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Abstra
t

Let U be a Hilbert spa
e. By a L(U)-valued positive analyti
 fun
-

tion on the open right half-plane we mean an analyti
 fun
tion whi
h

satis�es the 
ondition

b

D+

b

D

�

� 0. This fun
tion need not be proper,

i.e., it need not be bounded on any right half-plane. We study the

question under what 
onditions su
h a fun
tion 
an be realized as the

transfer fun
tion of an impedan
e passive system. By this we mean

a 
ontinuous time state spa
e system whose 
ontrol and observation

operators are not more unbounded than the (main) semigroup genera-

tor of the system, and in addition, there is a 
ertain energy inequality

relating the absorbed energy and the internal energy. The system is

(impedan
e) energy preserving if this energy inequality is an equality,

and it is 
onservative if both the system and its dual are energy pre-

serving. A typi
al example of an impedan
e 
onservative system is a

system of hyperboli
 type with 
ollo
ated sensors and a
tuators. We

give several equivalent sets of 
onditions whi
h 
hara
terize when a sys-

tem is impedan
e passive, energy preserving, or 
onservative. We prove

that a impedan
e passive system is well-posed if and only if it is proper.

We furthermore show that the so 
alled diagonal transform (whi
h is

a parti
ular res
aled feedba
k/feedforward transform) maps a proper

impedan
e passive (or energy preserving or 
onservative) system into a

(well-posed) s
attering passive (or energy preserving or 
onservative)

system. This implies that, just as in the �nite-dimensional 
ase, if we

apply negative output feedba
k to a proper impedan
e passive system,

then the resulting system is (energy) stable. Finally, we show that
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every proper positive analyti
 fun
tion on the right half-plane a (es-

sentially unique) well-posed impedan
e 
onservative realization, and it

also has a minimal impedan
e passive realization.

Keywords

Dissipative, energy preserving, proper, 
ollo
ated sensors and a
-

tuators, positive real, Caratheodory-Nevanlinna fun
tion, Tit
hmarsh-

Weyl fun
tion, bounded real lemma, Kalman-Yakubovi
h-Popov lemma,

diagonal transform.

1 Introdu
tion

Let U be a Hilbert spa
e. By a L(U)-valued positive analyti
 fun
tion on C

+

(= the open right half-plane) we mean an analyti
 fun
tion whi
h satis�es

the 
ondition

b

D+

b

D

�

� 0 (many other alternative names are also used for

this 
lass of fun
tions, su
h as (impedan
e) passive fun
tions, Caratheodory-

Nevanlinna fun
tions, Weyl fun
tions, or Tit
hmarsh-Weyl fun
tions; see,

e.g., [1℄ and [3℄ for more detailed dis
ussions of the history of this 
lass of

fun
tions). This fun
tion need not be proper, i.e., it need not be bounded

on any right half-plane. For example, the s
alar fun
tions

b

D(s) = 1=s and

b

D(s) = 1 are proper (the former is even stri
tly proper sin
e

b

D(1) = 0),

whereas

b

D(s) = s is not proper (all of these are positive analyti
). In this

arti
le we introdu
e a 
lass of 
ontinuous time impedan
e passive systems

whose transfer fun
tions are (not ne
essarily proper) positive analyti
. Our


lass of systems 
ontains all earlier state spa
e realizations of positive ana-

lyti
 fun
tions that we know of, but it is still not 
omplete in the sense that

not every positive analyti
 fun
tion has a realization in our 
lass, one of the

main ex
eptions being the fun
tion

b

D(s) = s mentioned above. (A
tually,

as we shall show in [18℄, all the ex
eptions are of this type.) For example,

systems with 
ollo
ated sensors and a
tuators belong to the 
lass studied

here.

As is well-known, every L(U)-valued fun
tion

b

D whi
h is analyti
 and

bounded on some right half-plane (i.e., every proper transfer fun
tion) has

a well-posed realization. By this we mean a well-posed linear system �

whose transfer fun
tion is equal to the given fun
tion

b

D. This system �

has a state spa
e (a Hilbert spa
e) X, an input signal u 2 L

2

lo


(R

+

;U),

a state traje
tory x 2 C(R

+

;X), and an output signal y 2 L

2

lo


(R

+

;U)

(here R

+

= [0;1)). In the absen
e of an input signal (i.e., for u = 0), the
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evolution of the state x is des
ribed by a strongly 
ontinuous semigroup.

That the transfer fun
tion of � is

b

D means that if the initial state is zero

and if the input u is Lapla
e transformable, then the output y is also Lapla
e

transformable and, on some right half-plane, the Lapla
e transform ŷ of y

is given by ŷ =

b

Dû; here û is the Lapla
e transform of u. In Se
tion 2 we

give the formal de�nition of a well-posed linear system, and there we also

des
ribe the basi
 properties of su
h systems.

Not every positive analyti
 fun
tion is proper, so to develop a more

general theory we need a 
lass of systems whi
h are not ne
essarily well-

posed. The 
lass of systems that we introdu
e in Se
tion 2 is maybe not the

most general one, but it has some ni
e properties whi
h makes it possible to

develop a meaningful theory for this 
lass. We allow both the 
ontrol and the

observation operator to be as unbounded as the generator of the semigroup

des
ribing the autonomous behavior of the system. This is roughly twi
e as

mu
h unboundedness as may be present in a well-posed system.

The physi
al interpretation of a positive analyti
 fun
tion is that it is

energy absorbing (in an impedan
e setting). This 
lass of transfer fun
tions

appears in 
ertain situations where the input u and the output y are related

to ea
h other in a spe
i�
 way. For example, we 
ould have a pair of wires


onne
ted to an ele
tri
al 
ir
uit, and let u be the voltage between the wires

and y the 
urrent 
arried by the wires (or the other way around). In this

and many other similar situations, the energy absorbed by the system in

the time period [0; t℄ is proportional to the integral 2

R

t

0

<hu(s); y(s)i ds. It

is well-known that if the initial state is zero (so that the Lapla
e transforms

of the input and output satisfy ŷ =

b

Dû in some right-half-plane), then this

energy is nonnegative for all possible input signals u if and only if

b

D is a

positive analyti
 fun
tion.

Let us next explain what we mean by an impedan
e passive system. For

simpli
ity we here sti
k to the well-posed 
ase. The transfer fun
tion of an

impedan
e passive system must be a positive analyti
 fun
tion, but this is

not enough. A well-posed system � is an impedan
e passive system if for

all initial states x

0

2 X, all input signals u 2 L

2

lo


(R

+

;U), and all t � 0, the

state x(t) at time t and the output signal y satisfy

jx(t)j

2

� jx

0

j

2

+ 2

Z

t

0

<hu(s); y(s)i ds: (1)

Here jx(t)j

2

represents the energy stored in the state at time t � 0. An

impedan
e passive system has the property that if at some time the state

x(t) is zero, then at this time moment the system 
an only absorb energy and
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not emit any energy (the time derivative of the absorbed energy fun
tion is

positive). If a system � is impedan
e passive, then so is the dual system �

d

(this system is de�ned in Se
tion 2; its transfer fun
tion is

b

D

d

(z) =

b

D(z)

�

).

A system � is impedan
e energy preserving if the pre
eding inequality holds

in the form of an equality:

jx(t)j

2

= jx

0

j

2

+ 2

Z

t

0

<hu(s); y(s)i ds; (2)

and it is impedan
e 
onservative if both the original system � and the dual

system �

d

are impedan
e energy preserving. In some sense an impedan
e


onservative realization des
ribes a given positive analyti
 fun
tion in an

`optimal' way: all the energy absorbed or emitted by the system is stored in

the state or withdrawn from the state, and the same statement is true also

for the dual system. (There is no guarantee that all of the state energy 
an

ever be withdrawn, as some of it may be trapped in the state forever.)

We begin in Se
tion 2 with a presentation of the 
lass of systems that we

use to realize positive analyti
 fun
tions. In the same se
tion we de�ne what

we mean by a well-posed system. We 
ontinue in Se
tion 3 by re
alling the

notions of s
attering passive, energy preserving, and 
onservative systems,

as presented in, e.g., [9℄, [21℄, and [28℄. (The same 
lasses of systems appear

in [2℄ in a di�erent notation.) These 
lasses of systems are 
losely related

to the 
orresponding 
lasses of impedan
e systems introdu
ed above. The

only di�eren
e is that the expression for the absorbed energy is repla
ed by

R

t

0

ju(s)j

2

ds�

R

t

0

jy(s)j

2

ds, so that (1) be
omes

jx(t)j

2

+

Z

t

0

jy(s)j

2

ds � jx

0

j

2

+

Z

t

0

ju(s)j

2

ds; (3)

and (2) be
omes

jx(t)j

2

+

Z

t

0

jy(s)j

2

ds = jx

0

j

2

+

Z

t

0

ju(s)j

2

ds: (4)

These systems are always well-posed, and they play an important role in our

study of impedan
e passive, energy preserving, and 
onservative systems.

In Se
tion 4 we are �nally ready to give formal de�nitions of impedan
e

passive, energy preserving, and 
onservative systems. We also give a num-

ber of equivalent 
onditions for a system to have one of these properties.

For example, if the system is des
ribed by a (possibly in�nite-dimensional)
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system of di�erential equations

x

0

(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t); t � 0;

x(0) = x

0

;

(5)

where A 2 L(X), B 2 L(U ;X), C 2 L(X;U), and D 2 L(U), then one of

our 
onditions (see formula (28)) says that this system is impedan
e passive

if and only if

�

A+A

�

B

B

�

0

�

�

�

0 C

�

C D +D

�

�

: (6)

It is impedan
e energy preserving if and only if this inequality holds as an

equality, and it is impedan
e 
onservative if furthermore the 
orresponding

dual identity holds.

There is a simple transform, sometimes 
alled the diagonal transform,

whi
h maps an impedan
e passive (or energy preserving or 
onservative) sys-

tem into a s
attering passive (or energy preserving or 
onservative) system.

This transform is well-known in the �nite-dimensional state spa
e 
ase, and

also in a very general input/output setting (see [33, Se
tion 8.15℄) (it maps

a positive analyti
 fun
tion into a 
ontra
tive analyti
 fun
tion). In Se
-

tion 5 we show that the same transform works in the in�nite-dimensional

state spa
e setting as well if we apply it to a well-posed impedan
e pas-

sive system. In the same se
tion we prove the following basi
 result: an

impedan
e passive system is well-posed if and only if the transfer fun
-

tion of the system is bounded on some verti
al line in the right half-plane.

Furthermore, we show that every proper positive analyti
 fun
tion on C

+

has a well-posed impedan
e 
onservative realization (whi
h is essentially

unique under a suitable minimality requirement), and it also has a mini-

mal well-posed impedan
e passive realization. In the exponentially stable

�nite-dimensional 
ase the last statement is a 
onsequen
e of the impedan
e

version of the Kalman-Yakubovi
h-Popov lemma, also known as the positive

(real) lemma. A

ording to that lemma, a matrix-valued proper rational

transfer fun
tion

b

D with an exponentially stable minimal realization of the

type (5) (with �nite-dimensional X and U) is positive if and only if there

exist matri
es P > 0, Q, and W su
h that

�

PA+A

�

P PB

B

�

P 0

�

=

�

0 C

�

C D +D

�

�

�

�

Q

�

W

�

�

�

Q W

�

; (7)

see, e.g., [34, Theorems 13.25 and 13.26℄. This identity has a simple energy

interpretation: if we add another output z(t) = Qx(t)+Wu(t) to the system
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in (5), then the solution x of (5) satis�es the energy balan
e equation

hx(t); Px(t)i +

Z

t

0

jz(s)j

2

ds = hx

0

; Px

0

i+ 2

Z

t

0

<hu(s); y(s)i ds: (8)

If we repla
e the norm in the state spa
e by the new norm jxj

P

=

p

hx; Pxi,

then the above identity be
omes

jx(t)j

2

P

+

Z

t

0

jz(s)j

2

ds = jx

0

j

2

P

+ 2

Z

t

0

<hu(s); y(s)i ds; (9)

and this shows that, with this norm and with the added output z, the system

(5) 
an be regarded as an mixed impedan
e/s
attering energy preserving

system. (The operator P disappears from (7) when we 
ompute the adjoints

with respe
t to the inner produ
t [x

1

; x

2

℄ = hx

1

; Px

2

i indu
ed by the new

norm.) Dropping the extra output z we get a minimal impedan
e passive

realization of

b

D. See [32, Se
tions 5{7℄ for more details.

In our �nal Se
tion 6 we give a feedba
k interpretation of the diagonal

transform: it says that if we apply negative feedba
k to a proper impedan
e

passive system, then the resulting 
losed-loop system is energy stable.

Many of the results presented above are also true for impedan
e passive

systems whi
h are not proper, hen
e not well-posed. In parti
ular, it is

still true for these non-well-posed systems that the diagonal transform is

well-de�ned, and that it maps an impedan
e passive (or energy preserving

or 
onservative) system into a (well-posed) s
attering passive (or energy

preserving or 
onservative) system. It is also true that a very large 
lass

of non-proper positive analyti
 fun
tions on C

+

(those that do not 
ontain

a pure di�erentiating a
tion) have realizations in the 
lass of impedan
e

passive systems that we introdu
e here. We shall return to this in [18℄.

2 In�nite-Dimensional Linear Systems

Many in�nite-dimensional linear time-invariant 
ontinuous-time systems 
an

be des
ribed by the equations (5) on a triple of Hilbert spa
es, namely, the

input spa
e U , the state spa
eX, and the output spa
e Y . We have u(t) 2 U ,

x(t) 2 X and y(t) 2 Y . The operator A is supposed to be the generator of a

strongly 
ontinuous semigroup t 7! A

t

. The generating operators A, B and

C are usually unbounded, but D is bounded.

By modifying this set of equations slightly we get the 
lass of systems

whi
h will be used in this work. In the sequel, we think about the blo
k
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matrix S =

�

A B

C D

�

as one single (unbounded) operator from

�

X

U

�

to

�

X

Y

�

,

and write (5) in the form

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

; t � 0; x(0) = x

0

: (10)

The operator S 
ompletely determines the system. Thus, we may identify

the system with su
h an operator, whi
h we 
all the node of the system.

There are 
ertain 
onditions that we need to impose on S in order to get

a meaningful theory. First of all, S must be 
losed and densely de�ned as

an operator from

�

X

U

�

into

�

X

Y

�

. Let us denote the domain of S by D(S).

Then S 
an be split into S =

h

S

1

S

2

i

, where S

1

maps D(S) into X and S

2

maps D(S) into Y . By analogy to the �nite-dimensional 
ase, let us denote

A&B := S

1

and C&D := S

2

, so that S =

�

A&B

C&D

�

(the reader who �nds this

notation 
onfusing may throughout repla
e A&B by S

1

and C&D by S

2

).

It is not true, in general, that A&B and C&D (de�ned on D(S)) 
an be

de
omposed into A&B =

�

A B

�

and C&D =

�

C D

�

; this is possible only

in the 
ase where D(S) 
an be written as the produ
t of one subspa
e of X

times another subspa
e of U . However, we shall require that an extended

version of A&B 
an be de
omposed as indi
ated above, so that A&B is the

restri
tion to D(S) of

�

A B

�

for suitably de�ned operators A and B.

The de
omposition of A&B is based on the familiar `rigged Hilbert

spa
e stru
ture' (sometimes referred to as a `Gelfand triple').

1

Let A be a


losed (unbounded) densely de�ned operator on the Hilbert spa
e X with a

nonempty resolvent set. We denote its domain D(A) byX

1

. This is a Hilbert

spa
e with the norm jxj

X

1

:= j(��A)xj

X

, where � is an arbitrary number in

� 2 �(A) (di�erent numbers � give di�erent but equivalent norms). We also


onstru
t a larger Hilbert spa
e X

�1

, whi
h is the 
ompletion of X under

the norm jxj

X

�1

:= j(� � A)

�1

xj

X

. Then X

1

� X � X

�1

with 
ontinuous

and dense inje
tions. The operator A has a unique extension to an operator

in L(X;X

�1

) whi
h we denote by A

jX

(thereby indi
ating that the domain

of this operator is all of X). The operators A and A

jX

are similar to ea
h

other and they have the same spe
trum. Thus, for all � 2 �(A), the oper-

ator � � A

jX

maps X one-to-one onto X

�1

. Its inverse (� � A

jX

)

�1

is the

unique extension to X

�1

of the operator (��A)

�1

.

We shall also need the dual versions of the spa
es X

1

and X

�1

. If we

repeat the 
onstru
tion des
ribed above withA repla
ed by the (unbounded)

adjoint A

�

of A, then we get two more spa
es, that we denote by X

d

1

(the

1

See, e.g., [9℄ or [20℄ or almost any other of the papers listed in the referen
e list for

details.
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analogue of X

1

) and X

d

�1

(the analogue of X

�1

). Then X

d

1

� X � X

d

�1

with 
ontinuous and dense inje
tions. If we identify the dual of X with

X itself, then X

d

1

be
omes the dual of X

�1

and X

d

�1

be
omes the dual of

X

1

.

2

We denote the extension of A

�

to an operator in L(X;X

d

�1

) by A

�

jX

.

This operator 
an be interpreted as the (bounded) adjoint of the operator

A, regarded as an operator in L(X

1

;X).

De�nition 2.1. We 
all S a system node on the three Hilbert spa
es

(U;X; Y ) if it satis�es 
ondition (S) below:

3

(S) S :=

�

A&B

C&D

�

:

�

X

U

�

� D(S) !

�

X

Y

�

is a 
losed linear operator. Here

A&B is the restri
tion to D(S) of

�

A

jX

B

�

, where A is the generator

of a C

0

semigroup on X (the notations A

jX

2 L(X;X

�1

) and X

�1

were introdu
ed in the text above). The operator B is an arbitrary

operator in L(U ;X

�1

), and C&D is an arbitrary linear operator from

D(S) to Y . In addition, we require that

D(S) =

�

[

x

u

℄ 2

�

X

U

�

�

�

A

jX

x+Bu 2 X

	

:

It follows from the above de�nition that A&B :

�

X

U

�

� D(A&B)!

�

X

Y

�

,

with D(A&B) = D(S), is a 
losed operator. Thus, D(S) be
omes a Hilbert

spa
e with the graph norm of the operator A&B. Furthermore, it is not

diÆ
ult to show that the assumption that S is 
losed is equivalent to the

assumption that C&D is 
ontinuous from D(S) (with the graph norm of

A&B) to Y .

We shall use the following names of the di�erent parts of the system node

S =

�

A&B

C&D

�

. The operator A is the main operator or the semigroup genera-

tor, B is the 
ontrol operator, C&D is the 
ombined observation/feedthrough

operator, and the operator C de�ned by

Cx := C&D

�

x

0

�

; x 2 X

1

;

2

Often X

�1

is de�ned to be the dual of X

d

1

when we identify the dual of X with X

itself.

3

This de�nition is equivalent to the 
orresponding de�nition used by Smuljan in [13℄

in 1986. Unfortunately, that paper (written in Russian) has not been properly known and

re
ognized in the English literature, and many of its results have been (independently)

redis
overed, among others by this author. The main part of [13℄ is devoted to system

nodes whi
h are well-posed (see our De�nition 2.6). System nodes appear also in the

work by Salamon [11, 12℄ in a less impli
it way, again primarily in the well-posed 
ase.

Our notation C&D [

x

u

℄ 
orresponds to Smuljan's notation Nhx; ui and Salamon's notation

�

x� (��A)

�1

Bu

�

+

b

D(�)u. Compare this to formula (13) below.
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is the observation operator of S.

An easy algebrai
 
omputation (see, e.g., [20, Se
tion 4.7℄ for details)

shows that for ea
h � 2 �(A) = �(A

jX

), the operator

h

1 (��A

jX

)

�1

B

0 1

i

is

an boundedly invertible mapping between

�

X

U

�

!

�

X

U

�

and

�

X

1

U

�

! D(S).

Sin
e

�

X

1

U

�

is dense in

�

X

U

�

, this implies that D(S) is dense in

�

X

U

�

. Fur-

thermore, sin
e the se
ond 
olumn

h

(��A

jX

)

�1

B

1

i

of this operator maps U

into D(S), we 
an de�ne the transfer fun
tion of S by

b

D(s) := C&D

�

(s�A

jX

)

�1

B

1

�

; s 2 �(A); (11)

whi
h is a L(U ;Y )-valued analyti
 fun
tion on �(A). By the resolvent for-

mula, for any two �, � 2 �(A),

b

D(�)�

b

D(�) = C

�

(��A

jX

)

�1

� (� �A

jX

)

�1

�

B

= (� � �)C(� �A)

�1

(� �A

jX

)

�1

B:

(12)

It is possible to alternatively de�ne a system node by spe
ifying the

main operator A, the 
ontrol operator B, the observation operator C, and

the transfer fun
tion

b

D evaluated at some point � 2 �(A).

Lemma 2.2. Let A be the generator of a C

0

semigroup on a Hilbert spa
e

X, and let X

1

, X

�1

and A

jX

be the spa
es and the operator indu
ed by A,

as explained in the text pre
eding De�nition 2.1. Let B 2 L(U ;X

�1

), let

C 2 L(X

1

;Y ), and let D 2 L(U ;Y ), where U and Y are two more Hilbert

spa
es. Let A&B be the restri
tion of

�

A

jX

B

�

to D(A&B) =

�

[

x

u

℄ 2

�

X

U

�

�

�

A

jX

x+Bu 2 X

	

. Finally, let � 2 �(A), and de�ne

C&D

�

x

u

�

= C

�

x� (��A

jX

)

�1

Bu

�

+Du;

�

x

u

�

2 D(A&B):

Then S :=

�

A&B

C&D

�

: D(S) := D(A&B)!

�

X

Y

�

is a system node on (U;X; Y ).

The 
ontrol operator of this system node is B, the observation operator is

C, and the transfer fun
tion satis�es

b

D(�) = D.

Proof. Most of this is obvious. The only thing whi
h needs to be 
he
ked is

that the operator C&D de�ned above is 
ontinuous from D(S) = D(A&B)

(with the graph norm of A&B) to Y . However, this follows from the fa
t

that

x� (��A

jX

)

�1

Bu = (��A

jX

)

�1

�

�x� (A

jX

x+Bu)

�

:

9



Thus, if we repla
e D by

b

D(�) above, then we have written C&D in

terms of A, B, C, and

b

D(�):

C&D

�

x

u

�

=

�

x� (��A

jX

)

�1

Bu

�

+

b

D(�)u: (13)

In parti
ular, the right-hand side does not depend on how we 
hoose � 2

�(A).

As shown in [13, Theorem 1.2℄ (and also in [2℄ and [9℄), if S is a system

node on (U;X; Y ), then the (unbounded) adjoint S

�

of S is a system node

on (Y;X;U). We shall refer to this system node as the dual system node,

and we sometimes denote it by S

d

. If we let A be the main operator of S,

and let B 2 L(U ;X

�1

) and C 2 L(X

1

;Y ) be the 
ontrol and observation

operators of S, then the main operator of S

d

is A

d

= A

�

(by this we mean the

unbounded adjoint of A; see the paragraph before De�nition 2.1), the 
ontrol

operator of S

�

is B

d

= C

�

2 L(Y ;X

d

�1

), and the observation operator is

C

d

= B

�

2 L(X

d

1

;U). Furthermore, if

b

D is the transfer fun
tion of S, then

the transfer fun
tion

b

D

d

of S

d

is given by

b

D

d

(s) =

b

D(s)

�

for s 2 �(A

�

).

Every system node indu
es a `dynami
al system' of a 
ertain type:

Lemma 2.3. Let S be a system node on (U;X; Y ). Then, for ea
h x

0

2 X

and u 2W

2;1

lo


(R

+

;U) with

�

x

0

u(0)

�

2 D(S), the equation

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

; t � 0; x(0) = x

0

; (14)

has a unique solution (x; y) satisfying

h

x(t)

u(t)

i

2 D(S) for all t � 0, x 2

C

1

(R

+

;X), and y 2 C(R

+

;Y ).

This lemma is proved in [9℄ (and also in [20℄).

4

By taking Lapla
e transforms in (14) we �nd that if u is Lapla
e trans-

formable with transform û, then the output y is also Lapla
e transformable

with transform

x̂(s) = (s�A)

�1

x

0

+ (s�A

jX

)

�1

Bû(s);

ŷ(s) = C(s�A)

�1

x

0

+

b

D(s)û(s);

(15)

for <s large enough. Thus, our de�nition of the transfer fun
tion is equiva-

lent to the standard de�nition in the 
lassi
al 
ase.

4

Well-posed versions of this lemma (see De�nition 2.6) are (impli
itly) found in [11℄

and [13℄ (and also in [21℄). In the well-posed 
ase we need less smoothness of u: it suÆ
es

to take u 2 W

1;2

lo


(R

+

;U). In addition y will be smoother: y 2 W

1;2

lo


(R

+

;Y ).

10



De�nition 2.4. By the linear system � generated by a system node S we

understand the family � of maps de�ned by

�

t

0

�

x

0

�

[0;t℄

u

�

:=

�

x(t)

�

[0;t℄

y

�

;

parametrized by t � 0, where x

0

, x(t), u, and y are as in Lemma 2.3 and

�

[0;t℄

u and �

[0;t℄

y are the restri
tions of u and y to [0; t℄. We 
all x the state

traje
tory and y the output fun
tion of � with initial state x

0

and input

fun
tion u.

In one of our proofs we shall use a te
hnique whi
h we refer to as `expo-

nential shifting:'

Lemma 2.5. If S =

�

A&B

C&D

�

is a system node on (U;X; Y ), then so is

S

�

=

�

A&B

C&D

�

�[

� 0

0 0

℄ for every � 2 C. The domains of these two nodes are the

same: D(S

�

) = D(S). If x is the state traje
tory and y is the output fun
tion

of the system � generated by S with initial state x

0

and input fun
tion

u (as des
ribed in Lemma 2.3), then the fun
tions x

�

(t) = e

��t

x(t) and

y

�

(t) = e

��t

y(t) are the state traje
tory and output fun
tion of the system

�

�

generated by S

�

with initial state x

0

and input fun
tion u

�

(t) = e

��t

u(t).

We leave the easy proof to the reader. The same transform is also appli-


able to the more general (distribution) solutions whi
h will be de�ned in a

moment. Observe that by 
hoosing <� large enough we 
an make the semi-

group of the system �

�

exponentially stable. (Therefore, in many 
ases we

may assume without loss of generality that the system has an exponentially

stable semigroup.)

So far we have de�ned �

t

0

only for the 
lass of smooth data given in

Lemma 2.3. It is possible to extend this de�nition by allowing the state to

take values in the larger spa
e X

�1

instead of in X, and by allowing y to be

a distribution.

Let us �rst take a look at the state, whi
h is supposed to be a solution of

the equation _x(t) = A

jX

x(t) +Bu(t) for t � 0, with initial value x(0) = x

0

.

However, sin
e B 2 L(U ;X

�1

), if x

0

2 X and if u 2 L

1

lo


(R

+

;U), then

this equation has a unique strong solution x 2 W

1;1

lo


(R

+

;X

�1

) (see, e.g.,

[20, Se
tion 3.8℄; the operator A

jX

is the generator of the C

0

semigroup

that we get by extending the semigroup generated by A to X

�1

). Thus, the

notion of the state traje
tory 
auses no problem if we are willing to a

ept

a traje
tory with values in X

�1

.

To get a generalized de�nition of the output y under the same premises

we 
an do as follows (see [20, Se
tion 4.7℄ for details). Let x

0

2 X, u 2

11



L

1

lo


(R

+

;U), and let x 2W

1;1

lo


(R

+

;X

�1

) be the 
orresponding state traje
-

tory. De�ne [

x

2

u

2

℄ by

h

x

2

(t)

u

2

(t)

i

=

Z

t

0

(t� s)

h

x(s)

u(s)

i

ds; t � 0

(this is the se
ond order integral of [

x

u

℄). Then

h

x

2

(t)

u

2

(t)

i

2 D(S) for all t � 0,

and we may de�ne the output y by

y(t) =

�

C&D

h

x

2

(s)

u

2

(s)

i�

00

; t � 0; (16)

where we interpret the se
ond order derivative in the distribution sense.

5

Another possibility to extend �

t

0

to a larger 
lass of data is based on an

additional well-posedness assumption.

De�nition 2.6. A system node S is well-posed if, for some t > 0, there is

a �nite 
onstant K(t) su
h that the solution (x; y) in Lemma 2.3 satis�es

jx(t)j

2

+ kyk

2

L

2

(0;t)

� K(t)

�

jx

0

j

2

+ kuk

2

L

2

(0;t)

�

: (WP)

It is energy stable if there is some K < 1 so that, for all t 2 R

+

, the

solution (x; y) in Lemma 2.3 satis�es

jx(t)j

2

+ kyk

2

L

2

(0;t)

� K

�

jx

0

j

2

+ kuk

2

L

2

(0;t)

�

: (ES)

It is not diÆ
ult to show that if (WP) holds for one t > 0, then it holds

for all t � 0.

If a system node S is well-posed, then the 
orresponding system � 
an

be extended by 
ontinuity to a family of operators

�

t

0

:=

h

A

t

B

t

0

C

t

0

D

t

0

i

from

h

X

L

2

([0;t℄;U)

i

to

h

X

L

2

([0;t℄;Y )

i

. (We still denote the extended family by

�.)

For more details, explanations and examples we refer the reader to [1℄, [2℄,

[4℄, [5, 6℄ [7℄, [10℄, [11, 12℄, [13℄, [14, 15, 16, 17, 20℄, [21, 22℄, [23, 24, 25, 26, 27℄,

[28℄, [29℄, and [30℄ (and the referen
es therein).

5

In the well-posed 
ase, if u 2 L

2

lo


(R

+

;U), then it suÆ
es to integrate [

x

u

℄ on
e, then

apply C&D, and �nally di�erentiate on
e in the distribution sense.
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3 S
attering Passive and Conservative Systems

The following de�nition is a slightly modi�ed version of the de�nitions in the

two 
lassi
al papers [31, 32℄ by Willems (although we use a slightly di�erent

terminology: our passive is the same as Willems' dissipative).

6

De�nition 3.1. Let J be a bounded self-adjoint operator on

�

Y

U

�

. A system

node S on (U;X; Y ) is J-passive if, for all t > 0, the solution (x; y) in

Lemma 2.3 satis�es

jx(t)j

2

� jx

0

j

2

�

Z

t

0

Dh

y(s)

u(s)

i

; J

h

y(s)

u(s)

iE

ds: (JP)

It is J-energy preserving if the above inequality holds in the form of an

equality: for all t > 0, the solution (x; y) in Lemma 2.3 satis�es

jx(t)j

2

� jx

0

j

2

=

Z

t

0

Dh

y(s)

u(s)

i

; J

h

y(s)

u(s)

iE

ds: (JE)

Physi
ally, passivity means that there are no internal energy sour
es. An

energy preserving system has neither any internal energy sour
es nor any

sinks.

Di�erent 
hoi
es of J give di�erent passivity notions. The 
ase J =

�

�1 0

0 1

�

is known as s
attering. The 
ase where U = Y =

�

V

V

�

and J = [

0 1

1 0

℄ is

known as impedan
e (admittan
e, immittan
e, resistan
e, 
ondu
tan
e). The


ase where U = Y =

�

V

W

�

, and J =

�

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 �1

�

is known as transmission

(
hain s
attering). In this arti
le we fo
us on the s
attering (J =

�

�1 0

0 1

�

)

and impedan
e (J = [

0 1

1 0

℄) settings.

De�nition 3.2. A system node S is s
attering passive

7

if, for all t > 0, the

solution (x; y) in Lemma 2.3 satis�es

jx(t)j

2

� jx

0

j

2

� kuk

2

L

2

(0;t)

� kyk

2

L

2

(0;t)

: (SP)

It is s
attering energy preserving if the above inequality holds in the form

of an equality: for all t > 0, the solution (x; y) in Lemma 2.3 satis�es

jx(t)j

2

� jx

0

j

2

= kuk

2

L

2

(0;t)

� kyk

2

L

2

(0;t)

: (SE)

6

Another di�eren
e is that we have repla
ed Willems' more general storage fun
tion

S(x) by the quadrati
 fun
tion jxj

2

X

. Our setting be
omes the s
attering version of the

setting whi
h Willems uses in the se
ond part [32℄ if we simply take the norm in the state

spa
e to be jxj

2

=

p

S(x) (this is possible whenever the storage fun
tion is quadrati
 and

stri
tly positive).

7

In [9℄, [28℄, [21, 22℄, [29℄, et
., these systems are 
alled dissipative.
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Finally, it is s
attering 
onservative if both S and S

�

are s
attering energy

preserving.

Thus, every s
attering passive system is well-posed : the passivity in-

equality (SP) implies the well-posedness inequality (WP).

A s
attering passive system 
an be 
hara
terized in several di�erent

ways:

Theorem 3.3. Let S =

�

A&B

C&D

�

be a system node on (U;X; Y ). Then the

following 
onditions are equivalent:

(i) � is s
attering passive.

(ii) For all t > 0, the solution (x; y) in Lemma 2.3 satis�es

d

dt

jx(t)j

2

X

� ju(t)j

2

U

� jy(t)j

2

Y

: (17)

(iii) For all [

x

0

u

0

℄ 2 D(S),

2<




A&B [

x

0

u

0

℄ ; x

0

�

X

� ju

0

j

2

U

�

�

�

C&D [

x

0

u

0

℄

�

�

2

Y

: (18)

(iv) For some (or equivalently, for all) � 2 �(A) we have

8

�

A+A

�

jX

(�+A

�

jX

)(� �A

jX

)

�1

B

B

�

(��A

�

)

�1

(�+A) B

�

(��A

�

)

�1

(2<�)(� �A

jX

)

�1

B

�

+

"

C

�

C C

�

b

D(�)

b

D(�)

�

C

b

D(�)

�

b

D(�)

#

�

�

0 0

0 I

�

;

(19)

whi
h is an operator inequality in L

�

�

X

1

U

�

;

h

X

d

�1

U

i�

.

(v) For some � 2 �(A)\C

+

(or equivalently, for all � 2 C

+

), the operator

�

A(�) B(�)

C(�)

b

D(�)

�

=

�

(�+A)(��A)

�1

p

2<� (��A)

�1

B

p

2<�C(��A)

�1

b

D(�)

�

(20)

is a 
ontra
tion. (Here C

+

is the open right half-plane.)

This is [21, Theorem 7.4℄. The main part of this theorem is also found

in [2℄ (see, in parti
ular, De�nition 4.1, Proposition 4.1, Subse
tion 4.5, and

Theorem 5.2 of [2℄).

A similar result is valid for s
attering energy preserving systems:

8

See the paragraph before De�nition 2.1 for the de�nition of A

�

jX

and X

d

�1

.
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Theorem 3.4. Let S =

�

A&B

C&D

�

be a system node on (U;X; Y ). Then the

following 
onditions are equivalent:

(i) � is s
attering energy preserving.

(ii) For all t > 0, the solution (x; y) in Lemma 2.3 satis�es

d

dt

jx(t)j

2

X

= ju(t)j

2

U

� jy(t)j

2

Y

: (21)

(iii) For all [

x

0

u

0

℄ 2 D(S),

2<




A&B [

x

0

u

0

℄ ; x

0

�

X

= ju

0

j

2

U

�

�

�

C&D [

x

0

u

0

℄

�

�

2

Y

: (22)

(iv) For some (or equivalently, for all) � 2 �(A) we have

�

A+A

�

jX

(�+A

�

jX

)(� �A

jX

)

�1

B

B

�

(��A

�

)

�1

(�+A) B

�

(��A

�

)

�1

(2<�)(� �A

jX

)

�1

B

�

+

"

C

�

C C

�

b

D(�)

b

D(�)

�

C

b

D(�)

�

b

D(�)

#

=

�

0 0

0 I

�

;

(23)

whi
h is an operator identity in L

�

�

X

1

U

�

;

h

X

d

�1

U

i�

.

(v) For some � 2 �(A)\C

+

(or equivalently, for all � 2 C

+

), the operator

h

A(�) B(�)

C(�)

b

D(�)

i

de�ned in (20) is isometri
.

This theorem is proved in [9℄. Most of this theorem is also found in [2℄.

By applying Theorem 3.4 both to the original system node S and to the

dual system node S

�

we get a set of systems whi
h 
hara
terize s
attering


onservative system nodes. Some equivalent but simpler 
onditions are given

in [9℄.

A �nite-dimensional system is s
attering 
onservative if and only if it

is energy preserving and the input and output spa
es have the same dimen-

sion. Some related (but more 
ompli
ated) results are true also in in�nite-

dimensions. See [2℄, [9℄, and [21, 22℄ for details.

4 Impedan
e Passive and Conservative Systems

As we mentioned above, we get into the impedan
e setting by taking J =

[

0 1

1 0

℄ in De�nition 3.1.
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De�nition 4.1. A system node S on (U;X;U) (note that Y = U) is

impedan
e passive if, for all t > 0, the solution (x; y) in Lemma 2.3 sat-

is�es

jx(t)j

2

X

� jx

0

j

2

X

� 2

Z

t

0

<hy(t); u(t)i

U

dt: (IP)

It is impedan
e energy preserving if the above inequality holds in the form

of an equality: for all t > 0, the solution (x; y) in Lemma 2.3 satis�es

jx(t)j

2

X

� jx

0

j

2

X

= 2

Z

t

0

<hy(t); u(t)i

U

dt: (IE)

Finally, S is impedan
e 
onservative if both S and the dual system node S

�

are impedan
e energy preserving.

Note that in this 
ase well-posedness is neither guaranteed, nor always

relevant.

Theorem 4.2. Let S =

�

A&B

C&D

�

be a system node on (U;X;U). Then the

following 
onditions are equivalent:

(i) S is impedan
e passive.

(ii) For all t > 0, the solution (x; y) in Lemma 2.3 satis�es

d

dt

jx(t)j

2

X

� 2<hy(t); u(t)i

U

: (24)

(iii) For all [

x

0

u

0

℄ 2 D(S),

<




A&B [

x

0

u

0

℄ ; x

0

�

X

� <hC&D [

x

0

u

0

℄ ; u

0

i

U

: (25)

(iv) For some (or equivalently, for all) � 2 �(A) we have

�

A+A

�

jX

(�+A

�

jX

)(� �A

jX

)

�1

B

B

�

(��A

�

)

�1

(�+A) B

�

(��A

�

)

�1

(2<�)(� �A

jX

)

�1

B

�

�

�

0 C

�

C

b

D(�)

�

+

b

D(�)

�

;

(26)

whi
h is an operator inequality in L

�

�

X

1

U

�

;

h

X

d

�1

U

i�

.
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(v) For some � 2 �(A)\C

+

(or equivalently, for all � 2 C

+

), the operator

h

A(�) B(�)

C(�)

b

D(�)

i

de�ned in (20) satis�es

�

A(�)

�

A(�) A(�)

�

B(�)

B(�)

�

A(�) B(�)

�

B(�)

�

�

�

1 C(�)

�

C(�)

b

D(�) +

b

D(�)

�

�

: (27)

(vi) The system node

�

A&B

�C&D

�

is a dissipative operator in

�

X

U

�

, i.e., for all

[

x

0

u

0

℄ 2 D(S),

<

��

x

0

u

0

�

;

�

A&B

�C&D

� �

x

0

u

0

��

h

X

U

i

� 0: (28)

Note that if S =

�

A&B

C&D

�

is a system node, then so is

�

A&B

�C&D

�

, and that

the domains of these two nodes are the same (it depends only on A&B, and

not on C&D).

Proof. The proof of parts (i){(v) of this theorem is (almost) identi
al to the

proof of Theorem 3.3 (= [21, Theorem 7.4℄), so we leave it to the reader.

Clearly, (vi) is just another way of writing 
ondition (iii).

As the following lemma shows, 
ondition (vi) given above is a
tually true

in a stronger sense.

Lemma 4.3. Let S =

�

A&B

C&D

�

be an impedan
e passive system node on

(U;X;U). Then

�

� 0

0 �

�

�

�

A&B

�C&D

�

has a bounded inverse for all �, � 2 C

+

.

In parti
ular,

�

A&B

�C&D

�

is maximal dissipative.

Proof. It follows from (iii) that the operator A is dissipative, and by the

basi
 assumption on the system node S, A generates a C

0

semigroup. This

implies that the semigroup generated by A is a 
ontra
tion semigroup, and

hen
e A is maximal dissipative (i.e., every � 2 C

+

belongs to the resolvent

set of A). As dis
ussed at length in [9℄, for all � 2 �(A), the operator

h

(��A)

�1

(��A

jX

)

�1

B

0 1

i

maps

�

X

U

�

one-to-one onto D(S) (and both this op-

erator and it inverse are 
ontinuous). A short algebrai
 
omputation shows

that, for all � 2 �(A) and � 2 C,

��

� 0

0 �

�

�

�

A&B

�C&D

���

(��A)

�1

(� �A

jX

)

�1

B

0 1

�

=

�

1 0

C(��A)

�1

� +

b

D(�)

�

:
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By part (iv) of Theorem 4.2, the operator �

b

D(�) is dissipative. It is also

bounded, hen
e it is maximal dissipative, i.e., � +

b

D(�) is invertible for all

� 2 C

+

. However, this 
ombined with the pre
eding fa
torization shows

that

�

� 0

0 �

�

�

�

A&B

�C&D

�

has a bounded inverse for all �, � 2 C

+

. At the same

time we get an expli
it expression for the inverse, namely

��

� 0

0 �

�

�

�

A&B

�C&D

��

�1

=

�

(��A)

�1

(��A

jX

)

�1

B

0 1

� �

1 0

C(��A)

�1

� +

b

D(�)

�

�1

=

�

(��A)

�1

0

0 0

�

+

�

(��A

jX

)

�1

B

1

�

[� +

b

D(�)℄

�1

�

�C(��A)

�1

1

�

:

(29)

Taking � = � we �nd that

�

A&B

�C&D

�

is maximal dissipative.

Corollary 4.4. Let S =

�

A&B

C&D

�

be a system node on (U;X;U). Then the

following 
onditions are equivalent, and they are also equivalent to 
onditions

(ii){(vi) in Theorem 4.2:

(i) S is impedan
e passive.

(vii) The operator

�

A&B

�C&D

�

is the generator of a 
ontra
tion semigroup on

�

X

U

�

.

(viii) For some � 2 �(A)\C

+

(or equivalently, for all � 2 C

+

), the operator

��

�

A&B

�C&D

�

is invertible, and

�

A (�) B (�)

C (�) D (�)

�

=

�

�+

�

A&B

�C&D

���

��

�

A&B

�C&D

��

�1

(30)

is a 
ontra
tion.

Proof. By Theorem 4.2 and Lemma 4.3, S is impedan
e passive if and only

if the operator

�

A&B

�C&D

�

is maximal dissipative, or equivalently, if and only

if this operator generates a 
ontra
tion semigroup on

�

X

U

�

. This proves the

equivalen
e of (i) and (vii). The 
ontra
tion semigroup mentioned above

may be regarded as the one 
orresponding to a s
attering passive system

with input spa
e f0g, state spa
e

�

X

U

�

, and output spa
e f0g (i.e., the system

has no input or output, just a state). The equivalen
e of (vii) and (viii) now

follows from the equivalen
e of (i) and (v) in Theorem 3.3 applied to this

spe
ial system.
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Corollary 4.5. A system node S is impedan
e passive if and only if the

dual system node S

�

is impedan
e passive.

Proof. If S =

�

A&B

C&D

�

is impedan
e passive, then both A and

�

1 0

0 �1

�

S are

maximal dissipative on X respe
tively

�

X

U

�

(see Corollary 4.4). This implies

that A

�

and S

�

�

1 0

0 �1

�

are maximal dissipative. The latter 
ondition is

equivalent to the maximal dissipativity of

�

1 0

0 �1

�

S

�

. By Corollary 4.4, this

implies that also S

�

is impedan
e passive.

Let us next take a 
loser look at the energy preserving 
ase.

Theorem 4.6. Let S =

�

A&B

C&D

�

be a system node on (U;X;U). Then the

following 
onditions are equivalent:

(i) � is impedan
e energy preserving.

(ii) For all t > 0, the solution (x; y) in Lemma 2.3 satis�es

d

dt

jx(t)j

2

X

= 2<hy(t); u(t)i

U

: (31)

(iii) For all [

x

0

u

0

℄ 2 D(S),

<

��

x

0

u

0

�

;

�

A&B

�C&D

� �

x

0

u

0

��

h

X

U

i

= 0: (32)

(iv) For some (or equivalently, for all) � 2 �(A) we have

"

A+A

�

jX

(�+A

�

jX

)(� �A

jX

)

�1

B

B

�

jX

1

B

�

(��A

�

)

�1

(2<�)(� �A

jX

)

�1

B

#

=

�

0 C

�

C

b

D(�)

�

+

b

D(�)

�

;

(33)

whi
h is an operator identity in L

�

�

X

1

U

�

;

h

X

d

�1

U

i�

.

(v) For some � 2 �(A)\C

+

(or equivalently, for all � 2 C

+

), the operator

h

A(�) B(�)

C(�)

b

D(�)

i

de�ned in (20) satis�es

�

A(�)

�

A(�) A(�)

�

B(�)

B(�)

�

A(�) B(�)

�

B(�)

�

=

�

1 C(�)

�

C(�)

b

D(�) +

b

D(�)

�

�

: (34)
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(vi) The system node

�

A&B

�C&D

�

is skew-symmetri
, i.e., D(S) = D(

�

A&B

�C&D

�

) �

D(

�

A&B

�C&D

�

�

), and

�

A&B

�C&D

�

�

�

x

0

u

0

�

= �

�

A&B

�C&D

� �

x

0

u

0

�

;

�

x

0

u

0

�

2 D(S): (35)

(vii) For some � 2 �(A)\C

+

(or equivalently, for all � 2 C

+

), the operator

��

�

A&B

�C&D

�

is invertible, and the operator

h

A (�) B(�)

C (�) D(�)

i

de�ned in (30)

is an isometry.

Proof. We again leave most of the proof to the reader (it is very similar

to the proof of Theorem 4.2). Note that S

�

�

1 0

0 �1

�

is a system node with

domain D(S

�

�

1 0

0 �1

�

) = D(S

�

)

�

1 0

0 �1

�

(it is the adjoint of the system node

�

1 0

0 �1

�

S =

�

A&B

�C&D

�

). The only slight di�eren
e is that we 
laim that C =

B

�

jX

instead of the following formula whi
h one �rst arrives at, namely

Cx = B

�

(��A

�

)

�1

(�+A)x; x 2 X

1

:

However, as A

�

= �A on X

1

, the above formula 
an be rewritten as

Cx = B

�

(��A

�

)

�1

(��A

�

)x = B

�

x; x 2 X

1

:

An analogous but even simpler result is true for 
onservative impedan
e

systems:

Theorem 4.7. Let S =

�

A&B

C&D

�

be a system node on (U;X;U). Then the

following 
onditions are equivalent:

(i) � is impedan
e 
onservative.

(ii) For all t > 0, the solution (x; y) in Lemma 2.3 satis�es

d

dt

jx(t)j

2

X

= 2<hy(t); u(t)i

U

; (36)

and the same identity is true for the adjoint system.

(iii) The system node

�

A&B

�C&D

�

is skew-adjoint, i.e.,

�

A&B

�C&D

�

�

= �

�

A&B

�C&D

�

: (37)
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(iv) A

�

= �A, B

�

= C, and

b

D(�)+

b

D(��)

�

= 0 for some (or equivalently,

for all) � 2 �(A) (in parti
ular, this identity is true for all � with

<� 6= 0).

(v) For some � 2 �(A)\C

+

(or equivalently, for all � 2 C

+

), the operator

��

�

A&B

�C&D

�

is invertible, and the operator

h

A (�) B(�)

C (�) D(�)

i

de�ned in (30)

is unitary.

Proof. Most of this follows dire
tly from Theorem 4.6. The only fa
t whi
h

requires a separate proof is that (iv) holds if and only if 
ondition (iv) in

Theorem 4.6 holds both for the original system and for the dual system.

Suppose that (iv) holds. Then it is obvious that three out of the four

identities in (33) hold (the ex
eptional one being the one in the lower right


orner). This last identity is proved as follows: it follows from (iv) and (12)

that

b

D(�) = �

b

D(��)

�

= �

b

D(�)

�

+ (��� �)B

�

(��A

�

)

�1

(���A

�

)

�1

B

= �

b

D(�)

�

+ 2<�B

�

(��A

�

)

�1

(��A)

�1

B:

The 
orresponding adjoint identity is proved in the same way (note that (iv)

is invariant under duality).

The proof of the 
onverse dire
tion is essentially the same: if (33) holds

both for the original system and the dual system, then A

�

= �A, B

�

= C,

and the bottom right 
orner of (33) together with the above 
omputation

shows that

b

D(�) +

b

D(��)

�

= 0.

Example 4.8. Let A be the generator of a 
ontra
tion semigroup on X.

De�ne S =

h

A

jX

A

jX

�A

jX

�A

jX

i

with D(S) =

�

[

x

u

℄ 2

�

X

X

�

�

�

x + u 2 D(A)

	

.

Then S is an impedan
e passive system node on (X;X;X) (use part (vi)

of Theorem 4.2 and note that

�

A A

A A

�

= [

1

1

℄A

�

1 1

�


an be interpreted as

the dissipative operator A surrounded by another operator and its adjoint).

The transfer fun
tion of this node is easily 
omputed, and it turns out to

be

b

D(s) = �sA(s � A)

�1

, s 2 C

+

. This example is impedan
e energy

preserving if and only if A generates an isometri
 semigroup (i.e, A is skew-

symmetri
), and it is impedan
e 
onservative if and only if A generates a

unitary group (i.e, A is skew-adjoint).
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5 Well-Posed Impedan
e Passive Systems

Many impedan
e passive systems are well-posed. There is a simple way of


hara
terizing su
h systems:

Theorem 5.1. An impedan
e passive system node is well-posed if and only

if its transfer fun
tion

b

D is bounded on some (or equivalently, on every)

verti
al line in C

+

. When this is the 
ase, the growth bound of the system is

zero, and, in parti
ular,

b

D is bounded on every right half-plane C

+

�

= fs 2

C j <s > �g with � > 0.

Proof. Suppose that the system node S is both well-posed and impedan
e

passive. The growth bound of this system is then zero, and this implies that

b

D is bounded in every half-plane C

+

�

with � > 0; see, e.g., [20, Se
tion 4.6℄.

Conversely, suppose that k

b

D(s)k � M for some M < 1 and all s with

<s = � > 0. Let us transform the verti
al line <s = � to the imaginary

axis by using an exponential shift of the type des
ribed in Lemma 2.5: we

repla
e S by S

�

=

�

A&B

C&D

�

� [

� 0

0 0

℄. This has the e�e
t of repla
ing the

original transfer fun
tion

b

D by

b

D

�

given by

b

D

�

(s) =

b

D(s+�). In parti
ular,

k

b

D

�

(s)k �M for all s with <s = 0. Moreover, it follows immediately from

Lemma 2.5 and De�nition 4.1 that S

�

is impedan
e passive. We 
laim that

S

�

is well-posed. Take a C

1

input fun
tion u supported on [0; t℄, and let

the initial state (of the shifted system) be zero. The Fourier transforms

of u and the 
orresponding output fun
tion y are the restri
tion of the

Lapla
e transforms of these fun
tions to the imaginary axis. Moreover,

ŷ(s) =

b

D

�

(s)û(s), so jŷ(s)j � M jû(s)j for all s with <s = 0. This implies

that y 2 L

2

(R

+

;V ) and that

kyk

L

2

(0;t)

� kyk

L

2

(R

+

)

�Mkuk

L

2

(0;t)

(where M does not depend on u or t). By the Cau
hy{S
hwarz inequality,

2

Z

t

0

<hy(t); u(t)idt � 2kyk

L

2

(0;t)

kuk

L

2

(0;t)

� 2Mkuk

2

L

2

(0;t)

:

By (PI),

jx(t)j

2

� 2Mkuk

2

L

2

(0;t)

:

Thus, for all C

1

input fun
tions fun
tions u supported on [0; t℄, the state

traje
tory and the output fun
tion with initial state zero satisfy

kyk

2

L

2

(0;t)

+ jx(t)j

2

� (M

2

+ 2M)kuk

2

L

2

(0;t)

:
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Sin
e C

1

is dense in L

2

, this implies that both the input map and the

input-output maps are well-posed. The same argument applied to the dual

system shows that the output map is well-posed, as well. The semi-group is

always well-posed. Thus, the whole shifted system is well-posed, hen
e so is

the original one.

Theorem 5.2. Let � be a well-posed system with system node S and transfer

fun
tion

b

D. In addition, suppose that 1+

b

D is invertible on some right half-

plane and that (1 +

b

D)

�1

is bounded on this half-plane. (The last 
ondition

is, in parti
ular true, if � is a well-posed impedan
e passive system.) Then

the following 
laims are true:

(i) There is a unique well-posed system �

�

with the following property: if

x is the state traje
tory and y 2 L

2

lo


(R

+

;U) is the output fun
tion of

� with initial state x

0

and input fun
tion u 2 L

2

lo


(R

+

;U), and if we

use the same initial state x

0

and the input fun
tion u

�

=

1

p

2

(u + y)

for the system �

�

, then the state traje
tory x

�

of �

�


oin
ides with

the state traje
tory x of �, and the output fun
tion of �

�

is given by

y

�

=

1

p

2

(u� y).

(ii) The system �

�

is s
attering passive (or energy preserving or 
onser-

vative) if and only if � is impedan
e passive (or energy preserving or


onservative).

(iii) The system node S

�


an be determined from its main operator A

�

,


ontrol operator B

�

, observation operator C

�

, and transfer fun
tion

b

D

�

, whi
h 
an be 
omputed from the following formulas, valid for all

� 2 �(A) \ �(A

�

),

9

"

(��A

�

)

�1

1

p

2

(��A

�

jX

)

�1

B

�

1

p

2

C

�

(��A

�

)

�1

1

2

(1 +

b

D

�

(�))

#

=

��

� 0

0 1

�

�

�

A&B

�C&D

��

�1

=

�

(��A)

�1

0

0 0

�

+

�

(��A

jX

)

�1

B

1

�

(1 +

b

D(�))

�1

�

�C(��A)

�1

1

�

(38)

9

A

�

jX

is the extension of A

�

to an operator in L(X;X

�

�1

), where X

�

�1

is the analogue

of X

�1

with A repla
ed by A

�

.
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p

2

�

1

p

2

6

x

0

-

x(t)

-

u

�

-

+

d -r

u

-

y

r

�

d- -

y

�

6

�

?

+

Figure 1: The diagonal transform

In parti
ular, 1 +

b

D(�) is invertible and

b

D

�

(�) = (1�

b

D(�))(1 +

b

D(�))

�1

for all � 2 �(A) \ �(A

�

).

(iv) The transfer fun
tion

b

D

�

of S

�

has the property that 1+

b

D

�

is always

invertible on some right half-plane and that (1 +

b

D

�

)

�1

is bounded on

this half-plane. If we repeat the same transform with S repla
ed by S

�

,

then we re
over the original system. Thus, in parti
ular, the system

�

�

is impedan
e passive (or energy preserving or 
onservative) if and

only if � is s
attering passive (or energy preserving or 
onservative).

Furthermore, (38) also holds if we inter
hange S and S

�

.

Figure 1 
ontains a diagram of the transform des
ribed in this theorem.

Following [8℄, we shall refer to the above transform as the diagonal transform.

There is also a non-well-posed version of this theorem to whi
h we shall

return in [19℄.

Proof. (i) Let us begin with the uniqueness. A system is uniquely de�ned if

we know its state traje
tory and its output for all initial states x

0

2 X and

all input fun
tions u

�

2 L

2

lo


(R

+

;U), so uniqueness follows as soon as we

have shown that, given any x

0

2 X, we 
an produ
e every possible fun
tion

u

�

2 L

2

lo


(R

+

;U) by 
hoosing u 2 L

2

lo


(R

+

;U) appropriately and de�ning

u

�

=

1

p

2

(u+ y). This will be
ome evident from the proof below.

Clearly, by slightly modifying the system � we 
an repla
e its original

output fun
tion y by u

�

=

1

p

2

(u + y): to do this it suÆ
es to keep A&B

un
hanged but repla
e the original 
ontrol/feedthrough operator C&D by

^

C&D =

1

p

2

�

C&D +

�

0 1

��

. The transfer fun
tion of the resulting system

e

� is

1

p

2

(1 +

b

D). The extra assumption that we imposed on � implies that
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this transfer fun
tion has a bounded inverse on some right half-plane, whi
h

means that

e

� is 
ow-invertible (see [22℄). In parti
ular, this means that

given any x

0

2 X and u

�

2 L

2

lo


(R

+

;U), we 
an �nd an input fun
tion

u 2 L

2

lo


(R

+

;U) so that u

�

=

1

p

2

(u + y) (as needed in the uniqueness

proof). Let us denote the 
ow-inverted system by

e

�

�

and its system node

by

e

S

�

=

h

℄

A&B

�

^

C&D

�

i

. The only di�eren
e between

e

� and

e

�

�

is that we have

inter
hanged the meaning of the input and the output: the relationships

between all the di�erent signals are the same, but whereas the input of � is

u and the output is u

�

, the input of

e

� is u

�

and the output is u. From

e

�

�

we easily get the �nal system �

�

: we keep the top row

^

A&B

�

of the system

node un
hanged but repla
e

^

C&D

�

by (noti
e that y

�

=

p

2 u� u

�

)

C&D

�

=

p

2

^

C&D

�

�

�

0 1

�

:

The transfer fun
tion of �

�

then be
omes

b

D

�

=

p

2

�

1

p

2

�

1 +

b

D

�

�

�1

� 1 =

�

1�

b

D

��

1 +

b

D

�

�1

:

(ii) With the same notations as above, a short me
hani
al 
omputation

shows that

ju

�

j

2

� jy

�

j

2

= 2<hy; ui:

Hen
e, it follows from De�nitions 3.2 and 4.1 that � is impedan
e passive

if and only if �

�

is s
attering passive. For the same reason, � is impedan
e

energy preserving if and only �

�

is s
attering energy preserving. Finally,

by applying this result to the dual system (the 
onstru
tion of the system

�

�

des
ribed above 
ommutes with the duality transform) we �nd that �

is impedan
e 
onservative if and only if �

�

is s
attering 
onservative.

(iii) This follows from the above 
onstru
tion, Lemma 4.3 and the for-

mulas in [22℄.

(iv) The invertibility of 1 +

b

D

�

follows from the fa
t that 1 +

b

D

�

=

2(1 +

b

D)

�1

, and the remaining 
laims from the fa
t that u

�

=

1

p

2

(u + y)

and y

�

=

1

p

2

(u�y) if and only if u =

1

p

2

(u

�

+y

�

) and u =

1

p

2

(u

�

�y

�

).

In our following theorem we need some additional notions that we have

not used so far, namely the rea
hable and unobservable subspa
es of a system

node S. By the rea
hable subspa
e of S we mean the 
losure in X of the

set of all possible values of x(t) in Lemma 2.3 if we take x

0

= 0 (and let u

and t vary). Its orthogonal 
omplement is the unrea
hable subspa
e. By the
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unobservable subspa
e of S we mean the 
losure of the set of all x

0

2 X

1

for whi
h the output y in Lemma 2.3 with initial state x

0

and zero input

fun
tion u is identi
ally zero. Its orthogonal 
omplement is the observable

subspa
e. It is well-known that the orthogonal 
omplement of the rea
hable

subspa
e of S is the unobservable subspa
e of the dual system node S

�

(and

the same statement is true if we inter
hange S and S

�

). A system is simple

if the interse
tion of the unrea
hable and unobservable subspa
es is f0g.

Theorem 5.3. Every positive analyti
 fun
tion on C

+

whi
h is proper (i.e.,

it is bounded on some right half-plane) has a simple well-posed impedan
e


onservative realization, whi
h is unique modulo a unitary similarity trans-

form in the state spa
e.

Proof. Sin
e

b

D is a positive, (1 +

b

D(�))

�1

exists and is bounded on C

+

.

De�ne

b

D

�

(�) = (1 �

b

D(�))(1 +

b

D(�))

�1

. This is a 
ontra
tive analyti


fun
tion on C

+

, so by it has a simple s
attering 
onservative realization

�

�

, whi
h is unique modulo a unitary similarity transform in its state spa
e

(see, e.g., [2, Theorem 6.4℄ or [20, Chapter 11℄). From here we get a simple

impedan
e 
onservative realization of

b

D by applying Theorem 5.2. The

uniqueness 
laim remains true (the diagonal transform does not in
uen
e

the unrea
hable and unobservable subspa
es).

We 
all a system node S (and the 
orresponding system �) on (U;X; Y )

(approximately) 
ontrollable if the rea
hable subspa
e is all of X and (ap-

proximately) observable if the observable subspa
e is all of X. A system

whi
h is both 
ontrollable and observable is minimal. The realization de-

s
ribed in Theorem 5.3 will not be minimal in general. However, from this

realization we 
an derive a minimal realization, e.g., as follows (see [2, Se
-

tion 7℄ or [20, Se
tion 9.1℄ for details). We pro
eed in two steps. Let R be

the rea
hable subspa
e of �. By `restri
ting � to R' we get a 
ontrollable

system �

1

on (U;R; Y ) whose main operator is A

1

= A

jR

, 
ontrol operator

is B

1

= B, observation operator is C

1

= C

jR

, and transfer fun
tion

b

D is

the same as the original transfer fun
tion. It is not diÆ
ult to show that

if the original system � is 
onservative (s
attering or impedan
e), then the

new system is a energy preserving (s
attering or impedan
e), and that it is

unique among all 
ontrollable energy preserving (s
attering or impedan
e)

realizations of

b

D modulo a unitary similarity transform in the state spa
e.

If �

1

is observable, then we have obtained a minimal passive (and even

energy preserving) realization. If not, then we let O

1

be the observable

subspa
e of �

1

, denote the orthogonal proje
tion of R onto O

1

by �, and

`proje
t �

1

onto O

1

' to get the minimal system �

2

whose main operator is

26



A

2

= �A

1

= �A

jR

, 
ontrol operator is B

1

= �B

1

= �B, observation oper-

ator is C

2

= C

1

jR

= C

jR

, and transfer fun
tion

b

D is still the same as the

original transfer fun
tion. This system is passive (s
attering or impedan
e)

whenever �

1

is passive. Thus, we arrive at the following result:

Corollary 5.4. Every proper positive analyti
 fun
tion on C

+

has a mini-

mal well-posed impedan
e passive realization.

The above realization is not unique (for example, we 
ould, instead �rst

have proje
ted the system onto the observable subspa
e to get a system

whose adjoint is energy preserving, and then restri
ted the new system to

the rea
hable subspa
e), but it is possible to make it unique by requiring it

to be `optimal' in a 
ertain sense.

10

See [2, Se
tion 7℄ and [32, Se
tion 4℄ for

details.

6 A Feedba
k Interpretation

The diagonal transform in Theorem 5.2 has a natural output feedba
k in-

terpretation. In that transform we introdu
e a new input signal u

�

, 
hoose

the input of the original system � to be u =

p

2 u

�

� y, and regard the new

output signal to be y

�

=

1

p

2

(u � y). If we ignore the trivial s
aling fa
tors

p

2 and 1=

p

2, then the repla
ement of u by the new input u

�

is a typi
al

negative identity state feedba
k, whereas the repla
ement of y by y

�

just

amounts to the addition of an extra feedthrough term to the resulting 
losed

loop system. Re
all that if � is a well-posed linear system on (U;X; Y ), then

K 2 L(Y ;U) is 
alled an admissible feedba
k operator if the repla
ement of

the input signal u by u = u

K

+Ky leads to a new well-posed linear system

with input signal u

K

. In the spe
ial 
ase where U = Y 
onsidered above

we may use negative identity output feedba
k, i.e., we let K = �1. Thus,

Theorem 5.2 implies the following result:

Corollary 6.1. Let � be a well-posed impedan
e passive system indu
ed by

a system node S =

�

A&B

C&D

�

on (U;X;U). Then �1 is an admissible feedba
k

operator for �, and the 
losed loop system 
orresponding to this feedba
k

operator is energy stable (in the sense of De�nition 2.6).

10

The above 
onstru
tion produ
es Arov's optimal realization. This is the minimal

realization whi
h uses the norm in the state spa
e indu
ed by Willems' available storage.

If we instead �rst proje
t onto the observable subspa
e and then restri
t to the rea
hable

subspa
e, then we get Arov's �-optimal realization. This is the realization whi
h uses the

norm indu
ed by Willems' required supply fun
tion.
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Figure 2: Modi�ed diagonal transform

Instead of using negative identity feedba
k we may use any s
alar nega-

tive feedba
k. As a matter of fa
t, even every stri
tly positive operator-valued

feedba
k will make the 
losed loop system energy stable. To see this we may

argue as follows. If S =

�

A&B

C&D

�

is an impedan
e passive system node, then

so is

S

E

=

�

I 0

0 E

�

� �

A&B

C&D

� �

I 0

0 E

�

;

where E is an arbitrary bounded linear operator on U ; this follows from

Theorem 4.2. Moreover, S

E

is impedan
e energy preserving or 
onservative

whenever S has this property. If E is invertible, then the 
onverse is also

true: passivity, or energy preservation, or 
onservativity of S

E

implies that

S has the same property. We 
an apply Theorem 5.2 to the system node

S

E

instead of the system node S to get the s
attering passive system drawn

in Figure 2 (this is true independently of whether E is invertible or not).

If E is invertible, then this e�e
tively amounts to the feedba
k 
onne
tion

with feedba
k operator EE

�

� 0 drawn in Figure 3. In this �gure we

have ignored the feedforward 
onne
tion in Figure 2, and we have used the

invertibility of E to repla
e the output ~y by the output y = (E

�

)

�1

~y (the

mapping from u

�

to y in Figure 2 need not be well-posed in general, but

~y is always a well-posed output). The invertibility of E is also needed if

we want to repla
e the input u

�

in Figure 3 by the new independent input

v = [

p

2E℄

�1

u

�

.
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Weiss and Marius Tu
snak dis
ussed above. Mu
h of my present knowledge

of s
attering 
onservative system 
omes out of numerous dis
ussions with

Jarmo Malinen and George Weiss.

Referen
es

[1℄ D. Z. Arov. Passive linear systems and s
attering theory. In Dynami
al

Systems, Control Coding, Computer Vision, volume 25 of Progress in

Systems and Control Theory, pages 27{44, Basel Boston Berlin, 1999.

Birkh�auser Verlag.

[2℄ D. Z. Arov and M. A. Nudelman. Passive linear stationary dynami
al

s
attering systems with 
ontinuous time. Integral Equations Operator

Theory, 24:1{45, 1996.

[3℄ J. A. Ball and N. Cohen. De Branges-Rovnyak operator models and

systems theory: a survey. In Topi
s in Matrix and Operator Theory,

volume 50 of Operator Theory: Advan
es and Appli
ations, pages 93{

136, Basel Boston Berlin, 1991. Birkh�auser Verlag.

[4℄ R. F. Curtain and G. Weiss. Well posedness of triples of operators

(in the sense of linear systems theory). In Control and Optimization

of Distributed Parameter Systems, volume 91 of International Series

of Numeri
al Mathemati
s, pages 41{59, Basel Boston Berlin, 1989.

Birkh�auser-Verlag.

[5℄ P. Grabowski and F. M. Callier. Boundary 
ontrol systems in fa
tor

form: transfer fun
tions and input-output maps. Integral Equations

Operator Theory, 41:1{37, 2001.

29



[6℄ P. Grabowski and F. M. Callier. Cir
le 
riterion and boundary 
ontrol

systems in fa
tor form: input-output approa
h. Int. J. Appl. Math.

Comput. S
i., 11:1387{1403, 2001.

[7℄ J. W. Helton. Systems with in�nite-dimensional state spa
e: the Hilbert

spa
e approa
h. Pro
eedings of the IEEE, 64:145{160, 1976.

[8℄ M. S. Liv�si
. Operators, Os
illations, Waves (Open Systems), vol-

ume 34 of Translations of Mathemati
al Monographs. Ameri
an Math-

emati
al So
iety, Providen
e, Rhode Island, 1973.

[9℄ J. Malinen, O. J. Sta�ans, and G. Weiss. When is a linear system


onservative? In preparation, 2002.

[10℄ R. Ober and S. Montgomery-Smith. Bilinear transformation of in�nite-

dimensional state-spa
e systems and balan
ed realizations of nonra-

tional transfer fun
tions. SIAM J. Control Optim., 28:438{465, 1990.

[11℄ D. Salamon. In�nite dimensional linear systems with unbounded 
ontrol

and observation: a fun
tional analyti
 approa
h. Trans. Amer. Math.

So
., 300:383{431, 1987.

[12℄ D. Salamon. Realization theory in Hilbert spa
e. Math. Systems The-

ory, 21:147{164, 1989.

[13℄ Y. L. Smuljan. Invariant subspa
es of semigroups and the Lax-Phillips

s
heme. Dep. in VINITI, N 8009-1386, Odessa, 49p., 1986.

[14℄ O. J. Sta�ans. Quadrati
 optimal 
ontrol of stable well-posed linear

systems. Trans. Amer. Math. So
., 349:3679{3715, 1997.

[15℄ O. J. Sta�ans. Coprime fa
torizations and well-posed linear systems.

SIAM J. Control Optim., 36:1268{1292, 1998a.

[16℄ O. J. Sta�ans. Admissible fa
torizations of Hankel operators indu
e

well-posed linear systems. Systems Control Lett., 37:301{307, 1999.

[17℄ O. J. Sta�ans. J -energy preserving well-posed linear systems. Int. J.

Appl. Math. Comput. S
i., 11:1361{1378, 2001.

[18℄ O. J. Sta�ans. Passive and 
onservative in�nite-dimensional impedan
e

and s
attering systems (from a personal point of view). To appear in

the Pro
eedings of MTNS02, 2002.

[19℄ O. J. Sta�ans. Stabilization by 
ollo
ated feedba
k. Submitted, 2002.

30



[20℄ O. J. Sta�ans. Well-Posed Linear Systems: Part I. Book manus
ript,

available at http://www.abo.�/~sta�ans/, 2002.

[21℄ O. J. Sta�ans and G. Weiss. Transfer fun
tions of regular linear systems.

Part II: the system operator and the Lax-Phillips semigroup. Trans.

Amer. Math. So
., 2002. To appear.

[22℄ O. J. Sta�ans and G. Weiss. Transfer fun
tions of regular linear systems.

Part III: inversions and duality. Submitted, 2002.

[23℄ G. Weiss. Admissibility of unbounded 
ontrol operators. SIAM J.

Control Optim., 27:527{545, 1989a.

[24℄ G. Weiss. Admissible observation operators for linear semigroups. Israel

J. Math., 65:17{43, 1989b.

[25℄ G. Weiss. Transfer fun
tions of regular linear systems. Part I: 
hara
-

terizations of regularity. Trans. Amer. Math. So
., 342:827{854, 1994a.

[26℄ G. Weiss. Regular linear systems with feedba
k. Math. Control Signals

Systems, 7:23{57, 1994b.

[27℄ G. Weiss. Optimal 
ontrol of systems with a unitary semigroup and

with 
olo
ated 
ontrol and observation. Systems Control Lett., 2002.

[28℄ G. Weiss, O. J. Sta�ans, and M. Tu
snak. Well-posed linear systems

{ a survey with emphasis on 
onservative systems. Int. J. Appl. Math.

Comput. S
i., 11:7{34, 2001.

[29℄ G. Weiss and M. Tu
snak. How to get a 
onservative well-posed lin-

ear system out of thin air. Part I: well-posedness and energy balan
e.

Submitted, 2001.

[30℄ M. Weiss and G. Weiss. Optimal 
ontrol of stable weakly regular linear

systems. Math. Control Signals Systems, 10:287{330, 1997.

[31℄ J. C. Willems. Dissipative dynami
al systems Part I: General theory.

Ar
h. Rational Me
h. Anal., 45:321{351, 1972.

[32℄ J. C. Willems. Dissipative dynami
al systems Part II: Linear systems

with quadrati
 supply rates. Ar
h. Rational Me
h. Anal., 45:352{393,

1972.

31



[33℄ A. H. Zemanian. Realizability theory for 
ontinuous linear systems,

volume 97 ofMathemati
s in S
ien
e and Engineering. A
ademi
 Press,

New York, London, 1972.

[34℄ K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control.

Prenti
e Hall, Englewood Cli�s, New Jersey, 1996.

32


