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Abstrat

Let U be a Hilbert spae. By a L(U)-valued positive analyti fun-

tion on the open right half-plane we mean an analyti funtion whih

satis�es the ondition

b

D+

b

D

�

� 0. This funtion need not be proper,

i.e., it need not be bounded on any right half-plane. We study the

question under what onditions suh a funtion an be realized as the

transfer funtion of an impedane passive system. By this we mean

a ontinuous time state spae system whose ontrol and observation

operators are not more unbounded than the (main) semigroup genera-

tor of the system, and in addition, there is a ertain energy inequality

relating the absorbed energy and the internal energy. The system is

(impedane) energy preserving if this energy inequality is an equality,

and it is onservative if both the system and its dual are energy pre-

serving. A typial example of an impedane onservative system is a

system of hyperboli type with olloated sensors and atuators. We

give several equivalent sets of onditions whih haraterize when a sys-

tem is impedane passive, energy preserving, or onservative. We prove

that a impedane passive system is well-posed if and only if it is proper.

We furthermore show that the so alled diagonal transform (whih is

a partiular resaled feedbak/feedforward transform) maps a proper

impedane passive (or energy preserving or onservative) system into a

(well-posed) sattering passive (or energy preserving or onservative)

system. This implies that, just as in the �nite-dimensional ase, if we

apply negative output feedbak to a proper impedane passive system,

then the resulting system is (energy) stable. Finally, we show that
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every proper positive analyti funtion on the right half-plane a (es-

sentially unique) well-posed impedane onservative realization, and it

also has a minimal impedane passive realization.

Keywords

Dissipative, energy preserving, proper, olloated sensors and a-

tuators, positive real, Caratheodory-Nevanlinna funtion, Tithmarsh-

Weyl funtion, bounded real lemma, Kalman-Yakubovih-Popov lemma,

diagonal transform.

1 Introdution

Let U be a Hilbert spae. By a L(U)-valued positive analyti funtion on C

+

(= the open right half-plane) we mean an analyti funtion whih satis�es

the ondition

b

D+

b

D

�

� 0 (many other alternative names are also used for

this lass of funtions, suh as (impedane) passive funtions, Caratheodory-

Nevanlinna funtions, Weyl funtions, or Tithmarsh-Weyl funtions; see,

e.g., [1℄ and [3℄ for more detailed disussions of the history of this lass of

funtions). This funtion need not be proper, i.e., it need not be bounded

on any right half-plane. For example, the salar funtions

b

D(s) = 1=s and

b

D(s) = 1 are proper (the former is even stritly proper sine

b

D(1) = 0),

whereas

b

D(s) = s is not proper (all of these are positive analyti). In this

artile we introdue a lass of ontinuous time impedane passive systems

whose transfer funtions are (not neessarily proper) positive analyti. Our

lass of systems ontains all earlier state spae realizations of positive ana-

lyti funtions that we know of, but it is still not omplete in the sense that

not every positive analyti funtion has a realization in our lass, one of the

main exeptions being the funtion

b

D(s) = s mentioned above. (Atually,

as we shall show in [18℄, all the exeptions are of this type.) For example,

systems with olloated sensors and atuators belong to the lass studied

here.

As is well-known, every L(U)-valued funtion

b

D whih is analyti and

bounded on some right half-plane (i.e., every proper transfer funtion) has

a well-posed realization. By this we mean a well-posed linear system �

whose transfer funtion is equal to the given funtion

b

D. This system �

has a state spae (a Hilbert spae) X, an input signal u 2 L

2

lo

(R

+

;U),

a state trajetory x 2 C(R

+

;X), and an output signal y 2 L

2

lo

(R

+

;U)

(here R

+

= [0;1)). In the absene of an input signal (i.e., for u = 0), the
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evolution of the state x is desribed by a strongly ontinuous semigroup.

That the transfer funtion of � is

b

D means that if the initial state is zero

and if the input u is Laplae transformable, then the output y is also Laplae

transformable and, on some right half-plane, the Laplae transform ŷ of y

is given by ŷ =

b

Dû; here û is the Laplae transform of u. In Setion 2 we

give the formal de�nition of a well-posed linear system, and there we also

desribe the basi properties of suh systems.

Not every positive analyti funtion is proper, so to develop a more

general theory we need a lass of systems whih are not neessarily well-

posed. The lass of systems that we introdue in Setion 2 is maybe not the

most general one, but it has some nie properties whih makes it possible to

develop a meaningful theory for this lass. We allow both the ontrol and the

observation operator to be as unbounded as the generator of the semigroup

desribing the autonomous behavior of the system. This is roughly twie as

muh unboundedness as may be present in a well-posed system.

The physial interpretation of a positive analyti funtion is that it is

energy absorbing (in an impedane setting). This lass of transfer funtions

appears in ertain situations where the input u and the output y are related

to eah other in a spei� way. For example, we ould have a pair of wires

onneted to an eletrial iruit, and let u be the voltage between the wires

and y the urrent arried by the wires (or the other way around). In this

and many other similar situations, the energy absorbed by the system in

the time period [0; t℄ is proportional to the integral 2

R

t

0

<hu(s); y(s)i ds. It

is well-known that if the initial state is zero (so that the Laplae transforms

of the input and output satisfy ŷ =

b

Dû in some right-half-plane), then this

energy is nonnegative for all possible input signals u if and only if

b

D is a

positive analyti funtion.

Let us next explain what we mean by an impedane passive system. For

simpliity we here stik to the well-posed ase. The transfer funtion of an

impedane passive system must be a positive analyti funtion, but this is

not enough. A well-posed system � is an impedane passive system if for

all initial states x

0

2 X, all input signals u 2 L

2

lo

(R

+

;U), and all t � 0, the

state x(t) at time t and the output signal y satisfy

jx(t)j

2

� jx

0

j

2

+ 2

Z

t

0

<hu(s); y(s)i ds: (1)

Here jx(t)j

2

represents the energy stored in the state at time t � 0. An

impedane passive system has the property that if at some time the state

x(t) is zero, then at this time moment the system an only absorb energy and
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not emit any energy (the time derivative of the absorbed energy funtion is

positive). If a system � is impedane passive, then so is the dual system �

d

(this system is de�ned in Setion 2; its transfer funtion is

b

D

d

(z) =

b

D(z)

�

).

A system � is impedane energy preserving if the preeding inequality holds

in the form of an equality:

jx(t)j

2

= jx

0

j

2

+ 2

Z

t

0

<hu(s); y(s)i ds; (2)

and it is impedane onservative if both the original system � and the dual

system �

d

are impedane energy preserving. In some sense an impedane

onservative realization desribes a given positive analyti funtion in an

`optimal' way: all the energy absorbed or emitted by the system is stored in

the state or withdrawn from the state, and the same statement is true also

for the dual system. (There is no guarantee that all of the state energy an

ever be withdrawn, as some of it may be trapped in the state forever.)

We begin in Setion 2 with a presentation of the lass of systems that we

use to realize positive analyti funtions. In the same setion we de�ne what

we mean by a well-posed system. We ontinue in Setion 3 by realling the

notions of sattering passive, energy preserving, and onservative systems,

as presented in, e.g., [9℄, [21℄, and [28℄. (The same lasses of systems appear

in [2℄ in a di�erent notation.) These lasses of systems are losely related

to the orresponding lasses of impedane systems introdued above. The

only di�erene is that the expression for the absorbed energy is replaed by

R

t

0

ju(s)j

2

ds�

R

t

0

jy(s)j

2

ds, so that (1) beomes

jx(t)j

2

+

Z

t

0

jy(s)j

2

ds � jx

0

j

2

+

Z

t

0

ju(s)j

2

ds; (3)

and (2) beomes

jx(t)j

2

+

Z

t

0

jy(s)j

2

ds = jx

0

j

2

+

Z

t

0

ju(s)j

2

ds: (4)

These systems are always well-posed, and they play an important role in our

study of impedane passive, energy preserving, and onservative systems.

In Setion 4 we are �nally ready to give formal de�nitions of impedane

passive, energy preserving, and onservative systems. We also give a num-

ber of equivalent onditions for a system to have one of these properties.

For example, if the system is desribed by a (possibly in�nite-dimensional)
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system of di�erential equations

x

0

(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t); t � 0;

x(0) = x

0

;

(5)

where A 2 L(X), B 2 L(U ;X), C 2 L(X;U), and D 2 L(U), then one of

our onditions (see formula (28)) says that this system is impedane passive

if and only if

�

A+A

�

B

B

�

0

�

�

�

0 C

�

C D +D

�

�

: (6)

It is impedane energy preserving if and only if this inequality holds as an

equality, and it is impedane onservative if furthermore the orresponding

dual identity holds.

There is a simple transform, sometimes alled the diagonal transform,

whih maps an impedane passive (or energy preserving or onservative) sys-

tem into a sattering passive (or energy preserving or onservative) system.

This transform is well-known in the �nite-dimensional state spae ase, and

also in a very general input/output setting (see [33, Setion 8.15℄) (it maps

a positive analyti funtion into a ontrative analyti funtion). In Se-

tion 5 we show that the same transform works in the in�nite-dimensional

state spae setting as well if we apply it to a well-posed impedane pas-

sive system. In the same setion we prove the following basi result: an

impedane passive system is well-posed if and only if the transfer fun-

tion of the system is bounded on some vertial line in the right half-plane.

Furthermore, we show that every proper positive analyti funtion on C

+

has a well-posed impedane onservative realization (whih is essentially

unique under a suitable minimality requirement), and it also has a mini-

mal well-posed impedane passive realization. In the exponentially stable

�nite-dimensional ase the last statement is a onsequene of the impedane

version of the Kalman-Yakubovih-Popov lemma, also known as the positive

(real) lemma. Aording to that lemma, a matrix-valued proper rational

transfer funtion

b

D with an exponentially stable minimal realization of the

type (5) (with �nite-dimensional X and U) is positive if and only if there

exist matries P > 0, Q, and W suh that

�

PA+A

�

P PB

B

�

P 0

�

=

�

0 C

�

C D +D

�

�

�

�

Q

�

W

�

�

�

Q W

�

; (7)

see, e.g., [34, Theorems 13.25 and 13.26℄. This identity has a simple energy

interpretation: if we add another output z(t) = Qx(t)+Wu(t) to the system
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in (5), then the solution x of (5) satis�es the energy balane equation

hx(t); Px(t)i +

Z

t

0

jz(s)j

2

ds = hx

0

; Px

0

i+ 2

Z

t

0

<hu(s); y(s)i ds: (8)

If we replae the norm in the state spae by the new norm jxj

P

=

p

hx; Pxi,

then the above identity beomes

jx(t)j

2

P

+

Z

t

0

jz(s)j

2

ds = jx

0

j

2

P

+ 2

Z

t

0

<hu(s); y(s)i ds; (9)

and this shows that, with this norm and with the added output z, the system

(5) an be regarded as an mixed impedane/sattering energy preserving

system. (The operator P disappears from (7) when we ompute the adjoints

with respet to the inner produt [x

1

; x

2

℄ = hx

1

; Px

2

i indued by the new

norm.) Dropping the extra output z we get a minimal impedane passive

realization of

b

D. See [32, Setions 5{7℄ for more details.

In our �nal Setion 6 we give a feedbak interpretation of the diagonal

transform: it says that if we apply negative feedbak to a proper impedane

passive system, then the resulting losed-loop system is energy stable.

Many of the results presented above are also true for impedane passive

systems whih are not proper, hene not well-posed. In partiular, it is

still true for these non-well-posed systems that the diagonal transform is

well-de�ned, and that it maps an impedane passive (or energy preserving

or onservative) system into a (well-posed) sattering passive (or energy

preserving or onservative) system. It is also true that a very large lass

of non-proper positive analyti funtions on C

+

(those that do not ontain

a pure di�erentiating ation) have realizations in the lass of impedane

passive systems that we introdue here. We shall return to this in [18℄.

2 In�nite-Dimensional Linear Systems

Many in�nite-dimensional linear time-invariant ontinuous-time systems an

be desribed by the equations (5) on a triple of Hilbert spaes, namely, the

input spae U , the state spaeX, and the output spae Y . We have u(t) 2 U ,

x(t) 2 X and y(t) 2 Y . The operator A is supposed to be the generator of a

strongly ontinuous semigroup t 7! A

t

. The generating operators A, B and

C are usually unbounded, but D is bounded.

By modifying this set of equations slightly we get the lass of systems

whih will be used in this work. In the sequel, we think about the blok
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matrix S =

�

A B

C D

�

as one single (unbounded) operator from

�

X

U

�

to

�

X

Y

�

,

and write (5) in the form

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

; t � 0; x(0) = x

0

: (10)

The operator S ompletely determines the system. Thus, we may identify

the system with suh an operator, whih we all the node of the system.

There are ertain onditions that we need to impose on S in order to get

a meaningful theory. First of all, S must be losed and densely de�ned as

an operator from

�

X

U

�

into

�

X

Y

�

. Let us denote the domain of S by D(S).

Then S an be split into S =

h

S

1

S

2

i

, where S

1

maps D(S) into X and S

2

maps D(S) into Y . By analogy to the �nite-dimensional ase, let us denote

A&B := S

1

and C&D := S

2

, so that S =

�

A&B

C&D

�

(the reader who �nds this

notation onfusing may throughout replae A&B by S

1

and C&D by S

2

).

It is not true, in general, that A&B and C&D (de�ned on D(S)) an be

deomposed into A&B =

�

A B

�

and C&D =

�

C D

�

; this is possible only

in the ase where D(S) an be written as the produt of one subspae of X

times another subspae of U . However, we shall require that an extended

version of A&B an be deomposed as indiated above, so that A&B is the

restrition to D(S) of

�

A B

�

for suitably de�ned operators A and B.

The deomposition of A&B is based on the familiar `rigged Hilbert

spae struture' (sometimes referred to as a `Gelfand triple').

1

Let A be a

losed (unbounded) densely de�ned operator on the Hilbert spae X with a

nonempty resolvent set. We denote its domain D(A) byX

1

. This is a Hilbert

spae with the norm jxj

X

1

:= j(��A)xj

X

, where � is an arbitrary number in

� 2 �(A) (di�erent numbers � give di�erent but equivalent norms). We also

onstrut a larger Hilbert spae X

�1

, whih is the ompletion of X under

the norm jxj

X

�1

:= j(� � A)

�1

xj

X

. Then X

1

� X � X

�1

with ontinuous

and dense injetions. The operator A has a unique extension to an operator

in L(X;X

�1

) whih we denote by A

jX

(thereby indiating that the domain

of this operator is all of X). The operators A and A

jX

are similar to eah

other and they have the same spetrum. Thus, for all � 2 �(A), the oper-

ator � � A

jX

maps X one-to-one onto X

�1

. Its inverse (� � A

jX

)

�1

is the

unique extension to X

�1

of the operator (��A)

�1

.

We shall also need the dual versions of the spaes X

1

and X

�1

. If we

repeat the onstrution desribed above withA replaed by the (unbounded)

adjoint A

�

of A, then we get two more spaes, that we denote by X

d

1

(the

1

See, e.g., [9℄ or [20℄ or almost any other of the papers listed in the referene list for

details.
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analogue of X

1

) and X

d

�1

(the analogue of X

�1

). Then X

d

1

� X � X

d

�1

with ontinuous and dense injetions. If we identify the dual of X with

X itself, then X

d

1

beomes the dual of X

�1

and X

d

�1

beomes the dual of

X

1

.

2

We denote the extension of A

�

to an operator in L(X;X

d

�1

) by A

�

jX

.

This operator an be interpreted as the (bounded) adjoint of the operator

A, regarded as an operator in L(X

1

;X).

De�nition 2.1. We all S a system node on the three Hilbert spaes

(U;X; Y ) if it satis�es ondition (S) below:

3

(S) S :=

�

A&B

C&D

�

:

�

X

U

�

� D(S) !

�

X

Y

�

is a losed linear operator. Here

A&B is the restrition to D(S) of

�

A

jX

B

�

, where A is the generator

of a C

0

semigroup on X (the notations A

jX

2 L(X;X

�1

) and X

�1

were introdued in the text above). The operator B is an arbitrary

operator in L(U ;X

�1

), and C&D is an arbitrary linear operator from

D(S) to Y . In addition, we require that

D(S) =

�

[

x

u

℄ 2

�

X

U

�

�

�

A

jX

x+Bu 2 X

	

:

It follows from the above de�nition that A&B :

�

X

U

�

� D(A&B)!

�

X

Y

�

,

with D(A&B) = D(S), is a losed operator. Thus, D(S) beomes a Hilbert

spae with the graph norm of the operator A&B. Furthermore, it is not

diÆult to show that the assumption that S is losed is equivalent to the

assumption that C&D is ontinuous from D(S) (with the graph norm of

A&B) to Y .

We shall use the following names of the di�erent parts of the system node

S =

�

A&B

C&D

�

. The operator A is the main operator or the semigroup genera-

tor, B is the ontrol operator, C&D is the ombined observation/feedthrough

operator, and the operator C de�ned by

Cx := C&D

�

x

0

�

; x 2 X

1

;

2

Often X

�1

is de�ned to be the dual of X

d

1

when we identify the dual of X with X

itself.

3

This de�nition is equivalent to the orresponding de�nition used by Smuljan in [13℄

in 1986. Unfortunately, that paper (written in Russian) has not been properly known and

reognized in the English literature, and many of its results have been (independently)

redisovered, among others by this author. The main part of [13℄ is devoted to system

nodes whih are well-posed (see our De�nition 2.6). System nodes appear also in the

work by Salamon [11, 12℄ in a less impliit way, again primarily in the well-posed ase.

Our notation C&D [

x

u

℄ orresponds to Smuljan's notation Nhx; ui and Salamon's notation

�

x� (��A)

�1

Bu

�

+

b

D(�)u. Compare this to formula (13) below.
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is the observation operator of S.

An easy algebrai omputation (see, e.g., [20, Setion 4.7℄ for details)

shows that for eah � 2 �(A) = �(A

jX

), the operator

h

1 (��A

jX

)

�1

B

0 1

i

is

an boundedly invertible mapping between

�

X

U

�

!

�

X

U

�

and

�

X

1

U

�

! D(S).

Sine

�

X

1

U

�

is dense in

�

X

U

�

, this implies that D(S) is dense in

�

X

U

�

. Fur-

thermore, sine the seond olumn

h

(��A

jX

)

�1

B

1

i

of this operator maps U

into D(S), we an de�ne the transfer funtion of S by

b

D(s) := C&D

�

(s�A

jX

)

�1

B

1

�

; s 2 �(A); (11)

whih is a L(U ;Y )-valued analyti funtion on �(A). By the resolvent for-

mula, for any two �, � 2 �(A),

b

D(�)�

b

D(�) = C

�

(��A

jX

)

�1

� (� �A

jX

)

�1

�

B

= (� � �)C(� �A)

�1

(� �A

jX

)

�1

B:

(12)

It is possible to alternatively de�ne a system node by speifying the

main operator A, the ontrol operator B, the observation operator C, and

the transfer funtion

b

D evaluated at some point � 2 �(A).

Lemma 2.2. Let A be the generator of a C

0

semigroup on a Hilbert spae

X, and let X

1

, X

�1

and A

jX

be the spaes and the operator indued by A,

as explained in the text preeding De�nition 2.1. Let B 2 L(U ;X

�1

), let

C 2 L(X

1

;Y ), and let D 2 L(U ;Y ), where U and Y are two more Hilbert

spaes. Let A&B be the restrition of

�

A

jX

B

�

to D(A&B) =

�

[

x

u

℄ 2

�

X

U

�

�

�

A

jX

x+Bu 2 X

	

. Finally, let � 2 �(A), and de�ne

C&D

�

x

u

�

= C

�

x� (��A

jX

)

�1

Bu

�

+Du;

�

x

u

�

2 D(A&B):

Then S :=

�

A&B

C&D

�

: D(S) := D(A&B)!

�

X

Y

�

is a system node on (U;X; Y ).

The ontrol operator of this system node is B, the observation operator is

C, and the transfer funtion satis�es

b

D(�) = D.

Proof. Most of this is obvious. The only thing whih needs to be heked is

that the operator C&D de�ned above is ontinuous from D(S) = D(A&B)

(with the graph norm of A&B) to Y . However, this follows from the fat

that

x� (��A

jX

)

�1

Bu = (��A

jX

)

�1

�

�x� (A

jX

x+Bu)

�

:
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Thus, if we replae D by

b

D(�) above, then we have written C&D in

terms of A, B, C, and

b

D(�):

C&D

�

x

u

�

=

�

x� (��A

jX

)

�1

Bu

�

+

b

D(�)u: (13)

In partiular, the right-hand side does not depend on how we hoose � 2

�(A).

As shown in [13, Theorem 1.2℄ (and also in [2℄ and [9℄), if S is a system

node on (U;X; Y ), then the (unbounded) adjoint S

�

of S is a system node

on (Y;X;U). We shall refer to this system node as the dual system node,

and we sometimes denote it by S

d

. If we let A be the main operator of S,

and let B 2 L(U ;X

�1

) and C 2 L(X

1

;Y ) be the ontrol and observation

operators of S, then the main operator of S

d

is A

d

= A

�

(by this we mean the

unbounded adjoint of A; see the paragraph before De�nition 2.1), the ontrol

operator of S

�

is B

d

= C

�

2 L(Y ;X

d

�1

), and the observation operator is

C

d

= B

�

2 L(X

d

1

;U). Furthermore, if

b

D is the transfer funtion of S, then

the transfer funtion

b

D

d

of S

d

is given by

b

D

d

(s) =

b

D(s)

�

for s 2 �(A

�

).

Every system node indues a `dynamial system' of a ertain type:

Lemma 2.3. Let S be a system node on (U;X; Y ). Then, for eah x

0

2 X

and u 2W

2;1

lo

(R

+

;U) with

�

x

0

u(0)

�

2 D(S), the equation

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

; t � 0; x(0) = x

0

; (14)

has a unique solution (x; y) satisfying

h

x(t)

u(t)

i

2 D(S) for all t � 0, x 2

C

1

(R

+

;X), and y 2 C(R

+

;Y ).

This lemma is proved in [9℄ (and also in [20℄).

4

By taking Laplae transforms in (14) we �nd that if u is Laplae trans-

formable with transform û, then the output y is also Laplae transformable

with transform

x̂(s) = (s�A)

�1

x

0

+ (s�A

jX

)

�1

Bû(s);

ŷ(s) = C(s�A)

�1

x

0

+

b

D(s)û(s);

(15)

for <s large enough. Thus, our de�nition of the transfer funtion is equiva-

lent to the standard de�nition in the lassial ase.

4

Well-posed versions of this lemma (see De�nition 2.6) are (impliitly) found in [11℄

and [13℄ (and also in [21℄). In the well-posed ase we need less smoothness of u: it suÆes

to take u 2 W

1;2

lo

(R

+

;U). In addition y will be smoother: y 2 W

1;2

lo

(R

+

;Y ).

10



De�nition 2.4. By the linear system � generated by a system node S we

understand the family � of maps de�ned by

�

t

0

�

x

0

�

[0;t℄

u

�

:=

�

x(t)

�

[0;t℄

y

�

;

parametrized by t � 0, where x

0

, x(t), u, and y are as in Lemma 2.3 and

�

[0;t℄

u and �

[0;t℄

y are the restritions of u and y to [0; t℄. We all x the state

trajetory and y the output funtion of � with initial state x

0

and input

funtion u.

In one of our proofs we shall use a tehnique whih we refer to as `expo-

nential shifting:'

Lemma 2.5. If S =

�

A&B

C&D

�

is a system node on (U;X; Y ), then so is

S

�

=

�

A&B

C&D

�

�[

� 0

0 0

℄ for every � 2 C. The domains of these two nodes are the

same: D(S

�

) = D(S). If x is the state trajetory and y is the output funtion

of the system � generated by S with initial state x

0

and input funtion

u (as desribed in Lemma 2.3), then the funtions x

�

(t) = e

��t

x(t) and

y

�

(t) = e

��t

y(t) are the state trajetory and output funtion of the system

�

�

generated by S

�

with initial state x

0

and input funtion u

�

(t) = e

��t

u(t).

We leave the easy proof to the reader. The same transform is also appli-

able to the more general (distribution) solutions whih will be de�ned in a

moment. Observe that by hoosing <� large enough we an make the semi-

group of the system �

�

exponentially stable. (Therefore, in many ases we

may assume without loss of generality that the system has an exponentially

stable semigroup.)

So far we have de�ned �

t

0

only for the lass of smooth data given in

Lemma 2.3. It is possible to extend this de�nition by allowing the state to

take values in the larger spae X

�1

instead of in X, and by allowing y to be

a distribution.

Let us �rst take a look at the state, whih is supposed to be a solution of

the equation _x(t) = A

jX

x(t) +Bu(t) for t � 0, with initial value x(0) = x

0

.

However, sine B 2 L(U ;X

�1

), if x

0

2 X and if u 2 L

1

lo

(R

+

;U), then

this equation has a unique strong solution x 2 W

1;1

lo

(R

+

;X

�1

) (see, e.g.,

[20, Setion 3.8℄; the operator A

jX

is the generator of the C

0

semigroup

that we get by extending the semigroup generated by A to X

�1

). Thus, the

notion of the state trajetory auses no problem if we are willing to aept

a trajetory with values in X

�1

.

To get a generalized de�nition of the output y under the same premises

we an do as follows (see [20, Setion 4.7℄ for details). Let x

0

2 X, u 2

11



L

1

lo

(R

+

;U), and let x 2W

1;1

lo

(R

+

;X

�1

) be the orresponding state traje-

tory. De�ne [

x

2

u

2

℄ by

h

x

2

(t)

u

2

(t)

i

=

Z

t

0

(t� s)

h

x(s)

u(s)

i

ds; t � 0

(this is the seond order integral of [

x

u

℄). Then

h

x

2

(t)

u

2

(t)

i

2 D(S) for all t � 0,

and we may de�ne the output y by

y(t) =

�

C&D

h

x

2

(s)

u

2

(s)

i�

00

; t � 0; (16)

where we interpret the seond order derivative in the distribution sense.

5

Another possibility to extend �

t

0

to a larger lass of data is based on an

additional well-posedness assumption.

De�nition 2.6. A system node S is well-posed if, for some t > 0, there is

a �nite onstant K(t) suh that the solution (x; y) in Lemma 2.3 satis�es

jx(t)j

2

+ kyk

2

L

2

(0;t)

� K(t)

�

jx

0

j

2

+ kuk

2

L

2

(0;t)

�

: (WP)

It is energy stable if there is some K < 1 so that, for all t 2 R

+

, the

solution (x; y) in Lemma 2.3 satis�es

jx(t)j

2

+ kyk

2

L

2

(0;t)

� K

�

jx

0

j

2

+ kuk

2

L

2

(0;t)

�

: (ES)

It is not diÆult to show that if (WP) holds for one t > 0, then it holds

for all t � 0.

If a system node S is well-posed, then the orresponding system � an

be extended by ontinuity to a family of operators

�

t

0

:=

h

A

t

B

t

0

C

t

0

D

t

0

i

from

h

X

L

2

([0;t℄;U)

i

to

h

X

L

2

([0;t℄;Y )

i

. (We still denote the extended family by

�.)

For more details, explanations and examples we refer the reader to [1℄, [2℄,

[4℄, [5, 6℄ [7℄, [10℄, [11, 12℄, [13℄, [14, 15, 16, 17, 20℄, [21, 22℄, [23, 24, 25, 26, 27℄,

[28℄, [29℄, and [30℄ (and the referenes therein).

5

In the well-posed ase, if u 2 L

2

lo

(R

+

;U), then it suÆes to integrate [

x

u

℄ one, then

apply C&D, and �nally di�erentiate one in the distribution sense.

12



3 Sattering Passive and Conservative Systems

The following de�nition is a slightly modi�ed version of the de�nitions in the

two lassial papers [31, 32℄ by Willems (although we use a slightly di�erent

terminology: our passive is the same as Willems' dissipative).

6

De�nition 3.1. Let J be a bounded self-adjoint operator on

�

Y

U

�

. A system

node S on (U;X; Y ) is J-passive if, for all t > 0, the solution (x; y) in

Lemma 2.3 satis�es

jx(t)j

2

� jx

0

j

2

�

Z

t

0

Dh

y(s)

u(s)

i

; J

h

y(s)

u(s)

iE

ds: (JP)

It is J-energy preserving if the above inequality holds in the form of an

equality: for all t > 0, the solution (x; y) in Lemma 2.3 satis�es

jx(t)j

2

� jx

0

j

2

=

Z

t

0

Dh

y(s)

u(s)

i

; J

h

y(s)

u(s)

iE

ds: (JE)

Physially, passivity means that there are no internal energy soures. An

energy preserving system has neither any internal energy soures nor any

sinks.

Di�erent hoies of J give di�erent passivity notions. The ase J =

�

�1 0

0 1

�

is known as sattering. The ase where U = Y =

�

V

V

�

and J = [

0 1

1 0

℄ is

known as impedane (admittane, immittane, resistane, ondutane). The

ase where U = Y =

�

V

W

�

, and J =

�

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 �1

�

is known as transmission

(hain sattering). In this artile we fous on the sattering (J =

�

�1 0

0 1

�

)

and impedane (J = [

0 1

1 0

℄) settings.

De�nition 3.2. A system node S is sattering passive

7

if, for all t > 0, the

solution (x; y) in Lemma 2.3 satis�es

jx(t)j

2

� jx

0

j

2

� kuk

2

L

2

(0;t)

� kyk

2

L

2

(0;t)

: (SP)

It is sattering energy preserving if the above inequality holds in the form

of an equality: for all t > 0, the solution (x; y) in Lemma 2.3 satis�es

jx(t)j

2

� jx

0

j

2

= kuk

2

L

2

(0;t)

� kyk

2

L

2

(0;t)

: (SE)

6

Another di�erene is that we have replaed Willems' more general storage funtion

S(x) by the quadrati funtion jxj

2

X

. Our setting beomes the sattering version of the

setting whih Willems uses in the seond part [32℄ if we simply take the norm in the state

spae to be jxj

2

=

p

S(x) (this is possible whenever the storage funtion is quadrati and

stritly positive).

7

In [9℄, [28℄, [21, 22℄, [29℄, et., these systems are alled dissipative.

13



Finally, it is sattering onservative if both S and S

�

are sattering energy

preserving.

Thus, every sattering passive system is well-posed : the passivity in-

equality (SP) implies the well-posedness inequality (WP).

A sattering passive system an be haraterized in several di�erent

ways:

Theorem 3.3. Let S =

�

A&B

C&D

�

be a system node on (U;X; Y ). Then the

following onditions are equivalent:

(i) � is sattering passive.

(ii) For all t > 0, the solution (x; y) in Lemma 2.3 satis�es

d

dt

jx(t)j

2

X

� ju(t)j

2

U

� jy(t)j

2

Y

: (17)

(iii) For all [

x

0

u

0

℄ 2 D(S),

2<




A&B [

x

0

u

0

℄ ; x

0

�

X

� ju

0

j

2

U

�

�

�

C&D [

x

0

u

0

℄

�

�

2

Y

: (18)

(iv) For some (or equivalently, for all) � 2 �(A) we have

8

�

A+A

�

jX

(�+A

�

jX

)(� �A

jX

)

�1

B

B

�

(��A

�

)

�1

(�+A) B

�

(��A

�

)

�1

(2<�)(� �A

jX

)

�1

B

�

+

"

C

�

C C

�

b

D(�)

b

D(�)

�

C

b

D(�)

�

b

D(�)

#

�

�

0 0

0 I

�

;

(19)

whih is an operator inequality in L

�

�

X

1

U

�

;

h

X

d

�1

U

i�

.

(v) For some � 2 �(A)\C

+

(or equivalently, for all � 2 C

+

), the operator

�

A(�) B(�)

C(�)

b

D(�)

�

=

�

(�+A)(��A)

�1

p

2<� (��A)

�1

B

p

2<�C(��A)

�1

b

D(�)

�

(20)

is a ontration. (Here C

+

is the open right half-plane.)

This is [21, Theorem 7.4℄. The main part of this theorem is also found

in [2℄ (see, in partiular, De�nition 4.1, Proposition 4.1, Subsetion 4.5, and

Theorem 5.2 of [2℄).

A similar result is valid for sattering energy preserving systems:

8

See the paragraph before De�nition 2.1 for the de�nition of A

�

jX

and X

d

�1

.
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Theorem 3.4. Let S =

�

A&B

C&D

�

be a system node on (U;X; Y ). Then the

following onditions are equivalent:

(i) � is sattering energy preserving.

(ii) For all t > 0, the solution (x; y) in Lemma 2.3 satis�es

d

dt

jx(t)j

2

X

= ju(t)j

2

U

� jy(t)j

2

Y

: (21)

(iii) For all [

x

0

u

0

℄ 2 D(S),

2<




A&B [

x

0

u

0

℄ ; x

0

�

X

= ju

0

j

2

U

�

�

�

C&D [

x

0

u

0

℄

�

�

2

Y

: (22)

(iv) For some (or equivalently, for all) � 2 �(A) we have

�

A+A

�

jX

(�+A

�

jX

)(� �A

jX

)

�1

B

B

�

(��A

�

)

�1

(�+A) B

�

(��A

�

)

�1

(2<�)(� �A

jX

)

�1

B

�

+

"

C

�

C C

�

b

D(�)

b

D(�)

�

C

b

D(�)

�

b

D(�)

#

=

�

0 0

0 I

�

;

(23)

whih is an operator identity in L

�

�

X

1

U

�

;

h

X

d

�1

U

i�

.

(v) For some � 2 �(A)\C

+

(or equivalently, for all � 2 C

+

), the operator

h

A(�) B(�)

C(�)

b

D(�)

i

de�ned in (20) is isometri.

This theorem is proved in [9℄. Most of this theorem is also found in [2℄.

By applying Theorem 3.4 both to the original system node S and to the

dual system node S

�

we get a set of systems whih haraterize sattering

onservative system nodes. Some equivalent but simpler onditions are given

in [9℄.

A �nite-dimensional system is sattering onservative if and only if it

is energy preserving and the input and output spaes have the same dimen-

sion. Some related (but more ompliated) results are true also in in�nite-

dimensions. See [2℄, [9℄, and [21, 22℄ for details.

4 Impedane Passive and Conservative Systems

As we mentioned above, we get into the impedane setting by taking J =

[

0 1

1 0

℄ in De�nition 3.1.

15



De�nition 4.1. A system node S on (U;X;U) (note that Y = U) is

impedane passive if, for all t > 0, the solution (x; y) in Lemma 2.3 sat-

is�es

jx(t)j

2

X

� jx

0

j

2

X

� 2

Z

t

0

<hy(t); u(t)i

U

dt: (IP)

It is impedane energy preserving if the above inequality holds in the form

of an equality: for all t > 0, the solution (x; y) in Lemma 2.3 satis�es

jx(t)j

2

X

� jx

0

j

2

X

= 2

Z

t

0

<hy(t); u(t)i

U

dt: (IE)

Finally, S is impedane onservative if both S and the dual system node S

�

are impedane energy preserving.

Note that in this ase well-posedness is neither guaranteed, nor always

relevant.

Theorem 4.2. Let S =

�

A&B

C&D

�

be a system node on (U;X;U). Then the

following onditions are equivalent:

(i) S is impedane passive.

(ii) For all t > 0, the solution (x; y) in Lemma 2.3 satis�es

d

dt

jx(t)j

2

X

� 2<hy(t); u(t)i

U

: (24)

(iii) For all [

x

0

u

0

℄ 2 D(S),

<




A&B [

x

0

u

0

℄ ; x

0

�

X

� <hC&D [

x

0

u

0

℄ ; u

0

i

U

: (25)

(iv) For some (or equivalently, for all) � 2 �(A) we have

�

A+A

�

jX

(�+A

�

jX

)(� �A

jX

)

�1

B

B

�

(��A

�

)

�1

(�+A) B

�

(��A

�

)

�1

(2<�)(� �A

jX

)

�1

B

�

�

�

0 C

�

C

b

D(�)

�

+

b

D(�)

�

;

(26)

whih is an operator inequality in L

�

�

X

1

U

�

;

h

X

d

�1

U

i�

.
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(v) For some � 2 �(A)\C

+

(or equivalently, for all � 2 C

+

), the operator

h

A(�) B(�)

C(�)

b

D(�)

i

de�ned in (20) satis�es

�

A(�)

�

A(�) A(�)

�

B(�)

B(�)

�

A(�) B(�)

�

B(�)

�

�

�

1 C(�)

�

C(�)

b

D(�) +

b

D(�)

�

�

: (27)

(vi) The system node

�

A&B

�C&D

�

is a dissipative operator in

�

X

U

�

, i.e., for all

[

x

0

u

0

℄ 2 D(S),

<

��

x

0

u

0

�

;

�

A&B

�C&D

� �

x

0

u

0

��

h

X

U

i

� 0: (28)

Note that if S =

�

A&B

C&D

�

is a system node, then so is

�

A&B

�C&D

�

, and that

the domains of these two nodes are the same (it depends only on A&B, and

not on C&D).

Proof. The proof of parts (i){(v) of this theorem is (almost) idential to the

proof of Theorem 3.3 (= [21, Theorem 7.4℄), so we leave it to the reader.

Clearly, (vi) is just another way of writing ondition (iii).

As the following lemma shows, ondition (vi) given above is atually true

in a stronger sense.

Lemma 4.3. Let S =

�

A&B

C&D

�

be an impedane passive system node on

(U;X;U). Then

�

� 0

0 �

�

�

�

A&B

�C&D

�

has a bounded inverse for all �, � 2 C

+

.

In partiular,

�

A&B

�C&D

�

is maximal dissipative.

Proof. It follows from (iii) that the operator A is dissipative, and by the

basi assumption on the system node S, A generates a C

0

semigroup. This

implies that the semigroup generated by A is a ontration semigroup, and

hene A is maximal dissipative (i.e., every � 2 C

+

belongs to the resolvent

set of A). As disussed at length in [9℄, for all � 2 �(A), the operator

h

(��A)

�1

(��A

jX

)

�1

B

0 1

i

maps

�

X

U

�

one-to-one onto D(S) (and both this op-

erator and it inverse are ontinuous). A short algebrai omputation shows

that, for all � 2 �(A) and � 2 C,

��

� 0

0 �

�

�

�

A&B

�C&D

���

(��A)

�1

(� �A

jX

)

�1

B

0 1

�

=

�

1 0

C(��A)

�1

� +

b

D(�)

�

:
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By part (iv) of Theorem 4.2, the operator �

b

D(�) is dissipative. It is also

bounded, hene it is maximal dissipative, i.e., � +

b

D(�) is invertible for all

� 2 C

+

. However, this ombined with the preeding fatorization shows

that

�

� 0

0 �

�

�

�

A&B

�C&D

�

has a bounded inverse for all �, � 2 C

+

. At the same

time we get an expliit expression for the inverse, namely

��

� 0

0 �

�

�

�

A&B

�C&D

��

�1

=

�

(��A)

�1

(��A

jX

)

�1

B

0 1

� �

1 0

C(��A)

�1

� +

b

D(�)

�

�1

=

�

(��A)

�1

0

0 0

�

+

�

(��A

jX

)

�1

B

1

�

[� +

b

D(�)℄

�1

�

�C(��A)

�1

1

�

:

(29)

Taking � = � we �nd that

�

A&B

�C&D

�

is maximal dissipative.

Corollary 4.4. Let S =

�

A&B

C&D

�

be a system node on (U;X;U). Then the

following onditions are equivalent, and they are also equivalent to onditions

(ii){(vi) in Theorem 4.2:

(i) S is impedane passive.

(vii) The operator

�

A&B

�C&D

�

is the generator of a ontration semigroup on

�

X

U

�

.

(viii) For some � 2 �(A)\C

+

(or equivalently, for all � 2 C

+

), the operator

��

�

A&B

�C&D

�

is invertible, and

�

A (�) B (�)

C (�) D (�)

�

=

�

�+

�

A&B

�C&D

���

��

�

A&B

�C&D

��

�1

(30)

is a ontration.

Proof. By Theorem 4.2 and Lemma 4.3, S is impedane passive if and only

if the operator

�

A&B

�C&D

�

is maximal dissipative, or equivalently, if and only

if this operator generates a ontration semigroup on

�

X

U

�

. This proves the

equivalene of (i) and (vii). The ontration semigroup mentioned above

may be regarded as the one orresponding to a sattering passive system

with input spae f0g, state spae

�

X

U

�

, and output spae f0g (i.e., the system

has no input or output, just a state). The equivalene of (vii) and (viii) now

follows from the equivalene of (i) and (v) in Theorem 3.3 applied to this

speial system.
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Corollary 4.5. A system node S is impedane passive if and only if the

dual system node S

�

is impedane passive.

Proof. If S =

�

A&B

C&D

�

is impedane passive, then both A and

�

1 0

0 �1

�

S are

maximal dissipative on X respetively

�

X

U

�

(see Corollary 4.4). This implies

that A

�

and S

�

�

1 0

0 �1

�

are maximal dissipative. The latter ondition is

equivalent to the maximal dissipativity of

�

1 0

0 �1

�

S

�

. By Corollary 4.4, this

implies that also S

�

is impedane passive.

Let us next take a loser look at the energy preserving ase.

Theorem 4.6. Let S =

�

A&B

C&D

�

be a system node on (U;X;U). Then the

following onditions are equivalent:

(i) � is impedane energy preserving.

(ii) For all t > 0, the solution (x; y) in Lemma 2.3 satis�es

d

dt

jx(t)j

2

X

= 2<hy(t); u(t)i

U

: (31)

(iii) For all [

x

0

u

0

℄ 2 D(S),

<

��

x

0

u

0

�

;

�

A&B

�C&D

� �

x

0

u

0

��

h

X

U

i

= 0: (32)

(iv) For some (or equivalently, for all) � 2 �(A) we have

"

A+A

�

jX

(�+A

�

jX

)(� �A

jX

)

�1

B

B

�

jX

1

B

�

(��A

�

)

�1

(2<�)(� �A

jX

)

�1

B

#

=

�

0 C

�

C

b

D(�)

�

+

b

D(�)

�

;

(33)

whih is an operator identity in L

�

�

X

1

U

�

;

h

X

d

�1

U

i�

.

(v) For some � 2 �(A)\C

+

(or equivalently, for all � 2 C

+

), the operator

h

A(�) B(�)

C(�)

b

D(�)

i

de�ned in (20) satis�es

�

A(�)

�

A(�) A(�)

�

B(�)

B(�)

�

A(�) B(�)

�

B(�)

�

=

�

1 C(�)

�

C(�)

b

D(�) +

b

D(�)

�

�

: (34)
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(vi) The system node

�

A&B

�C&D

�

is skew-symmetri, i.e., D(S) = D(

�

A&B

�C&D

�

) �

D(

�

A&B

�C&D

�

�

), and

�

A&B

�C&D

�

�

�

x

0

u

0

�

= �

�

A&B

�C&D

� �

x

0

u

0

�

;

�

x

0

u

0

�

2 D(S): (35)

(vii) For some � 2 �(A)\C

+

(or equivalently, for all � 2 C

+

), the operator

��

�

A&B

�C&D

�

is invertible, and the operator

h

A (�) B(�)

C (�) D(�)

i

de�ned in (30)

is an isometry.

Proof. We again leave most of the proof to the reader (it is very similar

to the proof of Theorem 4.2). Note that S

�

�

1 0

0 �1

�

is a system node with

domain D(S

�

�

1 0

0 �1

�

) = D(S

�

)

�

1 0

0 �1

�

(it is the adjoint of the system node

�

1 0

0 �1

�

S =

�

A&B

�C&D

�

). The only slight di�erene is that we laim that C =

B

�

jX

instead of the following formula whih one �rst arrives at, namely

Cx = B

�

(��A

�

)

�1

(�+A)x; x 2 X

1

:

However, as A

�

= �A on X

1

, the above formula an be rewritten as

Cx = B

�

(��A

�

)

�1

(��A

�

)x = B

�

x; x 2 X

1

:

An analogous but even simpler result is true for onservative impedane

systems:

Theorem 4.7. Let S =

�

A&B

C&D

�

be a system node on (U;X;U). Then the

following onditions are equivalent:

(i) � is impedane onservative.

(ii) For all t > 0, the solution (x; y) in Lemma 2.3 satis�es

d

dt

jx(t)j

2

X

= 2<hy(t); u(t)i

U

; (36)

and the same identity is true for the adjoint system.

(iii) The system node

�

A&B

�C&D

�

is skew-adjoint, i.e.,

�

A&B

�C&D

�

�

= �

�

A&B

�C&D

�

: (37)
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(iv) A

�

= �A, B

�

= C, and

b

D(�)+

b

D(��)

�

= 0 for some (or equivalently,

for all) � 2 �(A) (in partiular, this identity is true for all � with

<� 6= 0).

(v) For some � 2 �(A)\C

+

(or equivalently, for all � 2 C

+

), the operator

��

�

A&B

�C&D

�

is invertible, and the operator

h

A (�) B(�)

C (�) D(�)

i

de�ned in (30)

is unitary.

Proof. Most of this follows diretly from Theorem 4.6. The only fat whih

requires a separate proof is that (iv) holds if and only if ondition (iv) in

Theorem 4.6 holds both for the original system and for the dual system.

Suppose that (iv) holds. Then it is obvious that three out of the four

identities in (33) hold (the exeptional one being the one in the lower right

orner). This last identity is proved as follows: it follows from (iv) and (12)

that

b

D(�) = �

b

D(��)

�

= �

b

D(�)

�

+ (��� �)B

�

(��A

�

)

�1

(���A

�

)

�1

B

= �

b

D(�)

�

+ 2<�B

�

(��A

�

)

�1

(��A)

�1

B:

The orresponding adjoint identity is proved in the same way (note that (iv)

is invariant under duality).

The proof of the onverse diretion is essentially the same: if (33) holds

both for the original system and the dual system, then A

�

= �A, B

�

= C,

and the bottom right orner of (33) together with the above omputation

shows that

b

D(�) +

b

D(��)

�

= 0.

Example 4.8. Let A be the generator of a ontration semigroup on X.

De�ne S =

h

A

jX

A

jX

�A

jX

�A

jX

i

with D(S) =

�

[

x

u

℄ 2

�

X

X

�

�

�

x + u 2 D(A)

	

.

Then S is an impedane passive system node on (X;X;X) (use part (vi)

of Theorem 4.2 and note that

�

A A

A A

�

= [

1

1

℄A

�

1 1

�

an be interpreted as

the dissipative operator A surrounded by another operator and its adjoint).

The transfer funtion of this node is easily omputed, and it turns out to

be

b

D(s) = �sA(s � A)

�1

, s 2 C

+

. This example is impedane energy

preserving if and only if A generates an isometri semigroup (i.e, A is skew-

symmetri), and it is impedane onservative if and only if A generates a

unitary group (i.e, A is skew-adjoint).
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5 Well-Posed Impedane Passive Systems

Many impedane passive systems are well-posed. There is a simple way of

haraterizing suh systems:

Theorem 5.1. An impedane passive system node is well-posed if and only

if its transfer funtion

b

D is bounded on some (or equivalently, on every)

vertial line in C

+

. When this is the ase, the growth bound of the system is

zero, and, in partiular,

b

D is bounded on every right half-plane C

+

�

= fs 2

C j <s > �g with � > 0.

Proof. Suppose that the system node S is both well-posed and impedane

passive. The growth bound of this system is then zero, and this implies that

b

D is bounded in every half-plane C

+

�

with � > 0; see, e.g., [20, Setion 4.6℄.

Conversely, suppose that k

b

D(s)k � M for some M < 1 and all s with

<s = � > 0. Let us transform the vertial line <s = � to the imaginary

axis by using an exponential shift of the type desribed in Lemma 2.5: we

replae S by S

�

=

�

A&B

C&D

�

� [

� 0

0 0

℄. This has the e�et of replaing the

original transfer funtion

b

D by

b

D

�

given by

b

D

�

(s) =

b

D(s+�). In partiular,

k

b

D

�

(s)k �M for all s with <s = 0. Moreover, it follows immediately from

Lemma 2.5 and De�nition 4.1 that S

�

is impedane passive. We laim that

S

�

is well-posed. Take a C

1

input funtion u supported on [0; t℄, and let

the initial state (of the shifted system) be zero. The Fourier transforms

of u and the orresponding output funtion y are the restrition of the

Laplae transforms of these funtions to the imaginary axis. Moreover,

ŷ(s) =

b

D

�

(s)û(s), so jŷ(s)j � M jû(s)j for all s with <s = 0. This implies

that y 2 L

2

(R

+

;V ) and that

kyk

L

2

(0;t)

� kyk

L

2

(R

+

)

�Mkuk

L

2

(0;t)

(where M does not depend on u or t). By the Cauhy{Shwarz inequality,

2

Z

t

0

<hy(t); u(t)idt � 2kyk

L

2

(0;t)

kuk

L

2

(0;t)

� 2Mkuk

2

L

2

(0;t)

:

By (PI),

jx(t)j

2

� 2Mkuk

2

L

2

(0;t)

:

Thus, for all C

1

input funtions funtions u supported on [0; t℄, the state

trajetory and the output funtion with initial state zero satisfy

kyk

2

L

2

(0;t)

+ jx(t)j

2

� (M

2

+ 2M)kuk

2

L

2

(0;t)

:
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Sine C

1

is dense in L

2

, this implies that both the input map and the

input-output maps are well-posed. The same argument applied to the dual

system shows that the output map is well-posed, as well. The semi-group is

always well-posed. Thus, the whole shifted system is well-posed, hene so is

the original one.

Theorem 5.2. Let � be a well-posed system with system node S and transfer

funtion

b

D. In addition, suppose that 1+

b

D is invertible on some right half-

plane and that (1 +

b

D)

�1

is bounded on this half-plane. (The last ondition

is, in partiular true, if � is a well-posed impedane passive system.) Then

the following laims are true:

(i) There is a unique well-posed system �

�

with the following property: if

x is the state trajetory and y 2 L

2

lo

(R

+

;U) is the output funtion of

� with initial state x

0

and input funtion u 2 L

2

lo

(R

+

;U), and if we

use the same initial state x

0

and the input funtion u

�

=

1

p

2

(u + y)

for the system �

�

, then the state trajetory x

�

of �

�

oinides with

the state trajetory x of �, and the output funtion of �

�

is given by

y

�

=

1

p

2

(u� y).

(ii) The system �

�

is sattering passive (or energy preserving or onser-

vative) if and only if � is impedane passive (or energy preserving or

onservative).

(iii) The system node S

�

an be determined from its main operator A

�

,

ontrol operator B

�

, observation operator C

�

, and transfer funtion

b

D

�

, whih an be omputed from the following formulas, valid for all

� 2 �(A) \ �(A

�

),

9

"

(��A

�

)

�1

1

p

2

(��A

�

jX

)

�1

B

�

1

p

2

C

�

(��A

�

)

�1

1

2

(1 +

b

D

�

(�))

#

=

��

� 0

0 1

�

�

�

A&B

�C&D

��

�1

=

�

(��A)

�1

0

0 0

�

+

�

(��A

jX

)

�1

B

1

�

(1 +

b

D(�))

�1

�

�C(��A)

�1

1

�

(38)

9

A

�

jX

is the extension of A

�

to an operator in L(X;X

�

�1

), where X

�

�1

is the analogue

of X

�1

with A replaed by A

�

.
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p

2

�

1

p

2

6

x

0

-

x(t)

-

u

�

-

+

d -r

u

-

y

r

�

d- -

y

�

6

�

?

+

Figure 1: The diagonal transform

In partiular, 1 +

b

D(�) is invertible and

b

D

�

(�) = (1�

b

D(�))(1 +

b

D(�))

�1

for all � 2 �(A) \ �(A

�

).

(iv) The transfer funtion

b

D

�

of S

�

has the property that 1+

b

D

�

is always

invertible on some right half-plane and that (1 +

b

D

�

)

�1

is bounded on

this half-plane. If we repeat the same transform with S replaed by S

�

,

then we reover the original system. Thus, in partiular, the system

�

�

is impedane passive (or energy preserving or onservative) if and

only if � is sattering passive (or energy preserving or onservative).

Furthermore, (38) also holds if we interhange S and S

�

.

Figure 1 ontains a diagram of the transform desribed in this theorem.

Following [8℄, we shall refer to the above transform as the diagonal transform.

There is also a non-well-posed version of this theorem to whih we shall

return in [19℄.

Proof. (i) Let us begin with the uniqueness. A system is uniquely de�ned if

we know its state trajetory and its output for all initial states x

0

2 X and

all input funtions u

�

2 L

2

lo

(R

+

;U), so uniqueness follows as soon as we

have shown that, given any x

0

2 X, we an produe every possible funtion

u

�

2 L

2

lo

(R

+

;U) by hoosing u 2 L

2

lo

(R

+

;U) appropriately and de�ning

u

�

=

1

p

2

(u+ y). This will beome evident from the proof below.

Clearly, by slightly modifying the system � we an replae its original

output funtion y by u

�

=

1

p

2

(u + y): to do this it suÆes to keep A&B

unhanged but replae the original ontrol/feedthrough operator C&D by

^

C&D =

1

p

2

�

C&D +

�

0 1

��

. The transfer funtion of the resulting system

e

� is

1

p

2

(1 +

b

D). The extra assumption that we imposed on � implies that
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this transfer funtion has a bounded inverse on some right half-plane, whih

means that

e

� is ow-invertible (see [22℄). In partiular, this means that

given any x

0

2 X and u

�

2 L

2

lo

(R

+

;U), we an �nd an input funtion

u 2 L

2

lo

(R

+

;U) so that u

�

=

1

p

2

(u + y) (as needed in the uniqueness

proof). Let us denote the ow-inverted system by

e

�

�

and its system node

by

e

S

�

=

h

℄

A&B

�

^

C&D

�

i

. The only di�erene between

e

� and

e

�

�

is that we have

interhanged the meaning of the input and the output: the relationships

between all the di�erent signals are the same, but whereas the input of � is

u and the output is u

�

, the input of

e

� is u

�

and the output is u. From

e

�

�

we easily get the �nal system �

�

: we keep the top row

^

A&B

�

of the system

node unhanged but replae

^

C&D

�

by (notie that y

�

=

p

2 u� u

�

)

C&D

�

=

p

2

^

C&D

�

�

�

0 1

�

:

The transfer funtion of �

�

then beomes

b

D

�

=

p

2

�

1

p

2

�

1 +

b

D

�

�

�1

� 1 =

�

1�

b

D

��

1 +

b

D

�

�1

:

(ii) With the same notations as above, a short mehanial omputation

shows that

ju

�

j

2

� jy

�

j

2

= 2<hy; ui:

Hene, it follows from De�nitions 3.2 and 4.1 that � is impedane passive

if and only if �

�

is sattering passive. For the same reason, � is impedane

energy preserving if and only �

�

is sattering energy preserving. Finally,

by applying this result to the dual system (the onstrution of the system

�

�

desribed above ommutes with the duality transform) we �nd that �

is impedane onservative if and only if �

�

is sattering onservative.

(iii) This follows from the above onstrution, Lemma 4.3 and the for-

mulas in [22℄.

(iv) The invertibility of 1 +

b

D

�

follows from the fat that 1 +

b

D

�

=

2(1 +

b

D)

�1

, and the remaining laims from the fat that u

�

=

1

p

2

(u + y)

and y

�

=

1

p

2

(u�y) if and only if u =

1

p

2

(u

�

+y

�

) and u =

1

p

2

(u

�

�y

�

).

In our following theorem we need some additional notions that we have

not used so far, namely the reahable and unobservable subspaes of a system

node S. By the reahable subspae of S we mean the losure in X of the

set of all possible values of x(t) in Lemma 2.3 if we take x

0

= 0 (and let u

and t vary). Its orthogonal omplement is the unreahable subspae. By the
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unobservable subspae of S we mean the losure of the set of all x

0

2 X

1

for whih the output y in Lemma 2.3 with initial state x

0

and zero input

funtion u is identially zero. Its orthogonal omplement is the observable

subspae. It is well-known that the orthogonal omplement of the reahable

subspae of S is the unobservable subspae of the dual system node S

�

(and

the same statement is true if we interhange S and S

�

). A system is simple

if the intersetion of the unreahable and unobservable subspaes is f0g.

Theorem 5.3. Every positive analyti funtion on C

+

whih is proper (i.e.,

it is bounded on some right half-plane) has a simple well-posed impedane

onservative realization, whih is unique modulo a unitary similarity trans-

form in the state spae.

Proof. Sine

b

D is a positive, (1 +

b

D(�))

�1

exists and is bounded on C

+

.

De�ne

b

D

�

(�) = (1 �

b

D(�))(1 +

b

D(�))

�1

. This is a ontrative analyti

funtion on C

+

, so by it has a simple sattering onservative realization

�

�

, whih is unique modulo a unitary similarity transform in its state spae

(see, e.g., [2, Theorem 6.4℄ or [20, Chapter 11℄). From here we get a simple

impedane onservative realization of

b

D by applying Theorem 5.2. The

uniqueness laim remains true (the diagonal transform does not inuene

the unreahable and unobservable subspaes).

We all a system node S (and the orresponding system �) on (U;X; Y )

(approximately) ontrollable if the reahable subspae is all of X and (ap-

proximately) observable if the observable subspae is all of X. A system

whih is both ontrollable and observable is minimal. The realization de-

sribed in Theorem 5.3 will not be minimal in general. However, from this

realization we an derive a minimal realization, e.g., as follows (see [2, Se-

tion 7℄ or [20, Setion 9.1℄ for details). We proeed in two steps. Let R be

the reahable subspae of �. By `restriting � to R' we get a ontrollable

system �

1

on (U;R; Y ) whose main operator is A

1

= A

jR

, ontrol operator

is B

1

= B, observation operator is C

1

= C

jR

, and transfer funtion

b

D is

the same as the original transfer funtion. It is not diÆult to show that

if the original system � is onservative (sattering or impedane), then the

new system is a energy preserving (sattering or impedane), and that it is

unique among all ontrollable energy preserving (sattering or impedane)

realizations of

b

D modulo a unitary similarity transform in the state spae.

If �

1

is observable, then we have obtained a minimal passive (and even

energy preserving) realization. If not, then we let O

1

be the observable

subspae of �

1

, denote the orthogonal projetion of R onto O

1

by �, and

`projet �

1

onto O

1

' to get the minimal system �

2

whose main operator is
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A

2

= �A

1

= �A

jR

, ontrol operator is B

1

= �B

1

= �B, observation oper-

ator is C

2

= C

1

jR

= C

jR

, and transfer funtion

b

D is still the same as the

original transfer funtion. This system is passive (sattering or impedane)

whenever �

1

is passive. Thus, we arrive at the following result:

Corollary 5.4. Every proper positive analyti funtion on C

+

has a mini-

mal well-posed impedane passive realization.

The above realization is not unique (for example, we ould, instead �rst

have projeted the system onto the observable subspae to get a system

whose adjoint is energy preserving, and then restrited the new system to

the reahable subspae), but it is possible to make it unique by requiring it

to be `optimal' in a ertain sense.

10

See [2, Setion 7℄ and [32, Setion 4℄ for

details.

6 A Feedbak Interpretation

The diagonal transform in Theorem 5.2 has a natural output feedbak in-

terpretation. In that transform we introdue a new input signal u

�

, hoose

the input of the original system � to be u =

p

2 u

�

� y, and regard the new

output signal to be y

�

=

1

p

2

(u � y). If we ignore the trivial saling fators

p

2 and 1=

p

2, then the replaement of u by the new input u

�

is a typial

negative identity state feedbak, whereas the replaement of y by y

�

just

amounts to the addition of an extra feedthrough term to the resulting losed

loop system. Reall that if � is a well-posed linear system on (U;X; Y ), then

K 2 L(Y ;U) is alled an admissible feedbak operator if the replaement of

the input signal u by u = u

K

+Ky leads to a new well-posed linear system

with input signal u

K

. In the speial ase where U = Y onsidered above

we may use negative identity output feedbak, i.e., we let K = �1. Thus,

Theorem 5.2 implies the following result:

Corollary 6.1. Let � be a well-posed impedane passive system indued by

a system node S =

�

A&B

C&D

�

on (U;X;U). Then �1 is an admissible feedbak

operator for �, and the losed loop system orresponding to this feedbak

operator is energy stable (in the sense of De�nition 2.6).

10

The above onstrution produes Arov's optimal realization. This is the minimal

realization whih uses the norm in the state spae indued by Willems' available storage.

If we instead �rst projet onto the observable subspae and then restrit to the reahable

subspae, then we get Arov's �-optimal realization. This is the realization whih uses the

norm indued by Willems' required supply funtion.
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Figure 2: Modi�ed diagonal transform

Instead of using negative identity feedbak we may use any salar nega-

tive feedbak. As a matter of fat, even every stritly positive operator-valued

feedbak will make the losed loop system energy stable. To see this we may

argue as follows. If S =

�

A&B

C&D

�

is an impedane passive system node, then

so is

S

E

=

�

I 0

0 E

�

� �

A&B

C&D

� �

I 0

0 E

�

;

where E is an arbitrary bounded linear operator on U ; this follows from

Theorem 4.2. Moreover, S

E

is impedane energy preserving or onservative

whenever S has this property. If E is invertible, then the onverse is also

true: passivity, or energy preservation, or onservativity of S

E

implies that

S has the same property. We an apply Theorem 5.2 to the system node

S

E

instead of the system node S to get the sattering passive system drawn

in Figure 2 (this is true independently of whether E is invertible or not).

If E is invertible, then this e�etively amounts to the feedbak onnetion

with feedbak operator EE

�

� 0 drawn in Figure 3. In this �gure we

have ignored the feedforward onnetion in Figure 2, and we have used the

invertibility of E to replae the output ~y by the output y = (E

�

)

�1

~y (the

mapping from u

�

to y in Figure 2 need not be well-posed in general, but

~y is always a well-posed output). The invertibility of E is also needed if

we want to replae the input u

�

in Figure 3 by the new independent input

v = [

p

2E℄

�1

u

�

.
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Weiss and Marius Tusnak disussed above. Muh of my present knowledge

of sattering onservative system omes out of numerous disussions with

Jarmo Malinen and George Weiss.
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