁ)gﬁ) = gﬁf}gﬁ) are signature oper-
ators or conjugations. All the symmetries Q)(/?, 1= 1,2,3, commmute with

each other, and the product of two of these symmetmes 15 equal to the third,
and the same result holds for the three symmetmes QX ,1=1,2,3, too. The

ezxact type of the three pairs of symmetries (g pr ,Q’W) can be determined from

following rule: FEither all of these symmetries are signature invariances, or
two of them are realities, and the third is a singature invariance.

Proof. This follows from Theorems [5.14] 6 16}, 5. 23/ [7.7], and
9.7 combined with Lemma [9.4]

Agreement 9.10. Two symmetries G; and G, of the types listed in Agree-
ment are essentially different if G, # +G,. Two pairs of symmetries
(QX ,QW) i =1,2 are essentmlly different if (QX ,g“)) # (QES),Q%)) and

62.62) # (-G, —D).
Theorem 9.11.

(i) A non-decomposable passive two-sided behavior 20 in VW cannot have
two essentially different commuting symmetries Qf/e ,t = 1,2, which
both belong to the same class of symmteries considered in Agreement

913

(ii) A non-decomposable passive s/s system ¥ = (V; X, W) cannot have two
essentially different commuting symmetries (Q&,), 91(/3), 1= 1,2, which
both belong to the same class of symmteries considered in Agreement
9.0

Proof. This follows from Theorems and
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10 The Characteristic Bundles of Passive State/Signal
Systems and Behaviours

In this section we return to the notions of the characteristic node and signal
boundels of a passive s/s system that was mentioned in the introduction, and
which serve as frequency domain characteristics of such systems.

10.1 The characteristic node bundle

Definition 10.1. The chamcteristz'c node bundle € of a passive s/s system
¥ =(V; X, W) is the farmly 1.9) of subspaces {@( ) }aec, of the Krein node
space &. The subspace €()) is Called the fiber of € at A € C.

Lemma 10.2. Let ¥ = (V; X, W) be a passive s/s system with characteristic
node bundle €, and let A € C. Then

~ —1x A O 1x A 0
aw-[Filv ve[Fen
R — ¢ XWO (10.1)
emm:[m ]vu pil = { 3 ] N
0 0 1W 0 0 1w

Proof. This follows from (1.9)), Lemma [2.3] and the fact that

—lx A 0 7% 1x A 0 —1x A 0 771 -1x A 0
[012(0]: 0 —ly 0 and[le()] :[ouo] (10.2)
0 0 1y 0 0 1y 0 0 1y 0 0 1y

where the adjoint has been computed with respect to the inner product (|1.6))
in the node space R. O

Remark 10.3. Formulas show that any one of the fibers €()) together
with the value of A determines the generating subspace V' and all the whole
characteristic bundle € uniquely. Of course, the generating subspace V' itself
also determines & uniquely.

Theorem 10.4. Let ¥ = (V; X, W) be a passive s/s system with character-
istic node bundle €, and let X, = (V; X, —=W) be the adjoint system with
characteristic node bundle €. Then

EN=1]0 -1 0 |eH, aecC. (10.3)
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Proof. By (|1.19)) and (10.1)), appled both to the original system > and the
adoint X, for all A € C,

R —~1x XA 0 [—1x A 0 —1xy 0 0
EN=1]0 1xr 0 |Vi=|0 1y 0 0 1y 0 Vi
0 0 1y 0 0 1w [0 0 Zw-w
1y A 0 Iy XA 0
=10 1y 0 0 —ly 0|
0 0 Zow-w)| [0 0 1y
[1y 0 0
=10 -1y 0 |eW™ O
0 0 Tow-w

10.2 The connection between stable future trajectories
and the characteristic node bundle

In this subsection we establish a connection between the Laplace transforms
of stable future trajectories of > and the characteristic node bundle of ¥. We
begin with some preliminary lemmas.

Lemma 10.5. Let ¥ = (V; X, W) be a passive s/s system, and let W =
UHE =Y be a fundamental decomposition of W. Then, for each xo € X and
each u € L*(RT;U), there exists a unique stable future trajectory [L] of &
satisfying x(0) = zo and Pyw = u.

Proof. See [AKS11h, Lemma 3.4(i)]. O

Lemma 10.6. If [ ] is a stable future trajectory of the passive s/s system
Y = (V; X, W), then there exists a sequence of classical generated stable

Tn

future trajectories [y | of ¥ such that x,, — x uniformly on R™ and w, — w
in L*(RT; W) as n — oo. If z(0) = 0, then we can require, in addition, that
z,(0) =0 and w,(0) = 0.

Proof. See [AKS11bl Lemmas 3.6 and 3.9(i)]. O

For each w € K2 (W) and z € L™(R"; X) we define the Laplace transform
of w and x by

w(A) = /000 e Mw(t)dt, Z(\) = /000 e Mx(t)dt, AeCT. (10.4)

The image of the Krein space K3 (W) under the Laplace transform is
another Krein space that we denote by KJQF(W) Thus,

K2(W) == {@ |w € LA R W)} . (10.5)
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As a topological vector space the space [/(\'i(W) coincides with the Hardy
space H?(C*; W) of holomorphic W-valued functions on C* with finite H?2-
norm, defined by

N L[ ,
@l coomy = sup 5 [ 0+ i)l d
2] —0o0

where |||y is some admissible norm in W. The inner product in [?i(W) is
given by

PO I NP
(@1, Wa] g2 ) = %/ [w1 (iw), W (iw)]y dw, (10.6)

where w; and w, have been defined a.e. on the imaginary axis to be equal
to their nontangential limits from the right. By the Payley~Wiener theorem,
the Laplace transform is a unitary map of K2 (W) onto K2 (W), and if W =
U H —Y is a fundamental decomposition of VW, then

K2(W) = HX(C;U) B —H*(C;Y) (10.7)
is a fundamental decomposition of K 2w).
Theorem 10.7. Let X = (V; X, W) be a passive s/s system with character-

istic node bundle €.

(i) If [&] is a stable future trajectory of ¥ with initial state xq, then the
Laplace transform [%] of [ 4] satisfies

[@(%)) | e, aect (10.8)

Here w € KX(W).

(ii) Conversely, if (10.8)) holds for some triple [%}; where xg € X is fized,

w € K32(W), and T is an X-valued function in C*, then [Z] is the
Laplace transform of a stable future trajectory [5] of ¥ with initial
state x.

(i) To each A € Ct and each [5«3}%} € E(\) there exist at least one stable
future trajectory [ L] of ¥ with initial value xo such that [y} | = [g((i‘\))} .

Thus, for all A € CT,

~ Lo X ws | = [i(’\)} or some stable future
EN) =< |z | e |X )= la ] f f
wy, W | trajectory [ 5] of ¥ with initial state x

(10.9)
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Proof. Proof of (1). If [ ] is a stable classical future trajectory of ¥ with
initial state xg, then by multiplying by e and integrating over R*
we find that the Laplace transform [Z] of [ 2] satisfies (10.8)). That the same
statement is true also for stable generalised trajectories follows from Lemma
and the closedness of &(A) (which follows from the closedness of V).

Proof of (ii). Let [%)] satisfy the assumption of (ii). Let w € L*(RT; W)
be the inverse Laplace transform of w, and let W = UH—) be a fundamental
decomposition of W, and let v = Pyw. By Lemmal[l0.5] there exists a stable
future trajectory [u: ]| of ¥ with Pyw; = uw and z1(0) = zo. By part (i),
holds with [Z] replaced by [Z!], so it also holds with [Z] replaced
by [%] and x( replaced by zero, where [%2] = [gll] — [2]. Moreover,
Pya(N) = Pyws(N) — Pyw(A) = 0. By and the nonnegativity of V' in
R we get

0 < =2RA[[z2(N)[[% = [|1Pywa (M]3,
and hence [Z;((i))} =0, ie., [g((i))] = [fﬁll((/)\\))} for all A € C*. Thus, [2Z] is
the Laplace transform of [ ].

Proof of (iii). Let [1%%] € (), let W = U B —Y be a fundamental
decomposition of W, and let uy = Pyw). Choose some arbitrary function
u € L*(RT;U) such that u(\) = uy (for example, let u = uyugy, where ug
is a scalar function satisfying 4g(\) = 1). By Lemma [10.5] there exists a

stable future trajectory [ ] of ¥ with initial state z such that Pyw = u. By
o -~
part (i), [@;(a)) } € &(\). In addition, Py@(\) = 4(\) = u = Pywy. By the

same argument as we used in the proof of part (ii), a vector [gﬁ] € E(\) is

determined uniquely by 2y and Pyw,. Consequently, [+ | = [g((’/\\))] O

10.3 The characteristic bundle of a passive future be-
havior

Definition 10.8. By a passive frequency domain behaviour in the Krein
space W we mean a maximal nonnegative subspace 20 of K 2 (W) which is
shift-invariant in the sense that the function A — e~**@(\) belongs to W,
whenever w € ®+ and t € RT.

Lemma 10.9. If 20, is a passiwe future behaviour in W, then the image
@+ = A{w|w e W} of W, under the Laplace transform is a passive fre-
quency domain behaviour in VW, and conversely, the inverse image under the
Laplace transform of a passive frequency domain behavior in VW is a passive
future behavior in W.
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Proof. This follows from Definitions |3.11| and [10.8] and the fact that the
Laplace transform of the function 7%w is the function A — e @(N). O

Lemma 10.10. Let ﬁJr be a passive frequency domain behavior in the Krein
space W. Then, to each fundamental decomposition W = UH =Y of W
there corresponds a unique B(U;Y)-valued Schur function ©, on Ct (i.e.,

an analytic function whose values are contractive operators), such that ®+
has the representation

W, = {[g} e [ﬁf&] ‘ T =D, (Na(N), Ae <c+}. (10.10)

Proof. Let 20, be the inverse image of ®+ under the Laplace transform,
and let us dente U := U and Y := ). By, e.g., [AKSIID, Formula (3.15)],
there is an linear contraction @, : L?(R™;U/) — L*(R*;)) such that

W, = {[;j] c [ i ”y—©+u} (10.11)

The operator @ intertwines the two right-shifts in L*(R™;U/) and L?*(R™; ),

and therefore the image Q/ﬁr of 2, has the representation ((10.10]), where 35+
is a B(U;)Y)-valued Schur function; see, e.g., [Sta05, Corollary 4.6.10 and
Theorem 10.3.5]. O

Definition 10.11. Let W be a Krein space.

(1) By the characteristic bundle of a passive frequency domain behavior
W, we mean the family § := {Z(\)}rec+ of subspaces of W defined
by

SN ={w\) |wew,}, reCh (10.12)

The subspace §(A) is called the fiber of T at A

(ii) By the characteristic bundle of a passive future behaviour 20, we mean

the characteristic bundle of the image Q/I\Lr of 20, under the Laplace
transform.

(iii) By the characteristic bundle of a passive two-sided behaviour 20 we
mean the characteristic bundle of the future behavior 20, induced by

20.

(iv) By the characteristic signal bundle of a passive s/s system ¥ = (V; X, W)
we mean the characteristic bundle of the future behavior 20, of 3.
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Lemma 10.12. Let ﬁJr be a passive frequency domain behavior in the Krein
space W. Then, to each fundamental decomposition VY = UB—Y of W there
corresponds a unique B(U; Y)-valued Schur function ©, on Ct (which is the
same function as in Lemma such that the fibers of the characteristic
bundle of @+ have the representation

o~

SN ={[5,00u] |uecU}. (10.13)

Proof. This follows from Lemma [10.10 Definition [10.11] and the fact that
for each A\ € C* and each uy € U there is a function u € H?*(C*;U) such
that u(\) = wuy. O

Remark 10.13. If ¢ is a bounded analytic B(U,Y)-valued function in C,
then the bounded linear operator ®: H*(C*;U) — H?*(C*;)) defined by
(®u)(N\) = e(N)u(N), A € CT, is usually called the Laurent operator induced
by ¢, and ¢ is called the symbol of ®. It is also called the symbol of the shift-
invariant operator ® := £7'®L: L*(R*;U) — L*(R*;)), where £ stands
for the Laplace tranfsorm (this operator was denoted by @, in the proof of

Lemma [10.10). Below we shall call the function ® in Lemmas [10.10] and
10.12| the scattering matriz of the passive future behaviour 2, = L7,

induced by the fundamental decomposition W = U B =) of W. We also
use the same name with 207, replaced by 20, where 20 is the two-sided
behavior induced by 20, or replaced by X in the case where I is a passive
s/s system with future behavior 20,. By Lemmas and , once
the passive future behavior 20, has been fixed, the scattering matrix 5+ is
determined uniquely by the fundamental decomposition W = UH - (but it
will, of course, depend on this decompsition). Conversely, the decomposition
W = U H —Y and the scattering matrix @Jr also determine 20, uniquely.
Thus, a passive s/s system and a passive two-sided or future behavior has
a unique characteristic (signal) bundle, but it has infintely many scattering
matrices corresponding to different fundamental decompositions of the signal
space (except in the degenerate cases where W is a Hilbert space or an anti-
Hilbert space). (Other types of direct sum decompositions of the signal space
give rise to other types of transfer functions, which have different names
depending on the type of decomposition. We shall return to this elsewhere.)

Theorem 10.14. Let § = {F(A\)}recs be the characteristic bundle of the
passive frequency domain behavior 20, .

(i) The fibers @()\) of §, A € C*, are maximal nonnegative subspaces of
W.
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(ii) A function w € IA(_%(W) belongs to ﬁJr if and only if
D)) €F(N), AecCt (10.14)

Proof. Proof of (i). This follows from Proposition 2.1 and Lemma [10.12]
Proof of (ii). One direction of the above claim follows directly from
Definition [10.11] so it suffices to prove the opposite direction. Thus, let
w € K}(W), and suppose that holds. Let W = U B =) be
a fundamental decomposition of W, and let u = Fyw. Since I?i(W) =
H*(C*;U) B —H?*(C*;Y) is a fundamental decomposition of K2 (W), and
since ®+ is a maximal nonnegative subspace of l?i(W), there is a unique
function w; € ®+ such that Pyw,; = Pyw. Thus, for all A\ € C*, both
w(A) € F(A) and wy(A) € F(A) and Pyw;(A) = Pyw(A). Since F(A) is a max-
imal nonnegative subspace of W, a vector in §(\) is determined uniquely by
its orthogonal projection onto U, and consequently w(\) = wy(\), A € C*.
Thus shows that @w = w;, and since w; € ®+, also w € ®+, as claimed. [J

Corollary 10.15. Two passive s/s systems ¥y = (Vi; X1, W) and ¥y =
(Va, Xo, W) are externally equivalent if and only if their characteristic signal
bundles coincide.

Proof. This follows from Definition [10.11] and Theorem [10.14] O

Theorem 10.16. Let ¥ = (V; X, W) be a passive s/s system with charac-
teristic node bundle € = {E(\)}rec and characteristic signal bundle §F =

{3(\)}rect. Then (T.10) holds and

pYal
§(/\)[H =dwlew||—zt| e VI for some 2t € X 3 | AeCh.
w‘i‘
(10.15)
These two identities can alternatively be written in the forms
3O\ = Py (@:(A) N [V%]) . aecCT (10.16)
SO = Py (@(A)M N [V%D . aecCt. (10.17)

Proof. Clearly ({1.10) and (10.15]) are equivalent to ([10.16)) and (10.15)), re-
spectively.
Let wy € W, and suppose that there exists some z, € X such that

[)\f;] € V, or equivalently, [:vox} € &(\). By Theorem [10.7(iii), there
wx

wx

86



exists some stable future externally generated trajectory [ ] of ¥ such that
[or] = [2((’;))] Since w € 2., this means that w, € §()\) Thus, the

right-hand side of ({10.16)) is contained in §
Conversely, suppose that wy € Fx. Then wy = w(\) for some w € W, .
To this w corresponds a unique function x such that [ ] is a stable future

0 N
externally generated trajectory of ¥. By Theorem [10.7(1), {»ﬁ(&ﬂ € E(N),

and consequently, wy = w(\) belongs to the right-hand side of ((10.16]). Thus,
(T.10) and (10.16) hold.
re X } .

For each A € C* we denote
Az Ax
s {[]lren). 2o (¥
Then Z,(A\) H —Z_()) is a fundamental decomposition of the internal part
[%] of the node space R equipped with inner product induced by the operator
[—(1);« o |. If we let W = U B —Y be a fundamental decomposition of W,
then [Z*Z‘J(A)} H— [z,y(x)] is a fundamental decomposition of the node space

K. Since V' is maximal nonnegative it follows from Proposition [2.1)i) there
exists a contraction A(\) = [218; i;zgg] eB ([ZL(A)} ; [Z*y()‘)}) such that
(the vectors on the right-hand side have been split in accordance with the
natural decomposition R = Z, (\) B —-Z_(A\) BU B =Y of R)

( [ )

2t
v AN zy + A(Nu | | 24 c Z+()\)} | (10.18)
U U U
L _Agl()\)2+ + AQZ()\)U )
( -AH()\)*Z_ + Agl(/\)*y )
_ _ Z_(N\)
Vi = : e 10.19
ANz + Ao (N)*y Y Yy ( )
Y
(L

A vector produced by the right-hand side of ((10.18)) belongs to /(’:’()\) N 5?\;
(110.19)

if and only z, = 0, and a vector produced by the right-hand side of
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belongs to @()\)[L] N [5{\}} if and only if z_ = 0. Thus,

N 0 Alg()\)u
e(A)m[%]z uw ||ueul,
_AQQ(A)U/
~ N [ Az ()Y
eNMn| ] =1 [AWu|lyeyy.
|y

and

Fw (€N [} ]) = HA;(LA)J u 6”}’
P (@(M[” R [V%D _ {[AQQ(A)*y] ‘ y e y}.

Here the two right-hands sides are orthogonal complements to each other in

W, and thus ((10.15)) holds. n

Theorem 10.17. Let 0. be a passive future behavior with characteristic
bundle § and corresponding past behavior 2 _, and let W, = Ly _w sapt
be the adjoint of W _ with characteristic bundle §. (cf. Definition . Then

3N =Zow 3N, xect (10.20)

Proof. We recall the representation (10.13)) of the fibers of §w .. Taking the
orthogonal complements of both sides we get

(L — ]| D40 +
SO = {[m(;)yﬂyey}, A€ CH. (10.21)
The fibers of {A§* have analogous representations, namely

&(A) = {[5*+y(/\)y]

y e y} . AecCH (10.22)

where @*Jr is the scattering matrix of the operator ©,, := A+« and ©_
is defined as in [AKS11b, Formula (3.17)]. Thus, in order to prove (|10.20)) it
suffices to show that

~

9.\ =2.(0), ArecCt. (10.23)

Let wf = [ZI] € HQH[_L], ie., [wT,Hw]Ki(W) = 0 for all w € W_. By,
e.g., [Sta05, Corollary 4.6.10], for all A € C* and uy € U the function w
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defined by w(t) = [5(1;3“0] e, t € R, belongs to 2U_, and consequently
[w, fw) r2w) = 0. Explicitly, this means that

0= / "l (8, w(—t)

— [T = [ 0. B0y
0 0

= (@A) = DN)F'(A), uo)-

This being true for all u, € U we find that
') =2\, AecCt.

On the other hand, since wi = [ZI] € HQI][_“, we have @ = [ZH €
I(W’,W)ﬁ*Jr. Consequently, {[5(2\)*9] ‘ y € y} C Fr (V). Since D(N)* is
a contraction, the left-hand side of this inclusion is maximal nonnegative in

—)W, whereas the right-hand side is nonnegative in —)V, so the inclusion is,
in fact, an equality. Comparing this to (10.22) we find that (10.23]) holds. [
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11 Frequency Domain Characterizations of Sym-
metries

In this section we study how symmetries of a passive s/s system can be
described in terms of the frequency domain characteristics of the system.
In particular, we show that the frequency domain characterizations ((1.11)—
(1.14]) of our four basic symmetries are equivalent to those characterizations
that we give in Sections in terms of the two-sided passive behaviors.

Theorem 11.1. Let 3 = (V; X, W) be a passive s/s system with characteris-
tic node bundle €. Let Jx and Cy be a signature operator and a conjugation
in X, respectively, and let Jyw, Cyw, Ly, and By be a singature operator,
a conjugation, a skew-signature operator, and a skew-conjugation in WV, re-
spectively.

(i) X is (Cx,Cw)-real if and only if for some X\ € C, or equivalently, for

all A € C,
R Cx 0 0|
EN) =10 Cxr 0]eN). (11.1)
0 0 Cyw
(i) X is (Jx, Dw)-reciprocal if and only if for some X € C, or equivalently,
for all A € C,
EN=|0 —-TJr 0| (11.2)
0 0 Iw

(i) X is (Jx, Jw)-signature invariant if and only if for some A € C, or
equivalently, for all A € C,

R Jr 0 0|
eV =0 Jv 0|EWN. (11.3)
0 0 Iw

(iv) X is (Tx, Ly)-transpose invariant if and only if for some A\ € C, or
equivalently, for all A € C,

R Cx 0 07 _
EN =0 —Cyr 0 |ENH. (11.4)
0 0 By

Proof. The proof of this theorem consists of four easy algebraic computations

based on ([1.15)—(1.18), (10.1]), and (10.2)). Se also Remark O
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Theorem 11.2. Let § = {F(A)}ace+ be the characteristic bundle of a pas-
sive two-sided behavior 2 on the Krein space W (or of a passive s/s system
Y= (V;XW)), and let Jw, Cyw, Ly, and By be a singature operator, a
conjugation, a skew-signature operator, and a skew-conjugation in VW, re-
spectively.

(1) Q0 is Cy-real (or ¥ is externally Cy-real) if and only if § satisfies
(1.11)).

(i) 20 is Tyy-reciprocal (or S is externally Jyy-reciprocal) if and only if §
satisfies (1.12)).

(iii) W is Jw-signature invariant (or ¥ is externally Jyy-signature invari-

ant) if and only z'f§ satisfies (|1.13)).

(iv) 20 is Byy-transpose invariant (or X is externally Byy-transpose invari-

ant) if and only z'f§ satisfies (|1.14)).

Proof. The proof of (i) is analogous to the proof of (iii) and the proof of (ii)
is analogous to the proof of (iv), so here we only prove (i) and (ii).

Proof of (i). Let 20 be the future behavior induced by 20. The reality
condition is equivalent to the condition

W, = CwW,. (11.5)

For each w € K% (W), the the Laplace transform of Cyyw at a point A € C*
is given by

Cyw(N) = / e MCyw(t) dt = Cyy / e Mw(t) dt = Cy@(N).
R+ R+
This together with (11.5)) and Definitions and [10.11| gives that 20 is Cyy-

real if and only if (1.11)) holds.
Proof of (ii). Let 20, and 20, be the future and behavior induced by 20

and the adjoint behavior 2., respectively. The reciprocity condition (6.3)) is
equivalent to the condition 20 = Z_yy w) w2, which by Definition [10.11
this is equivalent to

/8\/()‘) = jWI(fW,W)/S\*(/\)v A€ C+,
where §* is the characteristic bundle of 20,. Combining this with ((10.20]) and
Definition |8.2| we find that 20 is Jyy-reciprocal if and only if (1.12) holds. [
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The symmetry results that we have developed for passive s/s systems
and behaviors in this article are motivated by analogous symmetry results
for i/s/o systems, i/o maps, and transfer functions, and they can be used
to recover many of these results. Because of lack of space we are forced
to postpone a more detailed discussion of how this is done to a later time.
However, to get a flavor of what can be achieved we below discuss how one
can derive symmetry results for scattering functions by using a fundamental
decomposition W = UUH—) which is in a certain sense invariant under a sym-
merty of a passive behavior 2J in this signal space. Analogous results where
the fundamental decomposition of W has been replaced by other types of
decompositions (such as Lagrangian decompositions and general orthogonal
decompositions) will be given elsewhere.

Theorem 11.3. Let 20 be a passive two-sided behavior on the Krein space
W, and let ® be the scattering matriz corresponding to some fundamental
decomposition W =UB Y of W. Let Jw, Cw, Ly, and By be a singature
operator, a conjugation, a skew-signature operator, and a skew-conjugation
in W, respectively. Moreover, suppose that these operators satisfy

IwlU = U (and hence T =),
CwU = U (and hence Cyld = U ),

IwU = Y (and hence TiyY =U), (11.6)
BwU = Y (and hence BywY =U ),
Then the following claims hold:
(1) 20 is Cyy-real if and only if
DN =Cw®NCwly, AeCH. (11.7)
(il) Q0 is Zyy-reciprocal if and only if
D) =IWd®N)Dwly, AeCH (11.8)
(i) W is Jyw-signature invariant if and only if
D) = D NIwl,  AeCh. (11.9)
(iv) 2 is Byy-transpose-invariant if and only if
D\ =By®N)Bwly, AeC. (11.10)
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Proof. Again the proof of (i) is analogous to the proof of (iii) and the proof
of (ii) is analogous to the proof of (iv), so here we only prove (i) and (ii).
In this proof we denote the charactiristic buldle of 20 by § and use the

representation (10.13|) of its fibers.
Proof of (i). Cy-reality of W is equivalent to (1.11]), which by ((10.13])
and ([L1.6)) is equivalent to

" ([ﬁffmb - ([CWC%VEEED e

The range of the operator on the right-hand side does not change if we
multiply it by Cyy |y to the right, and hence

" ([53%)}) - QCW@S&wWD e

This is equivalent to (11.7)).
Proof of (ii). Cy-reciprocity of W is equivalent to ((1.12]), which by

(110.13), (10.21)), and (|11.6)) is equivalent to

“(losin]) = (st]) e

The range of the operator on the right-hand side does not change if we
multiply it by Zyy |y to the right, and hence

= (r]) == (lma.drmn) 2ee

This is equivalent to (|11.8)).
[

Remark 11.4. Condition is equivalent to the condition that the op-
erator Jy, Cw, Zyy, and By, can be decomposed in accordance with the
decomposition W =U H —) as

Ju 0 Cu O 0 Iy 0 By

e R e R R |
(11.11)

where Jiy = Jwlu, etc. Here J; and Jp, are signature operators, C; and
Cy are conjugations, Zy is linear and unitary, and By is conjugate-linear and
unitary. In particular, none of these operators is a skew-signature operator
or a skew-conjugation, in spite of the fact that Z,y is a skew-singature op-
erator and B,y is a skew-conjugation in VW. This is possible due to the fact
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that whereas U is as a Hilbert subspace of W, it is the anti-Hilbert space
—Y and not the Hilbert space ) itself which appears in the fundamental
decomposition W =UH —-Y of W.

In Theorem we derive symmetry results for passive i/o maps and
scattering matrices from our symmetry results for passive behaviors. On
the surface it looks like we should get a one-to-one correspondence between
symmetry results for scattering matrices and symmetry results for passive
behaviors, but this is not the case, due to the fact that there do exist sym-
metries in the Krein space VW such that W does not have any fundamental
decomposition satisfying the appropriate invariance condition in (11.6]). One
such example is the following.

Example 11.5. We let W = C2?, and let Cy, be the standard complex
conjugation in C?. We take the inner product in W to be

-], = (B o] ] = iem v
Y1 Y2 Y1 0] Y2 )
Then ind, W = ind_W = 1, and, for example,

W= [}]CB[L]C

is a fundamental decomposition of WW. However, the subspaces in this de-
composition are not invariant under conjugation (instead conjugation maps
one of these subspaces into the other). It is not difficult to se that a one-
dimensional subspace of W is invariant under conjugation if and only if it
is of the form [3]C, where o, § € R and |a| + |8] # 0, and it is equally
easy to see that every such subspace is Lagrangian. The converse is also
true: every Lagrangian subspace is invariant under conjugation. Thus, the
components of a a direct sum decomposition W = U + ) of W are invariant
under conjugation if and only both ¢/ and ) are Lagrangian subspaces of W.
In particular, in this example no fundamental decompositions exist in which
the two components would be invariant under conjugation.
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