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Abstract. We consider the in�nite horizon quadratic cost minimization problem

for a linear time-invariant distributed parameter system with �nitely may inputs and

outputs. Our approach is to work in an input/output framework, and to reduce

the problem to a symmetric Wiener-Hopf problem, that can be solved by means of a

canonical factorization of the symbol. We have earlier solved the case where the system

is stable, and this work is devoted to an extension of the theory to the unstable case.

The extension is based on a right coprime factorization of the impulse response and

on a preliminary stabilizing feedback, which makes it possible to reduce the unstable

case to the stable one.

1. Introduction. This is a continuation of our earlier work [25] on the quadratic

cost minimization problem for a linear time-invariant distributed parameter system

with an impulse response of a certain type. In [25] we solved this problem for stable

systems by means of spectral factorization, and here we extend that approach to

unstable systems.

In order to provide some motivation for the approach that we use, let us be-

gin by discussing the standard quadratic cost minimization problem for an in�nite-

dimensional time-invariant exponentially stabilizable and detectable system with

bounded control and observation operators.

1

Suppose that we have such a system

� = (A;B;C;D) with �nite-dimensional input space U = R

m

, (possibly) in�nite-

dimensional state space H, and �nite-dimensional output space Y = R

n

, given by

z

0

(t) = Az(t) +Bu(t);

y(t) = Cz(t) +Du(t); t 2 R

+

= (0;1);

z(0) = z

0

:

(1)

All the space U , H, and Y are Hilbert spaces, A is the generator of a strongly con-

tinuous semigroup S on H, and B 2 L(U ;H), C 2 L(H;Y ), and D 2 L(U ;Y ) are

bounded linear operators. The object is to �nd the optimal control u

opt

2 L

2

(R

+

;U)

that minimizes the cost function

J(u) =

Z

1

0

jy(t)j

2

dt:(2)

Another (actually more frequently studied) possibility is to choose a di�erent cost

function, namely

J

R

(u) =

Z

1

0

(jy(t)j

2

+ jR

1=2

u(t)j

2

)dt;(3)

1

See, for example, [1] or [6] for the appropriate de�nitions.

1
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where R is a given positive semide�nite matrix. At the end of this introduction we

shall return to this second possibility, and show that it can be regarded as a special

case of (2).

We approach the problem described above in the following way. Since � is stabil-

izable, we can choose some stabilizing state feedback operator F , i.e., we can choose

some bounded operator F 2 L(H;U) such that A + BF generates an exponentially

stable semigroup S

F

. Furthermore, we de�ne a new auxiliary variable x by

x(t) = u(t)� Fz(t); t 2 R

+

:(4)

Then (1) can be rewritten in the form

z

0

(t) = (A+BF )z(t) +Bx(t); t 2 R

+

;

y(t) = (C +DF )z(t) +Dx(t); t 2 R

+

;

u(t) = Fz(t) + x(t); t 2 R

+

;

z(0) = z

0

:

(5)

According to the standard variation of constants formula,

z(t) = S

F

(t)z

0

+

Z

t

0

S

F

(t� s)Bx(s)ds; t 2 R

+

;(6)

hence

y(t) = (C +DF )S

F

(t)z

0

+

Z

t

0

(C +DF )S

F

(t� s)Bx(s)ds+Dx(t); t 2 R

+

;(7)

and

u(t) = FS

F

(t)z

0

+

Z

t

0

FS

F

(t� s)Bx(s)ds+ x(t); t 2 R

+

:(8)

De�ne

�(ds) = D�

0

(ds) + C

F

S

F

(s)Bds;

�(ds) = I�

0

(ds) + FS

F

(s)Bds; s 2 R

+

;

f(t) = C

F

S

F

(t)z

0

;

g(t) = FS

F

(t)z

0

; t 2 R

+

;

(9)

where C

F

= C + DF , �

0

represents a unit atom at zero, R

+

= [0;1), and I is

the identity matrix. Then � and � are matrix-valued measures that consist of an

atom at zero plus a function in L

1

(R

+

), and f and g are L

2

-functions (of appropriate

dimensions). Moreover, equations (7) and (8) can be written in the form

y(t) = (� � x)(t) + f(t); t 2 R

+

;

(� � x)(t) = u(t)� g(t); t 2 R

+

:

(10)



Quadratic Optimal Control 3

The convolutions are de�ned in the usual way, for example,

(� � x)(t) =

Z

[0;t]

�(ds)x(t� s); t 2 R

+

;

for each function x locally in L

2

on R

+

. The measures � and � have one additional

special property, namely, they are right coprime in the sense of De�nition 2.1 below;

this follows from, for example, [3, Lemma 2].

2

In this work we study more general input/output relations of the type (10),

without assuming anything about the underlying system. In fact, most of the time

there is no need to assume a priori that there is any system � = (A;B;C;D) un-

derlying (10), and while we develop the basic theory we make no reference to the

state space H, only to the �nite-dimensional input and output spaces U = R

m

and

Y = R

n

. We work exclusively with the data given in (10), i.e., �, �, f , and g, under

assumptions that will be explained in a moment.

3

The functions u and y are con-

sidered to be the control and observation, respectively, and the object is to �nd the

control u 2 L

2

(R

+

;R

m

) that minimizes either the cost function J de�ned in (2) or

the cost function J

R

de�ned in (3).

We make the following basic assumptions on the data in (10) (in addition to some

other assumptions introduced later): The functions f and g are supposed to belong to

L

2

(R

+

;R

n

) and L

2

(R

+

;R

m

), respectively. The matrix-valued measures � and � (of

dimensions n �m and m �m, respectively) are required to be of bounded variation

on R

+

and to have no singular non-atomic part, and they should be right coprime in

the sense of De�nition 2.1. A measure without a singular non-atomic part can be split

into a discrete part and an absolutely continuous part, e.g., � can be written as

� =

1

X

i=0

N

i

�

a

i

+N;

where N

i

�

a

i

represents an n � m-dimensional atom of size N

i

at the point a

i

� 0,

and N 2 L

1

loc

(R

+

;R

n�m

). That � is of bounded total variation means that the sum

P

1

i=0

kN

i

k is �nite, and that N 2 L

1

(R

+

;R

n�m

). The space of scalar measures of

bounded variation without a singular non-atomic part forms an extensively studied

commutative Banach algebra. We shall refer to this algebra as the Beurling-Wiener-

Pitt algebra after [2] and [37], and denote it by A(R

+

).

4

Thus, � and � are required

to belong to A(R

+

;R

n�m

) and A(R

+

;R

m�m

), respectively, and they should be right

coprime in the algebra A(R

+

) in the sense of De�nition 2.1 (which is a special case of

[33, De�nition 1, p. 331]).

At this point, let us remark that we have chosen to work in the algebra A of

impulse responses instead of in the more common algebra H

1

of transfer functions

2

This is where the detectability assumption on � is used.

3

These assumptions are the following: f and g are L

2

-functions on R

+

, � and � are measures on

R

+

that are right coprime, � has an atom at zero equal to an identity matrix, and � satis�es the

Spectral Factorization Hypothesis 2.6.

4

See [6, Appendix A.7.4], [7, p. 246], [13, Section 4.4], and [15, Sections 4.16{4.18] for more recent

discussions of some measure algebras containing this one as a special case.
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because of the fact that A has nicer spectral and coprime factorization properties than

H

1

, and H

1

is too large for some of our results to be true in H

1

. On the other

hand, A is big enough to contain many of the standard examples; see Section 8. We

shall return to the more general algebra H

1

in [26, 27, 28, 29, 30].

According to [24, Theorem 1.2], in order for the observation y in (10) to be well-

de�ned and to depend continuously on u in L

2

loc

(R

+

), it is necessary and su�cient

that � has an invertible atom at the origin.

5

We assume throughout that this is the

case, and, without signi�cant loss of generality, we take this atom to be the identity

matrix.

6

In this case � has a convolution inverse �

�1

, a measure supported on R

+

,

which is otherwise of the same type as � except that its total variation may be in�nite,

cf. [13, Theorem 1.5, p. 114]. Eliminating the auxiliary variable x from (10) we get

the input/output relation

y = � � �

�1

� (u� g) + f:(11)

In particular, if we take the \transient" terms f and g to be zero, then we �nd that

the impulse response of the system is given by


 = � � �

�1

:(12)

The formula above de�nes a right coprime factorization of 
 in A(R

+

) in the sense

of [33, De�nition 1, p. 331]. Thus, the class of impulse responses that we are able

to handle is characterized by the fact that they have a right coprime factorization in

A(R

+

).

How do we then solve the quadratic cost minimization problem for the in-

put/output relation (10) without using any state space methods? The basic idea

of our solution, presented in Sections 2 and 3, is the following. The unstable problem

that we consider here resembles the stable problem solved in [25], but there is one

major complication: we cannot let u be an arbitrary function in L

2

(R

+

;R

m

), since

not every such function u produces an output y in L

2

(R

+

;R

n

). Thus, in the unstable

case, we are dealing with a constrained minimization problem and not with an un-

constrained one. The key observation that helps us overcome this di�culty is that,

although u cannot be chosen freely, the function x in (10) can be thought of as a free

parameter in L

2

(R

+

;R

m

) in the sense that u will produce an output y 2 L

2

(R

+

;R

n

)

if and only if u is of the form u = ��x+g for some function x 2 L

2

(R

+

;R

m

). The �rst

equation in (10) is independent of u, so it is possible to apply the theory developed

in [25]. That theory is based on a Wiener-Hopf factorization, and in order to apply

this theory we need the additional Spectral Factorization Hypothesis 2.6 given below.

7

That theory gives us the optimal x

opt

and y

opt

, after which we get the optimal u

opt

from the second equation in (10). See Sections 2 and 3 for details.

5

In the terminology of [14], this means that the \D-operator" �� must be atomic at zero.

6

Let D

�

be the atom of � at zero, multiply the second equation in (10) by D

�1

�

, and replace D

�1

�

�,

D

�1

�

u, and D

�1

�

g by �, u, and g.

7

This hypothesis is satis�ed for the system � = (A;B;C;D) with bounded control and observation

operators if and only if the system is coercive; see Corollary 2.9 and De�nition 2.10.
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Does the solution outlined above then tell us anything about the quadratic cost

minimization problem for the original system � = (A;B;C;D), from which (10) was

derived? Indeed, it does. This is to some extent true even in the case where the control

and observation operators B and C are unbounded. For example, the argument that

we gave above reducing the quadratic cost minimization problem for the system (1)

with bounded control and observation operators B and C to the same problem for the

input/output relation (10) extends immediately to the Pritchard-Salamon class dis-

cussed, e.g., in [19, 20, 32]. The only di�erence is that the functions f(t) = C

F

S

F

(t)z

0

,

g(t) = FS

F

(t)z

0

, and C

F

S

F

(s)B are no longer continuous, instead they are de�ned

just almost everywhere and belong to L

2

(R

+

) (and \decay exponentially" at in�nity

in an L

2

-sense). This means that the resulting pair of equations (10) still can be

treated by our method. It is even possible to go one step further and start with a sta-

bilizable and detectable regular abstract linear system � = (A;B;C;D) in the sense

of [5, 34, 35].

8

In this case f and g will still belong to L

2

(R

+

), but the closed loop

impulse responses � and � need no longer be measures. However, if they are, then our

technique applies. See the examples in Section 8.

For the class of regular Pritchard-Salamon systems � = (A;B;C;D) it is well-

known that the optimal control u

opt

is of feedback type, i.e., u

opt

(t) = Kz

opt

(t),

t 2 R

+

, where K is a bounded linear feedback operator and z(t) is the state of � at

time t. Moreover, the closed loop system �

K

= (A

K

; B;C

K

;D) with this feedback

operator is another system of Pritchard-Salamon type. See, for example, [19, 20, 32].

Not much has been known about to what extent this is true in the more general class

of regular abstract linear systems. Here we contribute to the solution of this problem

in the following way. In order to set the stage for the genuinely new results, we �rst use

our knowledge about the quadratic cost minimization problem for the input/output

relation (10) to develop a fairly complete Riccati equation theory for the class of

systems � = (A;B;C;D) with bounded control and observation operators. The results

that we derive are well-known, but we believe that our proof is new. The same method

can be extended to the class of Pritchard-Salamon systems with a minimal e�ort. We

have not included this extension here, since the result is hardly interesting enough

to motivate the introduction of the needed technical machinery. Indeed, the result

is exactly what one expects it to be, with no surprises. In order to derive a truly

interesting new result we have to allow much more unboundedness in the control and

observation operators B and C (roughly of the same order of magnitude as in [17]). In

order to be able to present this result with a minimal amount of technicalities, we have

chosen not to treat an arbitrary regular abstract linear system �, but to start with a

given impulse response 
 of the general type that we described earlier, and to study a

particular realization of 
, i.e., a particular system � with this impulse response.

9

The explanation of how we can use our knowledge about the solution to the quad-

ratic cost minimization problem for (10) in order to derive results about a stabilizable

system � = (A;B;C;D) (with bounded or unbounded control and observation oper-

8

See also [1, Section 3.3] and [21, 22].

9

Extensions to arbitrary systems � are given in [26, 27, 28].
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ators B, and C) requires the introduce of some notations: We denote the mappings

from z

0

to the functions f(t) = C

F

S

F

(t)z

0

and g(t) = FS

F

(t)z

0

by

Cz

0

= (t 7! C

F

S

F

(t)z

0

); Fz

0

= (t 7! FS

F

(t)z

0

):(13)

Then, in all the cases mentioned above, C and F are bounded linear maps from H into

L

2

(R

+

;R

n

) and L

2

(R

+

;R

m

), respectively, and in the case of bounded observation and

feedback operators they map H continuously into BC(R

+

;R

n

) and BC(R

+

;R

m

).

10

Moreover, they map D(A) (the domain of the generator A) into W

1;2

(R

+

;R

n

) and

W

1;2

(R

+

;R

m

), and the functions f and g in (10) are given by

f = Cz

0

; g = Fz

0

;(14)

where z

0

is the initial state of the system.

In order to simplify the discussion below, let us assume that the control, obser-

vation, and feedback operators B, C, and F are bounded.

11

Let us suppose that the

optimal control u

opt

in the cost minimization problem for � = (A;B;C;D) is of state

feedback type, i.e., u

opt

(t) = Kz

opt

(t) for all t 2 R

+

. Since this is true for all t 2 R

+

,

it is surely true for t = 0, i.e.,

Kz

0

= Kz

opt

(0) = u

opt

(0):(15)

From the formulae given in Section 3, we know how to compute u

opt

(0). Let K

�

be

the operator that maps

�

f

g

�

into

K

�

�

f

g

�

= u

opt

(0):(16)

The operator K

�

is unbounded on L

2

(R

+

;R

n

)� L

2

(R

+

;R

m

), but it is bounded on,

for example, BC(R

+

;R

n

) � BC(R

+

;R

m

). From (14) and (15) we conclude that K

must be the bounded linear operator given by

K = K

�

�

C

F

�

:(17)

We compute K

�

in Section 4, and express K

�

in terms of the solution of the Wiener-

Hopf factorization problem (see formula (53)). This formula is very similar to the

corresponding formula in [25].

The argument above indicates that, if u

opt

is of feedback type, then the feedback

operator must be given by (17). It does not yet prove that u

opt

is of feedback type, i.e.,

that u

opt

(t) = Kz

opt

(t) for t 2 R

+

. In Theorem 4.2 we prove (the well-known result)

that for a coercive

12

system � = (A;B;C;D) with bounded control and observation

10

BC is the space of bounded continuous functions.

11

An extended version of this argument applies in the unbounded case.

12

See De�nition 2.10.
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operators B and C, the optimal u

opt

is indeed of state feedback type. Our proof is very

unorthodox in the sense that it makes no reference to the Riccati operator or to the

Riccati equation; that reference is replaced by a reference to the Spectral Factorization

Lemma 2.4.

So far we have said nothing about the Riccati operator � of the system �. By using

essentially the same argument as above we can compute this operator, too. Under our

standing assumptions, it is not di�cult to show that the optimal cost J(u

opt

) in the

minimization problem (2) and (10) is a bounded quadratic function of the data

�

f

g

�

;

hence there is a unique positive self-adjoint operator �

�

such that the optimal cost

can be written in the form

��

f

g

�

;�

�

�

f

g

��

= J(u

opt

);(18)

where the inner product is the usual inner product in L

2

(R

+

;R

n

)�L

2

(R

+

;R

m

). We

de�ne the Riccati operator of � by the analogous formula

hz

0

;�z

0

i

H

= J(u

opt

);

where H is the state space of �. Then, according to (14), � will be given by

13

� = ( C

�

F

�

) �

�

�

C

F

�

:(19)

We compute �

�

in Section 5, and give �

�

in formula (60) in terms of the solution of

the spectral factorization problem. This formula turns out to be an almost exact copy

of the corresponding formula in [25].

To connect our theory to the standard quadratic cost minimization theory we still

have to connect the feedback operator K to the Riccati operator �, and show that �

satis�es the algebraic Riccati equation. The two crucial equations are

14

K = � (D

�

D)

�1

(B

�

� +D

�

C) :(20)

and

hAz

1

;�z

0

i

H

+ hz

1

;�Az

0

i

H

+ hCz

1

; Cz

0

i

R

n

= hKz

1

;D

�

DKz

0

i

R

m

; z

0

; z

1

2 D(A):

(21)

Clearly, by combining these two equations we get the standard algebraic Riccati equa-

tion

hAz

1

;�z

0

i

H

+ hz

1

;�Az

0

i

H

+ hCz

1

; Cz

0

i

R

n

=

D

(B

�

� +D

�

C) z

1

; (D

�

D)

�1

(B

�

� +D

�

C) z

0

E

R

m

;

z

0

; z

1

2 D(A):

(22)

13

Actually, we shall see in Section 5, the optimal cost J(u

opt

) and the Riccati operator �

�

are

independent of g, so this formula for � does not depend on F .

14

In the case where the feed-through operator D is nonzero and coercive and the cost function

is (2).
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As we show at the end of Section 5, equations (20) and (21) can, indeed, be derived

from our general results for (10) through some straightforward (but rather tedious)

computations.

To get to the most interesting part of this work we have to treat a more general

case of (10) that is not induced by a system of Pritchard-Salamon type. The purpose

is to investigate to what extent equations (20){(22) remain valid in this case. For

simplicity, we do not treat an arbitrary regular abstract linear system, but rather a

\canonical" realization of a given impulse response 
 with a right coprime factorization


 = � ��

�1

. This realization, presented in Section 6, is an extension of one of the four

realizations developed in [25]. As always in the study of systems with an unbounded

control operator, the term causing us the most trouble is the term B

�

� in (20), and

in order to simplify the treatment of this term as much a possible we have settled for

a realization where this term is as simple as possible. That realization is based on an

extended version of (10) where an initial function component has been added to x,

namely

15

x(t) = '(t); t 2 R

�

;

y(t) = (� � x)(t) + f(t); t 2 R

+

;

(� � x)(t) = u(t)� g(t); t 2 R

+

:

(23)

Accordingly, we de�ne the convolutions in a slightly di�erent way as

(� � x)(t) =

Z

R

+

�(ds)x(t� s); (� � x)(t) =

Z

R

+

�(ds)x(t� s); t 2 R

+

:

Moreover, we replace the de�nitions of K

�

and �

�

by

K

�

0

@

'

f

g

1

A

= u

opt

(0);(24)

and

*

0

@

'

f

g

1

A

;�

�

0

@

'

f

g

1

A

+

= J(u

opt

);(25)

where the inner product is the usual inner product in L

2

(R

�

;R

m

) � L

2

(R

+

;R

n

) �

L

2

(R

+

;R

m

).

16

15

We have, in addition, replaced R

+

by R

+

. This is due to the fact that we shall from time to time

refer to this equation in cases were the functions are de�ned everywhere instead of almost everywhere,

and in this case R

+

is the better choice.

16

A reader who is not interested in the results presented in Sections 6{8 may throughout take the

initial function ' to be zero, and stick with the old equations (10), (16), (18), and the earlier notion

of a convolution (although R

+

should be replaced by R

+

for the pointwise results). This simpli�es

some of the formulae in Sections 2{5.
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Section 7 is devoted to a proof of the fact that formulae (20) and (21) remain

almost valid for the realizations given in Section 6, this time with an unbounded

operator K, provided the numerator � in the right coprime factorization 
 = � � �

�1

satis�es the Spectral Factorization Hypothesis 2.6. There is one extremely interesting

di�erence: the matrix D

�

D has been replace by a new matrix. According to (9),

the matrix D is characterized by the fact that it is the feed-through matrix

17

of the

numerator �, and at the same time it is the feed-through matrix of the impulse response


, since the feed-through matrix of the denominator � is the identity matrix. In the

situation described in Section 6 the feed-through matrix of � is still normalized to be

the identity operator, and the feed-through matrices D




and D

�

of 
 and � are the

same. Let us denote this common matrix by D = D




= D

�

. This is the matrix that

we would expect to show up in (20) and (21). Indeed, it is the correct matrix in the

term D

�

C in (20), but in all other places it has been replaced by D

�

, where � is the

spectral factor of a symmetrized version of the numerator � of 
. This means that the

matrix D

�

D must be replaced throughout by D

�

�

D

�

.

18

In the classical case these two

matrices are the same, but this is not true in the case where the numerator � contains

some delayed atoms N

i

�

a

i

with a

i

> 0. This is exactly the same anomaly that we

discovered in [25] in the stable case. See the examples in Section 8.

As we mentioned above, it is not standard to work with the cost function J in (2);

the usual choice is to normalize the feed-through matrix D to be zero, and to replace

J by the function J

R

in (3). We have not done so here, since it leads to a slight loss of

generality and to more complicated formulae.

19

Indeed, (3) is a special case of (2) in

the following sense.

20

The argument is essentially the same for the the system (1) and

the input/output relation (10), so below we give only the argument for (1).

21

Clearly

J

R

(u) is equal to the L

2

-norm of the vector

�

y

R

1=2

u

�

. By (7) and (8),

�

y(t)

R

1=2

u(t)

�

= C

F

R

S

F

(t)z

0

+

Z

t

0

C

F

R

S

F

(t� s)Bx(s)ds+D

R

x(t); t 2 R

+

;(26)

where

D

R

=

�

D

R

1=2

�

; C

F

R

= C

R

+D

F

F =

�

C +DF

R

1=2

F

�

; C

R

=

�

C

0

�

:(27)

This leads to a system of the type (9) and (10), with Y replaced by Y �U , D replaced

by D

F

, C replaced by C

R

, and C

F

replaced by C

F

R

= C

R

+D

F

F . In order to keep

17

According to De�nition 2.7, the feed-through matrix of a measure is the atom that this measure

has at the origin. The feed-through matrix is zero if the measure has no such atom.

18

See Theorem 7.1.

19

In the most general case it does not make sense to normalize the feed-through matrix D to be

zero. See our discussion above on how we are sometimes forced to replace D

�

D by a di�erent operator.

20

As the construction in [12, Section 5.2.3] shows, the converse is also true, at least in the �nite-

dimensional case. That construction is less appealing in the in�nite-dimensional case since it does

not preserve stability, i.e., it may convert a stable system into an unstable one. Moreover, it does

not work for systems that are not regular, since such systems do not have well-de�ned feed-through

operators.

21

In the case of (10), replace � and f by

�

�

R

1=2

�

�

and

�

f

R

1=2

g

�

.
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the notations simple, we shall throughout write D, C, and C

F

, and we leave it to the

reader to replace these operators by D

R

, C

R

, and C

F

R

if the cost function is (3) instead

of (2).

Finally, let us comment on how our results relate to some other recently obtained

results.

22

A general comment that applies to all of these works is that they use almost

exclusively the cost function J

R

de�ned in (3) instead of our cost function J in (2),

and, in addition, they usually normalize the feed-through operator D to be zero. Thus,

in the comparison of those results with ours we should throughout replace D, C, and

C

F

by D

R

, C

R

, and C

F

R

.

The most recent publications of Grabowski [10, 11] contain certain results that

are quite close to some of ours. He uses spectral factorization to solve quadratic

minimization problems, but he does not develop a general Riccati equation theory for

systems with unbounded control and observation operators. We discuss Grabowski's

example [11] in detail in Section 8.

Our results for systems with bounded control and observation operators extend

those of Callier and Winkin [3, 4], in particular, Theorem 4.2 extends [4, Theorem 3] in

several ways. There it is not proved that the optimal solution u

opt

is of feedback type;

that result is borrowed from the standard Riccati equation theory. Likewise, Callier

and Winkin borrow (20) from the standard Riccati equation theory instead of proving

this equation. They give a di�erent formula [4, Formulae (19) and (21a)] (involving a

Diophantine equation) for the restriction of the feedback operator K to the reachable

subspace in terms of the spectral factorization, and they use a considerable amount of

space (in particular, [4, Theorem 4]) to discuss how this restricted operator is related

to the full feedback operator. Our formula (56) giving K directly in terms of the

inverse of the spectral factor appears to be new.

In his thesis [36], Martin Weiss studies a spectral factorization problem of a more

general type in the Pritchard-Salamon setting. In the Pritchard-Salamon case (that

we did not include) our Theorems 4.2 and 5.2 become related to the su�ciency part

of [36, Theorem 4.20].

23

The recent book [1] of Bensoussan, Da Prato, Delfour, and Mitter uses the classical

Riccati equation approach to the quadratic cost minimization problem for boundary

control problems for partial di�erential equations, and whereas we can refer the reader

to this book for results of that nature, it does not mention the spectral factorization

problem, and it is not really a relevant reference for the major part of this work.

The same statement applies to the books [16] by Lasiecka and Triggiani and [18] by

Lions. In another more recent work [17] Lasiecka and Triggiani treat the quadratic

cost minimization problem in an abstract setting for systems with very unbounded

control operators B, but bounded observation operators C. The total amount of

unboundedness in that paper (in B and C) is approximately the same as in our

setting, but it is distributed in a di�erent way (more unboundedness in B, and less in

22

None of these have had any signi�cant impact on our work, due to the fact that we got acquainted

with them at a rather late stage.

23

In [28] we extend the results presented here to cover the more general situation considered by

Martin Weiss.
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C). Their impulse responses are not always measures, and in that case our method

does not apply. In spite of the great amount of unboundedness that Lasiecka and

Triggiani are able to allow in the control operator B, they do not yet discover the

fact that we consider to be the most interesting one, namely the need for the new

weighting operator (D

�

�

D

�

)

�1

in the Riccati equation and in the equation connecting

the feedback operatorK to the Riccati operator. We believe that this is due to the fact

that when they derive the Riccati equation they impose an extra regularity condition

[17, Condition (H.5)] on the observation operator C.

24

2. Coprimeness and Spectral Factorization. Let us begin with a de�nition

of coprimeness:

25

Definition 2.1. The measures � 2 M(R

+

;R

n�m

) and � 2 M(R

+

;R

m�m

) are

right coprime in M(R

+

) i� the Bezout identity

�

1

� � + �

1

� � = I�

0

(28)

has a solution �

1

2 M(R

+

;R

m�n

) and �

1

2 M(R

+

;R

m�m

). Here I is the identity

matrix, and �

0

is the Dirac delta.

As we mentioned earlier, the following result is the key observation, that enables

us to reduce the unstable case to the stable case, solved in [25]:

Lemma 2.2. Let � 2 M(R

+

;R

n�m

) and � 2 M(R

+

;R

m�m

) be right coprime.

Let ' 2 L

2

(R

�

;R

m

), f 2 L

2

(R

+

;R

n

), and g 2 L

2

(R

+

;R

m

), and let x, y, and

u be locally in L

2

and satisfy (23). Then x 2 L

2

(R

+

;R

m

) if and only if both y 2

L

2

(R

+

;R

n

) and u 2 L

2

(R

+

;R

m

).

Proof. We immediately observe that

26

x = �

+

x + �

�

'. Since ' 2 L

2

(R

�

;R

m

),

the condition x 2 L

2

(R

+

;R

m

) is therefore equivalent to x 2 L

2

(R;R

m

). In particular,

then y 2 L

2

(R

+

;R

n

) because y = � � x + f on R

+

, and u 2 L

2

(R

+

;R

m

) because

u = � � x + g on R

+

.

27

To prove the converse claim we choose some measures �

1

and �

1

satisfying the Bezout identity (28). We convolve the equation �

+

(� � (�

+

x+

�

�

') + f � y) = 0 with �

1

, convolve the equation �

+

(� � (�

+

x + �

�

') + g � u) = 0

with �

1

, and add the resulting two equations to get

�

+

x = �

1

� �

+

(y � f � � � �

�

') + �

1

� �

+

(u� g � � � �

�

') :

This shows that x 2 L

2

(R

+

;R

m

) whenever both y 2 L

2

(R

+

;R

n

) and u 2

L

2

(R

+

;R

m

).

24

Another di�erence in [17] is their standing coercivity hypothesis (H.4) that forces the output

space Y to be in�nite-dimensional.

25

In the introduction we restricted ourselves to the class A(R

+

) of measures without a singular

non-atomic part. This is important if we want to apply Lemma 2.4, but elsewhere it does not matter

if the measures include singular non-atomic parts or not. For this reason we shall in the sequel work

in the class M of measures (with or without singular non-atomic parts). Lemma 2.4 is also true for

measures with a su�ciently small singular non-atomic part, as can be shown with a perturbation

argument.

26

See Section 9 for a list of notations.

27

The standard properties of convolutions may be found in many places, for example, in [13,

Theorem 6.1, pp. 96{98] and in [25, Lemma 3.1].
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Thanks to Lemma 2.2, we can, for a moment, forget about the last equation in

(23), and study the quadratic cost minimization problem for the �rst two equations

in (23) in the same say as we did in [25], with x replacing u. Once the optimal x

opt

has been found, we can compute the optimal u

opt

from the last equation in (23). In

the new setting, [25, Lemma 3.2] reads as follows:

Lemma 2.3. Let � 2M(R

+

;R

n�m

) and � 2M(R

+

;R

m�m

) be right coprime, let

' 2 L

2

(R

�

;R

m

), f 2 L

2

(R

+

;R

n

), g 2 L

2

(R

+

;R

m

), and suppose that � is coercive

in the sense that there exists some � > 0 such that

(�̂(i!))

�

�̂(i!) � �

2

I; ! 2 R:(29)

Then the function J(u) de�ned in (2), with y given by (23), achieves its minimum at

some u

opt

2 L

2

(R;R

m

). The minimizing function u

opt

is unique, and at the minimum,

the optimal output y

opt

and optimal control u

opt

are given by

y

opt

= � � x

opt

+ f;

u

opt

= � � x

opt

+ g;

(30)

where x

opt

is the solution of the symmetric Wiener-Hopf equation

28

x

opt

(t) = '(t); t 2 R

�

;

(�� � � � x

opt

)(t) = �(�� � f)(t); t 2 R

+

:

(31)

Proof.

29

De�ne W (x) = J(u), where J(u) is the function de�ned in (2), and

y is given by (23). As we observed above, thanks to Lemma 2.2, the (constrained)

minimization of J(u) with respect to u can be replaced by a free minimization ofW (x)

with respect to x 2 L

2

(R

+

;R

m

). In this minimization we must split the function x

into two parts: the part �

�

x = �

�

' is given in advance, and the free variable is �

+

x.

Thus, let us rewrite the �rst two equations in (23) in the form

y = � � (�

+

x+ �

�

') + f;

and minimize with respect to �

+

x.

If the coercivity condition (29) holds, then the convolution operator �

+

x 7! ���

+

x

is strictly coercive (i.e., k� � �

+

xk

L

2

(R

+

)

� � kxk

L

2

(R

+

)

). The �rst claim is then

obvious, since every coercive quadratic continuous function in a Hilbert space has a

unique minimum. To deduce the necessary condition for the minimum we write W (x)

in the form

W (x) = h� � (�

�

x+ �

+

x) + f; � � (�

�

x+ �

+

x) + fi

L

2

(R

+

)

;

28

The convolution operator ��� is the adjoint of the convolution operator ��. To obtain the measure

�� one takes matrix adjoints and re
ects the time axis, i.e., ��(E) = �(�E)

�

for every Borel set

E � R; here the star represents the operation of replacing a matrix by its adjoint (complex conjugate

transpose). Clearly, �� is supported onR

�

= (�1; 0], and the convolution operator ����� is selfadjoint.

29

This proof is almost identical to the proof of [25, Lemma 3.2].
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and di�erentiate W (x) with respect to �

+

x to get for each variation � 2 L

2

(R

+

;R

m

),

d

d�

W (x

opt

+ ��)

�

�

�

�=0

= 2h� � x

opt

+ f; � � �i

L

2

(R

+

)

= 2hy

opt

; � � �i

L

2

(R

+

)

= 2h�� � y

opt

; �i

L

2

(R

+

)

:

This is zero for all � i�

(�� � y

opt

)(t) = 0; t 2 R

+

:(32)

By substituting (23) into (32) we get (30) and (31).

The key step in our earlier solution of the Wiener-Hopf equation (31) was to �nd

an invertible

30

solution � 2M(R

+

;R

m�m

) of the equation

�

� � � = �� � �:(33)

Lemma 2.4. Let � 2 A(R

+

;R

n�m

), and suppose that � is coercive in the sense

that (29) holds for some � > 0. Then there is a measure � 2 A(R

+

;R

m�m

) with a

convolution inverse �

�1

that also belongs to A(R

+

;R

m�m

) satisfying (33) in (at least)

the two following cases:

1. m = 1 (the control is scalar);

2. the atoms of � are integrally dependent in the sense that they are located at

points that are integer multiples of one �xed time T (in particular, this is true

in Case 3 below).

Moreover,

3. if � is the sum of an atom at zero plus a function in L

1

\ L

p

(R

+

;R

n�m

)

for some p 2 [1;1], then � and �

�1

are of the same type (except that the

dimensions are m�m).

Case 1 of Lemma 2.4 is due to Gohberg and Fel

0

dman (see, e.g., [8, Chapter VII]),

Case 3 is due to Gohberg and Kre��n [9], and Case 2 is due to Winkin [38]. It is

an interesting open problem whether Lemma 2.4 is true when m > 1 and there are

multiple, integrally independent delays; we conjecture that this is the case. As is well-

known and easy to see, the coercivity of � is a necessary condition for the existence of

a factorization.

31

The measure � in Lemma 2.4 is usually called a spectral factor:

Definition 2.5. A measure � 2 M(R

+

;R

m�m

) is called a (canonical) spectral

factor of the measure �� � � if � has a convolution inverse �

�1

2M(R

+

;R

m�m

) and �

satis�es (33).

Throughout this work we make the following hypothesis:

Hypothesis 2.6. The measure �� � � has a spectral factor � 2M(R

+

;R

m�m

).

In particular, this hypothesis will be true if � is coercive and satis�es the conditions

in Parts 1, 2, or 3 of Lemma 2.4.

30

The measure � itself will hardly ever be invertible. It cannot be invertible unless n = m, which

is not true if we start o� with the cost function (3) and reformulate the problem as we did at the end

of Section 1.

31

Take � = k�

�1

k

�1

.
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The invertibility in M(R

+

;R

m�m

) of the spectral factor � implies that � has an

invertible atom at zero. It will become important in the sequel to separate this atom

at zero from the rest of �. We shall need to repeat the same construction for other

measures, as well. Therefore, let us introduce the following terminology:

Definition 2.7. Write � 2 M(R

+

;R

n�m

) in the form �(ds) = D

�

�

0

(ds) +

�

+

(ds), where �

0

is the Dirac delta, D

�

is a matrix, and �

+

has no atom at zero.

Then D

�

�

0

is called the (instantaneous) feed-through part of �, D

�

is called the (in-

stantaneous) feed-through matrix of �, and �

+

is called the strictly causal part of �.

Compare this de�nition to the formulae in (9). Observe that �

+

is allowed to

contain delayed atoms, but no atom at zero.

As we mentioned above, it will be important to separate �, �, and � into

�(ds) = D

�

�

0

(ds) + �

+

(ds);

�(ds) = I�

0

(ds) + �

+

(ds);

�(ds) = D

�

�

0

(ds) + �

+

(ds):

(34)

Observe that we have normalized the feed-through matrix D

�

of � to be the identity

matrix. The feed-through matrix D

�

is always invertible. As is well-known (see, e.g.,

[26, Lemma 3.5]), � is determined uniquely, modulo the multiplication from the left

by a unitary matrix M . This ambiguity can be used to force the feed-through matrix

D

�

to be positive de�nite.

32

With this normalization, the spectral factor � is unique.

The coercivity condition (29) is not standard, in fact, in virtually all standard

papers this condition is absent. This is due to the fact it is customary to work with

the cost function J

R

in (3) with a strictly positive de�nite R instead of our J in (2),

and in this case the analogue of (29) is always satis�ed.

33

One drawback with (29)

is that this condition is phrased in terms of the numerator � in the right coprime

factorization 
 = � � �

�1

of the impulse response 
, and not directly in terms of 


itself. However, this condition is equivalent to the corresponding condition on 
:

Lemma 2.8. Let � and � be right coprime, and extend the domain of de�nition

of the Laplace transform 
̂ of 
 = � � �

�1

to all those s 2 C with <s � 0 for which

det �̂(s) 6= 0 by de�ning 
̂(s) = �̂(s)(�̂(s))

�1

. Then � satis�es (29) if and only if the

extended function 
̂ satis�es

(
̂(i!))

�


̂(i!) � �

2

I; ! 2 R; det �̂(i!) 6= 0;(35)

for some � > 0.

Proof. Suppose that � satis�es (29). Since k�̂(i!)k � k�k for all ! 2 R, get from

(29)

(�̂(i!))

�

�̂(i!) �

�

2

k�k

2

(�̂(i!))

�

�̂(i!); ! 2 R:

32

Factor D

�

into D

�

=MR, where M = D

�

�

D

�

�

D

�

�

�1=2

is unitary and R =

�

D

�

�

D

�

�

1=2

is positive

de�nite, and multiply � by M

�1

.

33

Use the fact that � and � are right coprime, choose some �

1

and �

1

as in De�nition 2.1, and

de�ne � =

�

sup

!2R

k( �̂

1

(i!) �̂

1

(i!)R

�1=2

)k

�

�1

.
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Multiplying this formula by (�̂(i!))

�1

from the right and by ((�̂(i!))

�

)

�1

from the

left we get (35) with � = �=k�k.

Conversely, suppose that (35) holds. Multiply (35) by �̂(i!) from the right and

by (�̂(i!))

�

from the left to get

(�̂(i!))

�

�̂(i!) � �

2

(�̂(i!))

�

�̂(i!); ! 2 R; det �̂(i!) 6= 0:

The functions on both sides of this inequality are continuous in !, and det �̂(i!) can

vanish at most of a set of measure zero (it is the boundary function of a nontrivial

H

1

-function), so the extra condition det �̂(i!) 6= 0 can be removed, leading to

(�̂(i!))

�

�̂(i!) � �

2

(�̂(i!))

�

�̂(i!); ! 2 R:(36)

Since � and � are coprime, we can choose some �

1

and �

1

satisfying the Bezout identity

(28). De�ne �

1

= (sup

!2R

k( �̂

1

(i!) �̂

1

(i!) )k)

�1

. Then

(�̂(i!))

�

�̂(i!) + (�̂(i!))

�

�̂(i!) � �

2

1

I; ! 2 R:

Multiplying this inequality by �

2

and adding the result to (36) we get (29) with �

2

=

�

2

1

�

2

=(1 + �

2

).

Applying this result to the system � = (A;B;C;D) in (1) with � and � de�ned

as in (9) we get the following corollary:

Corollary 2.9. Let � = (A;B;C;D) be an exponentially stabilizable and de-

tectable system with bounded control and observation operators, and de�ne � and � as

in (9). Then the following three conditions are equivalent:

1. The measure �� � � has a spectral factor �.

2. Condition (29) holds for some � > 0.

3. There is some � > 0 such that

(C(i! �A)

�1

B +D)

�

(C(i! �A)

�1

B +D) � �

2

I(37)

for all those ! 2 R for which i! belongs to the resolvent set of A.

When these conditions hold, the spectral factor � is the sum of an invertible atom D

�

at zero and a function X 2 L

1

\ L

1

(R

+

;R

m�m

).

We leave the easy proof of this corollary to the reader.

Definition 2.10. The system � in Corollary 2.9 is called coercive whenever the

condition in Part 3 of that corollary is true.

Observe that the extended system �

R

that we get by replacing C and D by C

R

and D

R

de�ned in (27) is always coercive whenever R is strictly positive de�nite.

The rest of this section is devoted to a closer study of the system � in Corollary 2.9

under the assumption that � is coercive. From the de�nition (9) of � we get after a

short computation

(�� � �)(ds) = D

�

D�

0

(ds) + Z(s)ds;

where Z is the function de�ned by

Z(t) =

(�

D

�

C

F

+B

�

�

C

F

�

S

F

(t)B; t > 0,

Z

�

(�t) t < 0,

(38)
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and where in turn

�

C

F

=

Z

1

0

(S

F

)

�

(s)(C

F

)

�

C

F

S

F

(s)ds(39)

is the observability Gramian of the stabilized system. By the coercivity of � and

Corollary 2.9, a spectral factor � exists, and the strictly causal part of � is a function

X 2 L

1

\L

1

(R

+

;R

m�m

). The normalized positive de�nite feed-through matrix of �

must be equal to the square root of the corresponding atom of �� � �. Thus, for the

system � in (1),

�(ds) = (D

�

D)

1=2

�

0

(ds) +X(s)ds:(40)

The inverse of � will be of the type

�

�1

(ds) = (D

�

D)

�1=2

�

0

(ds) + Y (s)ds;(41)

where Y 2 L

1

\ L

1

(R

+

;R

m�m

). That � and �

�1

are convolution inverses of each

other means that the functions X and Y are interrelated through the formula

(D

�

D)

1=2

Y +X (D

�

D)

�1=2

+X � Y

= Y (D

�

D)

1=2

+ (D

�

D)

�1=2

X + Y �X = 0:

(42)

On the half-line R

+

the equation � =

�

�

�1

� �� � � becomes, in terms of the functions

X, Y , and Z,

X(t) = (D

�

D)

�1=2

Z(t) +

Z

1

0

Y

�

(s)Z(t+ s)ds

= (D

�

D)

�1=2

�

D

�

C

F

+B

�

�

C

F

�

S

F

(t)B

+

Z

1

0

Y

�

(s)

�

D

�

C

F

+B

�

�

C

F

�

S

F

(t+ s)Bds

= QS

F

(t)B; t 2 R

+

;

(43)

where

Q = (D

�

D)

�1=2

�

D

�

C

F

+B

�

�

C

F

�

+

Z

1

0

Y

�

(s)

�

D

�

C

F

+B

�

�

C

F

�

S

F

(s)ds:

(44)

As we shall see later, the operator Q is closely related to the feedback operator K,

that expresses the optimal control u

opt

for the closed loop system as a function of the

present state of the system.

3. The Basic Solution. With the aid of the spectral factorization in Lemma 2.4

we are able to solve (31):

Theorem 3.1. Let � 2M(R

+

;R

n�m

), let Hypothesis 2.6 hold, and let B be any

one of the spaces (see the list of notations in Section 9)

L

p

with p 2 [1;1], B

1

, B

1

0

, or BC

right

:(45)
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Then for each ' 2 B(R

�

;R

m

) and f 2 B(R

+

;R

n

), equation (31) has a unique

solution x

opt

2 B(R;R

m

), given by

x

opt

= �

�1

� (�

�

(� � ')� �

+

(

�

�

�1

� �� � f))

= �

�

'� �

�1

� �

+

(� � �

�

'+

�

�

�1

� �� � f):

(46)

If, in addition, ' 2 B(R

�

;R

m

) and f 2 B(R

+

;R

n

), where B is any one of the spaces

BC, BUC, or BUC

0

;(47)

and if

(� � ')(0) = �(

�

�

�1

� �� � f)(0);(48)

then x

opt

2 B(R;R

m

). If ' 2 B(R

�

;R

m

) and f 2 B(R

+

;R

n

), where B is any one

of the spaces listed in (47), and if we instead of (48) suppose that � has no singular

part (apart from a feed-through part), then x

opt

2 B(R

�

;R

m

) \ B(R

+

;R

m

) (but x

opt

may be discontinuous at zero). In all cases, the output y

opt

de�ned in (30) belongs to

B(R

+

;R

n

), and if furthermore g 2 B(R

+

;R

m

), then the function u

opt

de�ned in (30)

belongs to B(R

+

;R

m

).

Proof.

34

We solve (31) by arguing in the following way. We replace �� � � in (31)

by

�

� � �, and then convolve the second equation by

�

�

�1

(which is supported on R

�

)

to get

x

opt

(t) = '(t); t 2 R

�

;

(� � x

opt

)(t) = �(

�

�

�1

� �� � f)(t); t 2 R

+

:

(49)

This is a delay equation for x

opt

, with an initial function ' and a forcing term �

�

�

�1

�

�� � f . To solve this equation we argue as follows. We observe that � � x

opt

= � � ' on

R

�

. Thus

� � x

opt

= �

�

(� � ')� �

+

(

�

�

�1

� �� � f);

where the equation is valid on all of R. Convolve this equation by �

�1

to get

x

opt

= �

�1

� (�

�

(� � ')� �

+

(

�

�

�1

� �� � f)):(50)

Taking into account that �

�

= I��

+

, and that �

�

(� �') = �

�

(� ��

�

'), we get (46).

All the additional claims follow from (50) and standard properties of convolution

operators.

By separating � and � into their feed-through parts and strictly causal parts we

may alternatively write formula (46) as

35

x

opt

= �

�

'� �

�1

� �

+

( �

+

�

�

�1

� �� ) �

�

�

�

'

f

�

= �

�

'� �

�1

� �

+

�

�

�1

� �� � ( �

+

�

0

) �

�

�

�

'

f

�

;

(51)

34

This proof is almost identical to the proof of [25, Theorem 3.3].

35

Since the Hankel operator induced by �

0

is zero, we have �

+

(� � �

�

') = �

+

(�

+

� �

�

') and

�

+

(� � �

�

') = �

+

(�

+

� �

�

').
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where the second version is derived from the �rst version and the fact that

�

+

(

�

�

�1

� �� � �

+

� �

�

') = �

+

(

�

�

�1

� �� � � � �

�

')

= �

+

(� � �

�

')

= �

+

(�

+

� �

�

'):

(52)

4. The Feedback Operator. In order to compute the operator K

�

de�ned (24)

it su�ces to evaluate (30) at zero, with x

opt

given by (51). According to Theorem 3.1,

if ', f , and g are bounded and right-continuous, then the solution x

opt

of (31) is

right-continuous, and so is u

opt

. By (30), (34) and (51)

36

K

�

0

@

'

f

g

1

A

= u

opt

(0) = x

opt

(0) + (�

+

� ')(0) + g(0)

= (�

+

�D

�1

�

�

+

�D

�1

�

�

�

�1

� �� �

0

) �

0

@

�

�

'

f

g

1

A

(0):

= (�

+

�D

�1

�

�

�

�1

� �� � �

+

�D

�1

�

�

�

�1

� �� �

0

) �

0

@

�

�

'

f

g

1

A

(0):

(53)

Thus, we have the following result:

Proposition 4.1. The operator K

�

de�ned in (53) is a continuous linear oper-

ator from BC

right

(R

�

;R

m

)�BC

right

(R

+

;R

n

)�BC

right

(R

+

;R

m

) into R

n

.

Observe that, because of the presence of the term g(0), this operator is always

unbounded on L

2

(R

�

;R

m

)� L

2

(R

+

;R

n

)� L

2

(R

+

;R

m

).

In the case where y is the output of the system � = (A;B;C;D) in (1) with

bounded control and observation operators, we can make the following computation.

37

We �rst recall that in this case ' = 0, hence the terms involving ' drop out. Moreover,

g(t) = FS

F

(t)z

0

, hence g(0) = Fz

0

. After a short computation, similar to the one

leading to (38), we �nd that

(�� � f)(t) = (D

�

C

F

+B

�

�

C

F

)S

F

(t)z

0

; t 2 R

+

;

where �

C

F

is the observability Gramian de�ned in (39). Moreover, another equally

short computation shows that

(

�

�

�1

� �� � f)(t) = QS

F

(t)z

0

; t 2 R

+

;

where Q is the operator de�ned in (44). In particular, taking t = 0 we get

(

�

�

�1

� �� � f)(0) = Qz

0

:

36

The feed-through part of �

�1

is D

�1

�

�

0

, and the strictly causal part of �

�1

does not a�ect the

value of (51) at zero.

37

In the stable case this reduces to the corresponding computation in [25].



Quadratic Optimal Control 19

Substituting these values into (53), we �nd that the operator K de�ned in (15) is

given by

K = F � (D

�

D)

�1=2

Q:

Thus,

(

�

�

�1

� �� � f)(t) = (D

�

D)

1=2

(F �K)S

F

(t)z

0

; t 2 (0;1);(54)

and (43) becomes

X(t) = (D

�

D)

1=2

(F �K)S

F

(t)B; t 2 (0;1):(55)

If we rewrite (44) in terms of the operator K, then we get

Kz

0

= Fz

0

� (D

�

D)

�1

�

D

�

C

F

+B

�

�

C

F

�

z

0

� (D

�

D)

�1=2

Z

1

0

Y

�

(s)

�

D

�

C

F

+B

�

�

C

F

�

S

F

(s)z

0

ds:

(56)

The argument above shows that if u

opt

is obtained via state feedback, i.e., if

u

opt

(t) = Kz(t) for t � 0, then K must be the operator de�ned above. It does not yet

prove that u

opt

(t) = Kz(t) for t � 0. However, by (40), (49), and (54),

(D

�

D)

1=2

x

opt

+X � x

opt

= (D

�

D)

1=2

(K � F )S

F

(t)z

0

;

which combined with (6) and (55) gives x

opt

= (K � F )z

opt

. This, together with (4)

gives u

opt

= Kz

opt

. Thus, we have proved the following theorem:

Theorem 4.2. Let � = (A;B;C;D) be a coercive exponentially stabilizable and

detectable system with bounded control and observation operators. Then there is a

unique u

opt

that minimizes the cost function (2), where y is the output of the system

(1). Moreover, the optimal u

opt

can be written in feedback form u

opt

= Kz

opt

, where

K is the operator given by (56).

5. The Riccati Operator. Let us next turn to the Riccati operator �

�

de�ned

in (25). The computation of this operator is very easy. It su�ces to observe that

we have rewritten the constrained minimization problem with respect to u as a free

minimization problem with respect to x, hence the cost of the function g must be

zero, and the cost of f and ' must be the same as in the stable case, if we replace the

measure 
 in [25] by �. For the convenience of the reader, we repeat the derivation

given in [25, Section 5] here. De�ne

h = �

+

(�

+

� �

�

'+ f) = �

+

( �

+

�

0

) �

�

�

�

'

f

�

:(57)

Then the �rst two equations in (23) become

y(t) = (� � �

+

x)(t) + h(t); t 2 R

+

;(58)



20 Olof J. Sta�ans

and the cost function J(u) can be written in the form

J(u) = hy; yi

L

2

(R

+

)

= h� � �

+

x+ h; � � �

+

x+ hi

L

2

(R

+

)

= h� � �

+

x; � � �

+

x+ hi

L

2

(R

+

)

+ hh; � � �

+

x+ hi

L

2

(R

+

)

:

However, because of (32) and (58), we have for the optimal x

opt

,

h� � �

+

x

opt

; � � �

+

x

opt

+ hi

L

2

(R

+

)

= hx

opt

; �� � (� � �

+

x

opt

+ h)i

L

2

(R

+

)

= 0:

Thus (recall also (33)),

J(x

opt

) = hh; hi

L

2

(R

+

)

+ h�� � h; x

opt

i

L

2

(R

+

)

= hh; hi

L

2

(R

+

)

� h�� � � � �

+

x

opt

; x

opt

i

L

2

(R

+

)

= hh; hi

L

2

(R

+

)

� h

�

� � � � �

+

x

opt

; x

opt

i

L

2

(R

+

)

= hh; hi

L

2

(R

+

)

� h� � �

+

x

opt

; � � �

+

x

opt

i

L

2

(R

+

)

:

If we here substitute x

opt

from (51) and h from (57), then we get

J(x

opt

) =













( �

+

�

0

) �

�

�

�

'

f

�













2

L

2

(R

+

)

�













( �

+

�

�

�1

� �� ) �

�

�

�

'

f

�













2

L

2

(R

+

)

=













( �

+

�

0

) �

�

�

�

'

f

�













2

L

2

(R

+

)

�













�

�

�1

� �� � ( �

+

�

0

) �

�

�

�

'

f

�













2

L

2

(R

+

)

:

(59)

From (59) we see that the Riccati operator �

�

can be written in the forms

38

�

�

0

@

'

f

g

1

A

=

0

@

�

�

��

+

�

0

0

1

A

� �

+

( �

+

�

0

0 ) �

0

@

�

�

'

f

g

1

A

�

0

@

�

�

�

�

+

� � �

�1

0

1

A

� �

+

( �

+

�

�

�1

� �� 0 ) �

0

@

�

�

'

f

g

1

A

=

0

@

�

�

��

+

�

0

0

1

A

� �

+

( �

+

�

0

0 ) �

0

@

�

�

'

f

g

1

A

�

0

@

�

�

��

+

�

0

0

1

A

� � � �

�1

� �

+

�

�

�1

� �� � ( �

+

�

0

0 ) �

0

@

�

�

'

f

g

1

A

;

(60)

and we have the following theorem:

Theorem 5.1. Let � 2 M(R

+

;R

n�m

) satisfy Hypothesis 2.6. Then the

Riccati operator �

�

de�ned in (25) can be expressed in the di�erent forms (60).

In particular, it maps B(R

�

;R

m

) � B(R

+

;R

n

) � B(R

+

;R

m

) continuously into

B(R

�

;R

m

) � B(R

+

;R

n

) � f 0 g, where B is any one of the spaces listed in (45).

38

Compare this to [25, formula (42)].
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Moreover, if � has no singular part (apart from a feed-through part), then �

�

maps

B(R

�

;R

m

)�B(R

+

;R

n

)�B(R

+

;R

m

) continuously into B(R

�

;R

m

)�B(R

+

;R

n

)�

f 0 g, where B is any one of the spaces listed in (47).

Observe that formulae (33) and (34) in [25] are still valid as well. For example, if

we let P be the \restriction operator" that maps

0

@

'

f

g

1

A

into f , then in the particular

case where ' is absent, the projected Riccati operator �

P

�

= P�

�

P

�

can be written

in the form

�

P

�

f = P�

�

P

�

f = f � � � �

�1

�
�

+

�

�

�1

� �� � f:

(61)

Of course, this operator has the same type of properties as those listed in Theorem 5.1

for the operator �

�

.

In the case of the system � in (1) we de�ne the Riccati operator � through the

formula

J(u) = hz

0

;�z

0

i

H

;

where H is the state space of �, and get from (9), (39), (54), and (61)

�z

0

=

Z

1

0

S

F

�

(s)

�

(C

F

)

�

C

F

� (K � F )

�

D

�

D(K � F )

�

S

F

(s)z

0

ds;

= �

C

F

z

0

�

Z

1

0

S

F

�

(s)(K � F )

�

D

�

D(K � F )S

F

(s)z

0

ds:

(62)

In particular, from this equation we can conclude that � satis�es a Lyapunov equation,

arguing as follows.

39

Take z

0

and z

1

in D(A), observe that for all t � 0,

Z

1

0

hS

F

(s+ t)z

1

;

�

(C

F

)

�

C

F

� (K � F )

�

D

�

D(K � F )

�

S

F

(s+ t)z

0

i

H

ds

=

Z

1

t

hS

F

(s)z

1

;

�

(C

F

)

�

C

F

� (K � F )

�

D

�

D(K � F )

�

S

F

(s)z

0

i

H

ds;

di�erentiate both sides of this equation with respect to t, take t = 0 and use (62) to

get the Lyapunov equation

h(A+BF )z

1

;�z

0

i

H

+ hz

1

;�(A+BF )z

0

i

H

+ hC

F

z

1

; C

F

z

0

i

R

n

= h(K � F )z

1

;D

�

D(K � F )z

0

i

R

m

;

z

0

; z

1

2 D(A):

(63)

To derive (20) we compute,

40

using (62), (55), (56), a change of integration variable,

39

This argument reduces to the corresponding one in [25, Section 5] in the stable case.

40

This argument, too, reduces to the corresponding one in [25, Section 5] in the stable case. To get

the computation given here from the one in [25, Section 5] it su�ces to replace z

0

, C, K, and S in

[25] by z

0

, C

F

, K � F , and S

F

, respectively.
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(42), and once again (56)

B

�

�z

0

= B

�

�

C

F

z

0

�

Z

1

0

B

�

S

F

�

(s)(K � F )

�

(D

�

D) (K � F )S

F

(s)z

0

ds

= B

�

�

C

F

z

0

+

Z

1

0

X

�

(s) (D

�

D)

1=2

(K � F )S

F

(s)z

0

ds

= B

�

�

C

F

z

0

�

Z

1

0

X

�

(s) (D

�

D)

�1=2

�

D

�

C

F

+B

�

�

C

F

�

z

0

ds

�

Z

1

0

Z

1

0

X

�

(s)Y

�

(t)

�

D

�

C

F

+B

�

�

C

F

�

S

F

(s+ t)z

0

dsdt

= B

�

�

C

F

z

0

�

Z

1

0

X

�

(s) (D

�

D)

�1=2

�

D

�

C

F

+B

�

�

C

F

�

z

0

ds

�

Z

1

0

Z

v

0

X

�

(s)Y

�

(v � s)ds

�

D

�

C

F

+B

�

�

C

F

�

S

F

(v)z

0

dv

= B

�

�

C

F

z

0

�

Z

1

0

�

X

�

(v) (D

�

D)

�1=2

+ (X

�

� Y

�

) (v)

� �

D

�

C

F

+B

�

�

C

F

�

S

F

(v)z

0

dv

= B

�

�

C

F

z

0

+ (D

�

D)

1=2

Z

1

0

Y

�

(v)

�

D

�

C

F

+B

�

�

C

F

�

S

F

(v)z

0

dv

= B

�

�

C

F

z

0

� (D

�

D) (K � F )z

0

�

�

D

�

C

F

+B

�

�

C

F

�

z

0

= � (D

�

D) (K � F )z

0

�D

�

C

F

z

0

:

Thus, we �nd that K is connected to � through the formula

K = F � (D

�

D)

�1

�

B

�

� +D

�

C

F

�

:(64)

If we here replace C

F

by its de�nition C

F

= C +DF , then we get the formula (20)

(which is independent of F ). Combining (63) and (64) we get

h(A+BF )z

1

;�z

0

i

H

+ hz

1

;�(A+BF )z

0

i

H

+ hC

F

z

1

; C

F

z

0

i

R

n

=

D

(B

�

�+D

�

C

F

)z

1

; (D

�

D)

�1

(B

�

�+D

�

C

F

)z

0

E

R

m

;

z

0

; z

1

2 D(A):

(65)

If we again replace C

F

by its de�nition C

F

= C +DF , then we get (after a lengthy

but straightforward algebraic manipulation) the standard Riccati equation (22) for the

Riccati operator �. Observe that the original preliminary feedback F has disappeared

from this equation, too (as it must do, since the Riccati operator does not depend on

F ). We can use (20) to replace (D

�

D)

�1

(B

�

�+D

�

C) in this equation by �K, and

get the standard F -independent version (21) of (63).

Thus, we have proved the following theorem:

Theorem 5.2. Under the assumptions of Theorem 4.2, the feedback operator K

in that theorem is connected to the Riccati operator � through the formula (20), and

the Riccati operator � is a positive self-adjoint solution of the Riccati equation (22).

Of course, this theorem is well-known, but we believe our proof to be new.
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6. A Realization Based on a Left Shift Semigroup. Continuing on the

same lines as in [25, Section 6], we shall next give a particular realization � of the

input/output relation (23). This realization is an extension of the realizations �

developed in [25, Section 6]. The presentation is rather brief, and we refer the reader

to [13, Chapter 8], [22], [23], [24], [25], [35], and [34] for additional reading.

The basis for our construction is the delay equation (23), where we consider u, f ,

and g to be given, x to be the unknown solution, and y to be the output that depends

on the control u and on the solution x. According to [24, Theorem 1.2], this equation

is well-posed if and only if � has an invertible atom at zero, and as we have already

mentioned several times, we shall normalize this atom to be the identity matrix.

The basic semigroup S

�

around which we build � is the standard combined initial

and forcing function semigroup in I �G = L

2

(R

�

;R

m

)�L

2

(R

+

;R

m

) induced by the

equation

41

(� � x)(t) = �g(t); t 2 R

+

;

x(t) = '(t); t 2 R

�

:

(66)

The idea is to solve (66), to shift x and g to the left by an equal amount, and to restrict

the shifted x to R

�

and the shifted g to R

+

to get a new initial function and new

forcing function for the same equation. This semigroup is combined with the left-shift

semigroup in F = L

2

(R

+

;R

n

) that shifts the function f to the left, and restricts the

shifted function to R

+

. Thus, the action of S

�

can be described by

S

�

(t)

0

@

'

f

g

1

A

=

0

@

�

t

�

�

x

�

+

�

t

f

�

+

�

t

g

1

A

;

where x is the solution of (66). The generator of this semigroup is the operator A

�

that di�erentiates each of the functions ('; f; g ) 2 I � F � G, with domain

D(A

�

) =

8

<

:

0

@

'

f

g

1

A

2 I

1

�F

1

� G

1

�

�

�

�

�

� � '(0) = �g(0)

9

=

;

;

here I

1

= W

1;2

(R

�

;R

m

), F

1

= W

1;2

(R

+

;R

n

), and G

1

= W

1;2

(R

+

;R

m

). According

to (23), for nonzero u, the controlled state z

�

at time t > 0 should be the same as the

uncontrolled state, except that �g(s) has been replaced by u(s)� g(s) for 0 � s < t.

Thus, the controlled state at time t > 0 is given by

z

�

(t; '; f; g; u) =

0

@

�

t

�

�

x

�

+

�

t

f

�

+

�

t

g

1

A

;

where x is the solution of (23). In order to compute the control operator we remark

that the �rst equation in (23) can be written in the form (see also (34)),

x(t) = u(t)� g(t) � (�

+

� x)(t); t 2 R

+

:(67)

41

This semigroup is described in, e.g., [24, Theorem 3.1].
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This means that the appropriate control operator is the boundary input

42

B

�

u =

0

@

�

0

0

0

1

A

u;(68)

where, as usual, �

0

is the Dirac delta. Note that the control has no in
uence on the

second and third components of the state, only on the x-component.

43

In our de�nition of the feed-through operator D and the observation operator C

�

we follow the same conventions as in [25], i.e., we let D represent the instantaneous

feed-through, and incorporate all delayed terms into C

�

. Since the second equation

in (23) can be written in the form

y(t) = D

�

x(t) + (�

+

� x)(t) + f(t);

= D

�

(u(t)� g(t)� (�

+

� x)(t)) + (�

+

� x)(t) + f(t);

we �nd that the appropriate feed-through and observation operators

44

are

D = D

�

;(69)

C

�

0

@

'

f

g

1

A

= D(�g(0) � (�

+

� ')(0)) + (�

+

� ')(0) + f(0)

= ( �

+

�D�

+

�

0

�D�

0

) �

0

@

'

f

g

1

A

(0):

(70)

Let us choose u to be the optimal control u

opt

given by Lemma 2.3 and The-

orem 3.1. Then the evolution of � is described by the delay equation (49). As in [25],

we �nd that if we de�ne S

K

�

by

S

K

�

(t)

0

@

'

f

g

1

A

=

0

@

�

�

�

t

x

opt

�

+

�

t

f

�

+

�

t

g

1

A

;

then S

K

�

is a strongly continuous semigroup on I � F � G. The generator A

K

�

of S

K

�

is again the di�erentiation operator, this time with domain

D(A

K

�

) =

8

<

:

0

@

'

f

g

1

A

2 I

1

�F

1

� G

1

�

�

�

�

�

(� � ')(0) + (

�

�

�1

� �� � f)(0) = 0

9

=

;

:

42

This is a typical example of a boundary control system in the sense of [21], since the control

operator is strictly unbounded (the range of B

�

lies in the space of measures, and its intersection with

I � F � G is the zero function).

43

The last two components of the state are completely uncontrollable. It is possible to construct

another realization where these components have been removed; see the realization �

�

in [25, Section

6].

44

Due to the presence of the term f(0), the observation operator C

�

is always strictly unbounded

on I � F � G. This means that � is at the same time both a boundary control process and a point

observation process in the sense of Salamon [21].
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The free evolution of S

K

�

is exactly the same as the controlled evolution of the system

� with control u

opt

. According to (30) and (34),

u

opt

= �

+

� x

opt

+ x

opt

+ g;

which combined with (49) and (34) gives (for right-continuous data)

u

opt

(t) = (�

+

� x

opt

)(t)�D

�1

�

(�

+

� x

opt

)(t)�D

�1

�

(

�

�

�1

� �� � f)(t) + g(t)

= (�

+

�D

�1

�

�

+

�D

�1

�

�

�

�1

� �� �

0

) �

0

@

�

�

�

t

x

opt

�

+

�

t

f

�

+

�

t

g

1

A

(0);

= K

�

0

@

�

�

�

t

x

opt

�

+

�

t

f

�

+

�

t

g

1

A

= K

�

z

�

(t; '; f; g; u

opt

);

where K

�

is the operator de�ned in (53). But this is nothing but a state feedback.

45

Thus, we �nd that for the system �, the optimal control is given by a state feedback,

with the feedback operator K

�

.

The derivation of (20) and (21) that we gave earlier was based on a preliminary

stabilizing feedback. In the next section we shall derive similar formulae for the

realization � using a similar method, i.e., we �rst stabilize the system, and then

optimize. In order to make the formulae as simple as possible, we choose the stabilizing

feedback operator F

�

to be the operator

F

�

0

@

'

f

g

1

A

= (�

+

0 �

0

) �

0

@

'

f

g

1

A

(0) = (�

+

� ')(0) + g(0):(71)

In other words, we replace the control u by the new control

v = u� F

�

z

�

= u� �

+

� x� g:

Equation (23) then simpli�es into

x(t) = '(t); t 2 R

�

;

y(t) = (� � x)(t) + f(t); t 2 R

+

;

x(t) = v(t); t 2 R

+

:

The stabilized semigroup S

F

�

that we get in this way is the standard left-shift on I �

F �G of the initial function ' and the forcing functions f and g, and its generator A

F

�

45

An operator K

�

is called an admissible state feedback operator for a regular abstract linear

system � = (A

�

; B

�

; C

�

; D

�

) if both the system that one gets from � by replacing C

�

and D

�

by

�

C

�

K

�

�

and

�

D

�

0

�

, and the system that one gets by closing the feedback loop from the output

corresponding to K

�

into the input are regular abstract linear systems. See [5, Conditions (C1) and

(C2)].
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is the di�erentiation operator on W

1;2

0

(R

�

;R

m

)�W

1;2

(R

+

;R

n

)�W

1;2

(R

+

;R

m

).

46

Thus,

S

�

0

@

'

f

g

1

A

=

0

@

�

t

�

�

'

�

+

�

t

f

�

+

�

t

g

1

A

:(72)

This is the same semigroup S

�

that we used as one of the basic unperturbed semigroups

in [25, Section 5], except for the additional g-component that has been completely

decoupled from the rest of the system. By (70) and (71),

C

F

�

0

@

'

f

g

1

A

= (C

�

+DF

�

)

0

@

'

f

g

1

A

= ( �

+

�

0

) �

�

'

f

�

(0);(73)

and by (53) and (71), the operator K

�

� F

�

is given by

(K

�

� F

�

)

0

@

'

f

g

1

A

= �D

�1

�

( �

+

�

�

�1

� �� ) �

�

'

f

�

(0):(74)

In particular, we observe that both the present control operator B

�

given by (68)

and the present observation operator C

F

�

in (73) are the same as the operators B

�

in [25, Formula (54)] and C

�

in [25, Formula (55)].

47

Thus, we can apply the theory

developed in [25, Section 7] to the feedback stabilized system �

F

. See the next section

for details.

For later reference, let us remark that domains of the generators A

�

, A

K

�

, and A

F

�

can be written in the forms

D(A

�

) =

8

<

:

0

@

'

f

g

1

A

2 I

1

�F

1

� G

1

�

�

�

�

�

'(0) = �F

�

0

@

'

f

g

1

A

9

=

;

;

D(A

K

�

) =

8

<

:

0

@

'

f

g

1

A

2 I

1

�F

1

� G

1

�

�

�

�

�

'(0) = (K

�

� F

�

)

0

@

'

f

g

1

A

9

=

;

;

D(A

F

�

) =

8

<

:

0

@

'

f

g

1

A

2 I

1

�F

1

� G

1

�

�

�

�

�

'(0) = 0

9

=

;

:

(75)

By combining the argument above with the theory of regular abstract linear

systems

48

and general properties of convolution operators

49

we can summarize the

�ndings of this section into the following theorem:

46

This system is not exponentially stable, only weakly asymptotically stable. However, as in [25],

it is possible to base the presentation on a shift in an exponentially weighted L

2

-space instead, and

in this setting it is possible to make �

F

exponentially stable.

47

Replace 
 in [25] by �, and ignore the extra decoupled g-component.

48

See, for example, [21], [22], [35], and [34].

49

See, for example [13, Theorem 6.1, pp. 96{96] and [25, Lemma 3.1].
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Theorem 6.1. The system � is a regular abstract linear system with impulse

response 
 = � � �

�1

. It is well-posed in the L

2

-setting described above, but it is

also well-posed if we throughout replace L

2

by L

p

, 1 � p < 1. The evolution of

the system (23) with u replaced by u

opt

corresponds to the evolution of the feedback

perturbed version S

K

�

of S

�

, with the admissible feedback operator K

�

. If we denote

the space of bounded right-continuous functions in the state space by W, then this

spaces contains the domain of the generators of both the original semigroup and the

perturbed semigroup, and it is invariant under both these semigroups. Moreover, both

the observation operator C

�

and the feedback operator K

�

are continuous on W. The

ranges of the adjoints of the observation and feedback operators are contained in the

space of measures on R

+

and R

�

. Also the operator F

�

is an admissible feedback

operator, and it has the same properties that we listed above for the feedback operator

K

�

.

7. The Equations Connecting K and �. In Section 5 we obtained two stand-

ard equations (20) and (21) that connect K and �. We want to extend these equations

to the case of a general input/output relation of the type (23), with the state space

representation given in Section 6. As we already mentioned above, we shall proceed

in the same way as before, and start with a preliminary stabilizing feedback. The

feedback operator that we use is the operator F

�

de�ned in (71). This leads to the

stabilized system �

F

, to which we can apply the theory in [25, Section 7].

We begin with the analogue of formula (21). Let

0

@

'

f

g

1

A

2 W. For each t � 0, we

may apply both C

F

�

and K

�

� F

�

to S

F

�

(t)

0

@

'

f

g

1

A

, and by (72), (73), and (74),

D

�

(K

�

� F

�

)S

F

�

(t)

0

@

'

f

g

1

A

=� ( �

+

�

�

�1

� �
 ) �

�

�

�

'

f

�

(t);

C

F

�

S

F

�

(t)

0

@

'

f

g

1

A

=( �

+

�

0

) �

�

�

�

'

f

�

(t):

Comparing this to (60) we �nd that

*

0

@

'

f

g

1

A

;�

�

0

@

'

f

g

1

A

+

=

Z

1

0

�

�

�

�

�

�

C

F

�

S

F

�

(t)

0

@

'

f

g

1

A

�

�

�

�

�

�

2

dt�

Z

1

0

�

�

�

�

�

�

D

�

(K

�

� F

�

)S

F

�

(t)

0

@

'

f

g

1

A

�

�

�

�

�

�

2

dt:

(76)

The same argument that brings us from (62) to (63) can be used to turn this equation
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into an analogue of (63), namely

*

A

F

�

0

@

'

1

f

1

g

1

1

A

;�

�

0

@

'

0

f

0

g

0

1

A

+

I�F�G

+

*

0

@

'

1

f

1

g

1

1

A

;�

�

A

F

�

0

@

'

0

f

0

g

0

1

A

+

I�F�G

+

*

C

F

�

0

@

'

1

f

1

g

1

1

A

; C

F

�

0

@

'

0

f

0

g

0

1

A

+

R

n

=

*

(K

�

� F

�

)

0

@

'

1

f

1

g

1

1

A

;D

�

�

D

�

(K

�

� F

�

)

0

@

'

0

f

0

g

0

1

A

+

R

m

;

0

@

'

0

f

0

g

0

1

A

;

0

@

'

1

f

1

g

1

1

A

2 D(A

F

�

):

(77)

This equation is identical to (63) if � contains no discrete delays, because then D

�

D =

D

�

�

D

�

= D

�

�

D

�

.

Let us next turn to the extension of (20) to the realization �. As usual in these

situations, the interpretation of the term B

�

�

�

�

poses the greatest problem. The

operator B

�

�

is the observation operator of the adjoint (�

F

)

�

= ((A

F

�

)

�

; (C

F

�

)

�

; B

�

�

;D

�

)

of the system �

F

. This is a system which is analogous to �

F

; the main change

is that the time direction has been reversed. The adjoint (S

F

�

)

�

of the semigroup

S

F

�

is the right-shift on I � F � G, and the domain of its generator is D((A

F

�

)

�

) =

W

1;2

(R

�

;R

m

)�W

1;2

0

(R

+

;R

n

)�W

1;2

0

(R

+

;R

m

). By (68), for

0

@

'

�

f

�

g

�

1

A

2 D((A

F

�

)

�

), we

have B

�

�

0

@

'

�

f

�

g

�

1

A

= '

�

(0). However, we want to apply B

�

�

to �

�

0

@

'

f

g

1

A

, and, because

of the projections operators in (60), �

�

does not map D(A

F

�

) into D((A

F

�

)

�

) (unless

�

+

2 L

2

(R

+

;R

n�m

)). In particular, the �rst component of �

�

0

@

'

f

g

1

A

in (60) is not

continuous at zero, even if we require ' and f to be bounded and continuous (and

it does not help to add smoothness assumptions on ' and f). As a matter of fact,

we have written (60) in such a way that a formal evaluation of the �rst component

in (60) at zero gives a plain zero. Since the adjoint semigroup is a right-shift instead of

a left-shift, the obvious solution is to replace �

�

by �

�

and �

+

by �

+

in order to make

all the components of (60) left-continuous instead of right-continuous. An equivalent

solution is to rede�ne B

�

�

to be given by the left-hand limit

B

�

�

0

@

'

�

f

�

g

�

1

A

= '

�

(0�);(78)

whenever this limit exists. This is the way that we proceeded in [25, Section 7], and
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this is the way that we shall proceed here, too.

50

By repeating the computation leading to [25, Equation (60)]

51

we get

B

�

�

�

�

0

@

'

f

g

1

A

= D

�

�

( �

+

�

�

�1

� �� ) �

�

'

f

�

(0)

�D

�

�

( �

+

�

0

) �

�

'

f

�

(0)

+ (D

�

�

D

�

�D

�

�

D

�

)'(0)

= �D

�

�

D

�

(K

�

� F

�

�B

�

�

)

0

@

'

f

g

1

A

�D

�

(C

F

�

+DB

�

�

)

0

@

'

f

g

1

A

:

(79)

In the computation leading to this equation we require ', f and g to be just bounded

and continuous. If we strengthen this assumption, and require the data to belong to

the domain of the generators of any one of the semigroups S

�

, S

F

�

, or S

K

�

, then (79)

simpli�es into (see (75))

B

�

�

�

�

0

@

'

f

g

1

A

= �

�

D

�

�

D

�

K

�

+D

�

C

�

�

0

@

'

f

g

1

A

;

0

@

'

f

g

1

A

2 D(A

�

);

B

�

�

�

�

0

@

'

f

g

1

A

= �

�

D

�

�

D

�

(K

�

� F

�

) +D

�

C

F

�

�

0

@

'

f

g

1

A

;

0

@

'

f

g

1

A

2 D(A

F

�

);

B

�

�

�

�

0

@

'

f

g

1

A

= �D

�

(C

�

+DK

�

)

0

@

'

f

g

1

A

;

0

@

'

f

g

1

A

2 D(A

K

�

):

(80)

From the �rst two of these equations we may solve K

�

to get

K

�

0

@

'

f

g

1

A

= �(D

�

�

D

�

)

�1

(B

�

�

�

�

+D

�

C

�

)

0

@

'

f

g

1

A

;

0

@

'

f

g

1

A

2 D(A

�

);

K

�

0

@

'

f

g

1

A

= F

�

� (D

�

�

D

�

)

�1

�

B

�

�

�

�

+D

�

C

F

�

�

0

@

'

f

g

1

A

;

0

@

'

f

g

1

A

2 D(A

F

�

):

(81)

Observe how these equations agree with [25, equations (61) and (62)] on one hand,

and with equation (64) on the other hand. Of course, the latter formula is the one

50

The simplicity of this formula is the main reason why we introduced the extra initial function '

in the �rst place. It is possible to eliminate ' from the realization, but that leads to a much more

complicated formula. The same comment applies to the formulae for the domains of the generators

given in (75).

51

We leave the veri�cation of this computation to the reader.
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that we should use to eliminate K

�

from (77). Doing so we get the Riccati equation

*

A

F

�

0

@

'

1

f

1

g

1

1

A

;�

�

0

@

'

0

f

0

g

0

1

A

+

I�F�G

+

*

0

@

'

1

f

1

g

1

1

A

;�

�

A

F

�

0

@

'

0

f

0

g

0

1

A

+

I�F�G

+

*

C

F

�

0

@

'

1

f

1

g

1

1

A

; C

F

�

0

@

'

0

f

0

g

0

1

A

+

R

n

=

*

�

B

�

�

�

�

+D

�

C

F

�

�

0

@

'

1

f

1

g

1

1

A

; (D

�

�

D

�

)

�1

�

B

�

�

�

�

+D

�

C

F

�

�

0

@

'

0

f

0

g

0

1

A

+

R

m

;

0

@

'

0

f

0

g

0

1

A

;

0

@

'

1

f

1

g

1

1

A

2 D(A

F

�

):

(82)

This formula is the same as (65), with the appropriate substitutions.

Thus, we have the following theorem:

Theorem 7.1. The Riccati operator �

�

and the feedback operator K

�

satisfy

equations (81) and (82). These equations are the same as the standard equations (64)

and (65) valid for the system � with bounded control and observation operators, except

for the fact that the matrix D

�

D has been replaced throughout by D

�

�

D

�

, where D

�

is

the feed-through matrix of the spectral factor � of �� ��. If � has no singular part (apart

from a feed-through part), then D

�

�

D

�

= D

�

D.

8. Two Examples. Below we present two examples to which our theory applies.

Both of these are fairly simple in the sense that it is possible to �nd an exact analytic

solution, and the results that we derive are more or less known from before.

52

To

simplify the comparison with earlier work we here use the cost function J

R

de�ned in

(3) instead of the function J in (2).

We begin by considering the example (1) with the cost function J

R

de�ned in (3)

and with one additional input delay.

53

The de�ning equations become in this case

z

0

(t) = Az(t) +Bu(t� T );

y(t) = Cz(t) +Du(t� T ); t 2 [0;1);

z(0) = z

0

;

u(t) =  (t); t 2 [�T; 0);

(83)

where T > 0 is a constant delay,  2 L

2

((�T; 0);R

m

), and the rest of the setting is the

same as in (1). This example has been studied extensively in di�erent connections,

see, e.g., [5], [31], and the references mentioned therein. This system has a simple

realization 	 = (A

	

; B

	

; C

	

;D

	

) as a regular linear system. It is the serial connection

of a delay line (a left-shift on (�T; 0) of u, with a control operator �

0

similar to the one

52

We have not seen the full solution of the �rst example in print before, and we present a more

complete physical interpretation of the second example than Grabowski does in [11].

53

An output delay is even simpler to handle.
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in (68) and an observation operator u(�T )), connected in series with the system � in

(1). We refer the reader to [5, Example 4.1] for a closer description of this realization.

For our purposes it su�ces to know that its state space H

	

is L

2

((�T; 0);R

m

)�H, its

input space is U = R

m

, its output space is Y = R

n

, and that the generating operators

are

D(A

	

) = f 2W

1;2

([�T; 0];R

m

) j  (0) = 0 g �H;

A

	

�

 

z

0

�

=

�

 

0

B (�T ) +Az

0

�

; B

	

u =

�

�

0

u

0

�

;

C

	

�

 

z

0

�

= D (�T ) +Cz

0

; D

	

= 0:

(84)

It is possible to derive a system of the type (23) in the following way. We start

by choosing some stabilizing state feedback operator F for the system (1), i.e., we

choose an operator F 2 L(H;U) such that A+BF generates an exponentially stable

semigroup S

F

. For the moment it does not really matter how this operator F is

chosen, but looking ahead, it will simplify the �nal formulae if we choose F to be the

optimal feedback operator K for the system (1) with the cost function (3). In other

words, we take F = K, where K is given by (56) with the replacements listed in (27).

This time we de�ne the auxiliary variable x by

x(t) = u(t)�Kz(t+ T ); t � �T:(85)

Then (83) can be rewritten in the form

z

0

(t) = (A+BK)z(t) +Bx(t� T ); t 2 [0;1);

y(t) = (C +DK)z(t) +Dx(t� T ); t 2 [0;1);

u(t) = Kz(t+ T ) + x(t); t 2 [�T;1);

z(0) = z

0

;

x(t) = '(t); t 2 [�T; 0);

(86)

provided ' is chosen as explained below. The restriction of the function z to the

interval [0; T ] depends only on z

0

and the initial functions  and ', and the further

evolution of the two systems depends only on z(T ) and the restrictions of x and u to

[0;1). Solving z from (83) we get

z(t) = S(t)z

0

+

Z

t�T

�T

S(t� T � s)B (s)ds; t 2 [0; T ]:(87)

If we, instead, solve z from (86), then we get

z(t) = S

K

(t)z

0

+

Z

t�T

�T

S

K

(t� T � s)B'(s)ds; t 2 [0; T ]:(88)

By using either (87) or (88) in (85) we �nd that the systems (83) and (86) become

identical if we choose  and ' to satisfy

'(t) =  (t)�K

�

S(t+ T )z

0

+

Z

t

�T

S(t� s)B (s)ds

�

; t 2 [�T; 0];

 (t) = '(t) +K

�

S

K

(t+ T )z

0

+

Z

t

�T

S

K

(t� s)B (s)ds

�

; t 2 [�T; 0]:

(89)
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In particular, taking t = T in (87) and (88) we get

z(T ) = S(T )z

0

+

Z

0

�T

S(�s)B (s)ds

= S

K

(T )z

0

+

Z

0

�T

S

K

(�s)B'(s)ds:

(90)

Whereas it was fairly obvious how to realize (83) as a regular linear system, it

is less obvious how to realize (86) (the third equation is the di�cult one.) However,

this can be done. In order to �t this case into our earlier formalism we extend ' to

all of R

�

by de�ning '(t) = 0 for t < �T . A computation similar to the one in the

introduction shows that, by de�ning (with C

K

= C +DK))

�(ds) = D�

0

(ds) +C

K

S

K

(s)Bds;

�(ds) = I�

0

(ds) +KS

K

(s)Bds; s 2 R

+

;

f(t) = C

K

S

K

(t)z

0

;

g(t) = KS

K

(t+ T )z

0

; t 2 R

+

;

�

T

= �

T

� �;

~� =

�

�

T

R

1=2

�

�

; ~y =

�

y

R

1=2

u

�

;

~

f =

�

f

R

1=2

g

�

;

(91)

we can turn (86) into a system of the type (23), namely

x(t) = '(t); t 2 R

�

;

~y(t) = (~� � x)(t) +

~

f(t); t 2 R

+

;

(� � x)(t) = u(t)� g(t); t 2 R

+

:

(92)

It is well-known that �

T

and � are right coprime,

54

hence so are ~� and �. The objective

is to minimize the L

2

-norm of ~y onR

+

. The only di�erence compared to (23) is that we

have replaced y, �, and f by ~y, ~�, and

~

f , respectively. We shall denote the realization

� developed in Section 6 with these replacements by

e

�.

The crucial part in our solution was to �nd a spectral factor of the measure

�

~� � ~�.

The Laplace transform of this measure, restricted to the imaginary axis (with s = i!)

is

( �̂

T

(i!)

�

�̂(i!)

�

R

1=2

)

�

�̂

T

(i!)

R

1=2

�̂(i!)

�

= ( e

i!T

�̂(i!)

�

�̂(i!)

�

R

1=2

)

�

e

�i!T

�̂(i!)

R

1=2

�̂(i!)

�

= �̂(i!)

�

�̂(i!) + �̂(i!)

�

R�̂(i!):

But this is exactly the same function that we have to factor in the case where there is

no delay, and we are in the case (1) discussed earlier. For this factorization we may

54

See, for example, [5, Example 4.1] or [31, p. 932].
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use the formulae in Sections 3 and 4, with the replacements listed in (27) with F = K.

In particular, we conclude that

D

�

�

D

�

= D

�

D +R;(93)

and from (55) we �nd that the strictly causal part �

+

of � is zero (since we chose

K = F ; this is where this particular choice of K pays o�). Thus,

� = (D

�

D +R)

1=2

�

0

; �

�1

= (D

�

D +R)

�1=2

�

0

:

By comparing (93) to D

�

~�

D

~�

we �nd that

D

�

�

D

�

= D

�

D +R 6= R = ( 0 R

1=2

)

�

0

R

1=2

�

= D

�

~�

D

~�

;

unless D = 0, and we have found an example where D

�

�

D

�

6= D

�

~�

D

~�

.

The rest of the computations are straightforward, so let us only list the �nal

results. It turns out that for the data in (91),

�

+

�

~� �

~

f = 0;

hence

x

opt

(t) = 0; t 2 [0;1);

u

opt

= Kz

opt

(t+ T ); t 2 [0;1);

z

opt

(t) = S

K

(t� T )z(T ); t 2 [T;1);

z

opt

(t+ T ) = S

K

(T )z

opt

(t); t 2 [T;1);

where z(T ) is given by (90). By rewriting the optimal feedback operator K

e

�

in terms

of the original data z

0

and  in (83) and calling the rewritten operator K

	

we get

K

	

�

 

z

0

�

= K

e

�

0

@

'

~

f

g

1

A

= Kz(T );(94)

or, equivalently,

K

	

�

 

z

0

�

= K

�

S(T )z

0

+

Z

T

0

S(s)B (�s)ds

�

= K

�

S

K

(T )z

0

+

Z

T

0

S

K

(s)B'(�s)ds

�

;

(95)

where ' is connected to  through the relation (89). Evidently, in spite of the unboun-

dedness of K

e

�

, the operator K

	

in (95) is bounded. Using the same type of arguments

as we did in Section 6, we �nd that if we use this operator as a state feedback operator

for the system 	, then we get a perturbed system 	

K

= (A

K

	

; B

	

; C

K

	

;D

	

), with

D(A

K

	

) =

(

�

 

z

0

�

2W

1;2

([�T; 0];R

m

)�H

�

�

�

�

�

 (0) = K

	

�

 

z

0

�

)

:(96)
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The easiest way to describe the optimal cost �

	

is to write it in the form

��

 

z

0

�

;�

	

�

 

z

0

��

=

Z

T

0

ky(t)k

2

dt+ hz(T );�z(T )i;

where y(t) = Cz(t) + D (t � T ) = C

K

z(t) + D'(t � T ) and z(t) is given by (87)

and (88), and where � is the Riccati operator for the non-delayed system � with cost

function (3). A lengthy but straightforward computation shows that, for continuous

initial functions  ,

B

�

�

	

�

 

z

0

�

= (B

�

� +D

�

C)z(T ) +D

�

D (0)

= �(D

�

D +R)Kz(T ) +D

�

D (0)

= �(D

�

D +R)K

	

�

 

z

0

�

+D

�

D (0):

For

�

 

z

0

�

2 D(A

	

) we have  (0) = 0, and for

�

 

z

0

�

2 D(A

K

	

) we have  (0) =

K

	

�

 

z

0

�

. Thus, we �nd that

B

�

�

	

�

 

z

0

�

= �(D

�

D +R)K

	

�

 

z

0

�

;

�

 

z

0

�

2 D(A

	

);

B

�

�

	

�

 

z

0

�

= �RK

	

�

 

z

0

�

;

�

 

z

0

�

2 D(A

K

	

);

which is in agreement with (80) since

55

(D

�

	

R

1=2

)

�

D

	

R

1=2

�

= R; (D

�

	

R

1=2

)

�

C

	

0

�

= 0:

The formulae given above for the optimal feedback K

	

in (94) can be interpreted

as shown in Figure 1. The compensator in the upper feedback loop is initiated at time

t = �T (or earlier) to zero, the switch on the left is in the middle position, and the

initial function  enters during the time interval [�T; 0] and initiates both the system

	 and the compensator. At time t = 0 the system � that is part of 	 is initiated to

the value z

0

, and the switch is moved to its top position, activating the compensator.

From time t = T on the signal produced by the proportional feedback in the lower

feedback loop will be identical to the signal produced by the compensator in the upper

feedback loop, so the switch can be moved to its bottom position at any instant after

the time t = T without in
uencing the output of the controlled system.

We observe that the initialization phase in Figure 1 can be rather critical. If �

is unstable and T large, then errors tend to be greatly magni�ed during initialization

due to the instability of the system. However, this is not just a fault of the partic-

ular connection drawn in Figure 1. The real problem is that, although the feedback

operator K

	

is bounded, its norm will be very large if � is unstable and T is large
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e-sT B (sI - A)-1 C

S(T) S(T)

B (sI - A)-1

K

K SK(T)

D

B

+
+

+

+

+

-

u(t)

ψ(t)

z0

0

y(t)z(t)

z(t+T)

Fig. 1. Optimal Compensator for System 	

(because the norm of the mapping from the initial function  to z(T ) will be large),

and the problem is simply numerically rather ill-posed.

Our second example is the same example that Grabowski presents in [11]. It is a

controlled RLCG transmission line of length one without distortion, i.e., R=L = G=C,

driven by a control voltage u at one end, and loaded by a resistance R

1

at the opposite

end.

56

If we let i(x; t) represent the current and v(x; t) the voltage of the line at the

point x 2 [0; 1] at time t 2 [0;1), then these satisfy the equations

C

@v(x; t)

@t

= �

@i(x; t)

@x

�Gv(x; t);

L

@i(x; t)

@t

= �

@v(x; t)

@x

�R i(x; t); x 2 [0; 1]; t 2 [0;1);

i(1; t)R

1

= v(1; t);

v(0; t) = u(t);

y(t) = v(1; t); t 2 [0;1):

(97)

The objective is to minimize the cost function J

R

in (3), with R replaced by one. The

55

Recall formulae (27) and (84).

56

The following derivation of the state equations is essentially the same as in [11]. When comparing

our formulae with those in [11], one should replace our notations u, T , e(t), Z, and � by Grabowski's

w, r, 2x

2

(t), z, and 1=�, respectively. The physical explanation of the signal e that we present is not

found in [11].
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pair of d'Alembert solutions of (97) are

i(x; t) =

e

��t

2Z

[�(x� t=T )�  (x+ t=T )] ;

v(x; t) =

e

��t

2

[�(x� t=T ) +  (x+ t=T )] ; x 2 [0; 1]; t 2 [0;1);

(98)

where � = R=L = G=C is the decay rate, T =

p

LC is the time that it takes a

wave to travel from one end of the line to the other (1=T is the wave speed), and

Z =

p

L=C =

p

R=G is the wave impedance of the line. Observe that �(s) is de�ned

for s � 1 and  (s) is de�ned for s � 0. Substitute the boundary conditions in (97)

into these equations to get

u(t) =

e

��t

2

[�(�t=T ) +  (t=T )];

 (1 + t=T ) = ��(1 � t=T );

y(t) =

e

��t

2

[�(1 � t=T ) +  (1 + t=T )]

=

e

��t

2

(1 + �)�(1 � t=T ); t � 0

(99)

where � is the re
ection coe�cient at the output end, i.e., � = (R

1

� Z)=(R

1

+ Z).

We introduce the two new variables

e(t) = e

��t

�(�t=T ); t � �T;

w(t) = e

��t

 (t=T ) t � 0:

(100)

Then

e(t) = v(0; t) + Zi(0; t) = u(t) + Zi(0; t);

w(t) = v(0; t)� Zi(0; t) = u(t)� Zi(0; t); t � 0;

(101)

hence

e(t) + w(t) = 2u(t);

e(t)� w(t) = 2Zi(0; t); t � 0:

(102)

It follows from the �rst equation in (99) and from (100) that w(t) = ��

2

e(t � 2T )

for t � T , where � = e

��T

is the attenuation of the line. This identity can be

extended to the interval 0 � t < T if we choose e(t) in the interval [�2T; T ) to satisfy

�e(t) = e

��t

 (2 + t=T ).

57

We denote the restriction of e to the interval [�2T; 0] by �,

and arrive at the delay equation

e(t) = �(t); t = [�2T; 0];

y(t) =

1

2

(1 + �)�e(t � T ); t 2 [0;1);

e(t) = 2u(t)� w(t); t 2 [0;1);

w(t) = ��

2

e(t� 2T ); t 2 [0;1):

(103)

57

We get this identity for free if the original wave equation holds for all t � �T .
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We extend � to all of R

�

by de�ning �(t) = 0 for t < �2T , and get an equation that

is almost of the type (23); the only di�erence is the factor 2 in front of u(t). To get

rid of this factor we can, for example, de�ne

x =

1

2

e; ' =

1

2

�;(104)

and get the system

x(t) = '(t); t = (�1; 0];

y(t) = (1 + �)�x(t � T ); t 2 [0;1);

x(t) = u(t)� ��

2

x(t� 2T ); t 2 [0;1);

(105)

which is a system of the type (23) with

� = (1 + �)��

T

;

� = �

0

+ ��

2

�

2T

;

f = g = 0:

(106)

The system (103) is (exponentially) stable, unless ��

2

= �1.

58

The trivial solution

for the case � = �1 is u = 0, so let us exclude this case from the following discussion,

and in the sequel take � > �1. Let us immediately observe that our basic assumption

about the coprimeness of � and � is satis�ed in the stable case, due to the fact that

in this case �

�1

2 M(R

+

;R). It is also true that � and � are coprime in the case

� = � = 1, as can be easily seen (but not in the case � = �1 and � = 1).

Recall that we this time use the cost function (3) with R = 1 instead of (2). Thus,

the measure that should be factorized in not �� � � but

�

~� � ~�, where ~� =

�

�

�

�

. A short

computation shows that

j

^

~�(i!)j

2

= a+ 2b cos(2T!); ! 2 (�1;1);

where

a =

�

1 + (1 + �)

2

�

2

+ �

2

�

4

�

; b = ��

2

:

Observe, in particular, that a > 1 + jbj

2

, hence a > 2jbj. The spectral factor � of

�

~� � ~�

can be found by direct inspection: it su�ces to take

� = p�

0

+ q�

2T

;

with p > jqj (in order to guarantee the invertibility of �), and to choose the coe�cients

p and q to satisfy

p

2

+ q

2

= a; pq = b; p > jqj:

58

This corresponds to the case where there is no internal damping in the line (R = G = 0 and

� = 1) and the output end is either open (R

1

=1 and � = 1) or shunted (R

1

= 0 and � = �1).
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This set of equations have a unique solution, namely

p =

1

2

�

p

a+ 2b+

p

a� 2b

�

; q =

1

2

�

p

a+ 2b�

p

a� 2b

�

:(107)

We remark that both p and jqj are nonnegative solutions of the equation

p

2

+ b

2

=p

2

= a;

with p > jqj. For p = 1 the left hand side becomes 1 + b

2

, which is less that a. Thus,

p > 1; jqj < jbj = j�j�

2

� 1:(108)

When we apply the realization developed in Section 6 to (103) we can omit the

forcing function components f and g, since these are zero all the time, and we have

to replace � by ~� due to the di�erent cost function (3). Let us denote the system that

we get in this way by

e

�. Then formulae (53), (68), (69), (70), (71), and (73) give

59

B

e

�

= �

0

; D

~�

=

�

0

1

�

; D

�

= p; 1 = D

�

~�

D

~�

6= D

�

�

D

�

= p

2

;

C

e

�

' =

�

(1 + �)�'(�T )

0

�

; F

e

�

' = ��

2

'(�2T );

C

F

e

�

' =

�

(1 + �)�'(�T )

��

2

'(�2T )

�

; K

e

�

' =

�

��

2

� q=p

�

'(�2T ) =

p

2

� 1

p

2

F

e

�

';

(109)

From (60) we get after a short computation

�

�

e

�

'

�

(t) =

8

<

:

(p

2

� 1)'(t); if �T < t � 0,

q

2

(p

2

� 1)'(t); if �2T < t � �T ,

0; otherwise.

(110)

Moreover, (75) gives

'(0) = �F

e

�

' = ���

2

'(�2T ); ' 2 D(A

e

�

);

'(0) = 0; ' 2 D(A

F

e

�

);

'(0) = (K

e

�

� F

e

�

)' = �(q=p)'(�2T ); ' 2 D(A

K

e

�

);

(111)

and (79) becomes

B

�

e

�

�

e

�

' = �p

2

K

e

�

'; ' 2 D(A

e

�

);

B

�

e

�

�

e

�

' = 0; ' 2 D(A

F

e

�

);

B

�

e

�

�

e

�

' = �K

e

�

'; ' 2 D(A

K

e

�

);

(112)

59

We remark that our feedback operator di�ers from the one derived in [11], due to the fact that

Grabowski uses a nonzero feed-through operator in the feedback loop. In the standard setting such a

feed-through operator is never present. See the discussion in [26].
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RLGC
Transmission line

i(1,t)

y(t)

e(t)

u(t)Z

i(0,t)

Zi(0,t)
R0

R1

Fig. 2. Optimal Controller for the Transmission Line

The formulae that we have developed above can be interpreted as shown in Fig-

ure 2. To get a physical interpretation of the variable e it su�ces to take a closer

look at the �rst equation in (101). For t < 0, e can be interpreted as the voltage of a

signal generator with internal resistance Z matching the wave impedance of the line

used to transmit a signal into the line. During this stage the switch in Figure 2 is kept

in its top position. Because of the matching terminating resistance at the left end of

the line, there are no re
ections at this end (although the signal may be re
ected at

the output end), and the output voltage y follows the input e with no distortion, but

with the attenuation of

1

2

(1 + �)� and a time delay of T time units. At time zero

the signal generator is switched o�, and it is desired to minimize the spill-over energy

�R

1

0

�

ku(t)k

2

+ ky(t)k

2

�

dt

�

1=2

.

We can use (103), (104), and (109) to write the optimal control u(t) = K

e

�

x(t) in

the form

u(t) =

p

2

� 1

2p

2

w(t) =

p

2

� 1

2p

2

(u(t)� Zi(0; t));

from which we �nd that

u(t) = �R

0

i(0; t);(113)

where R

0

=

p

2

�1

p

2

+1

Z. Clearly, this is the formula for the voltage over a resistor of size

R

0

carrying a current i(0; t). Thus, the optimal controller is simply a terminating

resistance of size R

0

at the left end, as drawn in Figure 2, where the switch is moved

to its lower position at time t = 0. We remark that R

0

< Z, and that the re
ection

coe�cient at the input end is �1=p

2

. Note that the intuitive choice R

0

= Z, which

leads to the extinction of the signals u and y in the �nite time 2T , is not the optimal

one. It would have been optimal if we had not put any cost on the input voltage u;

only on the output voltage y.

The optimal cost of the input signal is

J(u

opt

) =

1

2

�

q

2

(p

2

� 1)

Z

T

�2T

ke(t)k

2

dt+ (p

2

� 1)

Z

0

�T

ke(t)k

2

dt

�

1=2

:(114)

There is an obvious explanation for the di�erent weights of the two time intervals

(�2T; T ) and (�T; 0): at time t = 0 the signal that entered the transmission line
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during the time interval (�2T; T ) has been re
ected and travels to the left, whereas

the signal that entered during the time interval (�T; 0) is still traveling to the right.

The part of the signal that entered before time t = �2T is no longer present in the

system, so the cost of this part is zero. If � = 0 (hence q = 0), then there is no

re
ection at the output end of the line, and the cost of the part of e that entered

during the time interval (�2T;�T ) is zero, too.

Let us �nally remark that, although the structure of the optimal solution is very

simple, the formula (107) for the crucial number p is nontrivial. In particular, this for-

mula could not have been deduced from the standard continuous time Riccati equation

theory.

9. Notations. Above we have used the following notations:

R; R

+

; R

+

; R

�

; R

�

: R = (�1;1), R

+

= (0;1), R

+

= [0;1), R

�

= (�1; 0),

and R

�

= (�1; 0].

L(U); L(U ;V ): The Banach space of bounded linear operators mapping U into itself

or U into V , respectively, with the operator norm.

L

p

(J ;R

n

): The Banach space of R

n

-valued L

p

-functions on the interval J , with 1 �

p � 1, with the usual norm.

B

1

(J ;R

n

): The Banach space of R

n

-valued bounded Borel measurable functions on

the interval J , with the sup-norm.

B

1

0

(J ;R

n

): The subspace of B

1

(J ;R

n

) of functions tending to zero at in�nity.

BC(J ;R

n

); BC

left

(J ;R

n

); BC

right

(J ;R

n

): The Banach spaces of bounded and con-

tinuous, or left-continuous, or right-continuousR

n

-valued functions on the

interval J , with the sup-norm.

BUC(J ;R

n

): The Banach space of bounded and uniformly continuous R

n

-valued

functions on the interval J , with the sup-norm.

BUC

0

(J ;R

n

): The subspace of BUC(J ;R

n

) of functions tending to zero at in�nity.

M(J ;R

n�m

): The set of n�m-dimensional matrix-valued measures of bounded vari-

ation on the interval J , with the total variation norm.

A(J ;R

n�m

): The subset of M(J ;R

n�m

) of measures without a singular non-atomic

part.

I; F ; G: I = L

2

(R

�

;R

m

), F = L

2

(R

+

;R

n

), and G = L

2

(R

+

;R

m

).

I

1

; F

1

; G

1

: I

1

=W

1;2

(R

�

;R

m

), F

1

=W

1;2

(R

+

;R

n

), and G

1

=W

1;2

(R

+

;R

m

).

I: The identity operator.

A

�

: The (Hilbert space) adjoint of the operator A (i.e., the complex conjugate

transpose of A, if A is a matrix).

D(A): The domain of the unbounded operator A.

��: The measure obtained from the measure � through a re
ection of the time

axis, combined with the passing to the matrix adjoint, i.e., ��(E) = �(�E)

�

for each Borel set E.

�̂: The Laplace (Stieltjes) transform of the measure � 2M(R

+

;R

n�m

).
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f � g: The convolution of f and g, where f and g are either functions or measures.

�

0

: The unit atom at zero (the Dirac delta).

�

�1

: The convolution inverse of the measure �, i.e., � � �

�1

= �

�1

� � = I�

0

.

�

t

: The translation operator �

t

f(s) = f(t+ s) (this is a left-shift when t > 0).

�

J

: The characteristic function of J � R.

�

J

: The (projection) operator that maps a function f de�ned onR into �

J

f =

�

J

f .

�

+

; �

+

: �

+

= �

(0;1)

and �

+

= �

[0;1)

. These operators are the same in L

p

, but

they di�er from each other in B

1

.

�

�

; �

�

: �

�

= �

(�1;0)

and �

�

= �

(�1;0]

. These operators are the same in L

p

, but

they di�er from each other in B

1

.

We throughout extend functions and measures de�ned on a subinterval J of

R to the whole real line by requiring them to be zero outside of J . Thus, with

this interpretation, L

p

(J ;R

n

) � L

p

(R;R

n

), BUC

0

(J ;R

n

) � B

1

(R;R

n

), and

M(J ;R

n�m

) �M(R;R

n�m

). (Observe, in particular, that an extended function may

be discontinuous at the end-points of J , even if the original function is continuous on

J .)
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