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Abstract

This work is devoted to the study of four types of symmetries in
the class of possibly infinite-dimensional passive linear time-invariant
state/signal systems in continuous time, namely the real, the recipro-
cal, the signature, and the transpose symmetry. We are, in particular,
interested in the relationship between internal and external properties
of systems which have one or several of these symmetries. Both the
real, the reciprocal, and the transpose symmetries are well-known in
the passive input/state/output theory. In that setting reality means
that if the initial state and input are real, then the output of the sys-
tem is real, and also the state of the system remains real for all time.
The reciprocal and transpose symmetries is related to duality. The ex-
ternal characterisation of these symmetries in the input/state/output
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setting is a certain symmetry condition on the transfer function, and
the internal characterisation of reciprocity says that the system should
be unitarily similar to its adjoint.

It is not true for all classes of passive systems that external symme-
try properties are automatically reflected in internal properties. This
happens only for certain classes of systems that are uniquely deter-
mined up to unitary similarity by their external characteristics. One
such class is the class of simple conservative systems, which is by
now fairly well understood. We here introduce and study three other
classes of passive state/signal system in continuous time, namely the
classes of optimal, ∗-optimal, and passive balanced state/signal sys-
tems and study their symmetry properties. The optimal and ∗-optimal
systems are passive and extremal in a certain sense, and the passive
balanced systems are obtained by interpolation between the classes
of minimal optimal and ∗-optimal systems. It is true for simple sys-
tems in all of these classes that external reality or signature symmetry
implies internal reality or signature symmetry. The same statement
remains true for the reciprocal and transpose symmetries for conser-
vative systems and for passive balanced systems.

Keywords

Reality, reciprocity, available storage, required supply, optimal sys-
tem, ∗-optimal system, conjugation, skew-conjugation, signature op-
erator, skew-signature operator.
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1 Introduction

The roots of the passive s/s systems theory lie partially in operator theory,
partially in circuit theory, and partially in passive i/s/o (input/state/output)
systems theory. It is a well-known fact that the theories of passive and
conservative scattering, transmission, and impedance i/s/o systems in con-
tinuous and discrete time are intimately connected with the theory on the
harmonic analysis of operators in Hilbert spaces, see, e.g., [Liv73], [dBR66],
[ADRdS97], and [Sta05]. In the so called inverse problem the goal is to
a construct simple conservative, or an obersvable co-energy preserving, or
a controllable energy-preserving i/s/o (input/state/output) realization of a
given scattering, transmission, or impedance function. If the given data has
some additional symmetries, then one expects this to be reflected in some
extra symmetry properties of the constructed realizations; see, e.g., [Liv73,
Chapter 5], [Wil72, Sections 8–9], and [ADRdS97, Section 3.5B].

A theory of passive linear time-invariant s/s (state/signal) systems in dis-
crete and continuous time has recently been developed in a series of papers
[AS05b, AS07b, AS07c, AS07d, AS09a, AS09b, AS10, Kur10, KS09, AKS11b,
AKS11a, AKS11c]. Here we continue that development by introducing some
additional classes of passive s/s systems which are uniquely determined by
their external properties up to unitary similarity, namely the classes of min-
imal optimal, ∗-optimal, and balanced state/signal systems in continuous
time. We also study their symmetry properties, and in particular, the con-
nection between external and internal symmetry of systems belonging to the
appropriate class of systems.

The symmetry results for s/s systems that we derive here have been mo-
tivated by, and they are closely connected to the corresponding symmetry
results for i/s/o systems mentioned above. The principal connection is the
following: By decomposing the signal space W of a passive s/s system into
a direct sum W = U u Y and interpreting U as an input space and Y as an
output space one obtains different i/s/o representations of the given s/s sys-
tem. Under suitable invariance conditions on the decomposition W = U uY
with respect to some given s/s symmetery one may then from our results
derive results about symmetries for i/s/o systems. To some extent it is also
possible to proceed in the opposite direction. Because of lack of space we
have not been able to here draw the full picture, but in Section 11 we point
out one basic connection to i/s/o symmetry results of scattering type.

A linear continuous time invariant s/s (state/signal) system Σ = (V ;X ,W)
has a Hilbert (state) space X , a Krĕın (signal) spaceW , and a closed (gener-

ating) subspace V of the (node) space K =
[
X
X
W

]
that satisfies some additional
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conditions, among them the condition[
z
0
0

]
∈ V ⇒ z = 0. (1.1)

Condition (1.1) means that V is the graph of some linear operator G : [ XW ]→
X with domain dom

(
G
)
⊂ [ XW ]. Since V is assumed to be closed, the operator

G is closed. By a classical trajectory of Σ on the interval I ⊂ R we mean a

pair of functions [ xw ] ∈
[
C1(I;X )
C(I;W)

]
satisfying

Σ :

 ẋ(t)
x(t)
w(t)

 ∈ V, t ∈ I, (1.2)

or equivalently,

Σ :
[
x(t)
w(t)

]
∈ dom

(
G
)

and ẋ(t) = G
[
x(t)
w(t)

]
, t ∈ I. (1.3)

By a generalised trajectory of Σ on I we mean a pair of functions [ xw ] ∈[
C(I;X )

L2
loc(I;W)

]
which is the limit in this space of a sequence [ xnwn ] of classical

trajectories of Σ on I.
The notion of passivity of a s/s system Σ is used to model s/s sys-

tems which “have no internal energy sources”. More precisely, we interpret
1
2
‖x(t)‖2

X as the internal energy of Σ, suppose that the power entering Σ from
the surroundings via the signal w(t) is equal to 1

2
[w(t), w(t)]W , and require

all classical trajectories [ xw ] of Σ on all intervals I ⊂ R to satisfy

d

dt
‖x(t)‖2

X ≤ [w(t), w(t)]W , t ∈ I. (1.4)

Incidentally, this explains why we need to allow the inner product in W to
be indefinite: If the inner product in W is positive, then no energy can leave
the system through the signal, and if the inner product in W is negative,
then no energy can enter the system.

By (1.2), a sufficient condition for (1.4) to hold is that

− (z, x)X − (z, x)X + [w,w]W ≥ 0,
[
z
x
w

]
∈ V. (1.5)

This makes it natural to introduce the following (strictly indefinite) Krĕın
space inner product in the node space K:[[

z1
x1
w1

]
,
[
z2
x2
w2

]]
K

= −(z1, x2)X − (x1, z2)X + [w1, w2]W . (1.6)
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Then (1.5) says that V is a nonnegative subspace of K with respect to the
inner product (1.6), and (1.4) says that all classical trajectories [ xw ] of Σ on
all intervals I ⊂ R should satisfy[[

ẋ(t)
x(t)
w(t)

]
,

[
ẋ(t)
x(t)
w(t)

]]
K

= − d

dt
‖x(t)‖2

X + [w(t), w(t)]W ≥ 0, t ∈ I. (1.7)

Thus, the generating subspace V of a passive s/s system Σ should at least
be nonnegative in the node space K with respect to the inner product (1.6).
However, it turns out that it is natural to impose a somewhat stronger con-
dition, namely that it should be maximal nonnegative in the sense that it is
not contained in any other nonnegative subspace. Thus, we call a s/s system
Σ passive if its generating subspace V is a maximal nonnegative subspace of
the Krĕın node space K which satisfies (1.1).

By taking I = R+ := [0,∞) in (1.2), multiplying (1.2) by e−λt and

integrating over R+ we find that the Laplace transform
[
x̂(λ)
ŵ(λ)

]
of a bounded

trajectory [ xw ] of Σ on R+ satisfiesλx̂(λ)− x(0)
x̂(λ)
ŵ(λ)

 ∈ V, <λ > 0. (1.8)

This can equivalently be written as

[
x(0)
x̂(λ)
ŵ(λ)

]
∈ Ê(λ), where

Ê(λ) :=


x0

x
w

 ∈ K

∣∣∣∣∣∣
λx− x0

x
w

 ∈ V
 , λ ∈ C. (1.9)

The family Ê := {Ê(λ)}λ∈C is called the characteristic node bundle of Σ, and

each subspace Ê(λ) is called the fiber of Ê at λ. This bundle turns out to

be analytic in C in the sense that the orientation of the fibers Ê(λ) depens
analytically on λ. From this analytic bundle we can obtain the characteristic
signal bundle F̂ := {F̂(λ)}λ∈C by taking the initial state x(0) to be zero and
projecting each resulting fiber result onto W , i.e.,

F̂(λ) :=

w ∈ W
∣∣∣∣∣∣
λxx
w

 ∈ V for some x ∈ X

 , λ ∈ C+. (1.10)

This bundle is analytic in C+ := {λ ∈ C | <λ > 0}. As will be shown below,

each fiber F̂(λ) is a maximal nonnegative subspace of the signal space W for
each λ ∈ C+.
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After this short presentation of the class of passive s/s systems, let us
continue by discussing the symmetry properties of such systems. The exter-
nal symmetries that we are interested in can be expressed in terms of the
characteristic signal bundle F̂ as follows. We let JW , CW , IW , and BW be
a singature operator, a conjugation, a skew-signature operator, and a skew-
conjugation in W , respectively (see Sections 2.4 and 2.3 for the definitions
of a these classes of operators). We call Σ

(a) externally CW-real if

F̂(λ) = CW F̂(λ), λ ∈ C+, (1.11)

(b) externally IW-reciprocal if

F̂(λ) = IW F̂(λ)[⊥], λ ∈ C+, (1.12)

(c) externally JX -signature invariant if

F̂(λ) = JW F̂(λ), λ ∈ C+, (1.13)

(d) externally BW-transpose invariant if

F̂(λ) = BW F̂(λ)[⊥], λ ∈ C+. (1.14)

In (1.12) and (1.14) the notation Ê(λ)[⊥] stands for the orthogonal companion

to Ê(λ) inW , i.e., the set of vectors inW which are orthogonal to F̂(λ) with
respect to the Krĕın space inner product in W .

The above notions of fourexternal symmetries of a passive s/s system Σ =
(V ;X ,W) are related to the notions of their respective four (full) symmetries
of Σ. To define these symmetries we introduce two additional operators in
X , a signature operator JX and a conjugation CX . We call Σ

(a) (CX ,JX )-real if

V =

CX 0 0
0 CX 0
0 0 CW

V, (1.15)

(b) (JX , IW)-reciprocal if

V =

−JX 0 0
0 JX 0
0 0 IW

V [⊥], (1.16)
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(c) (JX ,JW)-signature invariant if

V =

JX 0 0
0 JX 0
0 0 JW

V, (1.17)

(d) (CX ,BW)-transpose invariant if

V =

−CX 0 0
0 CX 0
0 0 BW

V [⊥], (1.18)

It is not difficult to show that the block operators on the right-hand sides
of the above equation are skew-unitary operators (which are either linear
or conjugate-linear) in the node space K, and that if V is the generating
subspace of a passive s/s system, then each of the right-hand sides of (1.17),
(1.15), (1.16), and (1.18) are also generating subspaces of passive s/s systems.
The subspace V ⊥ appearing in (1.16) and (1.18) is related to the generating
subspace of the adjoint s/s system Σ∗ = (V∗;X ,−W), where

V∗ =

[
−1X 0 0

0 1X 0
0 0 I(W,−W)

]
V [⊥], (1.19)

and I(W,−W) is the identity map from W to the anti-space −W . Clearly, the
two equations (1.16) and (1.18) can be rewritten in the forms

V =

JX 0 0
0 JX 0
0 0 IWI(−W,W)

V∗ (1.20)

and

V =

CX 0 0
0 CX 0
0 0 BWI(−W,W)

V∗, (1.21)

respectively. Thus, reciprocity means that the system Σ is signature similar
to the system that one gets from the adjoint system Σ∗ by multiplying the
dual signal by the unitary operator IWI(−W,W). Actually, as we shall see
in Lemma 6.7 below, we can here alternatively replace “signature similar”
by unitarily similar. Transpose invariance has a similar interpretation, as
explained in more detail in Section 8.

As we shall show in Sections 5–8, it is always true that the full symmetries
described above imply the corresponding external symmetries. For certain
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subclasses of systems the converse is also true in the sense that external sym-
metry implies the existence of a unique signature operator JX or conjugation
CX in X such that the system is fully symmetric with respect to this operator
in the state space X and the originally given operator in the signal spaceW .
In the case of the signature and real symmetries the converse claims hold for
the classes of passive

a) simple conservative systems,

b) controllable energy preserving systems,

c) observable co-energy preserving systems,

d) minimal optimal systems,

e) minimal ∗-optimal systems,

f) minimal passive balanced systems.

All of these classes have the property that a passive s/s system in one of
these classes is uniquely determined by its characteristic signal bundle up to
a unitary similarity transformation in the state space. The first three classes
a)–c) have been studied in [AKS11b], and here we introduce and study the
three additional classes d)–f). In the case of the reciprocal and transpose
symmetries we have to restrict the class further and require that it is closed
under duality. This only leaves two of the above classes, namely the class a)
of simple conservative systems, and the class f) of minimal passive balanced
systems where external reciprocity implies full reciprocity.

For each one of the six classes a)–f) it is possible to construct a canonical
model such that every passive s/s system in this class is unitarily similar
to its model. The constructions of these models employ Hilbert spaces of
type H(Z), where Z is a maximal nonnegative subspace of a Krĕın space. A
short overview of such spaces is given in Section 2.2. These spaces were first
presented in [AS09a], and they can be regarded as coordinate free versions
of de Branges complementary spaces. Three canonical models of classes a)–
c) were developed in [AKS11b], and they are reviewed in Section 3.6. In
Chapter 4 we here develop three additional canonical models of type d)–f).

The discussion about symmetries given above is carried out in the fre-
quency domain, because we feel that this setting is likely to be more familiar
to most readers than a time domain setting. However, all the main results
of this article are first presented in the time domain, and only in the very
last chapter we show that the time domain results that we have obtained are
equivalent to the frequency domain results that we present above.
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To keep the size of this article within reasonabe limits we have not been
able to include the answer of every question that naturally arises. We shall
return to these questions elsewhere. In particular, we are thinking about,
among others, the following additional results:

• introduction and study of the classes of minimal optimal, ∗-optimal,
and balanced discrete time s/s systems, and their canonical models,

• the four basic symmetries for discrete time passive s/s systems,

• internal symmetry implies external symmetry in certain cases, both in
continuous and discrete time,

• input/state/output versions of the four basic symmetries in continuous
and discrete time,

• various examples of systems with symmetries,

• further studies of the characteristic node and signal bundles.

We end this section by presenting various notations and conventions that
we use.

An (inner) direct sum decomposition of a Hilbert or Krĕın space W into
two closed subspaces U and Y will be denoted by W = U u Y , and the
corresponding complementary projections onto U and Y will be denoted by
PYU and P UY . If, in addition, U and Y are orthogonal to each other, then we
write W = U ⊕ Y in the case of a Hilbert space and W = U � Y in the
case of a Krĕın space. In the orthogonal case the subspaces U and Y become
Hilbert or Krĕın spaces when we let them inherit the inner product from W ,
and we denote the (orthogonal) projections of W onto U and Y by PU and
PY , respectively.

We denote the (external) direct sum of two Hilbert or Krĕın spaces U
and Y by

[
U
Y
]
. By this we mean the Cartesian product of U and Y equipped

with the standard algebraic operations and standard product topology. We
sometimes equip

[
Y
U
]

with the induced Krĕın space inner product (in the
Krĕın space notation)[[

u1

y1

]
,

[
u2

y2

]]
U�Y

= [u1, u2]U + [y1, y2]Y . (1.22)

After identifying [ U0 ] with U and [ 0
Y ] with Y we can in this case identify

[
U
Y
]

with orthogonal sum U �Y of U and Y . However, we shall often instead use
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a different Krĕın space inner product in
[
U
Y
]

of the type[[
u1

y1

]
,

[
u2

y2

]]
[
U
Y
] =

([
u
y

]
,J
[
u
y

])
U�Y

,

where J is a given signature operator in U � Y . With respect to this inner
product U and Y may or may not be orthogonal. Analogous notations are
used for direct sums with three or more components.

List of Notations.

R,R+,R− R := (−∞,∞), R+ := [0,∞), R− = (−∞, 0].

C,C+ C is the complex plane and C+ = {λ ∈ C | <λ > 0}.
Ω The closure of Ω.

B(U ;Y) The space of bounded linear operators from U to Y .

B(U ;Y) The space of bounded conjugate-linear operators from U to
Y .

dom (A) , im (A) , ker (A): The domain, range, and kernel of the operator A.

A|Z The restriction of the operator A to Z.

(·, ·)X The inner product in the Hilbert space X .

[·, ·]W The inner product in the Krĕın space W .

−K The anti-space of the Krĕın space K. This is the same topo-
logical vector space as K, but it has a different inner product
[·, ·]−K := −[·, ·]K.

τ t (τ tw)(s) = w(s+ t), s, t ∈ R (this is a left shift if t > 0).

τ t+ (τ t+w)(s) = w(s+ t), s, t ∈ R+ (this is a left shift if t > 0).

τ t− (τ t−w)(s) = w(s + t) if s + t ≤ 0, (τ t−w)(s) = 0 if s + t > 0.
Here s ∈ R−, t ∈ R+.

τ ∗t (τ ∗tw)(s) = (τ−1w)(s) = w(s − t), s, t ∈ R (this is a right
shift if t > 0).

τ ∗t+ (τ ∗t+ w)(s) = w(s−t) if s−t ≥ 0 and (τ ∗t+ w)(s) = 0 if s−t < 0.
Here s, t ∈ R+.

τ ∗t− (τ ∗t− w)(s) = w(s− t) for all s ∈ R−, t ∈ R+.

πI , π+, π− (πIw)(s) = w(s) for all s ∈ I. We abbreviate π− = πR− and
π+ = πR+ .

C(I;X ), BUC(I;X ), C1(I;X ): The spaces of continuous, bounded uniformly
continuous, or continuously differentiable functions, respec-
tively, on I with values in X , with the standard norms.
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L2
loc(I;W) The space of functions from I to W which belong locally to

L2.

H2(C+;X ) The space of holomorphic W-valued functions on C+ with
finite H2-norm.

K2(W), K2
+(W), K2

−(W): See (3.5).

K̂2
+(W) See the discussion after (10.5).

K The Krĕın node space K = X × X ×W equipped with the
inner product (1.6).

1X The identity operator in the topological vector space X .

I(W,−W) The identity operator from the Krĕın spaceW onto the anti-
space −W .

R The reflection operator ( Rw)(t) = w(−t). If w is defined
on the interval I ⊂ R, then Rw is defined on the reflected
interval RI = {t ∈ R | −t ∈ I}.

H(Z),H0(Z) See Section 2.1.

W,W+,W− A passive two-sided, future, or past behaviour, respectively,
on the Krĕın signal space W . See Section 3.2.

H±,H(W+),H(W
[⊥]
− ): See Section 3.4.

H0
±,H0(W+),H0(W

[⊥]
− ): See Section 3.4.

K±,K(W+),K(W
[⊥]
− ): See Section 3.4.

Q+, Q−, Q See Section 3.4.

ΓW,D(W),L(W): See Section 3.4.

BΣ,CΣ The past/present and present/future maps of the passive
system Σ. See Section 3.5.

PU , P
Y
U PU is the orthogonal projection onto U , and PYU is the pro-

jection onto U along Y .

X ⊕ Z,X � Z The orthogonal direct sum of the two subspaces X and Z
of a Hilbert or Krĕın space, respectively.

[ XZ ] The Cartesian product of the Krĕın spaces X and Z. The
topology in [ XZ ] is the one induced by X and Z, but [ X0 ]
and [ 0

Z ] need not be orthogonal to each other with respect
to the product of the inner products in X and Z.

Remark 1.1. If A is a bounded linear (or conjugate-linear) operator in
the Krĕın space W , then it induces a bounded linear (or conjugate-linear)
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operator on the Krĕın space K2(W), which we also denote by A, and which
is defined point-wise by

(Aw)(t) = A(w(t)), t ∈ R, w ∈ K2(W). (1.23)

The operator A on K2(W) defined in this way is shift-invariant, i.e., τ tA =
Aτ t, t ∈ R, it commutes with the reflection operator R, i.e., A R= RA,
and both K2

+(W) and K2
−(W) are invariant under A. If the original operator

A as a bounded inverse, or is unitary, or skew-unitary, or self-adjoint, or
skew-adjoint, or a signature operator, or a conjugation, or a skew-signature
operator, or a skew-conjugation, or an involution, then operator A on K2(W)
has the same property. Whenever A is invertible we have, in addition,
AK2

±(W) = K2
±(W).
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2 Krĕın Spaces

In this section we present the main notions on the geometry of Krĕın spaces
and related results that will be used in this article. We recall the definition
of the special Hilbert spaces of type H(Z) introduced in [AS09a], where Z
is a maximal nonnegative subspace of a Krĕın space. We also introduce two
classes of involution operators in the Hilbert state space X and the Krĕın
signal space W which are needed in our study of the real and reciprocal
symmetries.

2.1 Some properties of Krĕın spaces

A Krĕın spaceW is a vector space with an inner product [·, ·]W that satisfies
all the standard properties required by a Hilbert space inner product, except
that the condition [w,w]W > 0 for nonzero w has been replaced by the
condition that W can be decomposed into a direct sum

W = U �−Y (2.1)

such that the following conditions are satisfied:

(i) U is a Hilbert space with the inner product inherited from W , i.e.,
(u, u)U := [u, u]W > 0 if u ∈ U , u 6= 0, and U is complete with respect
to the norm ‖u‖U = ((u, u)W)1/2.

(ii) −Y is an anti-Hilbert space with the inner product inherited from W ,
i.e., [y, y]−Y := [y, y]W < 0 if y ∈ Y , y 6= 0, and −Y is complete with
respect to the norm ‖y‖Y = (−[y, y]Y)1/2.

(iii) U and −Y are orthogonal to each other with respect to the inner prod-
uct [·, ·]W , i.e., [y, u]W = 0 for all u ∈ U and all y ∈ −Y .

A decomposition (2.1) with properties (i)–(iii) above is called a fundamental
decomposition. Unless W itself is either a Hilbert space or an anti-Hilbert
space, then it has infinitely many such decompositions. We denote the anti-
space of −Y by Y , i.e., Y is the Hilbert space which is algebraically the same
as −Y , but the inner product in Y is given by (·, ·)Y = −[·, ·]−Y = −[·, ·]W .

Each fundamental decomposition (2.1) can be used to define a new Hilbert
space inner product

(w,w′)W = (w,w′)U⊕Y = (u, u)U + (y, y′)Y

w = u+ y, u, u′ ∈ U , y, y′ ∈ Y .
(2.2)
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An Hilbert space inner product inW obtained in this way is called admissible.
The original inner product [·, ·]W satisfies

[w,w′]W = [w,w′]U�−Y = (u, u)U − (y, y′)Y

w = u+ y, u, u′ ∈ U , y, y′ ∈ Y .
(2.3)

Although the inner produce (2.2) depends on the particular fundamental
decomposition (2.1), the norms induced by the different Hilbert space in-
ner products (2.2) are all equivalent to each other. These norms are called
admissible norms inW . The dimensions of the positive space U and the neg-
ative space −Y do not depend on the particular fundamental decomposition.
These dimensions are called the positive and negative indices ofW , and they
are denoted by ind+W and ind−W .

The orthogonal companion Z [⊥] of an arbitrary subset Z ⊂ W with re-
spect to the Krĕın space inner product [·, ·]W consists of all vectors inW that
are orthogonal to all vectors in Z, i.e.,

Z [⊥] = {w′ ∈ W | [w′, w]W = 0 for all w ∈ Z}.

This is always a closed subspace of W , and Z = (Z [⊥])[⊥] if and only if Z is
a closed subspace. IfW is a Hilbert space, then we write Z⊥ instead of Z [⊥].

A vector w ∈ W is called positive, nonnegative, negative, nonpositive, or
neutral if [w,w]W > 0, [w,w]W ≥ 0, [w,w]W < 0, [w,w]W ≤ 0, or [w,w]W =
0, respectively. A subspace Z of W is called positive, nonnegative, negative,
nonpositive, or neutral if all nonzero vectors in Z are positive, nonnegative,
negative, nonpositive, or neutral. It is clear that a subspace Z ofW is neutral
if and only if Z ⊂ Z [⊥]. If instead Z [⊥] ⊂ Z, then Z is called co-neutral,
and if Z = Z [⊥], then Z is called a Lagrangian (or hypermaximal neutral)
subspace ofW . A nonnegative subspace which is not strictly contained in any
other nonnegative subspace is called maximal nonnegative, and the notion of
a maximal nonpositive subspace is defined in an analogous way. Maximal
nonnegative or nonpositive subspaces are always closed. Every nonnegative
subspace is contained in some maximal nonnegative subspace, and every
nonpositive subspace is contained in some maximal nonpositive subspace.
This follows, for example, from the following proposition.

Proposition 2.1. Let W be a Krĕın space with fundamental decomposition
(2.1), and let Z be a subspace of W. Then the following claims are true:

(i) The subspace Z is nonnegative if and only if it is the graph of a (unique)
linear Hilbert space contraction A+ : U → Y with domain dom (A+) ⊂
U . In this case Z is maximal nonnegative if and only if dom (A+) = U .
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(ii) The subspace Z is nonpositive if and only if it is the graph of a (unique)
linear contraction A− : Y 7→ U with domain dom (A−) ⊂ Y. In this case
Z is maximal nonpositive if and only if dom (A−) = Y.

(iii) The subspace Z is neutral if and only if it is the graph of an isometry
A+ : U → Y with domain dom (A+) ⊂ U , or equivalently, it is the
graph of an isometry A− : Y → U with domain dom (A−) ⊂ Y (here
A− = A−1

+ ). The subspace Z is Lagrangian if and only if, in addition,
dom (A+) = U and dom (A−) = Y.

(iv) Z is maximal nonnegative if and only if Z is closed and Z [⊥] is maximal
nonpositive. More precisely, Z is the graph of a contraction A+ ∈
B(U ;Y) if and only if Z [⊥] is the graph of A∗+ ∈ B(Y ;U).

(v) Z is maximal nonnegative if and only if Z is closed and nonnegative
and Z [⊥] is nonpositive. In particular, Z is Lagrangian if and only if
Z is both maximal nonnegative and maximal nonpositive.

Proof. See [AI89, Section 1.8, pp. 48–64] or the following results in [Bog74]:
Theorem 11.7 on p. 54, Theorems 4.2 and 4.4 on pp. 105–106, and Lemma
4.5 on p. 106.

In particular, it follows from this proposition that W contains a La-
grangian subspace if and only if ind+W = ind−W .

The fundamental decompositions that we have considered above are a
special case of orthogonal decompositions W = W1 �W2 of W , where W1

andW2 are orthogonal with respect to [·, ·]W , and bothW1 andW2 are Krĕın
spaces with the inner products inherited fromW . Thus, if w = w1 +w2 with
w1 ∈ W1 and w2 ∈ W2, then

[w,w]W = [w1, w1]W1 + [w2, w2]W2 . (2.4)

This orthogonal decomposition is fundamental if and only if one of the two
spaces is a Hilbert space and the other an anti-Hilbert space.

2.2 The Hilbert space H(Z)

In [AS09a] a Hilbert space H(Z) was constructed, starting from an arbitrary
maximal nonnegative subspace Z of a Krĕın space. Below we give a short
review of this construction. It will be used in the construction of canonical
models for some special classes of passive s/s systems in Section 3.
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Let Z be a maximal nonnegative subspace of the Krĕın space K, and let
K/Z be the quotient of K modulo Z. We define H(Z) by

H(Z) = {h ∈ K/Z | sup{−[x, x]K | x ∈ h} <∞}. (2.5)

It turns out that sup{−[x, x]K | x ∈ h} ≥ 0 for all h ∈ H(Z), that H(Z) is
a subspace of K/Z, that H(Z) is a Hilbert space with the norm∥∥h∥∥H(Z)

=
(
sup{−[x, x]K | x ∈ h}

)1/2
, h ∈ H(Z), (2.6)

and that H(Z) is continuously contained in K/Z (where we use the standard
quotient topology in K/Z, induced by some arbitrarily chosen admissible
Hilbert space norm in K). We denote the equivalence class h ∈ K/Z that
contains a particular vector x ∈ K by h = x + Z. Thus, with this notation,
(2.5) and (2.6) can be rewritten in the form

H(Z) = {x+ Z ∈ K/Z | ‖x+ Z‖2
H(Z) <∞}, (2.7)∥∥x+ Z

∥∥2

H(Z)
= sup{−[x+ z, x+ z]K | z ∈ Z}, x ∈ K. (2.8)

A very important (and easily proved fact) is that if we define

H0(Z) :=
{
z† + Z

∣∣ z† ∈ Z [⊥]
}
, (2.9)

then H0(Z) is a subspace of H(Z). However, even more is true: H0(Z) is a
dense subspace of H(Z), and

[x+ Z, z† + Z]H(Z) = −[x, z†]K, x+ Z ∈ H(Z), z† ∈ Z [⊥], (2.10)

‖z† + Z‖2
H(Z) = −[z†, z†]K, z† ∈ Z [⊥]. (2.11)

Thus, H(Z) may be interpreted as a completion of H0(Z). See [AS09a] for
more details.

2.3 Conjugate-linear operators and conjugations

A continuous operator A from one (complex) Krĕın space W1 to another
Krĕın space W2 is called real-linear if

A(λ1w1 + λ2w2) = λ1Aw1 + λ2Aw2, λ1, λ2 ∈ R, w1, w2 ∈ W1, (2.12)

it is called (complex) linear if

A(λ1w1 + λ2w2) = λ1Aw1 + λ2Aw2, λ1, λ2 ∈ C, w1, w2 ∈ W1, (2.13)
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and it is called (complex) conjugate-linear if

A(λ1w1 + λ2w2) = λ1Aw1 + λ2Aw2, λ1, λ2 ∈ C, w1, w2 ∈ W1. (2.14)

Note that both linear and conjugate-linear operators are real-linear. We
recall that every complex Hilbert of Krĕın W can be interpreted as a real
Hilbert or Krĕın space by restricting the scalars to be real and replacing the
original complex inner product [·, ·]W by the real inner product <[·, ·]W . The
notion real-linearity defined above is equivalent to linearity in this real vector
space.

We denote the set of all continuous conjugate-linear operators W1 →W2

by B(W1;W2), and by B(W) ifW1 =W2 =W . This is a complete (complex)
topological vector space whose topology is induced by a norm if we define
scalar multiplication and addition point-wise by

(λ1A1 + λ2A2)w = λ1A1w + λ2w, w ∈ W1, λ1, λ2 ∈ C,

and it is a Banach space if W1 and W2 are Banach spaces (the norm of A
is then defined in the same way as in the case of a linear operator). The
composition of two conjugate-linear operators is linear, and the composi-
tion of one linear and one conjugate-linear operator (in arbitrary order) is
conjugate-linear. By the closed graph theorem, an operator A ∈ B(W1;W2)
is both injective and surjective if and only it has a conjugate-linear inverse
A−1 ∈ B(W2;W1).

Definition 2.2. The adjoint of a continuous real-linear operator A : W1 →
W2 is the unique real-linear operator A∗ which satisfies

<[Aw1, w2]W2 = <[w1, A
∗w2]W1 , w1 ∈ W1, w2 ∈ W2. (2.15)

Thus, this is the adjoint of A when we replace the complex spaces W1

and W2 by the corresponding real spaces. Clearly (A∗)∗ = A, and if A is
invertible, then (A−1)∗ = (A∗)−1. We denote A−∗ := (A−1)∗ = (A∗)−1.

Lemma 2.3. Let A be a continuous real-linear bijection W1 → W2. Then
(AV )[⊥] = A−∗V [⊥] for each V ⊂ W1. In particular, if A−1 = ±A∗, then
(AV )[⊥] = AV [⊥].

Proof. We have

w2 ∈ (AV )[⊥]

⇔ <[w2, Aw1]W2 = 0 ∀w1 ∈ V
⇔ <[A∗w2, w1]W2 = 0 ∀w1 ∈ V

A∗w2 ∈ V [⊥]

w2 ∈ A−∗V [⊥].
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This proves the first claim. The second claim follows from the first.

Definition 2.4. An continuous real-linear operator A : W1 →W2 is isomet-
ric if

[Aw,Aw]W2 = [w,w]W1 , w ∈ W1, (2.16)

and it is unitary if, in addition, A is bijective (so that it has a continuous
everywhere defined inverse).

Lemma 2.5. Let A be a real-linear operator A : W1 →W2.

(i) A is isometric if and only if A∗A = 1W1.

(ii) A is unitary if and only if A is invertible and A−1 = A∗.

Proof. It suffices to prove (i), since (ii) is an immediate consequence of (i).
If A∗A = 1W1 , then for all w ∈ W1,

[Aw,Aw]W2 = <[Aw,Aw]W2 = <[w,A∗Aw]W1 = <[w,w]W1 = [w,w]W1 .

Thus, A is isometric. Conversely, suppose that A is isometric. Then all
w ∈ W1,

[w,w]W1 = [Aw,Aw]W2 = <[w,A∗Aw]W1 .

It follows from the polarisation formula that

<[w1, w2 − A∗Aw2]W1 = 0, w1, w1 ∈ W1.

Replacing w1 by iw1 we find that A∗Aw2 = w2 for all w2 ∈ W1, and hence
A∗A = 1W1 .

Lemma 2.6. Let A∗ be the adjoint of a continuous real-linear operator
A : W1 →W2.

(i) A is linear if and only if A∗ is linear. In this case

[Aw1, w2]W = [w1, A
∗w2]W , w1 ∈ W1, w2 ∈ W2. (2.17)

(ii) A is conjugate-linear if and only if A∗ is conjugate-linear. In this case

[Aw1, w2]W = [w1, A∗w2]W , w1 ∈ W1, w2 ∈ W2. (2.18)

Proof. The proofs of (i) and (ii) are analogous, so it suffices to prove (ii). If
we in (2.15) replace w1 by iw1 and use the conjugate-linearity of A we get

−=[Aw1, w2]W2 = =[w1, A
∗w2]W1 , w1 ∈ W1, w2 ∈ W2.

Thus (2.18) holds. That A∗ is conjugate-linear follows from (2.18).
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Lemma 2.7. Let A be a continuous bijection W1 →W2, where W1 and W2

are Krĕın spaces.

(i) The following conditions are equivalent:

(a) A is linear and unitary;

(b) A satisfies

[Aw1, Aw2]W2 = [w1, w2]W1 , w1, w2 ∈ W1. (2.19)

(ii) The following conditions are equivalent:

(a) A is conjugate-linear and unitary;

(b) A satisfies

[Aw1, Aw2]W2 = [w1, w2]W1
, w1, w2 ∈ W1. (2.20)

Proof. The proof is essentially the same in cases (i) and (ii), so it suffices to
prove, for example, (ii).

That (a) implies (b) follows from (2.16) and the polarisation formula.
Conversely, if (b) holds, then by fixing w2 and letting w1 vary in (2.20) we
find that A is conjugate-linear, and by taking w1 = w2 in (2.20) we find that
A is unitary.

Definition 2.8. Let A : W →W be a continuous real-linear operator.

(i) A is self-adjoint if A∗ = A.

(ii) A is skew-adjoint if A∗ = −A.

(iii) A is a involution if A2 = 1W .

Definition 2.9. Let W be a Krĕın space.

(i) By a signature operator J inW we mean a linear self-adjoint involution
in W , i.e., J is linear and invertible and

J = J ∗ = J −1. (2.21)

(ii) by a conjugation C in W we mean a conjugate-linear self-adjoint invo-
lution in W , i.e., C is conjugate-linear and invertible and (2.21) holds
with J replaced by C.
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Lemma 2.10. Let A : W → W be a continuous real-linear operator. Then
the following conditions are equivalent:

(i) A is a self-adjoint involution.

(ii) A is a unitary involution.

(iii) A is both self-adjoint and unitary.

Proof. If A is a self-adjoint involution, then A∗A = AA∗ = A2 = 1W , and
hence A is unitary. If A is a unitary involution, then A∗A = AA∗ = 1W , and
hence A∗ = A−1 = A. Thus A is self-adjoint. Finally, if A is both self-adjoint
and unitary, then A∗ = A and A∗A = AA∗ = 1W , and hence A2 = 1W , which
means that A is an involution.

Lemma 2.11. If J is a signature operator or a conjugation in a Krĕın space
W, then (J V )[⊥] = J V [⊥] for all subsets V of W.

Proof. This follows from Lemmas 2.3 and 2.10.

Definition 2.12. Let C be a conjugation in the Krĕın space W .

(i) A subspace Z of W is said to be C-invariant if CZ = Z,

(ii) An operator A mapping a Krĕın spaceW1 with a conjugation C1 into a
Krĕın space W2 with a conjugation C2 is called (C1, C2)-real (or simply
C-real if W1 =W2 and C1 = C2 = C) if C2Aw = AC1w for all w1 ∈ W1.

In part (i) one can replace the condition CZ = Z by the formally weaker
condition CZ ⊂ Z, since the latter condition implies that Z = C2Z ⊂ CZ.

Lemma 2.13. If A ∈ B(W1;W2) is (C1, C2)-real, then ker (A) and (ker (A))[⊥]

are C1-invariant and im (A), im (A), and (im (A))[⊥] are C2-invariant.

Proof. That ker (A) is C1-invariant and im (A) is C2-invariant follows from the
intertwinement condition AC1 = C2A. The C2-invariance of im (A) implies
that also im (A) is C2-invariant. Finally, the invariance of (ker (A))[⊥] and
(im (A))[⊥] follows from Lemma 2.3.
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2.4 Skew-unitary operators and skew-adjoint involu-
tions

In the sequel we shall also need the notion of an skew-unitary linear operator
between two Krĕın spaces.

Definition 2.14. An continuous real-linear operator A : W1 →W2 is skew-
isometric if

[Aw,Aw]W2 = −[w,w]W1 , w ∈ W1. (2.22)

and it is skew-unitary if, in addition, A is bijective (so that it has a continuous
everywhere defined inverse).

Clearly, the existence of a non-trivial skew-unitary operator W1 → W2

implies bothW1 andW2 cannot possibly be Hilbert or anti-Hilbert spaces. A
typical example of a linear skew-unitary operator between two Krĕın spaces
is the identity operator I(W,−W) defined on a Krĕın space W with values in
the anti-space −W .

Lemma 2.15. Let A be a real-linear operator A : W1 →W2.

(i) A is skew-isometric if and only if A∗A = −1W1.

(ii) A is skew-unitary if and only if A is invertible and A−1 = −A∗.

Proof. The proof is essentially the same as the proof of Lemma 2.5.

Lemma 2.16. Let A be a continuous real-linear bijection W1 →W2, where
W1 and W2 are Krĕın spaces.

(i) The following conditions are equivalent:

(a) A is linear and skew-unitary;

(b) A satisfies

[Aw1, Aw2]W2 = −[w1, w2]W1 , w1, w2 ∈ W1. (2.23)

(ii) The following conditions are equivalent:

(a) A is conjugate-linear and skew-unitary;

(b) A satisfies

[Aw1, Aw2]W2 = −[w1, w2]W1
, w1, w2 ∈ W1. (2.24)
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Proof. The proof is essentially the same as the proof of Lemma 2.7.

Definition 2.17. Let W be a Krĕın space.

(i) By an skew-signature operator in W we mean a linear skew-adjoint
involution in W , i.e., a linear operator I in W satisfying

I = −I∗ = I−1. (2.25)

(ii) By an skew-conjugation in W we mean a conjugate-linear skew-adjoint
involution in W , i.e., a conjugate-linear operator B in W satisfying
(2.25) with I replaced by B.

Lemma 2.18. Let A : W → W be a continuous real-linear operator. Then
the following conditions are equivalent:

(i) A is a skew-adjoint involution.

(ii) A is a skew-unitary involution.

(iii) A is both skew-adjoint and skew-unitary.

Proof. The proof is essentially the same as the proof of Lemma 2.10.

Lemma 2.19. If I is an skew-signature operator or a skew-conjugation in
a Krĕın space W, then (IV )[⊥] = IV [⊥] for all subsets V of W.

Proof. This follows from Lemmas 2.3 and 2.18.
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3 Passive State/Signal Systems

In the introduction we already gave a short description of the notion of a
passive s/s system. Here we shall present some additional notions and results
that will be needed in this article. The reader is referred to [AKS11b] for
details and proofs.

3.1 Basic definitions and properties

Definition 3.1. Let X be a Hilbert space and W a Krĕın space, and let I
be one of the intervals I = R+, I = R, or I = R−.

(i) By a passive s/s node in continuous time we mean a triple Σ = (V ;X ,W)
where V is a maximal nonnegative subspace satisfying (1.1) of the Krĕın

node space K :=
[
X
X
W

]
equipped with the inner product (1.6).

(ii) A classical trajectory generated by a subspace V of K on an interval I

is a pair of functions [ xw ] ∈
[
C1(I;X )
C(I;W)

]
satisfying (1.2).

(iii) A (generalised) trajectory generated by a subspace V of K on an interval

I is a pair of functions [ xw ] ∈
[

C(I;X )

L2
loc(I;W)

]
which can be approximated

by a sequence of classical trajectories [ xnwn ] in such a way that xn → x
in X locally uniformly on I, and wn → w in L2

loc(I;W).

(iv) The passive s/s node Σ together with its families of classical and gen-
eralised trajectories is called a passive s/s system, and it is denoted by
the same symbol Σ as the node.

(v) By a past, two-sided (or full), or future trajectory of Σ we mean a
trajectory of Σ on R−, R, or R+, respectively.

(vi) A (generalised) trajectory [ xw ] of a passive s/s system Σ = (V ;X ,W)
on an interval I is externally generated if the following condition holds:
If I has a finite left end-point t0, then we require that x(t0) = 0, and if
the left end-point of I is −∞, then we require that limt→−∞ x(t) = 0
and that w ∈ L2((−∞, T ];W) for every finite T ∈ I.

(vii) A (generalised) trajectory [ xw ] of a passive s/s system Σ = (V ;X ,W)
is stable if x is bounded on I and w ∈ L2(I;W).

Definition 3.2. Let Σ = (V ;X ,W) be a passive s/s system.
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(i) The reachable subspace RΣ of Σ is the closure of the set{
x0 ∈ X

∣∣∣∣ x0 = x(0) for some (stable) past

trajectory of Σ with compact support

}
.

(ii) Σ is controllable if RΣ = X .

(iii) By an unobservable future trajectory of Σ we mean a future trajectory
of Σ of the type [ x0 ] (i.e., the signal part is identically zero).

(iv) The unobservable subspace UΣ of Σ consists of all the initial states x(0)
of all unobservable future trajectories of Σ.

(v) Σ is observable if UΣ = {0}.

(vi) Σ is simple if UΣ ∩R⊥Σ = 0, or equivalently, if RΣ ∨ U⊥Σ = X .

(vii) Σ is minimal if it is both controllable and observable.

As the following lemma shows, the boundedness condition on x in Defi-
nition 3.1(vii) is often redundant.

Lemma 3.3. Let Σ = (V ;X ,W) be a passive s/s system.
If [ xw ] is a (generalised) trajectory of Σ on I = R+, then

‖x(t)‖2
X ≤ ‖x(0)‖2

X +

∫ t

0

[w(s), w(s)]W ds, t ∈ R+, (3.1)

and if [ xw ] is externally generated trajectory on an interval I with left end-
point −∞, then

‖x(t)‖2
X ≤

∫ t

−∞
[w(s), w(s)]W ds, t ∈ I. (3.2)

Thus, in both cases [ xw ] is stable if and only if w ∈ L2(I;W).

Proof. See [AKS11b, Lemma 3.2].

Lemma 3.4. A generalised trajectory [ xw ] of a passive s/s system Σ on some
interval I is classical if and only if x ∈ C1(I;X ) and w ∈ C1(I;W).

Proof. See [AKS11b, Proposition 3.7].

Definition 3.5. Let Σ1 = (V1;X1;W) and Σ2 = (V2;X2;W) be two passive
s/s systems (with the same signal space W).
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(i) A bounded linear operator E : X1 → X2 intertwines Σ1 and Σ2 if the
formula

(x1, w) 7→ (Ex1, w) (3.3)

defines a map from the set of all stable future trajectories [ x1
w ] of Σ1

onto the set of all stable future trajectories [ x2
w ] of Σ2 satisfying x2(0) ∈

im (E).

(ii) Σ1 and Σ2 are boundedly intertwined if there exists an operator E ∈
B(X1;X2) which intertwines Σ1 and Σ2. The operator E is called an
intertwining operator between Σ1 and Σ2.

(iii) Σ1 and Σ2 are contractively intertwined if there exists a contraction
E ∈ B(X1;X2) which intertwines Σ1 and Σ2.

(iv) Σ1 and Σ2 are similar if there exists a boundedly invertible operator
E ∈ B(X1;X2) which intertwines Σ1 and Σ2. The operator E is called
a similarity operator between Σ1 and Σ2.

(v) Σ1 and Σ2 are unitarily similar if there exists a unitary operator E ∈
B(X1;X2) which intertwines Σ1 and Σ2.

Definition 3.6.

(i) The s/s system Σ = (V ;X ,W) is called a restriction of the s/s system
Σ1 = (V1;X1,W) if X is a closed subspace of X1 and the embedding
operator X ↪→ X1 intertwines Σ and Σ1.

(ii) The s/s system Σ = (V ;X ,W) is called an orthogonal projection of the
s/s system Σ1 = (V1;X1,W) if X is a closed subspace of X1 and the
projection operator PX intertwines Σ1 and Σ.

Definition 3.7. Let Σ = (V ;X ,W) be a passive s/s system.

(i) Σ is energy preserving if V is neutral, i.e., if V ⊂ V [⊥].

(ii) Σ is co-energy preserving if V is co-neutral, i.e., if V [⊥] ⊂ V .

(iii) Σ is conservative if V is Lagrangian, i.e., if V = V [⊥].
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3.2 Passive behaviours and their passive realizations

It follows from (3.1) and (3.2) that if [ xw ] is an externally generated trajectory
of a passive s/s system Σ on one of the intervals I = R+, I = R, or I = R−
with w ∈ L2(I;W), then ∫

I

[w(s), w(s)]W ds ≥ 0.

This can be interpreted as a nonnegativity condition in the Krĕın space
K2(I;W), which is defined as follows. For nontrivial interval I ⊂ R we define
the Krĕın space K2(I;W) to be the space which coincides with L2(I;W) as
a topological vector space, equipped with the inner product

[w1, w2]K2(I;W) :=

∫
I

[w1(s), w2(s)]W ds, (3.4)

and we denote

K2(W) := K2(R;W), K2
±(W) := K2(R±;W). (3.5)

This is a Krĕın space, and ifW = U�−Y is a fundamental decomposition of
W , then K2(I;W) = L2(I;U) � −L2(I;Y) is a fundamental decomposition
of K2(I;W).

Definition 3.8. Let Σ = (V ;X ,W) be a passive s/s system.

(i) The future behaviour WΣ
+ of Σ is the set

WΣ
+ :=

{
w ∈ K2

+(W)

∣∣∣∣∣w is the signal part of a externally generated

stable future trajectory [ xw ] of Σ.

}

(ii) The two-sided behaviour WΣ of Σ is the set

WΣ :=

{
w ∈ K2(W)

∣∣∣∣∣w is the signal part of a externally generated

stable two-sided trajectory [ xw ] of Σ.

}

(iii) The past behaviour WΣ
− of Σ is the set

WΣ
− :=

{
w ∈ K2

−(W)

∣∣∣∣∣w is the signal part of a externally generated

stable past trajectory [ xw ] of Σ.

}
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Thus, WΣ
+, WΣ, and WΣ

− are nonnegative subspaces of K2
+(W), K2(W),

and K2
−(W), respectively. As the following lemma shows, they also have

some additional characteristic properties.

Lemma 3.9. The past, two-sided, and future behaviours WΣ
−, WΣ, and WΣ

+

of a passive s/s system Σ = (V ;X ,W) have the following properties:

(i) WΣ
± are right-shift invariant and WΣ is bilaterally shift-invariant, i.e.,

τ ∗t±W
Σ
± ⊂WΣ

±, t ∈ R+,

τ tWΣ = WΣ, t ∈ R.
(3.6)

(ii) WΣ
± can be recovered from WΣ by the formulas

WΣ
− = π−W

Σ := {w− ∈ K2
−(W) | w− = π−w for some w ∈WΣ},

WΣ
+ = WΣ ∩K2

+(W) := {w ∈WΣ | w(t) = 0 for t < 0}.
(3.7)

(iii) WΣ
± is a maximal nonnegative subspace of K2

±(W) and WΣ is a maximal
nonnegative subspace of K2(W).

Proof. This is [AKS11b, Lemma 3.12].

See the list of notations at the end of Section 1 for the definition of the
restriction operator π−.

Lemma 3.10. Let W be a maximal nonnegative subspace W of K2(W), and
define W− and W+ by

W− := π−W, W+ := W ∩K2
+(W), (3.8)

Then the following conditions are equivalent:

(i) W− is a maximal nonnegative subspace of K2
−(W).

(ii) W+ is a maximal nonnegative subspace of K2
+(W).

(iii) For some fundamental decomposition W = U � −Y the following im-
plication is valid: If w ∈W and π−PUw = 0, then π−PYw = 0.

(iv) For every fundamental decomposition W = U � −Y the following im-
plication is valid: If w ∈W and π−PUw = 0, then π−PYw = 0.

Proof. This is [AKS11b, 3.13].
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Motivated by Lemmas 3.9 and 3.10 we make the following definition:

Definition 3.11. Let W be a Krĕın space.

(i) A maximal nonnegative right-shift invariant subspace of K2
−(W) is

called a passive past behaviour on the (signal) space W .

(ii) A maximal nonnegative right-shift invariant subspace W+ of K2
+(W)

is called a passive future behaviour on the (signal) space W .

(iii) A maximal nonnegative bilaterally shift invariant subspace W ofK2(W)
which satisfies the equivalent conditions (i)–(iv) listed in Lemma 3.10
is called a passive two-sided behaviour on the Krĕın (signal) space W .

The following lemma complements Lemmas 3.9 and 3.10.

Lemma 3.12. Let W be a Krĕın space.

(i) If W− is a passive past behaviour on W, and if we define W by

W =
⋂
t∈R+

{
w ∈ K2(W)

∣∣ π−τ tw ∈W−
}
, (3.9)

then W is a passive two-sided behaviour on W and W− = π−W.

(ii) If W+ is a passive future behaviour on W, and if we define W by

W =
∨
t∈R+

τ tW+, (3.10)

then W is a passive two-sided behaviour onW, and W+ = W∩K2
+(W).

(iii) Let W be a passive two-sided behaviour on the Krĕın signal space W,
and define W− and W+ by (3.8). Then W− is a passive past behaviour
on W, W+ is a passive future behaviour on W, and W can be recovered
from W+ and from W− by means of formulas (3.9) and (3.10).

Proof. This is [AKS11b, Lemma 3.18].

From Lemmas 3.9 and 3.12 we conclude that the future, two-sided, and
past behaviours of a passive s/s system Σ are passive future, two-sided, and
past behaviours, respectively.

Definition 3.13. A passive s/s system Σ = (V ;X ,W) is called a realization
of a passive future behaviour W+, or a passive two-sided behaviour W, or
a passive past behaviour W−, if the corresponding behaviour of Σ coincides
with the given behaviour W+, W, or W−, respectively.
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Theorem 3.14. Every passive future behaviour W+, passive two-sided be-
haviour W, or passive past behaviour W− has a passive s/s realization Σ in
each of the following three classes of passive s/s systems:

a) Σ is simple and conservative;

b) Σ is controllable and energy preserving;

c) Σ is observable and co-energy preserving.

Moreover, within each class the realization Σ is determined uniquely by the
given behaviour up to unitary similarity in the sense of Definition 3.5(v).

Proof. This follows from Theorems 8.1, 9.1, and 10.1 and Corollaries 8.7, 9.8,
and 10.7 in [AKS11b].

In this article we shall expand the above list by adding the classes d), e),
and f) mentioned in the introduction.

Definition 3.15. Two passive s/s systems Σ1 = (V1;X1,W) (with the same
signal space) are externally equivalent if they realize the same past, two-sided,
and future behaviours.

Lemma 3.16. If two systems Σ1 and Σ2 are boundedly intertwined, then
they are externally equivalent.

Proof. This follows from Definitions 3.5, 3.8, and 3.15.

Theorem 3.17. Let Σ = (V ;X ,W) be a passive s/s system with reachable
subspace R and unobservable subspace U.

(i) Define

VR = V ∩
[
X
R
W

]
, (3.11)

then VR = V ∩
[

R
R
W

]
and ΣR = (VR,R,W) is a passive s/s system, and

it is the restriction of Σ to R. The system ΣR is always controllable,
and it is minimal if Σ is observable.

(ii) Define

VU⊥ =

PU⊥ 0 0
0 PU⊥ 0
0 0 1W

V, (3.12)

then ΣU⊥ = (VU⊥ ;U⊥,W) is a passive s/s system, and it is the orthog-
onal projection of Σ to U⊥. The system ΣU⊥ is always observable, and
it is minimal if Σ is controllable.
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Proof. The discrete time version of this theorem can be derived from [AS07b,
Theorems 7.3 and 7.7], and the proof of the continuous time result is analo-
gous to the proof of the discrete time result (cf. [AKS11b, Remark 3.17]).

Theorem 3.17 can alternatively be derived from the corresponding i/s/o
result by means of a scattering i/s/o representation of Σ.

Remark 3.18. A passive s/s system is non-minimal if and only if at least
one of the two transformations described in Theorem 3.17 can be applied to
replace Σ by a “smaller” externally equivalent system.

3.3 The adjoints of passive systems and behaviours

Lemma 3.19. Let Σ = (V ;X ,W) be a passive s/s system, and define V∗
by (1.19), where I(W,−W) is the identity map from W to the anti-space −W.
Then Σ∗ = (V∗,X ,−W) is a passive s/s system.

Proof. By Proposition 2.1, V [⊥] is a maximal nonpositive subspace of the
node space K. It is easy to see that this implies that V∗ is maximal nonneg-
ative. It follows from [Kur10, Corollary 4.8], condition 1.1 holds with V re-
placed by V∗. Thus, V∗ generates a passive s/s system Σ∗ = (V∗,X ,−W).

Definition 3.20. The system Σ∗ in Lemma 3.19 is called the adjoint of the
s/s system Σ.

Lemma 3.21. If a bounded operator E intertwines two passive s/s systems
Σ1 and Σ2, then E∗ intertwines the dual systems Σ2∗ and Σ1∗ of Σ2 and Σ1,
respectively.

Proof. This follows from Definition 3.5 and [AKS11b, Remark 4.2 and The-
orem 4.5].

Lemma 3.22. Let Σ = (V ;X ,W) be a passive system with adjoint Σ∗ =
(V∗;X ,−W).

(i) The adjoint of Σ∗ is Σ.

(ii) Σ is energy preserving if and only if Σ∗ is co-energy preserving.

(iii) Σ is co-energy preserving if and only if Σ∗ is energy preserving.

(iv) Σ is conservative if and only if Σ is conservative.

Proof. All of these claims are easy consequences of (1.19).
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See the list of notations at the end of Section 1 for the definition of the
reflection operator R.

Lemma 3.23. Let W+, W, and W− be passive future, two-sided, and past
behaviours on W. Then also

W∗+ = I(W,−W) RW
[⊥]
− , W∗ = I(W,−W) RW, W∗− = I(W,−W) RW

[⊥]
+ (3.13)

are passive future, two-sided, and past behaviours, respectively, on the anti-
space −W. If W+, W, and W− correspond to each other in the sense that
they satisfy (3.8), (3.9), and (3.10), then W∗+, W∗, and W∗− correspond to
each other in the same sense.

Proof. See [AKS11b, Lemma 2.3, Lemma 4.11 and Remark 4.12].

Definition 3.24. The passive behaviours W∗+, W∗, and W∗− in Lemma
3.23 are called the adjoints of the behaviours W−, W, and W+, respectively.

Lemma 3.25. Let Σ = (V ;X ,W) be a passive s/s system with future, two-
sided, and past behaviours W+, W, and W−. Then the future, two-sided,
and past behaviours of the adjoint system Σ∗ = (V∗,X ,−W) are the adjoints
of W−, W, and W+, respectively, in the sense of Definition 3.24.

Proof. See [AKS11b, Remark 4.12 and Proposition 4.16].

3.4 The Hilbert Spaces H(W+), H(W
[⊥]
− ), and D(W)

Three special canonical passive s/s realizations of the classes a)–c) in The-
orem 3.14 were constructed in [AKS11b]. These canonical realizations and
their state spaces play an important role especially in the study of the real
symmetry, and for this reason we recall the most important facts about these
state spaces. Two of these are spaces of the type H(Z) described in Section
2.1.

Let W+ and W− be a passive future and past behaviour, respectively,
on the signal space W . The Hilbert space H(Z) where Z = W+ and the
underlying Krĕın space K is equal to K = K2

+(W) will be denoted by H+ :=

H(W+), and the Hilbert space H(Z) where Z = W
[⊥]
− and the underlying

Krĕın space K is equal to K = −K2
−(W) will be denoted by H− := H(W

[⊥]
− ).

Thus, in particular, the set

H0(W+) :=
{
u† + W+

∣∣ u† ∈W
[⊥]
+

}
is a dense subspace of H+, and the set

H0(W
[⊥]
− ) :=

{
w− + W

[⊥]
−
∣∣ w− ∈W−

}
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is a dense subspace of H−. We denote

K+ := K(W+) := {u ∈ K2
+(W) | u+ W+ ∈ H+},

K− := K(W
[⊥]
− ) := {w− ∈ K2

−(W) | w− + W
[⊥]
− ∈ H−},

Q+w+ := w+ + W+, w+ ∈ K+,

Q−w− := w− + W
[⊥]
− , w− ∈ K−.

Thus, Q+ and Q− are the restrictions of the quotient maps K2
+(W) 7→

K2
+(W)/W+ and K2

−(W) 7→ K2
−(W)/W

[⊥]
− to K+ and K−, respectively. With

these notations,

(w†+ + W+, w+ + W+)H+ = −[w†+, w+]K2
+(W), w†+ ∈W

[⊥]
+ , w+ ∈ K+,

(w− + W
[⊥]
− , w†− + W

[⊥]
− )W− = [w−, w

†
−]K2

−(W), w− ∈W−, w†− ∈ K−.

Let W be a passive two-sided behaviour on W with the corresponding
passive past behaviour W− = π−W and passive future behaviour W+ =
W∩K2

+(W). By definition, the past/future map ΓW is the unique contraction

in B(H−;H+) whose restriction to the subspace H0(W
[⊥]
− ) given by

ΓW(π−w + W
[⊥]
− ) = π+w + W+, w ∈W. (3.14)

See [AKS11b, Lemma 5.7] for details.
For each passive two-sided behaviour W onW we define the operator AW

by

AW :=

[
1H+ ΓW

Γ∗W 1H−

]
. (3.15)

This is a nonnegative bounded linear operator on H+ ⊕ H−, and we define

D(W) to be the range of A
1/2
W , with the range norm, i.e.,∥∥∥∥[x+

x−

]∥∥∥∥
D(W)

=

∥∥∥∥(A
1/2
W )[−1]

[
x+

x−

]∥∥∥∥
H+⊕H−

,

where (A
1/2
W )[−1] is the pseudo-inverse of A

1/2
W , i.e.,

[
x′+
x′−

]
:= (A

1/2
W )[−1] [ x+

x− ] is

the unique vector in im (AW) = im
(
A

1/2
W

)
which satisfies [ x+

x− ] = A
1/2
W

[
x′+
x′−

]
.

With respect to this inner product in the range space the operator A
1/2
W |im(AW)

is a unitary operator mapping im (AW) onto D(W). We denote

L(W) := {w ∈ K2(W) | w + (W+ + W
[⊥]
− ) ∈ D(W)},

Qw := w + (W+ + W
[⊥]
− ), w ∈ L(W).

Thus, Q is the restrictions of the quotient map K2(W) 7→ K2
+/(W+ +W

[⊥]
− ).

See [AKS11b, Section 5.3] for details.
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3.5 The past/present and present/future maps BΣ and
CΣ

Let Σ = (V ;X ,W) be a passive s/s system with past and future behaviours
W− and W+. With the notations introduced in Section 3.4 we have the
following result:

Lemma 3.26. Let Σ = (V ;X ;W) be a passive s/s system with future be-
haviour W+. If [ xw ] is a stable future trajectory of Σ, then

w ∈ K(W+) and ‖Q+w‖H+ ≤ ‖x(0)‖X . (3.16)

Proof. This is [AKS11b, Lemma 6.1].

Lemma 3.27. Let Σ = (V ;X ;W) be a passive s/s system with future be-
haviour W+. Then the formula

CΣx0 =

{
Q+w

∣∣∣∣ w is the signal part of some stable future

trajectory [ xw ] of Σ with x(0) = x0

}
(3.17)

defines a linear contraction CΣ : X → H+.

Proof. This is [AKS11b, Lemma 6.2].

Definition 3.28. The contraction CΣ defined in Lemma 3.27 is called the
present/future map of Σ.

Lemma 3.29. If two passive s/s systems Σ1 = (V1;X1,W) and Σ2 = (V2;X2,W)
are intertwined by a bounded operator E, then their present/future maps sat-
isfy CΣ1 = CΣ2E.

Proof. This follows from Definitions 3.5 and 3.28.

Lemma 3.30. Let Σ = (V ;X ,W) be a passive s/s system with present/future
map CΣ.

(i) The unobservable subspace UΣ is equal to the null space of its present/future
map CΣ. Thus, Σ is observable if and only if CΣ is injective.

(ii) If Σ is co-energy preserving, then CΣ is co-isometric.

(iii) Σ is observable and co-energy preserving if and only if CΣ is unitary.

Proof. See Lemmas 6.6 and 6.19 and Corollary 8.8 in [AKS11b].
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Theorem 3.31. Let Σ = (V ;X ,W) be a passive s/s system with present/future
map CΣ, and let Σ = (V1;X1,W) be an observable co-energy preserving s/s
system with present/future map CΣ1 which is externally equivalent to Σ. Then
Σ and Σ1 are contractively intertwined by C−1

Σ1
CΣ. In particular, any two ex-

ternally equivalent observable and co-energy preserving s/s systems are uni-
tarily similar to each other.

Proof. This follows from Theorems 8.4 and 8.5 in [AKS11b].

Lemma 3.32. Let Σ = (V ;X ;W) be a passive s/s system with past behaviour
W−. Then there exist a unique linear contraction BΣ : H− → X whose
restriction to H0

− is given by

BΣQ−w = x(0), w ∈W−, (3.18)

where [ xw ] is the unique stable externally generated past trajectory of Σ whose
signal part is w.

Proof. See [AKS11b, Lemmas 3.11 and 6.9].

Definition 3.33. The contraction BΣ defined in Lemma 3.32 is called the
past/present map of Σ.

Lemma 3.34. Let Σ = (V ;X ,W) be a passive s/s system with past/present
map BΣ.

(i) The reachable subspace RΣ is equal to the closure of the range of BΣ.
Thus, Σ is controllable if and only if BΣ has dense range.

(ii) If Σ is energy preserving system, then BΣ is an isometry.

(iii) Σ is controllable and energy preserving if and only if BΣ is unitary.

Proof. See Lemmas 6.13 and 6.15 and Corollary 9.8 in [AKS11b].

Theorem 3.35. Let Σ = (V ;X ,W) be a passive s/s system with past/present
map BΣ, and let Σ = (V1;X1,W) be a controllable energy preserving s/s sys-
tem with past/present map BΣ1 which is externally equivalent to Σ. Then Σ1

and Σ are contractively intertwined by BΣB
−1
Σ1

. In particular, any two exter-
nally equivalent controllable and energy preserving s/s systems are unitarily
similar to each other.

Proof. This follows from Theorems 9.5 and 9.6 in [AKS11b].
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Lemma 3.36. Let Σ = (V ;X ;W) be a passive s/s system with past behaviour
W−, future behaviour W+, two-sided behaviour W, past/present map BΣ,
and present/future map CΣ.

(i) A pair of functions [ xw ] is an externally generated stable past trajectory
of Σ if and only if

w ∈W− and x(t) = BΣQ−π−τ
tw, t ∈ R−. (3.19)

(ii) A pair of functions [ xw ] is an externally generated stable two-sided tra-
jectory of Σ if and only if

w ∈W and x(t) = BΣQ−π−τ
tw, t ∈ R. (3.20)

In this case
CΣx(t) = Q+π+τ

tw, t ∈ R. (3.21)

(iii) A pair of functions [ xw ] is an externally generated stable future trajec-
tory of Σ if and only if

w ∈W+ and x(t) = BΣQ−π−τ
tw, t ∈ R+. (3.22)

In this case
CΣx(t) = Q+π+τ

tw, t ∈ R+. (3.23)

Proof. This is [AKS11b, Lemma 6.11].

Definition 3.37. Let W be the two-sided behaviour of a passive s/s system
Σ. Then the past/future map ΓW defined by means of (3.14) is also called
the past/future map of Σ, and it is alternatively denoted by ΓΣ.

Lemma 3.38. The past/future map ΓΣ of a passive s/s system Σ = (V ;X ,W)
factors into the product

ΓΣ = CΣBΣ (3.24)

of the past/present map BΣ and the present/future map CΣ of Σ.

Proof. See [AKS11b, Lemma 7.2].

Lemma 3.39. Let Σ = (V ;X ,W) be a passive s/s system with past/present
map BΣ, present/future map CΣ, and past/future map ΓΣ,

(i) If Σ is observable, then ker (CΣ) = ker (ΓΣ).

(ii) If Σ is controllable, then im (BΣ) is a dense subspace of im (ΓΣ).
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Proof. This follows from Lemmas 3.30, 3.34, and 3.38.

Lemma 3.40. Let Σ = (V ;X ,W) be a passive s/s system with past/present
map BΣ, present/future map CΣ, and past/future map ΓΣ, and let Σ∗ =
(V∗;X ,−W) be the adjoint of Σ with past/present map BΣ∗, present/future
map CΣ∗, and past/future map ΓΣ∗. Then

BΣ∗ = C∗Σ RI(W,−W)), CΣ∗ = I(W,−W)) RB∗Σ, ΓΣ∗ = I(W,−W)) RΓ∗Σ RI(−W,W)).

Proof. See Remark 4.2, Lemma 6.18, and Lemma 7.6 in [AKS11b].

Lemma 3.41. If two passive s/s systems Σ1 = (V1;X1,W) and Σ2 = (V2;X2,W)
are intertwined by a bounded operator E, then their past/present maps satisfy
BΣ2 = EBΣ1.

Proof. This follows from Lemmas 3.21, 3.29, and 3.40.

Lemma 3.42. Let Σ = (V ;X ,W) be a passive s/s system with reachable
subspace RΣ and unobservable subspace UΣ. Then the reachable and un-
observable subspaces of the adjoint system Σ∗ = (V∗;X ,−W) are equal to
RΣ∗ = U⊥Σ and UΣ∗ = R⊥Σ, respectively.

Proof. This follows from Lemmas 3.30 and 3.40.

3.6 Canonical models of passive state/signal systems

Throughout this subsection W+, W, and W− are passive, future, two-sided,
and past behaviours on a Krĕın space which are related to each other by
(3.8), (3.9), and (3.10), and ΓW stands for the corresponding past/future
map.

Theorem 3.43. Let W+ be a passive future behaviour on the Krĕın space W
with the corresponding two-sided passive behaviour W. With the notations
introduced in Section 3.4, define

V W+
oce =


[
Q+ẇ+

Q+w+

w+(0)

]
∈
[H+

H+

W

] ∣∣∣∣∣∣∣∣
w+ ∈ K+ is locally absolutely

continuous with ẇ+ ∈ K2
+(W), and

lim
t→0+

1

t
Q+(τ t+w+ − w+) exists in H+.

 (3.25)

Then ΣW+
oce =

(
V W+

oce ;H+,W
)

is a passive observable co-energy preserving
s/s system with future behaviour W+. The past/present map of ΣW+

oce is the
past/future map ΓW of W, and the present/future map of ΣW+

oce is the identity
on H+.
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Proof. See [AKS11b, Theorem 8.1].

Theorem 3.44.

(i) Two externally equivalent observable passive s/s systems Σ1 = (V1;X1,W)
and Σ2 = (V2;X2,W) are unitarily similar if and only if their present/future
maps satisfy CΣ1C

∗
Σ1

= CΣ1C
∗
Σ1

.

(ii) Two externally equivalent controllable passive s/s systems Σ1 = (V1;X1,W)
and Σ2 = (V2;X2,W) are unitarily similar if and only if their past/present
maps satisfy B∗Σ1

BΣ1 = B∗Σ2
BΣ2.

Proof. The necessity of the two conditions CΣ1C
∗
Σ1

= CΣ1C
∗
Σ1

and B∗Σ1
BΣ1 =

B∗Σ1
CΣ1 for unitary similarity follows from Lemmas 3.29 and 3.41.

In order to prove the sufficiency of the condition CΣ1C
∗
Σ1

= CΣ1C
∗
Σ1

we as-
sume that this condition holds and let W be the common two-sided behaviour
of Σ1 and Σ2, and let ΣW+

oce = (V W+
oce ;H+,W) be the observable co-energy pre-

serving system in Theorem 3.43. By Theorem 3.31, for i = 1, 2, the operator
CΣi intertwines the system Σi and ΣW+

cep (recall that the present/future map
of ΣW+

cep is the identity on H+). Explicitly, this means [ xiw ] is a stable future

trajectory of Σi, i = 1, 2, if and only if
[
CΣi

xi
w

]
is a stable future trajec-

tory of ΣW
mo whose initial state is contained in im (CΣi). By assumption,

CΣ1C
∗
Σ1

= CΣ2C
∗
Σ2

and therefore

im (CΣ1) = im
(
(CΣ1C

∗
Σ1

)1/2
)

= im
(
(CΣ2C

∗
Σ2

)1/2
)

= im (CΣ2) .

In particular, the operator V := C−1
Σ2
CΣ1 is well-defined. It follows from, for

example, the polar decompositions of CΣ1 and CΣ2 (see [Kat80, pp. 334–335])
that V is a unitary operator X1 → X2. Moreover, [ x1

w ] is a stable future
trajectory of Σ1 if and only if [ Ex1

w ] is a stable future trajectory of Σ2. Thus,
Σ1 and Σ2 are unitarily similar with similarity operator E.

Claim (ii) follows from Claim (i) applied to the adjoint system Σ∗.

Theorem 3.45. Let W− be a passive past behaviour on the Krĕın space
W, and let W be the corresponding two-sided passive behaviour. With the
notations introduced in Section 3.4, define

V W−
cep =


[
Q−π−ẇ
Q−π−w
w(0)

]
∈
[H−
H−
W

] ∣∣∣∣∣∣∣∣∣
w ∈ im

([
ΓW
1H−

])
is locally absolutely

continuous with ẇ ∈ K2(W), and

lim
t→0+

1

t
Q−π−(τ tw − w) exists in H−.


(3.26)
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Then ΣW−
cep =

(
V W−

cep ;H−,W
)

is a passive controllable energy preserving s/s
system with past behaviour W−. The past/present map of ΣW−

cep is the identity
on H− and the present/future map of ΣW−

cep is the past/future map ΓW of W.

Proof. See [AKS11b, Theorem 9.1].

Theorem 3.46. The operator ΓW intertwines the two s/s systems ΣW−
cep and

ΣW+
oce .

Proof. This follows from Theorems 3.43 and and 3.45 and combined with
Theorem 3.31 or Theorem 3.35.

Theorem 3.47. Let W be a passive two-sided behaviour on the Krĕın space
W. With the notations introduced in Section 3.4, define

V W
sc =


[
Qẇ
Qw
w(0)

]
∈
[
D(W)
D(W)
W

] ∣∣∣∣∣∣∣∣
w ∈ L(W) is locally absolutely

continuous with ẇ ∈ K2(W), and

lim
t→0

1

t
Q(τ tw − w) exists in D(W).

 (3.27)

Then the following claims are true:

(i) ΣW
sc =

(
V W

sc ;D(W),W
)

is a simple conservative s/s system with two-

sided behaviour W. The past/present map of ΣW
sc is BΣW

sc
=
[

ΓW
1H−

]
with

(BW
Σ )∗ = Π−|D(W), the present/future map of ΣW

sc is CΣW
sc

= Π+|D(W)

with C∗ΣW
sc

=
[

1H+

Γ∗W

]
.

(ii) Every simple conservative s/s system Σ = (V ;X ,W) with two-sided
behaviour W is unitarily similar to ΣW

sc . The unitary similarity operator
is the so called two-sided state/signal map

Cbil
Σ :=

[
CΣ
B∗Σ

]
(3.28)

where BΣ and CΣ are the past/present and present/future maps of Σ.

Proof. See [AKS11b, Theorems 10.1, 10.2, and 10.5].

Corollary 3.48. Any two externally equivalent simple conservative s/s sys-
tems are unitarily similar to each other.

Proof. This follows from part (ii) of Theorem 3.47.

In view of Theorems 3.31, 3.35, 3.43, 3.45, and 3.47 the passive systems
ΣW+

oce , ΣW−
cep , and ΣW

sc are called canonical models of passive s/s systems within
one of the classes a)–c) listed in Theorem 3.14.
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3.7 Simple passive s/s systems

Example 3.49. A conservative s/s system Σ = (V ;X ,W) may be similar
to itself with a nontrivial unitary similarity operator VX . This can be seen
as follows. Take W = {0}, so that the signal part of the system is missing,
and let V =

[
A
1X

]
X for some skew-adjoint operator A ∈ B(X ). Then Σ =

(V ;X , {0}) is a conservative s/s system. Choose some arbitrary operator
VX 6= 1X (for example, VX = −1X ), such that VXA = AVX . Then A =
VXAV−1

X , so that A is similar to itself with similarity operator VX , and[
VX 0
0 VX

]
V =

[
VX 0
0 VX

] [
A
1X

]
X

=

[
VXA
VX

]
X =

[
VXAV−1

X
1X

]
X =

[
A
1X

]
X = V.

Thus, Σ is unitarily similar to itself with the non-trivial similarity operator
VX .

The above example was based on the fact that the s/s system in this
example is not simple. As we show below, for a simple conservative system
this cannot happen.

Lemma 3.50. Let V be the generating subspace of a simple passive system
Σ = (V ;X ,W), and suppose that

(VSimV)
V =

VX 0 0
0 VX 0
0 0 VW

V (3.29)

for some unitary operators VX : X → X and VW : W → W, where either
both VX and VW are linear or both VX and VW are conjugate-linear. Then
the following claims are true.

(i) If VX is linear and VW = 1W , then VX = 1X .

(ii) If VX is linear and VW is a signature operator, then VX is a signature
operator.

(iii) If VX is conjugate-linear and VW is a conjugation, then VX is a conju-
gation.

Proof of (i). It follows from (3.29) that if [ xw ] is an arbitrary trajectory of Σ,
then VXx = x. Consequently, VXx = x for all x in the reachable subspace
R. Since VX is unitary, also V∗Xx = V∗XVXx = x for all x ∈ R.

40



If we repeat the same argument with the original system replaced by
the dual system, then we find that VX (and V∗X ) also is the identity on U⊥,
where U⊥ is the reachable subspace of the adjoint system. By the simplicity
assumption, the span of R and U⊥ is dense in X , and hence VX = 1X .

Proof of (ii). It follows from (3.29) that

V =

V−1
X 0 0
0 V−1

X 0
0 0 V−1

W

V =

V∗X 0 0
0 V∗X 0
0 0 VW

V
=

V∗X 0 0
0 V∗X 0
0 0 VW

V−1
X 0 0
0 V−1

X 0
0 0 V−1

W

V =

V∗XV−1
X 0 0

0 V∗XV−1
X 0

0 0 1W

V.
By part (i), V∗XV−1

X = 1X , and thus VX is a signature operator.
Proof of (iii). This proof is essentially the same as the proof of (ii).

Observe that V∗XV−1
X is linear also in the case where VX is conjugate-linear.

Lemma 3.51. Let Σ1 = (V1;X1,W1) and Σ2 = (V2;X2,W2) be two simple
passive s/s systems whose generating subspaces satisfy

(V2SimV1)
V2 =

VX 0 0
0 VX 0
0 0 VW

V1 (3.30)

for some unitary operators VX : X1 → X2 and VW : W1 → W2, where either
both VX and VW are linear or both VX and VW are conjugate-linear. Then
the operator VX is uniquely determined by V1, V2, and VW .

Proof. Suppose that (3.30) is true for two different unitary operators VX and
ṼX , but with the same operator VW . It follows from (3.30) that

V1 =

Ṽ−1
X 0 0
0 Ṽ−1

X 0
0 0 V−1

W

V2 =

Ṽ−1
X 0 0
0 Ṽ−1

X 0
0 0 V−1

W

VX 0 0
0 VX 0
0 0 VW

V1

=

Ṽ−1
X VX 0 0
0 Ṽ−1

X VX 0
0 0 1W

V1.

By part (i), Ṽ−1
X VX = 1X , and thus VX = ṼX .
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4 Optimal, ∗-Optimal, and Passive Balanced

Systems

In this section we study two extremal minimal passive realizations of a
passive behaviour, namely minimal optimal and minimal ∗-optimal pas-
sive s/s systems. The corresponding extremal minimal passive realizations
for i/s/o systems with scattering supply rate have been studied in, e.g.,
[Aro79, Nud92, Sta05, AS07b, AKP06] in discrete time and in [AN96, Sta05]
in continuous time. A system in either of these classes is determined uniquely
by its behaviours (future, two-sided, or past) up to a unitary similarity trans-
formation in the state space.

By doing a half-way interpolation between a minimal optimal and a min-
imal ∗-optimal system we get another type of systems, namely the passive
balanced s/s systems. Systems in this class are also determined uniquely by
their behaviours up to unitary similarity. The corresponding i/s/o systems
have been studied in [Sta05] in continuous time and in [AS07a] in discrete
time.

4.1 Optimal and ∗-optimal passive s/s systems

Definition 4.1. Let Σ = (V ;X ,W) be a passive s/s system.

(i) Σ is called optimal if it satisfies the following condition: If Σ1 =
(V1;X1,W) is a passive s/s system with the same past behaviour as Σ, if
[ xw ] and [ x1

w ] are two externally generated past trajectories of Σ and Σ1,
respectively, with the same signal part w, then ‖x(0)‖X ≤ ‖x1(0)‖X1 .

(ii) Σ is called ∗-optimal if the (causal) adjoint Σ∗ of Σ is optimal.

Lemma 4.2. Let Σ = (V ;X ,W) be a passive s/s system with reachable
subspace R and unobservable subspace U.

(i) Σ is optimal if and only if its restriction to R is optimal.

(ii) If Σ is optimal, then R ⊂ U⊥. In particular, an optimal system is
minimal if and only if it is controllable.

(iii) Σ is ∗-optimal if and only if its orthogonal projection onto U⊥ is ∗-
optimal.

(iv) If Σ is ∗ optimal, then U⊥ ⊂ R. In particular, a ∗-optimal system is
minimal if and only if it is observable.
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Proof. It suffices to prove claims (i) and (ii), since (iii) and (iv) then follows
by duality.
Proof of (i). Let us denote the restricted system in Claim (i) by ΣR. Then Σ
and ΣR have the same stable past trajectories, and consequently Σ is optimal
if and only if ΣR is optimal.
Proof of (ii) Denote the orthogonal projection of Σ onto U⊥ by ΣU⊥ , and
choose the system Σ1 in Definition 4.1 to be ΣU⊥ . Then, by the optimality
of Σ and the fact that

[
P
U⊥x
w

]
is the past externally generated trajectory of

ΣU⊥ corresponding to the externally generated past trajectory [ xw ] of Σ, we
find that ‖x(0)‖ ≤ ‖PU⊥x(0)‖ for all externally generated past trajectories
[ xw ] of Σ. This will be true if and only if the restriction of PU⊥ to R is the
identity, or equivalently, if and only if R ⊂ U⊥.

Proofs of (iii) and (iv). Claims (iii) and (iv) follow from (i) and (ii)
combined with Definition 4.1 and Lemma 3.42.

Theorem 4.3. Let Σ = (V ;X ,W) be a passive s/s system with two-sided
behaviour W, past/future map ΓW, past/present map BΣ, present/future map
CΣ, and reachable subspace R. Denote the restriction of Σ onto R by ΣR.
Then

Γ∗WΓW ≤ B∗ΣBΣ, ΓWΓ∗W ≤ CΣC
∗
Σ, (4.1)

and the following conditions are equivalent.

(i) Σ is optimal,

(ii) If Σ1 = (V1;X1,W) is a passive s/s system with the same two-sided
behaviour W and past/present map BΣ1, then B∗ΣBΣ ≤ B∗Σ1

BΣ1.

(iii) B∗ΣBΣ = Γ∗WΓW,

(iv) ΣR is minimal and if Σ1 = (V1;X1,W) is a passive controllable s/s
system with the same two-sided behaviour W and present/future map
CΣ1, then CΣPRC

∗
Σ ≥ CΣ1C

∗
Σ1

.

(v) ΣR is minimal and CΣPRC
∗
Σ = Pim(ΓW).

(vi) CΣ|R maps R unitarily onto im (ΓW).

(vii) ΣR is unitarily similar to the restriction onto its reachable subspace
im (ΓW) of the canonical model ΣW

oce of an observable and co-energy
preserving s/s system with two-sided behaviour W.

If these equivalent conditions holds, then the unitary similarity operator in
(vii) is equal to CΣ|R with inverse (CΣ|R)−1 = PRC

∗
Σ|im(ΓW).
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Proof. By Lemmas 6.2 and 7.2 in [AKS11b], BΣ and CΣ are contractions,
and ΓW = CΣBΣ. Consequently,

Γ∗WΓW = B∗ΣC
∗
ΣCΣBΣ ≤ B∗ΣBΣ, ΓWΓ∗W = CΣBΣB

∗
ΣC
∗
Σ ≤ CΣC

∗
Σ.

This proves (4.1).
(i)⇔ (ii): Condition (i) is equivalent to the statement that ‖BΣQ−w‖ ≤

‖BΣ1Q−w‖ for all w ∈ W−. Since Q−W− is a dense subspace of H−, this
means that (i) and (ii) are equivalent.

(iii)⇔ (vi): The inequality B∗ΣC
∗
ΣCΣBΣ ≤ B∗ΣBΣ becomes an equality if

and only if CΣ|R is isometric on the range of BΣ, or equivalently, on R, since
the range of BΣ is a dense subspace of R. For the same reason im (ΓW) =
im (CΣBΣ) is a dense subspace of im (CΣ|R).

(v) ⇔ (vi): ΣR is minimal if and only if CΣR
= CΣ|R is injective. The

operator CΣR
C∗ΣR

= CΣPRC
∗
Σ is a self-adjoint contraction on H+ whose range

is contained in im (CΣ|R) ⊂ im (ΓW), and it is equal to Pim(ΓW) if and only if

(vi) holds.
(ii) ⇒ (iii): Take system Σ1 in Definition 4.1 to be the canonical model

ΣW
oce = (V W

oce;H+;W) of a controllable passive co-energy preserving s/s system
with two-sided behaviour W. The past/present map of this system is equal
to ΓW, and hence by condition (ii), B∗ΣBΣ ≤ Γ∗WΓW. On the other hand, by
(4.1), B∗ΣBΣ ≥ Γ∗WΓW. Thus (ii) ⇒ (iii).

(iii) ⇒ (ii): This follows from (4.1).
(iv) ⇒ (v): We choose the system Σ1 in (iv) to be the system in (vii).

The present/future map of this system is Pim(ΓW), and hence (iv) implies that
CΣPRC

∗
Σ ≥ Pim(ΓW). On the other hand, CΣPRC

∗
Σ is a self-adjoint contraction,

whose range is contained in im (CΣ|R) ⊂ im (ΓW), and therefore CΣPRC
∗
Σ ≤

Pim(ΓW). Thus CΣPRC
∗
Σ = Pim(ΓW).

(vi) ⇒ (vii): This follows from Theorem 3.44.
(vii) ⇒ (iv): If (vii) holds, then ΣR is minimal and CΣ|R is unitarily

similar to Pim(ΓW). Consequently, CΣPRC
∗
Σ = Pim(ΓW). The operator CΣ1 is a

contraction whose range is contained in im (ΓW) (because Σ1 is controllable),
and hence (iv) holds.

Proposition 4.4.

(i) Every observable passive and co-energy preserving s/s system is opti-
mal.

(ii) Every controllable passive and energy preserving s/s system is ∗-optimal.
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Proof. It suffices to prove Part (i), since Part (ii) then follows by duality.
Suppose that Σ is observable and co-energy preserving. By Lemma 3.30,

CΣ is unitary. Thus,

B∗ΣBΣ = B∗ΣC
∗
ΣCΣBΣ = Γ∗WΓW.

By Theorem 4.3, Σ is optimal.

Theorem 4.5. Let Σ = (V,X ,W) be a controllable passive s/s system. Then
the following conditions are equivalent:

(i) Σ is optimal,

(ii) CΣ is an isometry,

(iii) CΣ|R maps X unitarily onto im (ΓW).

(iv) For all x0 ∈ X ,

(AvailStor)
‖x0‖2

X = ‖CΣx0‖H+ = sup
w∈CΣx0

−[w,w]K2
+(W). (4.2)

Moreover, such a system is automatically minimal.

Proof. The equivalence of (i), (ii), and (iii) follows from the equivalence of
(i) and (vi) in Theorem 4.3. The equivalence of (iii) and (iv) follows from the
fact that the right-hand side of (4.2) is equal to ‖CΣx0‖2

H+
, by the definition

of the norm in H+. The minimality follows from Lemma 4.2.

Theorem 4.6. Let Σ = (V ;X ,W) be a controllable passive s/s system with
present/future map CΣ, and let Σ1 = (V1;X1,W) be a minimal optimal s/s
system with present/future map CΣ1 which is externally equivalent to Σ. Then
im (CΣ) ⊂ im (CΣ1), and Σ and Σ1 are contractively intertwined by C−1

Σ1
CΣ.

In particular, any two externally equivalent minimal optimal s/s systems are
unitarily similar to each other.

Proof. Let W+ be the common future behaviour of Σ and Σ1, and let ΣW+
oce =(

V W+
oce ;H+,W

)
be the co-energy preserving observable system in Theorem

3.43. By Theorem 3.31, Σ and ΣW+
oce are intertwined by CΣ, whereas Σ and

ΣW+
oce are intertwined by CΣ1 (recall that the present/future map of ΣW+

oce is
the identity on H+). Explicitly, this means [ xw ] is a stable future trajectory
of Σ if and only if [ CΣx

w ] is a stable future trajectory of ΣW+
oce whose initial

state is contained in im (CΣ), and that [ x1
w ] is a stable future trajectory of Σ1

if and only if
[
CΣ1

x
w

]
is a stable future trajectory of ΣW+

oce whose initial state is
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contained in im (CΣ1). By Theorem 4.5, im (CΣ1) = im (ΓW), and by Lemma
3.39, im (CΣ1) ⊂ im (ΓW). Since CΣ1 is a unitary map of X1 onto im (ΓW),
we can define E by E = C−1

Σ1
CΣ. Then E is a contraction from X to X1, and

[ xw ] is a stable future trajectory of Σ if and only if [ Exw ] is a stable future
trajectory of Σ1 whose initial state is contained in im (E). Consequently E
intertwines Σ and Σ1.

Theorem 4.7. Let Σ = (V ;X ,W) be a passive s/s system with two-sided
behaviour W, past/future map ΓW, past/present map BΣ, present/future map
CΣ, and unobservable subspace U. Denote the orthogonal projection of Σ onto
U⊥ by ΣU⊥. Then the following conditions are equivalent.

(i) Σ is ∗-optimal,

(ii) If Σ1 = (V1;X1,W) is a passive s/s system with the same two-sided
behaviour W and present/future map CΣ1, then CΣC

∗
Σ ≤ CΣ1C

∗
Σ1

.

(iii) CΣC
∗
Σ = ΓWΓ∗W,

(iv) ΣU⊥ is minimal and if Σ1 = (V1;X1,W) is a passive observable s/s
system with the same two-sided behaviour W and past/present map
BΣ1, then B∗ΣPU⊥BΣ ≥ B∗Σ1

BΣ1.

(v) ΣU⊥ is minimal and B∗ΣPU⊥BΣ = P(ker(ΓW))⊥.

(vi) B∗Σ|U⊥ maps U⊥ unitarily onto (ker (ΓW))⊥.

(vii) ΣU⊥ is unitarily similar to the orthogonal projection onto (ker (ΓW))⊥

of the canonical model ΣW
cep of a controllable and energy preserving s/s

system with two-sided behaviour W.

If these equivalent conditions holds, then the unitary similarity operator in
(vii) is equal to B∗Σ|U⊥ with inverse (B∗Σ|U⊥)−1 = PU⊥BΣ|(ker(ΓW))⊥.

Proof. This follows from Theorem 4.3 by duality, taking into account Lem-
mas 3.40 and 3.42.

Theorem 4.8. Let Σ = (V,X ,W) be an observable passive system. Then
the following conditions are equivalent:

(i) Σ is ∗-optimal.

(ii) BΣ is a co-isometry.

(iii) BΣ maps (ker (ΓW))⊥ unitarily onto X .
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(iv) For all x0 ∈ im (BΣ),

(ReqSupply)
‖x0‖2

X = inf
w−∈W−

x0=BΣQ−w−

[w−, w−]K2
−(W). (4.3)

(v) If Σ1 = (V1;X1,W) is a passive observable s/s system with the same
two-sided behaviour W, if [ xw ] and [ x1

w ] are two externally generated
past trajectories of Σ and Σ1, respectively, with the same signal part w,
then ‖x(0)‖X ≥ ‖x1(0)‖X1.

Moreover, such a system is automatically minimal.

Proof. The equivalence of (i), (ii) and (iii) follows from the equivalence of
(i) and (vi) in Theorem 4.7. The equivalence of (iii) and (iv) follows from
the fact that the set {Q−w− | w− ∈W−} is dense in H−, plus the definition
of the norm in H−. Finally, the equivalence of (i) and (v) follows from the
equivalence of (i) and (iv) in Theorem 4.7. Also the minimality follows from
Theorem 4.7.

Remark 4.9. The identities (4.2) and (4.3) mean that the square of the
norms of in the states of a minimal optimal system and minimal ∗-optimal
system coincide, in the terminology of [Wil72], with the available storage and
required supply, respectively, of a minimal system with two-sided behaviour
W.

Theorem 4.10. Let Σ = (V ;X ,W) be an observable passive s/s system
with past/present map BΣ, let Σ1 = (V1;X1,W) be a minimal ∗-optimal
s/s system with past/present map BΣ1 which is externally equivalent to Σ,
and denote the common past/future map of Σ and Σ1 by ΓW. Then Σ1 and
Σ are contractively intertwined by BΣ(BΣ1 |(ker(ΓW))⊥)−1. In particular, any
two externally equivalent controllable and energy preserving s/s systems are
unitarily similar to each other.

Proof. This follows from Theorem 4.6 by duality.

Remark 4.11. Since, by Lemma [AKS11b, 5.5], the subspace

H0
0(W

[⊥]
− ) := {Q−w− | w− ∈W− has compact support}

is dense in H−, it is possible to further restrict the signal w− in Definition 4.1
and in (4.3) so that it has compact support. This implies that our definition
of optimality is the natural s/s counterpart of the definition of optimality
given in [AN96] in a scattering i/s/o setting (there the argument is based
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on trajectories defined on R+ instead of R−). However, our definition of ∗-
optimality is more general than the corresponding definition of ∗-optimality
in [AN96], since the ∗-optimal systems in [AN96] are required to be observ-
able, and hence minimal.

Definition 4.12.

(i) By the canonical model ΣW
mo = (V W

mo; im (ΓW),W) of a minimal optimal
s/s system with two-sided behaviour W we mean the restriction of the
observable co-energy preserving model ΣW+

oce onto its reachable subspace
im (ΓW).

(ii) By the canonical model ΣW
m∗o = (V W

m∗o; (ker (ΓW))⊥,W) of a minimal
∗-optimal s/s system with two-sided behaviour W we mean the orthog-
onal projection of the controllable energy preserving model ΣW−

cep onto
the orthogonal complement (ker (ΓW))⊥ of its unobservable subspace
ker (ΓW).

Lemma 4.13.

(i) The past/present map BW
mo of ΣW

mo is ΓW with the original range space
H+ of ΓW replaced by im (ΓW), and the present/future map CW

mo of ΣW
mo

is 1H+ |im(ΓW)
. The adjoints of these operators are (BW

mo)∗ = Γ∗W|im(ΓW)

and (CW
mo)∗ = Pim(ΓW).

(ii) The past/present map BW
m∗o of ΣW

m∗o is P(ker(ΓW))⊥, and the present/future
map CW

m∗o of ΣW
m∗o is ΓW|(ker(ΓW))⊥. The adjoint of BW

m∗o is Γ∗W with
the original range space H− of Γ∗W replaced by (ker (ΓW))⊥, and the
(CW

m∗o)∗ = 1H− |(ker(ΓW))⊥
.

Proof. These claims follow from the Theorems 3.43 and 3.45.

Theorem 4.14. The operator ΓW, interpreted as an operator defined on
(ker ΓW)⊥ with values in im (ΓW), intertwines the two s/s systems ΣW

m∗o and
ΣW

mo.

Proof. This follows from Theorems 3.43 and and 3.45 and combined with
Theorem 3.31 or Theorem 3.35.

48



4.2 Passive balanced state/signal systems

There is another class of passive s/s system, the class of so called passive bal-
anced s/s systems, which we have not yet looked at, but which will be impor-
tant in our discussion of the reciprocal symmetry of a s/s system. The corre-
sponding i/s/o counterparts are found in, e.g., [Wil72] (for finite-dimensional
impedance systems) and [Sta05, Section 11.8] (for infinite-dimensional scat-
tering systems). (There also exists another type of balanced i/s/o systems
that we shall not discuss here, namely Hankel balanced. For various version of
Hankel balanced i/s/o systems, see e.g., [You86], [OMS90], [OW93], [OW96],
and [Sta05, Section 9.5].)

Definition 4.15. A passive s/s system Σ = (V ;X ,W) with past/present
map BΣ and present/future map CΣ is passive balanced if BΣB

∗
Σ = C∗ΣCΣ.

Lemma 4.16. A passive s/s system Σ is balanced if and only if its adjoint
Σ∗ is balanced, in which case

BΣ∗B
∗
Σ∗ = BΣB

∗
Σ, C∗Σ∗CΣ∗ = C∗ΣCΣ,

Proof. This follows from Definition 4.15 and Lemma 3.40.

Lemma 4.17. Let Σ = (V ;X ,W) be a passive balanced s/s system with two-
sided behaviour W, past/present map BΣ, present/future map CΣ, reachable
subspace R, and unobservable subspace U. Then the following claims hold:

(i) X = R⊕U , and consequently, Σ is minimal if and only if it is control-
lable, or equivalently, if and only if it is observable.

(ii) The restriction of Σ onto R is a minimal passive balanced realization
of W. This restriction coincides with the orthogonal projection of Σ
onto U⊥.

(iii) B∗ΣBΣ = (Γ∗WΓW)1/2 and CΣC
∗
Σ = (ΓWΓ∗W)1/2.

(iv) If Σ is minimal, then Σ is uniquely determined by W up to unitary
similarity. More precisely, if Σ1 and Σ2 are two minimal balanced ex-
ternally equivalent s/s systems, then Σ1 and Σ2 are unitarily similar
with similarity operator C−1

Σ2
CΣ1.

Proof of (i). It follows from Definition 4.15 that

U = ker (CΣ) = ker (B∗Σ) = im (BΣ)⊥ .

Thus, R = im (BΣ) = U⊥, and so X = R⊕ U.
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Proof of (ii). Denote the restriction of Σ to R by ΣR. By (i), ΣR is
minimal. Moreover, BΣR

is equal to BΣ interpreted as an operator with
values in R, B∗ΣR

= B∗Σ|R, CΣR
= CΣ|R, and C∗ΣR

is equal to CΣ interpreted

as an operator with values in im (C∗Σ) = R. Thus,

BΣR
B∗ΣR

= BΣB
∗
Σ|R = C∗ΣCΣ|R = C∗ΣR

CΣR
,

This proves that ΣR is balanced passive.
Proof of (iii). We have

Γ∗WΓW = B∗ΣC
∗
ΣCΣBΣ = B∗ΣBΣB

∗
ΣBΣ = (B∗ΣBΣ)2.

Since B∗ΣBΣ is nonnegative, this implies that B∗ΣBΣ = (Γ∗WΓW)1/2. An
analogous computation shows that CΣC

∗
Σ = (ΓWΓ∗W)1/2.

Proof of (iv). This follows from (iii) and Theorem 3.44

The main question that still remains to be answered concerns the ex-
istence of a minimal balanced s/s realization of a given passive two-sided
behaviour. In order to prepare for a positive answer to this question we first
map the canonical ∗-optimal model ΣW

m∗o with state space (ker (ΓW))⊥ onto
another canonical ∗-optimal model whose state space is equal to im (ΓW)
with the range norm of ΓW.

Lemma 4.18. Let W be a passive two-sided behaviour onW with past/future
map ΓW, and let ΣW

mo = (V W
mo; im (ΓW),W) and ΣW

m∗o = (V W
m∗o; (ker (ΓW))⊥,W)

be the canonical models of a minimal optimal and minimal ∗-optimal s/s sys-
tem with two-sided behaviour W. Let X◦ := im (ΓW) with the norm inherited
from H+, denote V◦ = V W

mo, and denote |Γ∗W| := (ΓWΓ∗W)1/2.

(i) Denote X• := im (ΓW), and equip X• with the range norm

‖ΓWy‖X• = ‖y‖H− , y ∈ (ker (ΓW))⊥.

Then X• is a Hilbert space which is contractively and densely embedded
in X◦, and ΓW|(ker(ΓW))⊥, regarded as an operator with values in X•, is a
unitary map from (ker (ΓW))⊥ onto X•. The adjoint of the embedding
map X• ↪→ X◦ is the restriction to X◦ of the operator |Γ∗W|2 = ΓWΓ∗W.

(ii) Define

V• =

|Γ∗W| 0 0
0 |Γ∗W| 0
0 0 1W

V◦.
Then Σ• = (V•;X•;W) is a minimal ∗-optimal realization of W, which
is unitarily similar to ΣW

m∗o with similarity operator (ΓW|(ker(ΓW))⊥)−1.
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(iii) The past/present map BΣ• of Σ• is equal to ΓW, regarded as an op-
erator with values in X•, and the present/future map CΣ• of Σ• is
the embedding operator X• ↪→ H+. The adjoint of BΣ• is B∗Σ• =
(ΓW|(ker(ΓW))⊥)−1, and the adjoint of CΣ• is C∗Σ• = ΓWΓ∗W, regarded as
an operator with values in X•.

Proof of (i). It is easy to see that ΓW|(ker(ΓW))⊥ , regarded as an operator with
values in X•, is a unitary map from (ker (ΓW))⊥ onto X•, and hence X• is a
Hilbert space. The embedding is dense since im (ΓW) is dense in im (ΓW).
Since im (ΓW) = im (|Γ∗W|), we can also interpret X• as the range space of
|Γ∗W|, and |Γ∗W|, interpreted as an operator with values in X•, is a unitary
map of X◦ onto X•.

To compute the adjoint of the embedding X• ↪→ X◦ we let x• ∈ X• and
y◦ ∈ X◦, and compute

(|Γ∗W|x•, y◦)X◦ = (x•, |Γ∗W|y◦)X◦ = (|Γ∗W|x•, |Γ∗W|2y◦)X• .

Since im (|Γ∗W|)|X• is dense in X•, we find that for all x• ∈ X• and y◦ ∈ X◦,

(x•, y◦)X◦ = (x•, |Γ∗W|2y◦)X• .

This proves that the adjoint of the embedding X• ↪→ X◦ is equal to |Γ∗W|2|X◦ .
The embedding is contractive since |Γ∗W|2 is contractive.

Proof of (ii)–(iii). This follows from (i) and Theorem 4.10.

Theorem 4.19. Introduce the same notations as in Lemma 4.18.

(i) Denote X� := im
(
|Γ∗W|1/2

)
= im

(
(ΓWΓ∗W)1/2

)
, and equip X� with the

range norm

‖|Γ∗W|1/2y‖X◦ = ‖y‖H− , y ∈ (ker (ΓW))⊥,

Then X� is a Hilbert space, X• is contractively and densely embedded
in X�, and X� is contractively and densely embedded in X◦. The re-
striction of |Γ∗W|1/2 to X◦ is a unitary map of X◦ onto X�, and the
restriction of |Γ∗W|1/2 to X� is a unitary map of X� onto X•. The ad-
joint of the embedding map X• ↪→ X� is the restriction to X� of |Γ∗W|,
and the adjoint of the embedding map X� ↪→ X◦ is the restriction to
X◦ of |Γ∗W|.

(ii) Define

V� =

|Γ∗W|1/2 0 0
0 |Γ∗W|1/2 0
0 0 1W

V◦. (4.4)

Then Σ� = (V�;X�;W) is a minimal balanced realization of W.
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(iii) The past/present map BΣ� of Σ� is equal to ΓW, regarded as an op-
erator with values in X�, and the present/future map CΣ� of Σ� is
the embedding operator X� ↪→ H+. The adjoint of BΣ� is B∗Σ� =
(ΓW|(ker(ΓW))⊥)−1|Γ∗W||X� and the adjoint of C∗Σ� is equal to |Γ∗W|, re-
garded as an operator with values in X�.

Proof of (i). The proof of part (i) is analogous to the proof of part (i) of
Lemma 4.18.

Proof of (ii). Let W = U � −Y be a fundamental decomposition of the
signal space W . If we denote the node spaces of Σ◦, Σ�, and Σ• by K◦, K�,
and K•, respectively, then we get the three fundamental decompositions

K◦ = K◦+ �−K◦−, K� = K�+ �−K�−, K• = K•+ �−K•−,

where

K◦+ =
{[ −x

x
w+

]∣∣∣x ∈ X◦, w+ ∈ U
}
, K◦− =

{[
x
x
w−

]∣∣∣x ∈ X◦, w− ∈ Y} ,
and K�± and K•± are defined analogously. We know that V◦ is maximal
nonnegative in K◦, and that V• is maximal nonnetagive in K•, since Σ◦ and
Σ• are passive. By Proposition 2.1(i), this implies that V◦ and V• have graph
representations over K◦+ and K•+ with contractive angle operators A◦+ and
A•+, respectively. Since V• ⊂ V◦, we find that A•+ is the restriction of A◦+
to K•+, and it follows from the definitions of V• and V� that V� is the graph
of the operator A�+ that one gets by interpolating between A◦+ and A•+ in
the sense of [AS05a, Lemma 3.2]. By that lemma, A�+ is a contraction, and
consequently, by Proposition 2.1, V� is maximal nonnegative in K�. Since
V� ⊂ V◦, it is clear that V� inherits property (1.1) from V◦. Consequently,
V� generates a passive s/s system.

The inclusions V• ⊂ V� ⊂ V◦ implies that every classical trajectory of
Σ• is also a classical trajectory of Σ�, and that every classical trajectory
of Σ� is also a classical trajectory of Σ◦. These two inclusions of classical
trajectories imply the corresponding inclusions for generalised trajectories.
Since Σ• and Σ◦ have the same behaviour W, also the behaviour of Σ� must
coincide with W. Thus, these three systems are externally equivalent. Since
Σ• is controllable and X• is dense in X� the system Σ� is controllable, and
since Σ◦ is observable also Σ� is observable.

That Σ� is balanced follows from (iii), which will be proved next.
Proof of (iii). By the same argument which we used above to prove (ii)

we find that BΣ� is equal to BΣ• composed with the embedding operator
X• ↪→ X�, and that CΣ� = CΣ◦ |X� . This combined with (i) and Lemmas
4.13 and 4.18 leads to the characterisations of BΣ� and CΣ� given in the
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statement of the theorem. We further conclude that B∗Σ� is equal to the
adjoint of the embedding operator X• ↪→ X� composed with B∗Σ• and that
C∗Σ� is equal to C∗Σ◦ composed with the adjoint of the embedding operator
X� ↪→ X◦. This combined with (i) and Lemmas 4.13 and 4.18 leads to the
characterisations of B∗Σ� and C∗Σ� given in the statement of the theorem.
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5 Passive Real State/Signal Systems and Be-

haviours

We are now ready to turn to the main subject of this paper, namely four
different types of symmetries that a passive s/s system may possess. In this
chapter we deal with real symmetry, and in the next three chapters we shall
discuss reciprocal symmetry, signature invariance, and transpose invariance.

We begin by discussion conjugate-linear unitary similarity between two
passive s/s systems.

Lemma 5.1. Let Σ = (V ;X ,W) be a passive s/s system, let X1 and W1 be a
Hilbert and a Krĕın space, respectively, and let VX and VW be two conjugate-
linear unitary operators in B(X ;X1) and B(W ;W1), respectively. Define V1

by

V1 =

VX 0 0
0 VX 0
0 0 VW

V. (5.1)

Then the following statements are true.

(i) Σ1 = (V1;X1,W1) is a passive s/s system.

(ii) [ xw ] is a classical trajectory of Σ on some interval I if and only if
[ VXx
VWw

]
is a classical trajectory of Σ1 on I

(iii) [ xw ] is generalised trajectory of Σ on some interval I if and only if[ VXx
VWw

]
is a generalised trajectory of Σ1 on I.

(iv) If we denote the past, two-sided, and future behaviours of Σ by W−,
W, and W+, respectively, then the corresponding behaviours of Σ1 are
equal to VWW−, VWW, and VWW+, respectively.

Proof. That V1 is maximal nonnegative follows from the maximal nonnegativ-

ity of V together with the fact that the conjugate-linear operator
[ VX 0 0

0 VX 0
0 0 VW

]
is a unitary map from the node space of Σ onto the node space of Σ1. That
(ii) holds follows immediately from (5.1), and (iii) follows from (ii). Finally,
(iv) follows from (iii).

We shall be especially interested in the case where the two systems Σ and
Σ1 in Lemma 5.1 coincide and the operators VX and VW are conjugations
(i.e., conjugate-linear unitary involutions).

Definition 5.2. A passive s/s system Σ = (V ;X ,W) is called (CX ; CW)-real
if (1.15) holds, where CX and CW are conjugations in X andW , respectively.
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Instead of using the characterisation in Definition 5.2p for reality of a
system we can also use the following alternative characterisations.

Lemma 5.3. Let Σ = (V ;X ,W) be a passive s/s system, let CX and CW be
conjugations in X and W, respectively, and let I ⊂ R be a nontrivial interval
with finite left end-point. Then the following conditions are equivalent:

(i) Σ is (CX ; CW)-real;

(ii) [ xw ] is a classical trajectory of Σ on I if and only if
[ CXx
CWw

]
is a classical

trajectory of Σ on I.

(iii) [ xw ] is generalised trajectory of Σ on I if and only if
[ CXx
CWw

]
is a gener-

alised trajectory of Σ on I.

Proof. That (i) ⇒ (ii) ⇒ (iii) is seen as in the proof of Lemma 5.1.
Conversely, since a generalised trajectory is classical if and only if it has

the necessary smoothness (see Lemma 3.4), (iii) ⇒ (ii). Finally, (ii) ⇒ (i)

since the generating subspace is the set of all initial values of
[
ẋ
x
w

]
at the left

end-point of I for the set of all classical trajectories [ xw ] at the interval I.

Lemma 5.4. If Σ = (V ;X ,W) is a simple passive s/s (CX ; CW)-real system,
then CX is uniquely determined by Σ and CW .

Proof. This follows from Lemma 3.50.

Lemma 5.5. Let Σ = (V ;X ,W) be a passive (CX ; CW)-real system, and let
Σ1 = (V1;X1,W) be unitarily similar to Σ with similarity operator V. Then
Σ1 is (CX1 ; CW)-real with CX1 = VCXV−1.

Proof. This follows from the fact thatCX1 0 0
0 CX1 0
0 0 CW

V1 =

VCXV−1 0 0
0 VCXV−1 0
0 0 CW

V1

=

VCX 0 0
0 VCX 0
0 0 CW

V =

V 0 0
0 V 0
0 0 1W

V = V1.

Lemma 5.6. A passive s/s system Σ = (V ;X ,W) is (CX ; CW)-real if and
only if the adjoint system Σ∗ = (V∗;X ,−W) is (CX ; C−W)-real, where C−W =
I(W,−W)CWI(−W,W).

Proof. This follows from Lemma 2.11 and Definitions 3.20 and 5.2.
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Lemma 5.7. If the passive s/s system Σ = (V ;X ,W) is (CX , CW)-real, then
the reachable subspace RΣ, the unobservable subspace UΣ and their orthogonal
complements are invariant under CX , i.e.,

RΣ = CXRΣ, UΣ = CXUΣ, R⊥Σ = CXR⊥Σ, R⊥Σ = CXR⊥Σ. (5.2)

Thus, the restriction of CX to each of these subspaces is a conjugation in the
corresponding subspace.

Proof. By Lemma 5.3, [ xw ] is an externally generated stable past trajectory
of Σ if and only if

[ CXx
CWw

]
is an externally generated stable past trajectory of

Σ. This implies that the image of H0(W
[⊥]
− ) = {Q−w | w ∈ Y} under BΣ is

invariant under CX . The reachable subspace R is the closure of this image
in X , and consequently R is invariant under CX .

That U is invariant under CX follows immediately from Lemma 5.3. Fi-
nally, the invariance of R⊥ and U⊥ follows from Lemma 2.11.

Lemma 5.8. Let Σ = (V ;X ,W) be a passive (CX , CW)-real s/s system.

(i) The restriction ΣR = (VR;R,W) of Σ onto its reachable subspace R is
(CR, CW)-real, where CR = CX |R.

(ii) The orthogonal projection Σ⊥U = (VU⊥ ;U⊥,W) of Σ onto the orthogo-
nal complement to its unobservable subspace U is (CU⊥ , CW)-real, where
CU⊥ = CX |U⊥.

Proof. This follows from Lemma 5.7 and formulas (3.11) and (3.12).

Definition 5.9. Let CW be a conjugation in the Krĕın space W .

(i) A passive two-sided behaviour W on W is called CW-real if

W = CWW (5.3)

(here the conjugation CW on K2(W) induced by the conjugation CW ∈
B(W) is defined as in Remark 1.1).

(ii) A passive s/s system Σ = (V ;X ,W) is called externally CW-real if its
two-sided behaviour is CW-real.

It follows from (3.8)–(3.9) that the equality (5.3) is equivalent to each of
the following equalities:

W+ = CWW+, W− = CWW−, (5.4)
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where W+ and W− are the passive future and past behaviours onW defined
in terms of W by (3.8). Moreover, (5.3) and (5.4) are equivalent to the
corresponding relations

W[⊥] = CWW[⊥], W
[⊥]
± = CWW[⊥]

± (5.5)

for the orthogonal complements.

Lemma 5.10. If Σ = (V ;X ,W) is a passive (CX , CW)-real s/s system, then
it is externally CW-real.

Proof. Let W+ be the passive future behaviour of Σ, and let w+ ∈ W+.
Then there exists a unique stable externally generated future trajectory [ x+

w+ ]

of Σ (with signal part w+). By Lemma 5.3, this implies that
[
CXx+

CWw+

]
is an

externally generated stable future trajectory of Σ. Consequently, CWw+ ∈
W+. This proves that CWW+ ⊂W+. By applying CW to both sides of this
inclusion and taking into account that C2

W = 1W , we find that CWW+ ⊂W+.
Thus CWW+ = W+, and by the comment after Definition 5.9, Σ is externally
CW-real.

Lemma 5.11. A passive two-sided behaviour W on the Krĕın space W is
CW-real if and only if the adjoint behaviour W∗ is C−W-real, where C−W =
I(W,−W)CWI(−W,W). In particular, a passive s/s system Σ = (V ;X ,W) is
externally CW-real if and only if the adjoint system Σ∗ is externally C−W-
real.

Proof. This follows from Lemma 2.11 and 3.25 and Definitions 3.24 and 5.9.

Lemma 5.12. Let W be a CW-real passive two-sided behaviour on W, with
the corresponding past and future behaviours W− and W+.

(i) w− ∈ K(W
[⊥]
− ) if and only if CWw− ∈ K(W

[⊥]
− ). In this case, ‖Q−CWw−‖H− =

‖Q−w−‖H−.

(ii) w+ ∈ K(W+) if and only if CWw+ ∈ K(W+). In this case ‖Q+CWw+‖H+ =
‖Q+w+‖H+.

(iii) w ∈ L(W) if and only if CWw ∈ L(W). In this case ‖QCWw‖D(W) =
‖Qw‖D(W).
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Proof of (i). We have for each w− ∈ K2
−(W),

‖Q−CWw−‖2
H− = sup

{
[CWw− + z, CWw− + z]K2

−(W)

∣∣∣ z ∈W
[⊥]
−

}
= sup

{
[CWw + CWz, CWw + CWz]K2

−(W)

∣∣∣ CWz ∈W
[⊥]
−

}
= sup

{
[w + z, w + z]K2

−(W)

∣∣∣ z ∈W
[⊥]
−

}
= ‖Q−w−‖2

H− .

Thus, CWw− ∈ K(W
[⊥]
− ) if and only if w− ∈ K(W

[⊥]
− ), and ‖Q−CWw−‖H− =

‖Q−w−‖H− .
Proof of (ii). This proof is analogous to the one above.
Proof of (iii). Let w ∈ L(W), and choose xm ∈ D0(W) such that xm → Qw
in D(W) as m→∞. Let R be a bounded right-inverse of the quotient map
Q, and define wm := w + R(xm − Qw). Then Qwm = xm → Qw in D(W),
wm ∈ L0(W), and wm → w in K2(W) as m→∞. Each wm can be written
in the form wm = zm + z†m, where zm ∈ W and z†m ∈ W[⊥], and since both
W and W[⊥] are invariant under CW , we conclude that CWwm ∈ L0(W), and
CWwm → CWw in K2(W) as m→∞. Moreover,

‖xm‖2
D(W) = ‖Qwm‖2

D(W) = [π−zm, π−zm]K2
−(W) − [π+z

†
m, π+z

†
m]K2

+(W)

= [π−CWzm, π−CWzm]K2
−(W) − [π+CWz†m, π+CWz†m]K2

+(W)

= ‖QCWwm‖2
D(W).

Applying the same identity to xm − xn we find that QCwm is a Cauchy
sequence in D(W), and hence it converges to some limit, that we denote by
Cx. Since the restriction of Q to L(W) is closed as an operator with values
in D(W), and since CWwm → CWw in K2(W) as m → ∞, we find that
Cx = QCWw. This proves that CWw ∈ L(W). Lettingm→∞ in the equality
‖xm‖D(W) = ‖QCWwm‖D(W) we find that ‖x‖D(W) = ‖QCWw‖D(W).

Lemma 5.13. Let W be a CW-real passive two-sided behaviour on W, with
the corresponding past and future behaviours W− and W+.

(i) There is a unique conjugation CH− inH− such that CH−Q−w− = Q−CWw−
for all w− ∈ K(W

[⊥]
− ).

(ii) There is a unique conjugation CH+ inH+ such that CH+Q+w+ = Q+CWw+

for all w+ ∈ K(W+).

(iii) There is a unique conjugation CD(W) in D(W) such that CD(W)Qw =
QCWw for all w ∈ L(W).
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Proof. By Lemma 5.12(i), w− ∈ K(W
[⊥]
− ) if and only if CWw− ∈ K(W

[⊥]
− ), in

which case ‖Q−CWw−‖H− = ‖Q−w−‖H− . This enables us to define a unitary
operator CH− in H− by the formula CH−Q−w− by CH−Q−w− = Q−CWw−,
w− ∈ K(W−). This operator is conjugate-linear since Q− is linear and CH−
is conjugate-linear. Thus, CH− is a conjugation in H−.

The operators CH+ and CD(W) are defined analogously, and the proofs
that also these two operators are conjugations are the same as the proof
given above, with part (i) of Lemma 5.12 replaced by parts (ii) and (iii).

Theorem 5.14. Let Σ = (V ;X ,W) be a simple conservative externally CW-
real s/s system. Then there exists a unique conjugation CX in X such that Σ
is (CX , CW)-real.

Proof. Let x0 ∈ X , and choose some stable two-sided trajectory [ xw ] of Σ such
that x(0) = x0 (this is possible since Σ is both forward and backward well-
posed; see [AKS11b, Remark 4.2]). Then w ∈ L(W). By Lemma 5.12(iii),
also CWw ∈ L(W). To this trajectory corresponds a unique stable two-sided
trajectory

[
x̃
CWw

]
of Σ. Define CXx0 := x̃(0). We claim that this is a well-

defined operator which is a conjugation.
First of all, we need to check that CX is well-defined. However, this follows

from the fact that it preserves norms, and this is true because the conjugation
CW does not change the norm in K2(W), and

‖x0‖2
X = [w,w]K2(W) = [CWw, CWw]K2(W) = ‖x̃(0)‖2

X .

Thus CW is isometric. It is also easy to see that CW is an involution, and
that CW is conjugate-linear. Being an involution, CW is surjective, and hence
unitary. By Lemma 2.10, CW is a conjugation.

By construction, if [ xw ] is a stable two-sided trajectory of Σ, then the
stable two-sided trajectory

[
x̃
CWw

]
whose signal part is CWw satisfies x̃(0) =

CXx(0). The set of stable two-sided trajectories of Σ is shift-invariant, and
by applying the same argument to a shifted trajectory we find that

[ CXx
CWw

]
is a stable two-sided trajectory of Σ if and only if [ xw ] is a stable two-sided
trajectory of Σ. In particular, the same statement applies to classical stable
two-sided trajectories also. Evaluating such trajectories at zero, we find that[
z
x
w

]
∈ V if and only if

[ CX z
CXx
CWw

]
∈ V . This shows that Σ is (CX , CW)-real.

The uniqueness of CX follows from Lemma 5.4.

Theorem 5.15. Let Σ = (V ;X ,W) be a observable co-energy preserving
externally CW-real s/s system. Then there exists a unique conjugation CX in
X such that Σ is (CX , CW)-real.
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Proof. This proof is analogous to the proof of Theorem 5.14 (with two-sided
trajectories replaced by future trajectories), and it is left to the reader. (Re-
call that the present/future map of an observable and co-energy preserving
system is unitary.)

Theorem 5.16. Let Σ = (V ;X ,W) be a passive controllable energy preserv-
ing simple conservative externally CW-real s/s system. Then there exists a
unique conjugation CX in X such that Σ is (CX , CW)-real.

Proof. Let x0 ∈ X , and choose some stable past trajectory [ x−w− ] with w− ∈
K(W

[⊥]
− ) such that x−(0) = x0; this is possible since the past/present map BΣ

is a unitary map of H− onto X . By Lemma 5.12(i), also CWw− ∈ K(W
[⊥]
− ).

To this trajectory corresponds a unique stable past trajectory
[

x̃−
CWw−

]
of Σ.

Define CXx0 := x̃(0). As in the proof of Theorem 5.14 we see that CX is a
conjugation.

Let w ∈ W. and let [ xw ] be the unique externally generated stable two-
sided trajectory of Σ with signal part w. Then by the preceding argument,
CXx(0) = BΣCWπ−w. By shifting the trajectory [ xw ] to the left or right we
find that the stable two-sided trajectory whose signal part is CWw is equal
to
[ CXx
CWw

]
. The set of initial states x(0) of the type x(0) = BΣπ−w for some

w ∈W is dense in X , and consequently, it is true that if [ x+
w+ ] is an arbitrary

stable future trajectory of Σ, then also
[
CXx+

CWw+

]
is a stable future trajectory

of Σ. By Lemma 5.3, this implies that Σ is (CX ; CW)-real.

Corollary 5.17. Let W be a CW-real passive two-sided behaviour onW, with
the corresponding past and future behaviours W− and W+.

(i) The canonical controllable energy preserving realization ΣW−
cep of W is

(CH− , CW)-real.

(ii) The canonical observable co-energy preserving realization ΣW+
oce of W is

(CH+ , CW)-real.

(iii) The canonical simple conservative realization ΣW
sc of W is (CD(W), CW)-

real.

Proof. That these three canonical models are real for some conjugations in
their state spaces follows from Theorems 5.16, 5.15, and 5.14 applied to these
models. That the conjugations are precisely those listed above can be seen
by comparing the proofs of the cited theorems with Lemma 5.13.
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Corollary 5.18. The unique state space conjugation CX in Theorem 5.14 is
given by

CX = (Bbil
Σ )−1CD(W)B

bil
Σ = Cbil

Σ CD(W)(C
bil
Σ )−1; (5.6)

here Cbil
Σ and Bbil

Σ = (Cbil
Σ )∗ are the two-sided present/future and past/present

maps of the simple conservative system Σ.

Proof. This follows from Theorem 3.47, Lemma 5.5, and Corollary 5.17.

Theorem 5.19. Let Σ = (V ;X ,W) be a passive (CX , CW)-real system with
past/present map BΣ, present/future map CΣ, two-sided behaviour W, and
past/future map ΓW. Let CH− and CH+ be the conjugations in parts (i) and
(ii) of Lemma 5.13. Then BΣ is (CH− , CX )-real, CΣ is (CX , CH+)-real, and
ΓW is (CH− , CH+)-real.

Proof. If [ xw ] is an externally generated stable past trajectory of Σ, then by
Lemma 5.3 also

[ CXx
CWw

]
is an externally generated stable past trajectory of Σ.

This implies that BQ−CWw = CXBQ−w for all w ∈W−. Here we can replace
Q−CWw by CH−Q−w to get BCH−Q−w = CXBQ−w for all w ∈ W−. Since
Q−W− is dense in H− we find that BCH− = CXB, i.e., BΣ is (CH− , CX )-real.

Likewise, if [ xw ] is a stable future trajectory of Σ, then by Lemma 5.3 also[ CXx
CWw

]
is a stable future trajectory of Σ, i.e., Q+CWw = CΣCXx(0). Here we

can replace Q+CW by CH+Q+w. This implies that CΣCX = CH+CΣ, and so
CΣ is (CX , CH+)-real.

Finally, ΓW = CΣBΣ is (CH− , CH+)-real since BΣ is (CH− , CX )-real and CΣ

is (CX , CH−)-real.

Corollary 5.20. Let Σ = (V ;X ,W) be a passive (CX , CW)-real s/s system
with past/present map BΣ and present/future map CΣ.

(i) If Σ is observable, then CX = C−1
Σ CH+CΣ.

(ii) If Σ is controllable, then C is the closure of the operator

BΣCH−(BΣ|(ker(BΣ))⊥)−1,

which is defined on im (BΣ).

(iii) If Σ is simple, then CX is the closure of the operator which is defined
on im (BΣ) + (ker (CΣ))⊥ by

CXx0 =

{
C−1

Σ CH+CΣx0, x0 ∈ (ker (CΣ))⊥,

BΣCH−(BΣ|(ker(BΣ))⊥)−1x0, x0 ∈ im (BΣ)).
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Proof. By Theorem 5.19, CXBΣ = BΣCY and CΣCX = CYCΣ. From this claim
(iii) follows immediately. Claims (i) and (ii) are special cases of (iii).

Theorem 5.21. Let Σ = (V ;X ,W) be a minimal optimal externally CW-real
s/s system. Then there exists a unique conjugation CX in X such that Σ is
(CX , CW)-real.

Proof. The uniqueness claim follows from Lemma 5.4, so it suffices to prove
that Σ is (CX , CW)-real for some conjugation CX . By Theorem 4.6 and Lemma
5.5, to do this it suffices to prove the corresponding statement for the canon-
ical minimal optimal model ΣW

mo, and by Lemma 5.8, it then suffices to prove
the same statement for the canonical observable co-energy preserving model
ΣW+

oce . But according to Theorem 5.15, ΣW+
oce is (CH+ , CW)-real.

Theorem 5.22. Let Σ = (V ;X ,W) be a minimal ∗-optimal externally CW-
real s/s system. Then there exists a unique conjugation CX in X such that Σ
is (CX , CW)-real.

Proof. The proof of Theorem 5.22 is analogous to the proof of Theorem
5.21.

Theorem 5.23. Let Σ = (V ;X ,W) be a minimal passive balanced externally
CW-real s/s system. Then there exists a unique conjugation CX in X such
that Σ is (CX , CW)-real.

Proof. The uniqueness of CX again follows from Lemma 5.4, so it suffices to
prove the existence of CX , and by Lemma 5.5, it suffices to prove that the
minimal optimal system Σ� = (V�;X�,W) constructed in Theorem 4.19 is
(CX� , CW)-real for some conjugation CX� in X�. As we shall see below, CX�
is the restriction to X� of CH+ .

By Lemma 5.19, ΓWCH− = CH+ΓW. As can easily be seen, this implies
that ΓWΓ∗W commutes with CH+ . Since |Γ∗W|1/2 = (ΓWΓ∗W)1/4 can be obtained
as a uniform limit of powers of ΓWΓ∗W, this implies that CH+ commutes with
|Γ∗W|1/2, and hence also with the inverse of the restriction of |Γ∗W|1/2 to X◦ =
im (ΓW) = (ker (|Γ∗W|))⊥ = (ker

(
|Γ∗W|1/2

)
)⊥. It follows from the definition of

X� that X� is invariant under CH+ . Moreover, with the notations of Lemma
4.18 and Theorem 4.19, for all x ∈ X� we have

‖CH+x‖2
X� = ‖(|Γ∗W||X◦)−1/2CH+x‖2

X◦ = ‖CH+(|Γ∗W||X◦)−1/2x‖2
X◦

= ‖(|Γ∗W||X◦)−1/2x‖2
X◦ = ‖x‖2

X� .

Thus, the restriction CX� of CH+ to X� is an isometric operator in X�, and
hence a conjugation in X�. That Σ� is (CX� , CW)-real follows from (4.4)
and the fact that Σ◦ is (CX◦ , CW)-real, where CX◦ is the restriction of CH+ to
X◦.
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6 Passive Reciprocal State/Signal Systems and

Behaviours

Earlier in this article we have seen two types of transformations of passive
systems, namely the transformation which takes a system Σ to its dual Σ∗
introduced in Lemma 2.6, and the conjugate-linear unitary transformation
in Lemma 5.1. Here we shall study a third type of transformations which
contains the duality transformation in Lemma 2.6 as a special case.

Lemma 6.1. Let Σ = (V ;X ,W) be a passive s/s system with adjoint Σ∗ =
(V∗;X ,−W), let X1 and W1 be a Hilbert and a Krĕın space, respectively, let
VX be a linear unitary operator in B(X ;X1), and let RW be a linear skew-
unitary operator in B(W ;W1).

(i) Define V1 by

V1 =

−VX 0 0
0 VX 0
0 0 RW

V [⊥]. (6.1)

Then Σ1 = (V1;X1,W1) is a passive s/s system.

(ii) [ xw ] is a classical trajectory of Σ∗ on some interval I if and only if[
VXx

RWI(−W,W)w

]
is a classical trajectory of Σ1 on I.

(iii) [ xw ] is a generalised trajectory of Σ∗ on some interval I if and only if[
VXx

RWI(−W,W)w

]
is a generalised trajectory of Σ1 on I.

(iv) If we denote the past, two-sided, and full behaviours of Σ by W−, W,
and W+, respectively, then the corresponding behaviours of Σ1 are equal

to RW RW
[⊥]
+ , RW RW[⊥], and RW RW

[⊥]
− , respectively.

Proof. This follows from Lemmas 2.6 and 3.23 and the fact that both VX and
IWI(−W,W) are unitary operators in B(X ;X1) and B(−W ,W1), respectively.

We shall be especially interested in the case where the two systems Σ and
Σ1 in Lemma 6.1 coincide and both VX and RW are involutions, i.e., VX is a
signature operator and RW is a skew-signature operator.

Definition 6.2. A passive s/s system Σ = (V ;X ,W) is called (JX ; IW)-
reciprocal if (1.16) (or equivalently, (1.20)) holds, where JX is a signature
operator in X and IW is a skew-signature operator in W .
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Instead of using the characterisation give above for reciprocity of a system
we can also use the following alternative characterisations.

Lemma 6.3. Let Σ = (V ;X ,W) be a passive s/s system, let JX be a sig-
nature operator in X , let IW be and skew-signature operator in W, and let
I ⊂ R be a nontrivial interval with finite left end-point. Then the following
conditions are equivalent:

(i) Σ is (JX ; IW)-reciprocal;

(ii) [ xw ] is a classical trajectory of Σ∗ on I if and only if
[

JXx
IWI(−W,W)w

]
is a

classical trajectory of Σ on I

(iii) [ xw ] is a generalised trajectory of Σ∗ on I if and only if
[

JXx
IWI(−W,W)w

]
is a generalised trajectory of Σ on I.

Proof. The proof is analogous to the proof of Lemma 5.3.

Lemma 6.4. Let Σ = (V ;X ,W) be a passive (JX ; IW)-reciprocal system,
and let Σ1 = (V1;X1,W) be unitarily similar to Σ with similarity operator V.
Then Σ1 is (JX1 ; IW)-reciprocal with JX1 = VJXV−1.

Proof. The proof is analogous to the proof of Lemma 5.5.

Lemma 6.5. A passive s/s system Σ = (V ;X ,W) is (JX ; IW)-reciprocal
if and only if the adjoint system Σ∗ = (V∗;X ,W) is (JX ; I−W)-reciprocal,
where I−W = I(W,−W)IWI(−W,W).

Proof. The proof is analogous to the proof of Lemma 5.6.

Lemma 6.6. If the passive s/s system Σ = (V ;X ,W) is (JX , IW)-reciprocal,
then the reachable subspace RΣ and the unobservable subspace UΣ of Σ satisfy

JXRΣ = U⊥Σ, JXUΣ = R⊥Σ, JXR⊥Σ = UΣ, JXU⊥Σ = RΣ. (6.2)

In particular, Σ is minimal if and only if Σ is controllable, or equivalently,
if and only if Σ is observable.

Proof. The proof is analogous to the proof of Lemma 5.7.

Lemma 6.7. Let Σ be a simple passive s/s system which satisfies (1.16) for
some unitary operator JX and some skew-signature operator IW . Then JX
is a signature operator, and hence Σ is (JX ; IW)-reciprocal. Moreover, JX
is determined uniquely by Σ and IW .
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Proof. Denote D =
[ −JX 0 0

0 JX 0
0 0 IW

]
. It follows from (1.16) that

V [⊥] = D−1V.

On the other hand, it is easy to check that D is skew-unitary, and hence by
by (1.16) and Lemma 2.19 with V replaced by V [⊥],

V [⊥] = (DV [⊥])[⊥] = DV.

Thus, DV = D−1V . Here

D−1V =

−J −1
X 0 0

0 J −1
X 0

0 0 I−1
W

V =

−J ∗X 0 0
0 J ∗X 0
0 0 IW

V.
Multiplying this identity by D−1 to the left we get

V =

J −1
X J ∗X 0 0

0 J −1
X J ∗X 0

0 0 1W

V.
By Lemma 3.50, J −1

X J ∗X = 1X , i.e., JX is a signature operator.
By comparing (1.16) to (1.19) we find that (1.20) holds. By Lemma 3.51,

JX is determined uniquely by V , V∗, and IWI(−W,W), and hence by V and
IW .

Definition 6.8. Let IW be a skew-signature operator in the Krĕın spaceW .

(i) A passive two-sided behaviour W on W is called IW-reciprocal if

W = IW RW[⊥] (6.3)

(here the skew-signature operator IW on K2(W) induced by the skew-
signature operator IW ∈ B(W) is defined as in Remark 1.1).

(ii) A passive s/s system Σ = (V ;X ,W) is called externally IW-reciprocal
if its two-sided behaviour is IW-reciprocal.

It follows from (3.8)–(3.9) that the equality (6.3) is equivalent to each of
the following equalities:

W+ = IW RW
[⊥]
− , W− = IW RW⊥

+, (6.4)

where W+ and W− are the passive future and past behaviours onW defined
in terms of W by (3.8).
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Lemma 6.9. If Σ = (V ;X ,W) is a passive (JX , IW)-reciprocal s/s system,
then it is externally IW-reciprocal.

Proof. The proof if analogous to the proof of Lemma 5.10.

Lemma 6.10. A passive two-sided behaviour W on the Krĕın space W is
IW-reciprocal if and only if the adjoint behaviour W∗ is I−W-reciprocal,
where I−W = I(W,−W)IWI(−W,W). In particular, a passive s/s system Σ =
(V ;X ,W) is externally IW-reciprocal if and only if the adjoint system Σ∗ is
externally I−W-reciprocal.

Proof. This follows from Lemma 2.19 and 3.25 and Definitions 3.24 and 6.8.

Lemma 6.11. Let W be a IW-reciprocal passive two-sided behaviour on W,
with the corresponding past and future behaviours W− and W+.

(i) w− ∈ K(W
[⊥]
− ) if and only if IW Rw− ∈ K(W+). In this case, ‖Q+IW Rw−‖H+ =

‖Q−w−‖H−.

(ii) w+ ∈ K(W+) if and only if CW Rw+ ∈ K(W
[⊥]
− ). In this case ‖Q−IW Rw+‖H− =

‖Q−w+‖H−.

(iii) w ∈ L(W) if and only if IW Rw ∈ L(W). In this case ‖QIW Rw‖D(W) =
‖Qw‖D(W).

Proof. The proof is analogous to the proof of Lemma 6.11.

Lemma 6.12. Let W be a IW-reciprocal passive two-sided behaviour on W,
with the corresponding past and future behaviours W− and W+.

(i) There is a unique unitary operator V(H−,H+) in B(H−;H+) such that

V(H−,H+)Q−w− = Q+IW Rw− for all w− ∈ K(W
[⊥]
− ).

(ii) There is a unique unitary operator V(H+,H−) in B(H+;H−) such that
V(H+,H−)Q+w+ = Q−IW Rw+ for all w+ ∈ K(W+). This operator is
the adjoint of the operator V(H−,H+) in (i).

(iii) There is a unique signature operator JD(W) in D(W) such that JD(W)Qw =
QIW Rw for all w ∈ L(W).

Proof. The proof is analogous to the proof of Lemma 5.13.
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Theorem 6.13. Let Σ = (V ;X ,W) be a simple conservative externally IW-
reciprocal s/s system. Then there exists a unique signature operator JX in
X such that Σ is (JX , IW)-reciprocal.

Proof. The uniqueness of JX follows from Lemma 6.7, so it suffices to prove
the existence of JX .

The system Σ = (V ;X ;W) is a simple conservative realization of its
behaviour W, and hence Σ∗ = (V∗;X ,W) is a simple conservative realization
of the dual behaviour W∗ = I(W,−W) RW[⊥]. Recall that V∗ is given by
(1.19). Consequently, the s/s system whose generating subspace is equal to[ −1X 0 0

0 1X 0
0 0 IW

]
V [⊥] is a simple conservative realization of IW RW∗, which is

assumed to be equal to W. Since two simple conservative realizations of the
same passive behaviour are unitarily similar, there exists a unitary operator
JX in X such that (1.16) holds. By Lemma 6.7, JX is a signature operator
which is uniquely determined by Σ and IW .

Corollary 6.14. Let W be a IW-reciprocal passive two-sided behaviour on
W. Then the canonical simple conservative realization ΣW

sc of W is (JD(W), IW)-
reciprocal, where JD(W) is the operator in Lemma 6.12.

Proof. The proof is analogous to the proof of Corollary 5.17.

Corollary 6.15. The unique signature operator JX in Theorem 6.13 is given
by

JX = (Bbil
Σ )−1JD(W)B

bil
Σ = Cbil

Σ DD(W)(C
bil
Σ )−1; (6.5)

here Cbil
Σ and Bbil

Σ = (Cbil
Σ )∗ are the two-sided present/future and past/present

maps of the simple conservative system Σ and JD(W) is the signature operator
in Lemma 6.12.

Proof. This follows from Theorem 3.47, Lemma 6.4, and Corollary 6.14.

Theorem 6.16. Let Σ = (V ;X ,W) be a passive (JX , IW)-reciprocal system
with past/present map BΣ, present/future map CΣ, and two-sided behaviour
W. Let V(H−,H+) and V(H+,H−) = V∗(H−,H+) be the unitary operators in Lemma
6.12. Then

BΣ = JXC∗ΣV(H−,H+), CΣ = V(H+,H−)B
∗
ΣJX , ΓW = V(H−,H+)Γ

∗
WV(H−,H+).

Proof. The proof of the formula BΣ = JXC∗ΣV(H−,H+) is analogous to the
proof of Theorem 5.19. Taking the adjoint of this formula we get the second
formula CΣ = V(H+,H−)B

∗
ΣJX . Finally, these two formulas together with the

fact that ΓW = CΣBΣ gives the third formula ΓW = V(H−,H+)Γ
∗
WV(H−,H+).
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Theorem 6.17. Let Σ = (V ;X ,W) be a minimal passive balanced externally
IW-reciprocal s/s system. Then there exists a unique signature operator JX
in X such that Σ is (JX , IW)-reciprocal.

Proof. The proof is essentially the same as the proof of Theorem 6.13.
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7 Passive Signature Invariant and Decompos-

able State/Signal Systems and Behaviours

In this section we study yet another class of symmetries of passive s/s systems
and passive behaviours, where the symmetry is with respect to two signature
operators JX and JW in the Hilbert state space X and the Krĕın signal space
W , respectively. It turns out that this class of symmetries is related to the
question when a passive s/s system can be decomposed into two independent
subsystems.

Definition 7.1. A passive s/s system Σ = (V ;X ,W) is called (JX ;JW)-
signature invariant if (1.17) holds, where JX and JW are signature operators
in X and W , respectively.

Definition 7.2. Let JW be a signature operator in the Krĕın space W .

(i) A passive two-sided behaviour W onW is called JW-signature invariant
if

W = JWW (7.1)

(here the signature operator JW on K2(W) induced by the signature
operator JW ∈ B(W) is defined as in Remark 1.1).

(ii) A passive s/s system Σ = (V ;X ,W) is called externally JW-signature
invariant if its two-sided behaviour is JW-signature invariant.

Remark 7.3. It is possible to develop a symmetry theory which is com-
pletely analogous to the one in Section 5 by replacing all conjugate-linear
operators appearing in that section by linear operators, but keeping the other
properties of the operators intact. This has the effect of converting all the
conjugations used in Section 5 to signature operators, and it converts the
notions of (JX ,JW)-reality and JW-reality introduced in Definitions 5.2 and
5.9 into the notions of (JX ,JW)-signature invariance and JW-signature in-
variance introduced in Definitions 7.1 and 7.2. In particular, all the lemmas,
theorems, and corollaries in Section 5 remain with these replacements. All
the proofs remain the same.

In particular, the following results are true:

Lemma 7.4. If Σ = (V ;X ,W) is a simple passive s/s (JX ;JW)-signature
invariant system, then JX is uniquely determined by Σ and JW .

Proof. This is the linear analogue of Lemma 5.4.
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Lemma 7.5. Let Σ = (V ;X ,W) be a passive (JX ;JW)-signature invariant
system, and let Σ1 = (V1;X1,W) be unitarily similar to Σ with similarity
operator V. Then Σ1 is (JX1 ;JW)-signature invariant with JX1 = VJXV−1.

Proof. This is the linear analogue of Lemma 5.5.

Lemma 7.6. If Σ = (V ;X ,W) is a passive (JX ,JW)-signature invariant
s/s system, then it is externally JW-signature invariant.

Proof. This is the linear analogue of Lemma 5.10.

Theorem 7.7. Let Σ = (V ;X ,W) be a passive externally JW-signature
invariant s/s system which belongs to one of the classes a)–f) listed in Section
1. Then there exists a unique signature operator JX in X such that Σ is
(JX ,JW)-signature invariant.

Proof. This is the linear analogue of Theorems 5.14, 5.15, 5.16, 5.21, 5.22,
and 5.23, and it can be proved in the same way as the analogous results were
proved in Section 5.

For completness, let us also outline a slightly different proof which can be
used in the cases where the system is observable and co-energy preserving, or
controllable and energy preserving, or simple and conservative. The unique-
ness still follows from Lemma 7.4. Thanks to Lemma 7.5, for the proof of
existence of the operator JX it suffices to prove existence in the case where
Σ is one of the canonical models presented in Sections 3. In the case of the
observable co-energy preserving model ΣW+

oce , the controllable energy preserv-
ing model ΣW−

cep , and the simple conservative model ΣW
sc one can again start

by proving the analogue of Lemma 5.13 (with the same proof as in Section
5), and after that one gives a direct proof of the analogue of Corollary 5.17
by appealing to the explicit descriptions (3.25), (3.26), and (3.27) that we
have for the generating subspaces of these three canonical models.

As we mentioned at the beginning of this section, signature invariance is
related to the decomposability of a passive s/s system or behavior.

Definition 7.8.

(i) A passive s/s system Σ = (V ;X ,W) is decomposable if there exist
orthogonal decompositions X = X1 ⊕ X2 and W = W1 � W2, out
of which at least one is nontrivial, such that, with respect to these
decompositions, V has the representation

V =


 z1 + z2

x1 + x2

w1 + w2

 ∣∣∣∣∣∣
zixi
wi

 ∈ Vi := V ∩

XiXi
Wi

 , i = 1, 2

 . (7.2)
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The system Σ is non-decomposable if it such a decomposition does not
exist.

(ii) A passive two-sided behavior on a Krĕın spaceW 6= {0} is decomposable
if there exists some nontrivial orthogonal decompositionW =W1�W2

(nontrivial means that neitherW1 = {0} norW2 = {0}, or equivalently,
neither W1 =W nor W2 =W) such that W has the representation

W = {w1 + w2|wi ∈Wi := W ∩K2(Wi), i = 1, 2
}
. (7.3)

A passive future or past behavior is decomposable if the correspond-
ing two-sided behavior is decomposable in the above sense. A passive
behavior (two-sided, future, or past) is non-decomposable if it is not
decomposable in the above sense.

Lemma 7.9. Let Σ = (V ;X ,W) be a passive s/s system, and let W be a
passive two-sided behavior in W

(i) If Σ is decomposable, then Σi = (Vi;Xi,Wi), i = 1, 2, where Xi, Wi,
and Vi are as in Definition 7.8, are passive s/s systems.

(ii) If W is decomposable, then Wi, i = 1, 2, where Wi and Wi are as
in Definition 7.8, are passive two-sided behaviors in W. The same
statemet is also true for passive future and past behaviors.

The easy proof of this lemma is left to the reader.
Thus, a passive s/s system or a passive two-sided behavior is decompos-

able if and only if it can be split into two independent passive subsystems or
passive sub-behaviors, respectively. The same statement is true for passive
future and past behaviors, too.

The following theorem establishes a connection between signature invari-
ance and decomposability of a passive system or behavior. It uses the fol-
lowing agreement:

Agreement 7.10. A signature operator JW in the Krĕın space is nontriv-
ial if JW 6= ±1W . A pair of signature operators (JX ,JW) is nontrivial if
(1X , 1W) 6= (JX ,JW) 6= (−1X ,−1W).

Theorem 7.11.

(i) A passive s/s system is (JX ,JW)-signature invariant for some nontriv-
ial pair (JX ,JW) of signature operators if and only if Σ is decompos-
able.
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(ii) A passive two-sided behavior W is JW-signature invariant for some
nontrivial operator JW if and only if W is decomposable. The same
statemet is also true for passive future and past behaviors.

Proof. Proof of (i). Suppose first that Σ is decomposable, and define Xi,Wi,
and Vi, i = 1, 2, as in Definition 7.8. Define JX and JW in block matrix form
with respect to the decompositions X = X1 ⊕X2 and W1 �W2 by

JX :=

[
1X1 0
0 −1X2

]
, JW :=

[
1X1 0
0 −1X2

]
. (7.4)

Since

[ −1X2
0 0

0 −1X2
0

0 0 −1W2

]
V2 = V2, it follows from Definitions 7.8 and 7.1 that

Σ is (JX ,JW)-signature invariant. Moreover, the (JX ,JW) is nontrivial.
Coversely, suppose that Σ is (JX ,JW)-signature invariant. Moreover,

supose furthermore that at least one of the operators JX and JW is nontrivial
(i.e., not equal to ±1X or ±1W . Let X1 and X2 be the eigenspaces of JX
with respect to the eighenvalues +1 and −1, respectively, and let W1 and
W2 be the eigenspaces of JW with respect to the eighenvalues +1 and −1,
respectively. Then at least one of the decompositions X = X1 ⊕ X2 and
W =W1W2 is nontrivial, and with respect to these decompositions, JX and
JW has the block decomposition (7.4). From this decomposition follows that

Vi := V ∩
[ Xi
Xi
Wi

]
⊂ V , and that (7.2) holds. Thus Σ is decomposable in this

case.
If instead (JX ,JW) = (1X ,−1W) or (JX ,JW) = (−1X , 1W) then both

the above decompositions are trivial, and we have to proceed differently. In
these cases it follows from the signature invariance of Σ that (7.4) holds in
both cases with

V1 := V ∩

 XX
{0}

 ⊂ V and V2 := V ∩

{0}{0}
W

 ⊂ V.

Hence, also in this case Σ is decomposable (into two noninteracting systems,
one with a zero state space, and the other with a zero signal space).

Proof of (ii). The proof of (ii) is analogous to the proof of (i) (but slightly
simpler), and it is left to the reader.

Theorem 7.12. If Σ = (V ;X ,W) is a passive s/s system which belongs to
one of the classes a)–f) listed in Section 1, then Σ is non-decomposable if
and only if its two-sided behavior is non-decomposable (or equivalently, its
future or past behavior is non-decomposable).

Proof. This follows from Theorems 7.7 and 7.11.
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8 Passive Transpose Invariant State/Signal

Systems and Behaviours

In this section we present one final class of symmetries of passive s/s systems
and passive behaviours, called transpose invariance. This notion is can be
regarded as a slightly modified version reciprocity, where one has replaced
the adjoint Σ∗ of a system Σ by a transpose ΣT of Σ. The difference between
ΣT and Σ∗ is analogous to the difference between a transpose AT of a matrix
A and the Hermitian adjoint A∗ of A. The mapping from A into AT is linear,
whereas the mapping of A into A∗ is conjugate-linear. One way to define the
matrix AT is to identify it with the operator that one gets by multiplying the
operator induced by A∗ by conjugation operators to the left and the right.
The same idea can be used to define the notion of a transpose of a general
operator A ∈ B(U ;Y), where U and Y are Krĕın (or Hilbert) spaces: one fixes
two conjugation operators CU and CY in U and Y , respectively, and calls the
operator AT = CYA∗CU ∈ B(Y ;U) a transpose of A. Clearly AT depends not
only on A, but also on the two conjugation operators CU and CY . The notion
of a transpose ΣT of a passive s/s system Σ = (V ;X ,W) can be defined in
an analogous way by fixing a conjugation CX in X and a skew-conjugation
operator BW in X and W , respectively, and letting ΣT = (V T ;X ,W) be the
s/s system whose generating subspace is

V T =

CX 0 0
0 CW 0
0 0 BWI(−W,W)

V∗.
where V∗ is the generating subspace of the adjoint Σ∗ of Σ and BWI(−W,W)

is a unitary conjugate-linear operator from −W to W . It is easy to see that
ΣT is a passive s/s system. According to (1.18) and (1.21), Σ is (CX ,BW)-
transpose invariant if V = V T . Comparing this to the definition of reciprocal
symmetry of Σ, wee see that the difference between the transpose symmetry
and the reciprocal symmetry is that we replace the signature operator JX
and the anti-signature operator IW in (1.16) and (1.20) by a conjugation CX
and a anti-conjugation BW , respectively.

Motivated by this discussion, we arrive at the following definition.

Definition 8.1. A passive s/s system Σ = (V ;X ,W) is called (CX ;BW)-
transpose invariant if (1.18) (or equivalently, (1.21)) holds, where CX is a
conjugation CX in X and BW is a skew-conjugation in W .

Definition 8.2. Let BW be a skew-conjugation in the Krĕın space W .
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(i) A passive two-sided behaviour W onW is called BW-transpose invariant
if

W = BW RW[⊥] (8.1)

(here the skew-conjugation BW onK2(W) induced by the skew-conjugation
BW ∈ B(W) is defined as in Remark 1.1).

(ii) A passive s/s system Σ = (V ;X ,W) is called externally BW-transpose
invariant if its two-sided behaviour is BW-transpose invariant.

Remark 8.3. It is possible to develop a symmetry theory which is completely
analogous to the one in Section 6 by replacing the signature operator JX by
a conjugation CX and the skew-signature operator IW by a skew-conjugation
BW . This has the effect of converting the notions of (JX , IW)-reciprocity
and IW-reciprocity introduced in Definitions 6.2 and 6.8 into the notions
of (CX ,BW)-transpose invariance and BW-transpose invariance introduced
in Definitions 8.1 and 8.2. In particular, all the lemmas, theorems, and
corollaries in Section 6 remain valid with these replacements. All the proofs
remain essentially the same.

In particular, the following results are true:

Lemma 8.4. If Σ = (V ;X ,W) is a simple passive s/s (CX ;BW)-transpose
invariant system, then CX is uniquely determined by Σ and BW .

Proof. This is the conjugate-linear analogue of Lemma 6.7.

Lemma 8.5. Let Σ = (V ;X ,W) be a passive (CX ;BW)-transpose invariant
system, and let Σ1 = (V1;X1,W) be unitarily similar to Σ with similarity
operator V. Then Σ1 is (CX1 ;BW)-transpose invariant with CX1 = VCXV−1.

Proof. This is the conjugate-linear analogue of Lemma 5.5.

Lemma 8.6. If Σ = (V ;X ,W) is a passive (CX ,BW)-transpose invariant
s/s system, then it is externally BW-transpose invariant.

Proof. This is the conjugate-linear analogue of Lemma 6.9.

Theorem 8.7. Let Σ = (V ;X ,W) be a passive externally BW-transpose
invariant s/s system which is either simple and conservative or minimal and
passive balanced. Then there exists a unique conjugation CX in X such that
Σ is (CX ,BW)-transpose invariant.

Proof. This is the conjugate-linear analogue of Theorems 6.13 and 6.17.
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9 Doubly Symmetric Passive State/Signal Sys-

tems and Behaviours

In this section we study passive s/s systems and behaviours that are invariant
with respect to two different symmetries of the types that we have consid-
ered in Sections 5–8, and in addition, the operators associated with the two
symmetries commute with each other. We show that in this case the given
system or behavior is invariant also with respect to a third symmetry, namely
the product of the operators that define the two original symmetries.

In order to be able to discuss all the different types of symmetries in a
coherent way we start by making the following agreement.

Agreement 9.1. Let W be a Krĕın space.

(i) In this section, by a symmetry in W we mean an operator G which is a
signature operator, or a conjugation, or a skew-signature operator, or
a skew-conjugation.

(ii) Let G be a symmetry in W . We call a two-sided passive behavior W
on W G-symmetric if

(a) W is G-real in the case where G is a conjugation;

(b) W is G-reciprocal in the case where G is a skew-signature operator;

(c) W is G-signature invariant in the case where G is a signature
operator;

(d) W is G-transpose invariant in the case where G is a skew-conjugation.

Lemma 9.2. If G is a symmetry of one of the types listed in Agreement 9.1,
then −G is a symmtery of the same type.

This is obvious.

Agreement 9.3. Let G1 and G2 be two symmetries of the type listed in
Agreement 9.1. We we say that G1 and G2 are essentially different if G1 6= ±G2.

As the following lemma shows, a commuting product of two symmetries
is again a symmetry.

Lemma 9.4. Let G1 and G2 be two symmetries of the type listed in Agreement
9.1, and suppose that G1G2 = G2G1. Then also G3 := G1G2 = G2G1 is a
symmetry of the type listed in Agreement 9.1. All the symmetries Gi, i =
1, 2, 3, commmute with each other, and the product of two of these symmetries
is equal to the third. The exact type of the three symmetries Gi, i = 1, 2, 3
can be determined from the following rules:
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(i) All the above symmetries are of the same type if and only if they are
all signature operators;

(ii) Two of the above symmetries are of the same type if and only if the
third symmetry is a signature operator;

(iii) The above symmetries are all of different type if and only if one of them
is a conjugation, another is a skew-signature operator, and the third is
a skew-conjugation.

The easy proof is left to the reader.

Theorem 9.5. Let W be a passive behavior inW, and suppose that W is both
G1-symmetric and G2-symmetric, where each of these symmetries belongs to
one of the classes listed in Agreement 9.1. In addition, suppose that G1G2 =
G2G1. Then W is also G3-symmetric, where G3 = G1G2 = G2G1. The type of
the third symmetry can be determined from Lemma 9.4.

Proof. The proofs of the different subcases are analogous to each other, so
let us only prove the case which is maybe most interesting, namely the one
where G1 is a conjugation and G2 is a skew-signature operator (or the other
way around), which means that W is both G1-real and G2-reciprocal. In
this case Theorem 9.5 claims that W is also G3-transpose symmetric, where
G3 = G1G2 = G2G1. This can be shown as follows. For simplicity, let us
denote G1 by CW , G2 by IW , and G3 by BW . By Lemma 9.4, BW = CWIW is
a skew-conjugation. Moreover, by Definitions 5.9 and 6.8,

BW RW[⊥] = CWIW RW[⊥] = CWW = W.

According to Definition 8.2, this means shows that W is BW-transpose in-
variant.

Above we have been looking at passive two-sided behaviors which are
doubly symmetric in the sense that they are invariant with respect to two
commuting symmetries. An analogous result is true for passive s/s systems
with two commuting symmetries.

Agreement 9.6. Let Σ = (V ;X ,W) be a passive s/s system, let GX be a
signature operator or a conjugation in X , and let GW be a symmetry in W .
We call Σ (GX ,GW)-symmetric if

(i) Σ is (GX ,GW)-real in the case where GX and GW are conjugations;

(ii) Σ is (GX ,GW)-reciprocal in the case where GX is a signature operator
and GW is a skew-signature operator;
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(iii) Σ is (GX ,GW)-signature invariant in the case where GX and GW are
signature operators;

(iv) Σ is (GX ,GW)-transpose invariant in the case where GX is a conjugation
operator and GW is a skew-conjugation.

Theorem 9.7. Let Σ = (V ;X ,W) be a passive s/s system, and suppose

that Σ is both (G(1)
X ,G(1)

W )-symmetric and (G(2)
X ,G(2)

W )-symmetric, where each
of these symmetries belongs to one of the classes listed in Agreement 9.6.

(i) If G(1)
W G

(2)
W = G(2)

W G
(1)
W and G(1)

X G
(2)
X = G(2)

X G
(1)
X , then Σ is (G(3)

X ,G(3)
W )-

symmetric, where G(3)
X = G(1)

X G
(2)
X = G(2)

X G
(1)
X and G(3)

W = G(1)
W G

(2)
W =

G(2)
W G

(1)
W . All the symmetries G(i)

W , i = 1, 2, 3, commmute with each
other, and the product of two of these symmetries is equal to the third,
and the same result holds for the three symmetries G(i)

X , i = 1, 2, 3,

too. The exact type of the three pairs of symmetries (G(i)
X ,G

(i)
W ) can be

determined from the following rules:

(a) All the above symmetries are of the same type if and only if they
are all signature invariances;

(b) Two of the above symmetries are of the same type if and only if
the third symmetry is a signature invariance;

(c) The above symmetries are all of different type if and only if one
of them is a reality, another is a reciprocity, and the third is a
transpose invariance.

(ii) If G(1)
W G

(2)
W = G(2)

W G
(1)
W and Σ is simple, then G(1)

X G
(2)
X = G(2)

X G
(1)
X (and

hence the conclusion of (i) holds).

Proof. Proof of (i). The proofs of the different subcases are again analogous
to each other, so let us only prove, for example, the case where Σ is both
(CX , CW)-real and (JX , IW)-reciprocal, and we claim that Σ is also (C(3)

X ,BW)-

transpose invariant, where C(3)
X := CXJX and BW := CWIW . By Lemma 9.4,

C(3)
X is a conjugation and BW is a skew-conjugation. Moreover, by Definitions

5.2 and 6.2,−C(3)
X 0 0

0 C(3)
X 0

0 0 BW

V [⊥] =

CX 0 0
0 CX 0
0 0 CW

−JX 0 0
0 JX 0
0 0 IW

V [⊥]

=

CX 0 0
0 CX 0
0 0 CW

V = V.

(9.1)
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According to Definition 8.1, this means shows that Σ is (C(3)
X ,BW)-transpose

invariant.
Proof of (ii). Let us again only prove the case where Σ is simple and both

(CX , CW)-real and (JX , IW)-reciprocal. We can continue the computation in
(9.1) to get−CXJX 0 0

0 CXJX 0
0 0 BW

V [⊥] = V =

CX 0 0
0 CX 0
0 0 CW

V [⊥]

=

−JX 0 0
0 JX 0
0 0 IW

CX 0 0
0 CX 0
0 0 CW

V [⊥]

=

−JXCX 0 0
0 JXCX 0
0 0 BW

V [⊥].

The equality between the first and last terms in this chain can be rewritten
as CXJX 0 0

0 JXCX 0
0 0 BW

V∗ =

JXCX 0 0
0 CXJX 0
0 0 BW

V∗.
By Lemma 3.51, CXJX = JXCX .

As the following theorem shows, it is also true that double external sym-
metry of a passive s/s systems which is either simple and conservative or
minimal and balanced implies double full symmetry.

Theorem 9.8. Let Σ = (V ;X ,W) be a passive s/s system which is ei-
ther simple and conservative or minimal and balanced, and suppose that
the behavior W of of Σ is both G(1)

W -symmetric and G(2)
W -symmetric, where

G(1)
W G

(2)
W = G(2)

W G
(1)
W and each of these symmetries belongs to one of the classes

listed in Agreement 9.1. Then there exists unique symmetries G(1)
X and G(2)

X
in X such that Σ is both (G(1)

X ,G(1)
W )-symmetric and (G(2)

X ,G(2)
W )-symmetric.

Moreover, G(1)
X G

(2)
X = G(2)

X G
(1)
X , and Σ is also (G(3)

X ,G(3)
W )-symmetric, where

G(3)
X = G(1)

X G
(2)
X = G(2)

X G
(1)
X and G(3)

W = G(1)
W G

(2)
W = G(2)

W G
(1)
W . All the symmetries

G(i)
W , i = 1, 2, 3, commmute with each other, and the product of two of these

symmetries is equal to the third, and the same result holds for the three sym-
metries G(i)

X , i = 1, 2, 3, too. The exact type of the three pairs of symmetries

(G(i)
X ,G

(i)
W ) can be determined from Theorem 9.7.

Proof. This follows from Theorems 5.14, 5.23, 6.13, 6.17, 7.7, 8.7, and 9.7
combined with Lemma 9.4.
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Theorem 9.9. Let Σ = (V ;X ,W) be a passive s/s system which belongs to

one of the classes a)–f) listed in Section 1. If the behavior W of Σ is both G(1)
W -

symmetric and G(2)
W -symmetric, where G(1)

W G
(2)
W = G(2)

W G
(1)
W and each of G(1)

W and

G(2)
W is either a signature operator or a conjugation, then there exists unique

symmetries G(1)
X and G(2)

X in X , which are either signature operators or conju-

gations such that Σ is both (G(1)
X ,G(1)

W )-symmetric and (G(2)
X ,G(2)

W )-symmetric.

Moreover, G(1)
X G

(2)
X = G(2)

X G
(1)
X , and Σ is also (G(3)

X ,G(3)
W )-symmetric, where

G(3)
X = G(1)

X G
(2)
X = G(2)

X G
(1)
X and G(3)

W = G(1)
W G

(2)
W = G(2)

W G
(1)
W are signature oper-

ators or conjugations. All the symmetries G(i)
W , i = 1, 2, 3, commmute with

each other, and the product of two of these symmetries is equal to the third,
and the same result holds for the three symmetries G(i)

X , i = 1, 2, 3, too. The

exact type of the three pairs of symmetries (G(i)
X ,G

(i)
W ) can be determined from

following rule: Either all of these symmetries are signature invariances, or
two of them are realities, and the third is a singature invariance.

Proof. This follows from Theorems 5.14, 5.15, 5.16, 5.21, 5.22, 5.23, 7.7, and
9.7 combined with Lemma 9.4.

Agreement 9.10. Two symmetries G1 and G2 of the types listed in Agree-
ment 9.1 are essentially different if G1 6= ±G2. Two pairs of symmetries
(G(i)
X ,G

(i)
W ), i = 1, 2 are essentially different if (G(1)

X ,G(1)
W ) 6= (G(2)

X ,G(2)
W ) and

(G(2)
X ,G(2)

W ) 6= (−G(1)
X ,−G(1)

W ).

Theorem 9.11.

(i) A non-decomposable passive two-sided behavior W in W cannot have

two essentially different commuting symmetries G(i)
W , i = 1, 2, which

both belong to the same class of symmteries considered in Agreement
9.1.

(ii) A non-decomposable passive s/s system Σ = (V ;X ,W) cannot have two

essentially different commuting symmetries (G(i)
W ,G

(i)
W ), i = 1, 2, which

both belong to the same class of symmteries considered in Agreement
9.6.

Proof. This follows from Theorems 7.11, 9.5, and 9.7.
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10 The Characteristic Bundles of Passive State/Signal

Systems and Behaviours

In this section we return to the notions of the characteristic node and signal
boundels of a passive s/s system that was mentioned in the introduction, and
which serve as frequency domain characteristics of such systems.

10.1 The characteristic node bundle

Definition 10.1. The characteristic node bundle Ê of a passive s/s system

Σ = (V ;X ,W) is the family (1.9) of subspaces {Ê(λ)}λ∈C, of the Krĕın node

space K. The subspace Ê(λ) is called the fiber of Ê at λ ∈ C.

Lemma 10.2. Let Σ = (V ;X ,W) be a passive s/s system with characteristic

node bundle Ê, and let λ ∈ C. Then

Ê(λ) =
[ −1X λ 0

0 1X 0
0 0 1W

]
V, V =

[ −1X λ 0
0 1X 0
0 0 1W

]
Ê(λ),

Ê(λ)[⊥] =

[
1X λ 0
0 −1X 0
0 0 1W

]
V [⊥], V [⊥] =

[
1X λ 0
0 −1X 0
0 0 1W

]
Ê(λ)[⊥].

(10.1)

Proof. This follows from (1.9), Lemma 2.3, and the fact that[ −1X λ 0
0 1X 0
0 0 1W

]∗
=

[
1X λ 0
0 −1X 0
0 0 1W

]
and

[ −1X λ 0
0 1X 0
0 0 1W

]−1

=
[ −1X λ 0

0 1X 0
0 0 1W

]
(10.2)

where the adjoint has been computed with respect to the inner product (1.6)
in the node space K.

Remark 10.3. Formulas (10.1) show that any one of the fibers Ê(λ) together
with the value of λ determines the generating subspace V and all the whole
characteristic bundle Ê uniquely. Of course, the generating subspace V itself
also determines Ê uniquely.

Theorem 10.4. Let Σ = (V ;X ,W) be a passive s/s system with character-

istic node bundle Ê, and let Σ∗ = (V∗;X ,−W) be the adjoint system with

characteristic node bundle Ê∗. Then

Ê∗(λ) =

1X 0 0
0 −1X 0
0 0 I(W,−W)

 Ê(λ)[⊥], λ ∈ C. (10.3)
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Proof. By (1.19) and (10.1), appled both to the original system Σ and the
adoint Σ∗, for all λ ∈ C,

Ê∗(λ) =

−1X λ 0
0 1X 0
0 0 1−W

V∗ =

−1X λ 0
0 1X 0
0 0 1−W

−1X 0 0
0 1X 0
0 0 I(W,−W)

V [⊥]

=

1X λ 0
0 1X 0
0 0 I(W,−W)

1X λ 0
0 −1X 0
0 0 1W

 Ê(λ)[⊥]

=

1X 0 0
0 −1X 0
0 0 I(W,−W)

 Ê(λ)[⊥].

10.2 The connection between stable future trajectories
and the characteristic node bundle

In this subsection we establish a connection between the Laplace transforms
of stable future trajectories of Σ and the characteristic node bundle of Σ. We
begin with some preliminary lemmas.

Lemma 10.5. Let Σ = (V ;X ,W) be a passive s/s system, and let W =
U �−Y be a fundamental decomposition of W. Then, for each x0 ∈ X and
each u ∈ L2(R+;U), there exists a unique stable future trajectory [ xw ] of Σ
satisfying x(0) = x0 and PUw = u.

Proof. See [AKS11b, Lemma 3.4(i)].

Lemma 10.6. If [ xw ] is a stable future trajectory of the passive s/s system
Σ = (V ;X ,W), then there exists a sequence of classical generated stable
future trajectories [ xnwn ] of Σ such that xn → x uniformly on R+ and wn → w
in L2(R+;W) as n→∞. If x(0) = 0, then we can require, in addition, that
xn(0) = 0 and wn(0) = 0.

Proof. See [AKS11b, Lemmas 3.6 and 3.9(i)].

For each w ∈ K2
+(W) and x ∈ L∞(R+;X ) we define the Laplace transform

of w and x by

ŵ(λ) :=

∫ ∞
0

e−λtw(t) dt, x̂(λ) :=

∫ ∞
0

e−λtx(t) dt, λ ∈ C+. (10.4)

The image of the Krĕın space K2
+(W) under the Laplace transform is

another Krĕın space that we denote by K̂2
+(W). Thus,

K̂2
+(W) :=

{
ŵ
∣∣w ∈ L2(R+;W)

}
. (10.5)
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As a topological vector space the space K̂2
+(W) coincides with the Hardy

space H2(C+;W) of holomorphic W-valued functions on C+ with finite H2-
norm, defined by

‖ŵ‖2
H2(C+;W) = sup

µ>0

1

2π

∫ ∞
−∞
‖ŵ(µ+ iω)‖2

W dω,

where ‖·‖W is some admissible norm in W . The inner product in K̂2
+(W) is

given by

[ŵ1, ŵ2]K̂2
+(W) :=

1

2π

∫ ∞
−∞

[ŵ1(iω), ŵ2(iω)]W dω, (10.6)

where ŵ1 and ŵ2 have been defined a.e. on the imaginary axis to be equal
to their nontangential limits from the right. By the Payley–Wiener theorem,
the Laplace transform is a unitary map of K2

+(W) onto K̂2
+(W), and if W =

U �−Y is a fundamental decomposition of W , then

K̂2
+(W) = H2(C+;U)�−H2(C+;Y) (10.7)

is a fundamental decomposition of K̂2
+(W).

Theorem 10.7. Let Σ = (V ;X ,W) be a passive s/s system with character-

istic node bundle Ê.

(i) If [ xw ] is a stable future trajectory of Σ with initial state x0, then the
Laplace transform [ x̂ŵ ] of [ xw ] satisfies[ x0

x̂(λ)
ŵ(λ)

]
∈ Ê(λ), λ ∈ C+. (10.8)

Here ŵ ∈ K2
+(W).

(ii) Conversely, if (10.8) holds for some triple
[
x̂
x0
ŵ

]
, where x0 ∈ X is fixed,

ŵ ∈ K2
+(W), and x̂ is an X -valued function in C+, then [ x̂ŵ ] is the

Laplace transform of a stable future trajectory [ xw ] of Σ with initial
state x0.

(iii) To each λ ∈ C+ and each
[
x0
xλ
wλ

]
∈ Ê(λ) there exist at least one stable

future trajectory [ xw ] of Σ with initial value x0 such that [ xλwλ ] =
[
x̂(λ)
ŵ(λ)

]
.

Thus, for all λ ∈ C+,

Ê(λ) =


x0

xλ
wλ

 ∈
XX
W

 ∣∣∣∣∣∣ [ xλwλ ] =
[
x̂(λ)
ŵ(λ)

]
for some stable future

trajectory [ xw ] of Σ with initial state x0

 .

(10.9)
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Proof. Proof of (i). If [ xw ] is a stable classical future trajectory of Σ with
initial state x0, then by multiplying (1.2) by e−λt and integrating over R+

we find that the Laplace transform [ x̂ŵ ] of [ xw ] satisfies (10.8). That the same
statement is true also for stable generalised trajectories follows from Lemma
10.6 and the closedness of Ê(λ) (which follows from the closedness of V ).

Proof of (ii). Let
[
x0
x̂
ŵ

]
satisfy the assumption of (ii). Let w ∈ L2(R+;W)

be the inverse Laplace transform of ŵ, and letW = U�−Y be a fundamental
decomposition ofW , and let u = PUw. By Lemma 10.5, there exists a stable
future trajectory [ x1

w1 ] of Σ with PUw1 = u and x1(0) = x0. By part (i),
(10.8) holds with [ x̂ŵ ] replaced by

[
x̂1
ŵ1

]
, so it also holds with [ x̂ŵ ] replaced

by
[
x̂2
ŵ2

]
and x0 replaced by zero, where

[
x̂2
ŵ2

]
:=
[
x̂1
ŵ1

]
− [ x̂ŵ ]. Moreover,

PU ŵ2(λ) = PU ŵ2(λ)−PU ŵ(λ) = 0. By (10.1) and the nonnegativity of V in
K we get

0 ≤ −2<λ‖x2(λ)‖2
X − ‖PYw2(λ)‖2

Y ,

and hence
[
x2(λ)
w2(λ)

]
= 0, i.e.,

[
x̂(λ)
ŵ(λ)

]
=
[
x̂1(λ)
ŵ1(λ)

]
for all λ ∈ C+. Thus, [ x̂ŵ ] is

the Laplace transform of [ xw ].

Proof of (iii). Let
[
x0
xλ
wλ

]
∈ Ê(λ), let W = U � −Y be a fundamental

decomposition of W , and let uλ = PUwλ. Choose some arbitrary function
u ∈ L2(R+;U) such that û(λ) = uλ (for example, let u = uλu0, where u0

is a scalar function satisfying û0(λ) = 1). By Lemma 10.5, there exists a
stable future trajectory [ xw ] of Σ with initial state x0 such that PUw = u. By

part (i),
[ x0

x̂(λ)
ŵ(λ)

]
∈ Ê(λ). In addition, PU ŵ(λ) = û(λ) = uλ = PUwλ. By the

same argument as we used in the proof of part (ii), a vector
[
x0
xλ
wλ

]
∈ Ê(λ) is

determined uniquely by x0 and PUwλ. Consequently, [ xλwλ ] =
[
x̂(λ)
ŵ(λ)

]
.

10.3 The characteristic bundle of a passive future be-
havior

Definition 10.8. By a passive frequency domain behaviour in the Krĕın
space W we mean a maximal nonnegative subspace Ŵ+ of K̂2

+(W) which is

shift-invariant in the sense that the function λ 7→ e−tλŵ(λ) belongs to Ŵ+

whenever ŵ ∈ Ŵ+ and t ∈ R+.

Lemma 10.9. If W+ is a passive future behaviour in W, then the image

Ŵ+ := {ŵ |w ∈W+} of W+ under the Laplace transform is a passive fre-
quency domain behaviour in W, and conversely, the inverse image under the
Laplace transform of a passive frequency domain behavior in W is a passive
future behavior in W.
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Proof. This follows from Definitions 3.11 and 10.8 and the fact that the
Laplace transform of the function τ t+w is the function λ 7→ etλŵ(λ).

Lemma 10.10. Let Ŵ+ be a passive frequency domain behavior in the Krĕın
space W. Then, to each fundamental decomposition W = U � −Y of W
there corresponds a unique B(U ;Y)-valued Schur function D̂+ on C+ (i.e.,

an analytic function whose values are contractive operators), such that Ŵ+

has the representation

Ŵ+ =
{[

û
ŷ

]
∈
[
H2

+(U)

−H2
+(Y)

] ∣∣∣ ŷ(λ) = D̂+(λ)û(λ), λ ∈ C+
}
. (10.10)

Proof. Let W+ be the inverse image of Ŵ+ under the Laplace transform,
and let us dente U := U and Y := Y . By, e.g., [AKS11b, Formula (3.15)],
there is an linear contraction D+ : L2(R+;U)→ L2(R+;Y) such that

W+ =
{

[ uy ] ∈
[
L2

+(U)

−L2
+(Y)

]∣∣∣ y = D+u
}
. (10.11)

The operator D+ intertwines the two right-shifts in L2(R−;U) and L2(R−;Y),

and therefore the image Ŵ+ of W+ has the representation (10.10), where D̂+

is a B(U ;Y)-valued Schur function; see, e.g., [Sta05, Corollary 4.6.10 and
Theorem 10.3.5].

Definition 10.11. Let W be a Krĕın space.

(i) By the characteristic bundle of a passive frequency domain behavior

Ŵ+ we mean the family F̂ := {F̂(λ)}λ∈C+ of subspaces of W defined
by

F̂(λ) =
{
ŵ(λ)

∣∣ ŵ ∈ Ŵ+

}
, λ ∈ C+. (10.12)

The subspace F̂(λ) is called the fiber of F̂ at λ.

(ii) By the characteristic bundle of a passive future behaviour W+ we mean

the characteristic bundle of the image Ŵ+ of W+ under the Laplace
transform.

(iii) By the characteristic bundle of a passive two-sided behaviour W we
mean the characteristic bundle of the future behavior W+ induced by
W.

(iv) By the characteristic signal bundle of a passive s/s system Σ = (V ;X ,W)
we mean the characteristic bundle of the future behavior W+ of Σ.

84



Lemma 10.12. Let Ŵ+ be a passive frequency domain behavior in the Krĕın
spaceW. Then, to each fundamental decompositionW = U�−Y ofW there
corresponds a unique B(U ;Y)-valued Schur function D̂+ on C+ (which is the
same function as in Lemma 10.10) such that the fibers of the characteristic

bundle of Ŵ+ have the representation

F̂(λ) =
{[ u

D̂+(λ)u

] ∣∣ u ∈ U}. (10.13)

Proof. This follows from Lemma 10.10, Definition 10.11, and the fact that
for each λ ∈ C+ and each uλ ∈ U there is a function û ∈ H2(C+;U) such
that û(λ) = uλ.

Remark 10.13. If ϕ is a bounded analytic B(U ,Y)-valued function in C+,
then the bounded linear operator Φ: H2(C+;U) → H2(C+;Y) defined by
(Φû)(λ) = ϕ(λ)û(λ), λ ∈ C+, is usually called the Laurent operator induced
by ϕ, and ϕ is called the symbol of Φ. It is also called the symbol of the shift-
invariant operator Φ̌ := L−1ΦL : L2(R+;U) → L2(R+;Y), where L stands
for the Laplace tranfsorm (this operator was denoted by D+ in the proof of

Lemma 10.10). Below we shall call the function D̂ in Lemmas 10.10 and

10.12 the scattering matrix of the passive future behaviour W+ := L−1Ŵ+

induced by the fundamental decomposition W = U � −Y of W . We also
use the same name with W+ replaced by W, where W is the two-sided
behavior induced by W+, or replaced by Σ in the case where Σ is a passive
s/s system with future behavior W+. By Lemmas 10.10 and 10.12, once

the passive future behavior W+ has been fixed, the scattering matrix D̂+ is
determined uniquely by the fundamental decompositionW = U�−Y (but it
will, of course, depend on this decompsition). Conversely, the decomposition

W = U � −Y and the scattering matrix D̂+ also determine W+ uniquely.
Thus, a passive s/s system and a passive two-sided or future behavior has
a unique characteristic (signal) bundle, but it has infintely many scattering
matrices corresponding to different fundamental decompositions of the signal
space (except in the degenerate cases where W is a Hilbert space or an anti-
Hilbert space). (Other types of direct sum decompositions of the signal space
give rise to other types of transfer functions, which have different names
depending on the type of decomposition. We shall return to this elsewhere.)

Theorem 10.14. Let F = {F̂(λ)}λ∈C+ be the characteristic bundle of the

passive frequency domain behavior Ŵ+.

(i) The fibers F̂(λ) of F̂, λ ∈ C+, are maximal nonnegative subspaces of
W.
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(ii) A function ŵ ∈ K̂2
+(W) belongs to Ŵ+ if and only if

ŵ(λ) ∈ F̂(λ), λ ∈ C+. (10.14)

Proof. Proof of (i). This follows from Proposition 2.1 and Lemma 10.12.
Proof of (ii). One direction of the above claim follows directly from

Definition 10.11, so it suffices to prove the opposite direction. Thus, let
ŵ ∈ K̂2

+(W), and suppose that (10.14) holds. Let W = U � −Y be

a fundamental decomposition of W , and let û = PU ŵ. Since K̂2
+(W) =

H2(C+;U) � −H2(C+;Y) is a fundamental decomposition of K2
+(W), and

since Ŵ+ is a maximal nonnegative subspace of K̂2
+(W), there is a unique

function ŵ1 ∈ Ŵ+ such that PU ŵ1 = PU ŵ. Thus, for all λ ∈ C+, both
ŵ(λ) ∈ F(λ) and ŵ1(λ) ∈ F(λ) and PU ŵ1(λ) = PU ŵ(λ). Since F(λ) is a max-
imal nonnegative subspace of W , a vector in F(λ) is determined uniquely by
its orthogonal projection onto U , and consequently ŵ(λ) = ŵ1(λ), λ ∈ C+.

Thus shows that ŵ = ŵ1, and since ŵ1 ∈ Ŵ+, also ŵ ∈ Ŵ+, as claimed.

Corollary 10.15. Two passive s/s systems Σ1 = (V1;X1,W) and Σ2 =
(V2,X2,W) are externally equivalent if and only if their characteristic signal
bundles coincide.

Proof. This follows from Definition 10.11 and Theorem 10.14.

Theorem 10.16. Let Σ = (V ;X ,W) be a passive s/s system with charac-

teristic node bundle Ê = {Ê(λ)}λ∈C and characteristic signal bundle F̂ =

{F̂(λ)}λ∈C+. Then (1.10) holds and

F̂(λ)[⊥] =

w† ∈ W
∣∣∣∣∣∣
λx†−x†
w†

 ∈ V [⊥] for some x† ∈ X

 , λ ∈ C+.

(10.15)
These two identities can alternatively be written in the forms

F̂(λ) = PW

(
Ê(λ) ∩

[
0
X
W

])
, λ ∈ C+, (10.16)

F̂(λ)[⊥] = PW

(
Ê(λ)[⊥] ∩

[
0
X
W

])
, λ ∈ C+. (10.17)

Proof. Clearly (1.10) and (10.15) are equivalent to (10.16) and (10.15), re-
spectively.

Let wλ ∈ W , and suppose that there exists some xλ ∈ X such that[
λxλ
xλ
wλ

]
∈ V , or equivalently,

[
0
xλ
wλ

]
∈ Ê(λ). By Theorem 10.7(iii), there
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exists some stable future externally generated trajectory [ xw ] of Σ such that

[ xλwλ ] =
[
x̂(λ)
ŵ(λ)

]
. Since w ∈ W+, this means that wλ ∈ F̂(λ). Thus, the

right-hand side of (10.16) is contained in F̂.

Conversely, suppose that wλ ∈ F̂λ. Then wλ = ŵ(λ) for some w ∈ W+.
To this w corresponds a unique function x such that [ xw ] is a stable future

externally generated trajectory of Σ. By Theorem 10.7(i),

[
0

x̂(λ)
ŵ(λ)

]
∈ Ê(λ),

and consequently, wλ = ŵ(λ) belongs to the right-hand side of (10.16). Thus,
(1.10) and (10.16) hold.

For each λ ∈ C+ we denote

Z+(λ) :=

{[
λx
−x

]∣∣∣∣x ∈ X} , Z−(λ) :=

{[
λx
x

]∣∣∣∣x ∈ X} .
Then Z+(λ) � −Z−(λ) is a fundamental decomposition of the internal part
[ XX ] of the node space K equipped with inner product induced by the operator[

0 −1X
−1X 0

]
. If we let W = U � −Y be a fundamental decomposition of W ,

then
[ Z+(λ)
U

]
�−

[ Z−(λ)
Y

]
is a fundamental decomposition of the node space

K. Since V is maximal nonnegative it follows from Proposition 2.1(i) there

exists a contraction A(λ) =
[
A11(λ) A12(λ)
A21(λ) A22(λ)

]
∈ B

([ Z+(λ)
U

]
;
[ Z−(λ)
Y

])
such that

(the vectors on the right-hand side have been split in accordance with the
natural decomposition K = Z+(λ)�−Z−(λ)� U �−Y of K)

V =




z+

A11(λ)z+ + A12(λ)u
u

A21(λ)z+ + A22(λ)u


∣∣∣∣∣∣∣∣
[
z+

u

]
∈
[
Z+(λ)
U

] , (10.18)

V [⊥] =



A11(λ)∗z− + A21(λ)∗y

z−
A12(λ)∗z− + A22(λ)∗y

y


∣∣∣∣∣∣∣∣
[
z−
y

]
∈
[
Z−(λ)
Y

] . (10.19)

A vector produced by the right-hand side of (10.18) belongs to Ê(λ) ∩
[

0
X
W

]
if and only z+ = 0, and a vector produced by the right-hand side of (10.19)
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belongs to Ê(λ)[⊥] ∩
[

0
X
W

]
if and only if z− = 0. Thus,

Ê(λ) ∩
[

0
X
W

]
=


A12(λ)u

u
A22(λ)u

∣∣∣∣∣∣u ∈ U
 ,

Ê(λ)[⊥] ∩
[
X
0
W

]
=


A21(λ)∗y
A22(λ)∗y

y

∣∣∣∣∣∣ y ∈ Y
 ,

and

PW

(
Ê(λ) ∩

[
0
X
W

])
=

{[
u

A22(λ)u

]∣∣∣∣u ∈ U} ,
PW

(
Ê(λ)[⊥] ∩

[
0
X
W

])
=

{[
A22(λ)∗y

y

]∣∣∣∣ y ∈ Y} .
Here the two right-hands sides are orthogonal complements to each other in
W , and thus (10.15) holds.

Theorem 10.17. Let W+ be a passive future behavior with characteristic

bundle F̂ and corresponding past behavior W−, and let W∗+ = I(W,−W) RW
[⊥]
−

be the adjoint of W− with characteristic bundle F̂∗ (cf. Definition 3.24. Then

F̂∗(λ) = I(W,−W)F̂(λ)[⊥], λ ∈ C+. (10.20)

Proof. We recall the representation (10.13) of the fibers of F̂W+ . Taking the
orthogonal complements of both sides we get

F̂(λ)[⊥] =
{[

D̂+(λ)∗y
y

]∣∣∣ y ∈ Y} , λ ∈ C+. (10.21)

The fibers of F̂∗ have analogous representations, namely

F̂∗(λ) =
{[

D̂∗+(λ)y
y

]∣∣∣ y ∈ Y} , λ ∈ C+, (10.22)

where D̂∗+ is the scattering matrix of the operator D∗+ := RD− ∗ Rand D−
is defined as in [AKS11b, Formula (3.17)]. Thus, in order to prove (10.20) it
suffices to show that

D̂∗+(λ) = D̂+(λ)∗, λ ∈ C+. (10.23)

Let w† =
[
u†

y†

]
∈ RW

[⊥]
− , i.e., [w†, Rw]K2

+(W) = 0 for all w ∈ W−. By,

e.g., [Sta05, Corollary 4.6.10], for all λ ∈ C+ and u0 ∈ U the function w
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defined by w(t) =
[

u0

D̂(λ)u0

]
eλt, t ∈ R−, belongs to W−, and consequently

[w†, Rw]K2
+(W) = 0. Explicitly, this means that

0 =

∫ ∞
0

[w†(t), w(−t)]W

=

∫ ∞
0

(u†(t), e−λtu0)U −
∫ ∞

0

(y†(t), e−λtD̂(λ)u0)Y

= (û†(λ)− D̂(λ)∗ŷ†(λ), u0).

This being true for all uo ∈ U we find that

û†(λ) = D̂(λ)∗ŷ†(λ), λ ∈ C+.

On the other hand, since w† =
[
u†

y†

]
∈ RW

[⊥]
− , we have ŵ† =

[
û†

û†

]
∈

I(W,−W)Ŵ∗+. Consequently,
{[

D̂(λ)∗y
y

]∣∣∣ y ∈ Y} ⊂ F̂∗+(λ). Since D̂(λ)∗ is

a contraction, the left-hand side of this inclusion is maximal nonnegative in
−W , whereas the right-hand side is nonnegative in −W , so the inclusion is,
in fact, an equality. Comparing this to (10.22) we find that (10.23) holds.
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11 Frequency Domain Characterizations of Sym-

metries

In this section we study how symmetries of a passive s/s system can be
described in terms of the frequency domain characteristics of the system.
In particular, we show that the frequency domain characterizations (1.11)–
(1.14) of our four basic symmetries are equivalent to those characterizations
that we give in Sections 5–(8) in terms of the two-sided passive behaviors.

Theorem 11.1. Let Σ = (V ;X ,W) be a passive s/s system with characteris-

tic node bundle Ê. Let JX and CX be a signature operator and a conjugation
in X , respectively, and let JW , CW , IW , and BW be a singature operator,
a conjugation, a skew-signature operator, and a skew-conjugation in W, re-
spectively.

(i) Σ is (CX , CW)-real if and only if for some λ ∈ C, or equivalently, for
all λ ∈ C,

Ê(λ) =

CX 0 0
0 CX 0
0 0 CW

 Ê(λ). (11.1)

(ii) Σ is (JX , IW)-reciprocal if and only if for some λ ∈ C, or equivalently,
for all λ ∈ C,

Ê(λ) =

JX 0 0
0 −JX 0
0 0 IW

 Ê(λ)[⊥] (11.2)

(iii) Σ is (JX ,JW)-signature invariant if and only if for some λ ∈ C, or
equivalently, for all λ ∈ C,

Ê(λ) =

JX 0 0
0 JX 0
0 0 JW

 Ê(λ). (11.3)

(iv) Σ is (JX , IW)-transpose invariant if and only if for some λ ∈ C, or
equivalently, for all λ ∈ C,

Ê(λ) =

CX 0 0
0 −CX 0
0 0 BW

 Ê(λ)[⊥]. (11.4)

Proof. The proof of this theorem consists of four easy algebraic computations
based on (1.15)–(1.18), (10.1), and (10.2). Se also Remark 10.3.
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Theorem 11.2. Let F̂ = {F̂(λ)}λ∈C+ be the characteristic bundle of a pas-
sive two-sided behavior W on the Krĕın space W (or of a passive s/s system
Σ = (V ;X ,W)), and let JW , CW , IW , and BW be a singature operator, a
conjugation, a skew-signature operator, and a skew-conjugation in W, re-
spectively.

(i) W is CW-real (or Σ is externally CW-real) if and only if F̂ satisfies
(1.11).

(ii) W is IW-reciprocal (or Σ is externally JW-reciprocal) if and only if F̂
satisfies (1.12).

(iii) W is JW-signature invariant (or Σ is externally JW-signature invari-

ant) if and only if F̂ satisfies (1.13).

(iv) W is BW-transpose invariant (or Σ is externally BW-transpose invari-

ant) if and only if F̂ satisfies (1.14).

Proof. The proof of (i) is analogous to the proof of (iii) and the proof of (ii)
is analogous to the proof of (iv), so here we only prove (i) and (ii).

Proof of (i). Let W+ be the future behavior induced by W. The reality
condition (5.3) is equivalent to the condition

W+ = CWW+. (11.5)

For each w ∈ K2
+(W), the the Laplace transform of CWw at a point λ ∈ C+

is given by

ĈWw(λ) =

∫
R+

e−λtCWw(t) dt = CW
∫
R+

e−λtw(t) dt = CWŵ(λ).

This together with (11.5) and Definitions 6.8 and 10.11 gives that W is CW-
real if and only if (1.11) holds.

Proof of (ii). Let W+ and W∗+ be the future and behavior induced by W
and the adjoint behavior W∗, respectively. The reciprocity condition (6.3) is
equivalent to the condition W = I(−W,W)JWW∗, which by Definition 10.11,
this is equivalent to

F̂(λ) = JWI(−W,W)F̂∗(λ), λ ∈ C+,

where F̂∗ is the characteristic bundle of W∗. Combining this with (10.20) and
Definition 8.2 we find that W is JW-reciprocal if and only if (1.12) holds.
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The symmetry results that we have developed for passive s/s systems
and behaviors in this article are motivated by analogous symmetry results
for i/s/o systems, i/o maps, and transfer functions, and they can be used
to recover many of these results. Because of lack of space we are forced
to postpone a more detailed discussion of how this is done to a later time.
However, to get a flavor of what can be achieved we below discuss how one
can derive symmetry results for scattering functions by using a fundamental
decompositionW = U�−Y which is in a certain sense invariant under a sym-
merty of a passive behavior W in this signal space. Analogous results where
the fundamental decomposition of W has been replaced by other types of
decompositions (such as Lagrangian decompositions and general orthogonal
decompositions) will be given elsewhere.

Theorem 11.3. Let W be a passive two-sided behavior on the Krĕın space
W, and let D̂ be the scattering matrix corresponding to some fundamental
decomposition W = U � Y of W. Let JW , CW , IW , and BW be a singature
operator, a conjugation, a skew-signature operator, and a skew-conjugation
in W, respectively. Moreover, suppose that these operators satisfy

JWU = U(and hence JWY = Y),

CWU = U(and hence CWU = U),

IWU = Y(and hence IWY = U),

BWU = Y(and hence BWY = U),

(11.6)

Then the following claims hold:

(i) W is CW-real if and only if

D̂(λ) = CWD̂(λ)CW |U , λ ∈ C+. (11.7)

(ii) W is IW-reciprocal if and only if

D̂(λ) = IWD̂(λ)∗IW |U , λ ∈ C+. (11.8)

(iii) W is JW-signature invariant if and only if

D̂(λ) = JWD̂(λ)JW |U , λ ∈ C+. (11.9)

(iv) W is BW-transpose-invariant if and only if

D̂(λ) = BWD̂(λ)∗BW |U , λ ∈ C+. (11.10)
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Proof. Again the proof of (i) is analogous to the proof of (iii) and the proof
of (ii) is analogous to the proof of (iv), so here we only prove (i) and (ii).
In this proof we denote the charactiristic buldle of W by F and use the
representation (10.13) of its fibers.

Proof of (i). CW-reality of W is equivalent to (1.11), which by (10.13)
and (11.6) is equivalent to

im

([
1U

D̂+(λ)

])
= im

([
CW |U
CWD̂+(λ)

])
, λ ∈ C.

The range of the operator on the right-hand side does not change if we
multiply it by CW |U to the right, and hence

im

([
1U

D̂+(λ)

])
= im

([
1U

CWD̂+(λ)CW |U

])
, λ ∈ C.

This is equivalent to (11.7).
Proof of (ii). CW-reciprocity of W is equivalent to (1.12), which by

(10.13), (10.21), and (11.6) is equivalent to

im

([
1U

D̂+(λ)

])
= im

([
IW |Y

IWD̂+(λ)∗

])
, λ ∈ C.

The range of the operator on the right-hand side does not change if we
multiply it by IW |U to the right, and hence

im

([
1U

D̂+(λ)

])
= im

([
1U

IWD̂+(λ)∗IW |U

])
, λ ∈ C.

This is equivalent to (11.8).

Remark 11.4. Condition 11.6 is equivalent to the condition that the op-
erator JW , CW , IW , and BW can be decomposed in accordance with the
decomposition W = U �−Y as

JW =

[
JU 0
0 JY

]
, CW =

[
CU 0
0 CY

]
, IW =

[
0 IY
I∗Y 0

]
, BW =

[
0 BY
B∗Y 0

]
,

(11.11)
where JU = JW |U , etc. Here JU and JU are signature operators, CU and
CY are conjugations, IY is linear and unitary, and BY is conjugate-linear and
unitary. In particular, none of these operators is a skew-signature operator
or a skew-conjugation, in spite of the fact that IW is a skew-singature op-
erator and BW is a skew-conjugation in W . This is possible due to the fact

93



that whereas U is as a Hilbert subspace of W , it is the anti-Hilbert space
−Y and not the Hilbert space Y itself which appears in the fundamental
decomposition W = U �−Y of W .

In Theorem 11.3 we derive symmetry results for passive i/o maps and
scattering matrices from our symmetry results for passive behaviors. On
the surface it looks like we should get a one-to-one correspondence between
symmetry results for scattering matrices and symmetry results for passive
behaviors, but this is not the case, due to the fact that there do exist sym-
metries in the Krĕın space W such that W does not have any fundamental
decomposition satisfying the appropriate invariance condition in (11.6). One
such example is the following.

Example 11.5. We let W = C2, and let CW be the standard complex
conjugation in C2. We take the inner product in W to be[[

x1

y1

]
,

[
x2

y2

]]
W

=

([
x1

y1

]
,

[
0 −i
i 0

] [
x2

y2

])
C2

= i(x1y2 − y1x2).

Then ind+W = ind−W = 1, and, for example,

W = [ 1
i ]C� [ 1

−i ]C

is a fundamental decomposition of W . However, the subspaces in this de-
composition are not invariant under conjugation (instead conjugation maps
one of these subspaces into the other). It is not difficult to se that a one-
dimensional subspace of W is invariant under conjugation if and only if it
is of the form [ αβ ]C, where α, β ∈ R and |α| + |β| 6= 0, and it is equally
easy to see that every such subspace is Lagrangian. The converse is also
true: every Lagrangian subspace is invariant under conjugation. Thus, the
components of a a direct sum decomposition W = U uY of W are invariant
under conjugation if and only both U and Y are Lagrangian subspaces ofW .
In particular, in this example no fundamental decompositions exist in which
the two components would be invariant under conjugation.

94



References

[ADRdS97] Daniel Alpay, Aad Dijksma, James Rovnyak, and Henrik
de Snoo, Schur functions, operator colligations, and reproducing
kernel Hilbert spaces, Operator Theory: Advances and Applica-
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