Passive and Conservative Continuous Time
Impedance and Scattering Systems.

Part . Well-Posed Systems

Olof J. Staffans
Abo Akademi University
Department of Mathematics
FIN-20500 Abo, Finland
http://www.abo.fi/~staffans/

June 12, 2002

Abstract

Let U be a Hilbert space. By a L(U)-valued positive analytic func-
tion on the open right half-plane we mean an analytic function which
satisfies the condition ® + ©* > 0. This function need not be proper,
i.e., it need not be bounded on any right half-plane. We study the
question under what conditions such a function can be realized as the
transfer function of an impedance passive system. By this we mean
a continuous time state space system whose control and observation
operators are not more unbounded than the (main) semigroup genera-
tor of the system, and in addition, there is a certain energy inequality
relating the absorbed energy and the internal energy. The system is
(impedance) energy preserving if this energy inequality is an equality,
and it is conservative if both the system and its dual are energy pre-
serving. A typical example of an impedance conservative system is a
system of hyperbolic type with collocated sensors and actuators. We
give several equivalent sets of conditions which characterize when a sys-
tem is impedance passive, energy preserving, or conservative. We prove
that a impedance passive system is well-posed if and only if it is proper.
We furthermore show that the so called diagonal transform (which is
a particular rescaled feedback/feedforward transform) maps a proper
impedance passive (or energy preserving or conservative) system into a
(well-posed) scattering passive (or energy preserving or conservative)
system. This implies that, just as in the finite-dimensional case, if we
apply negative output feedback to a proper impedance passive system,
then the resulting system is (energy) stable. Finally, we show that



every proper positive analytic function on the right half-plane a (es-
sentially unique) well-posed impedance conservative realization, and it
also has a minimal impedance passive realization.
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1 Introduction

Let U be a Hilbert space. By a L(U)-valued positive analytic function on C*
(= the open right half-plane) we mean an analytic function which satisfies
the condition ® + ®* > 0 (many other alternative names are also used for
this class of functions, such as (impedance) passive functions, Caratheodory-
Nevanlinna functions, Weyl functions, or Titchmarsh-Weyl functions; see,
e.g., [1] and [3] for more detailed discussions of the history of this class of
functions). This function need not be proper, i.e., it need not be bounded
on any right half-plane. For example, the scalar functlons Q( ) =1/s and
’D( ) = 1 are proper (the former is even strictly proper since ’D( ) =0),
whereas @( ) = s is not proper (all of these are positive analytic). In this
article we introduce a class of continuous time impedance passive systems
whose transfer functions are (not necessarily proper) positive analytic. Our
class of systems contains all earlier state space realizations of positive ana-
lytic functions that we know of, but it is still not complete in the sense that
not every positive analytic function has a realization in our class, one of the
main exceptions being the function 5(5) = s mentioned above. (Actually,
as we shall show in [18], all the exceptions are of this type.) For example,
systems with collocated sensors and actuators belong to the class studied
here.

As is well-known, every L£(U)-valued function D which is analytic and
bounded on some right half-plane (i.e., every proper transfer function) has
a well-posed realization. By this we mean a well-posed linear system X
whose transfer function is equal to the given function ®. This system X
has a state space (a Hilbert space) X, an input signal v € L (R*;U),
a state trajectory z € C(RT;X), and an output signal y € L (RT;U)
(here Rt = [0,00)). In the absence of an input signal (i.e., for u = 0), the



evolution of the state z is described by a strongly continuous semigroup.
That the transfer function of ¥ is ® means that if the initial state is zero
and if the input u is Laplace transformable, then the output y is also Laplace
transformable and, on some right half-plane, the Laplace transform § of y
is given by § = ®4; here 4 is the Laplace transform of u. In Section 2 we
give the formal definition of a well-posed linear system, and there we also
describe the basic properties of such systems.

Not every positive analytic function is proper, so to develop a more
general theory we need a class of systems which are not necessarily well-
posed. The class of systems that we introduce in Section 2 is maybe not the
most general one, but it has some nice properties which makes it possible to
develop a meaningful theory for this class. We allow both the control and the
observation operator to be as unbounded as the generator of the semigroup
describing the autonomous behavior of the system. This is roughly twice as
much unboundedness as may be present in a well-posed system.

The physical interpretation of a positive analytic function is that it is
energy absorbing (in an impedance setting). This class of transfer functions
appears in certain situations where the input v and the output y are related
to each other in a specific way. For example, we could have a pair of wires
connected to an electrical circuit, and let u be the voltage between the wires
and y the current carried by the wires (or the other way around). In this
and many other similar situations, the energy absorbed by the system in
the time period [0,?] is proportional to the integral 2 f(f R(u(s),y(s))ds. It
is well-known that if the initial state is zero (so that the Laplace transforms
of the input and output satisfy § = D4 in some right-half-plane), then this
energy is nonnegative for all possible input signals w if and only if ® is a
positive analytic function.

Let us next explain what we mean by an impedance passive system. For
simplicity we here stick to the well-posed case. The transfer function of an
impedance passive system must be a positive analytic function, but this is
not enough. A well-posed system . is an impedance passive system if for
all initial states zp € X, all input signals u € L2 (R*;U), and all t > 0, the

loc

state x(t) at time ¢ and the output signal y satisfy

()] < Jaol? +2 / R(u(s), y(s)) ds. (1)

Here |z(t)|? represents the energy stored in the state at time t > 0. An
impedance passive system has the property that if at some time the state
x(t) is zero, then at this time moment the system can only absorb energy and



not emit any energy (the time derivative of the absorbed energy function is
positive). If a system ¥ is impedance passive, then so is the dual system %¢
(this system is defined in Section 2; its transfer function is ’}Sd(z) = 5‘3(3)*)
A system X is impedance energy preserving if the preceding inequality holds
in the form of an equality:

|mwF=hmF+249NM@w@»m, (2)

and it is impedance conservative if both the original system 3. and the dual
system Y% are impedance energy preserving. In some sense an impedance
conservative realization describes a given positive analytic function in an
‘optimal’ way: all the energy absorbed or emitted by the system is stored in
the state or withdrawn from the state, and the same statement is true also
for the dual system. (There is no guarantee that all of the state energy can
ever be withdrawn, as some of it may be trapped in the state forever.)

We begin in Section 2 with a presentation of the class of systems that we
use to realize positive analytic functions. In the same section we define what
we mean by a well-posed system. We continue in Section 3 by recalling the
notions of scattering passive, energy preserving, and conservative systems,
as presented in, e.g., [9], [21], and [28]. (The same classes of systems appear
in [2] in a different notation.) These classes of systems are closely related
to the corresponding classes of impedance systems introduced above. The
only difference is that the expression for the absorbed energy is replaced by
Jilu(s)[2ds — [i]y(s)|* ds, so that (1) becomes

LWW+A@@F®§WN+AW@F@ (3)

and (2) becomes

t t
2 2 _ 2 2
um|+AW@|M—mn+Am@|w (4)

These systems are always well-posed, and they play an important role in our
study of impedance passive, energy preserving, and conservative systems.
In Section 4 we are finally ready to give formal definitions of impedance
passive, energy preserving, and conservative systems. We also give a num-
ber of equivalent conditions for a system to have one of these properties.
For example, if the system is described by a (possibly infinite-dimensional)



system of differential equations

2'(t) = Az(t) + Bu(t),
y(t) = Cz(t) + Du(t), t>0, (5)
z(0) = o,

where A € L(X), B € L(U;X), C € L(X;U), and D € L(U), then one of
our conditions (see formula (28)) says that this system is impedance passive
if and only if

A+ A* B 0 cr

[ B 0] = [C D+D*] (6)
It is impedance energy preserving if and only if this inequality holds as an
equality, and it is impedance conservative if furthermore the corresponding
dual identity holds.

There is a simple transform, sometimes called the diagonal transform,
which maps an impedance passive (or energy preserving or conservative) sys-
tem into a scattering passive (or energy preserving or conservative) system.
This transform is well-known in the finite-dimensional state space case, and
also in a very general input/output setting (see [33, Section 8.15]) (it maps
a positive analytic function into a contractive analytic function). In Sec-
tion 5 we show that the same transform works in the infinite-dimensional
state space setting as well if we apply it to a well-posed impedance pas-
sive system. In the same section we prove the following basic result: an
impedance passive system is well-posed if and only if the transfer func-
tion of the system is bounded on some vertical line in the right half-plane.
Furthermore, we show that every proper positive analytic function on C*
has a well-posed impedance conservative realization (which is essentially
unique under a suitable minimality requirement), and it also has a mini-
mal well-posed impedance passive realization. In the exponentially stable
finite-dimensional case the last statement is a consequence of the impedance
version of the Kalman-Yakubovich-Popov lemma, also known as the positive
(real) lemma. According to that lemma, a matrix-valued proper rational
transfer function ® with an exponentially stable minimal realization of the
type (5) (with finite-dimensional X and U) is positive if and only if there
exist matrices P > 0, ), and W such that

PA+ A*P PB] [0 C* Q* _
B*P 0 ] - [C D+D*] B [W] @ W] (™)

see, e.g., [34, Theorems 13.25 and 13.26]. This identity has a simple energy
interpretation: if we add another output z(t) = Qx(t)+Wu(t) to the system



in (5), then the solution z of (5) satisfies the energy balance equation

t t
((t), Px(t) + /0 |2(s)? ds = (a0, Pro) + 2 /0 R(u(s),y(s) ds. ()

If we replace the norm in the state space by the new norm |z|p = /(z, Pz),
then the above identity becomes

t t
()3 + /0 (2()[? ds = |aof3 +2 /0 R(u(s), y(s)) ds. (9)

and this shows that, with this norm and with the added output z, the system
(5) can be regarded as an mixed impedance/scattering energy preserving
system. (The operator P disappears from (7) when we compute the adjoints
with respect to the inner product [z1,z2] = (z1, Pz2) induced by the new
norm.) Dropping the extra output z we get a minimal impedance passive
realization of ®. See [32, Sections 5-7] for more details.

In our final Section 6 we give a feedback interpretation of the diagonal
transform: it says that if we apply negative feedback to a proper impedance
passive system, then the resulting closed-loop system is energy stable.

Many of the results presented above are also true for impedance passive
systems which are not proper, hence not well-posed. In particular, it is
still true for these non-well-posed systems that the diagonal transform is
well-defined, and that it maps an impedance passive (or energy preserving
or conservative) system into a (well-posed) scattering passive (or energy
preserving or conservative) system. It is also true that a very large class
of non-proper positive analytic functions on C* (those that do not contain
a pure differentiating action) have realizations in the class of impedance
passive systems that we introduce here. We shall return to this in [18].

2 Infinite-Dimensional Linear Systems

Many infinite-dimensional linear time-invariant continuous-time systems can
be described by the equations (5) on a triple of Hilbert spaces, namely, the
input space U, the state space X, and the output space Y. We have u(t) € U,
x(t) € X and y(t) € Y. The operator A is supposed to be the generator of a
strongly continuous semigroup t — 2’. The generating operators A, B and
C are usually unbounded, but D is bounded.

By modifying this set of equations slightly we get the class of systems
which will be used in this work. In the sequel, we think about the block



matrix S = [ég] as one single (unbounded) operator from [5] to H/f],

and write (5) in the form

=Sl =0 so=m

The operator S completely determines the system. Thus, we may identify
the system with such an operator, which we call the node of the system.
There are certain conditions that we need to impose on S in order to get
a meaningful theory. First of all, S must be closed and densely defined as
an operator from [ | into [{]. Let us denote the domain of S by D(S).

Then S can be split into S = {gﬂ, where S; maps D(S) into X and Sy

maps D(S) into Y. By analogy to the finite-dimensional case, let us denote
A&B := 57 and C&D := Sy, so that S = [égg] (the reader who finds this
notation confusing may throughout replace A& B by S; and C&D by S3).
It is not true, in general, that A&B and C&D (defined on D(S)) can be
decomposed into A&B = [A B] and C&D = [C D]; this is possible only
in the case where D(S) can be written as the product of one subspace of X
times another subspace of U. However, we shall require that an extended
version of A& B can be decomposed as indicated above, so that A&B is the
restriction to D(S) of [A B] for suitably defined operators A and B.

The decomposition of A&B is based on the familiar ‘rigged Hilbert
space structure’ (sometimes referred to as a ‘Gelfand triple’).! Let A be a
closed (unbounded) densely defined operator on the Hilbert space X with a
nonempty resolvent set. We denote its domain D(A) by X;. This is a Hilbert
space with the norm |z|x, := [(«¢—A)z|x, where « is an arbitrary number in
a € p(A) (different numbers « give different but equivalent norms). We also
construct a larger Hilbert space X_1, which is the completion of X under
the norm |z|x , := |(« — A)"'z|x. Then X; C X C X_; with continuous
and dense injections. The operator A has a unique extension to an operator
in £(X;X_1) which we denote by A|x (thereby indicating that the domain
of this operator is all of X). The operators A and A|x are similar to each
other and they have the same spectrum. Thus, for all « € p(A), the oper-
ator a — Ajx maps X one-to-one onto X_;. Its inverse (o — A|X)*1 is the
unique extension to X ; of the operator (o — A)~!.

We shall also need the dual versions of the spaces X7 and X_q. If we
repeat the construction described above with A replaced by the (unbounded)
adjoint A* of A, then we get two more spaces, that we denote by X¢ (the

!See, e.g., [9] or [20] or almost any other of the papers listed in the reference list for
details.



analogue of X1) and X%, (the analogue of X ;). Then X{ ¢ X C X¢,
with continuous and dense injections. If we identify the dual of X with
X itself, then X{ becomes the dual of X ; and X%, becomes the dual of
X1.2 We denote the extension of A* to an operator in £(X;X%,) by AT‘X.
This operator can be interpreted as the (bounded) adjoint of the operator
A, regarded as an operator in £(X7; X).

Definition 2.1. We call § a system node on the three Hilbert spaces
(U, X,Y) if it satisfies condition (S) below:?

(S) S:=[4¢B]: [#] 2 D(S) — [{£] is a closed linear operator. Here
A& B is the restriction to D(S) of [A|X B], where A is the generator
of a Cy semigroup on X (the notations Ax € L(X;X_1) and X_4
were introduced in the text above). The operator B is an arbitrary
operator in L(U; X_1), and C&D is an arbitrary linear operator from
D(S) to Y. In addition, we require that

D(S)={[i] € [¥] | Axz+Buec X}.

It follows from the above definition that A& B [5] D D(A&B) — [{5 ],
with D(A&B) = D(S), is a closed operator. Thus, D(S) becomes a Hilbert
space with the graph norm of the operator A&B. Furthermore, it is not
difficult to show that the assumption that S is closed is equivalent to the
assumption that C&D is continuous from D(S) (with the graph norm of
A&B) to Y.

We shall use the following names of the different parts of the system node
S = [égIB)] The operator A is the main operator or the semigroup genera-
tor, B is the control operator, C&D is the combined observation/feedthrough

operator, and the operator C' defined by

T

0

2Often X1 is defined to be the dual of X{ when we identify the dual of X with X
itself.

3This definition is equivalent to the corresponding definition used by Smuljan in [13]
in 1986. Unfortunately, that paper (written in Russian) has not been properly known and
recognized in the English literature, and many of its results have been (independently)
rediscovered, among others by this author. The main part of [13] is devoted to system
nodes which are well-posed (see our Definition 2.6). System nodes appear also in the
work by Salamon [11, 12] in a less implicit way, again primarily in the well-posed case.
Our notation C&D [ ] corresponds to Smuljan’s notation N(z,u) and Salamon’s notation
(z — (o — A) "' Bu) + D(a)u. Compare this to formula (13) below.

Cm::C&D[], T € Xy,




is the observation operator of S.
An easy algebraic computation (see, e.g., [20, Section 4.7] for details)

1 (a7A|X)*1B}
1

shows that for each o € p(A) = p(4|x), the operator [0 is

an boundedly invertible mapping between [#] — [¥] and [}}] = D(S).
Since [7}] is dense in [{}], this implies that D(S) is dense in [75]. Fur-

thermore, since the second column [(O‘_A\f )7'B ] of this operator maps U

into D(S), we can define the transfer function of S by
. _ -1
D(s) :=C&D [(S A|1X) B] , s € p(A), (11)

which is a L(U;Y)-valued analytic function on p(A). By the resolvent for-
mula, for any two «, 8 € p(A),

D(a) -D(B) = Clla—Ax) ' = (B-Ax)']B

= (B—a)Cla—A) (B -Ax)'B. (12)

It is possible to alternatively define a system node by specifying the
main operator A, the control operator B, the observation operator C, and
the transfer function © evaluated at some point « € p(A).

Lemma 2.2. Let A be the generator of a Cy semigroup on a Hilbert space
X, and let X1, X_1 and Ajx be the spaces and the operator induced by A,
as explained in the text preceding Definition 2.1. Let B € L(U;X_1), let
C € L(X;Y), and let D € L(U;Y), where U and Y are two more Hilbert
spaces. Let A&B be the restriction of [Ajx B| to D(A&B) = {[%] € [+] |
Aixr + Bu € X}. Finally, let a € p(A), and define

C&D [i] =C(z - (a— A|X)_lBu) + Du, [i] € D(A&B).
Then S := [ 4ZB] : D(S) := D(A&B) — [{] is a system node on (U, X,Y).
The control operator of this system node is B, the observation operator is
C, and the transfer function satisfies ®(a) = D.

Proof. Most of this is obvious. The only thing which needs to be checked is
that the operator C&D defined above is continuous from D(S) = D(A&B)
(with the graph norm of A&B) to Y. However, this follows from the fact
that

z— (a— A‘X)_lBu =(a— A‘X)_l(ax — (Ajxz + Bu)). O



Thus, if we replace D by ’}S(a) above, then we have written C&D in
terms of A, B, C, and D(«):

C&D [z] =(z—(a— A‘X)_IBU) + 5(a)u. (13)

In particular, the right-hand side does not depend on how we choose a €
p(A).

As shown in [13, Theorem 1.2] (and also in [2] and [9]), if S is a system
node on (U, X,Y), then the (unbounded) adjoint S* of S is a system node
on (Y, X,U). We shall refer to this system node as the dual system node,
and we sometimes denote it by S?. If we let A be the main operator of S,
and let B € L(U;X_1) and C € L(X1;Y) be the control and observation
operators of S, then the main operator of S¢ is A% = A* (by this we mean the
unbounded adjoint of A; see the paragraph before Definition 2.1), the control
operator of S* is B¢ = C* € L(Y;X%,), and the observation operator is
C? = B* € L(X{;U). Furthermore, if D is the transfer function of S, then
the transfer function D¢ of §7 is given by D%(s) = D(3)* for s € p(A*).

Every system node induces a ‘dynamical system’ of a certain type:

Lemma 2.3. Let S be a system node on (U, X,Y). Then, for each xy € X
and u € W2 (R, U) with [u’fg)] € D(S), the equation

loc
[j;(t)] Sy [zgg] , t>0, x(0) ==, (14)

has a unique solution (z,y) satisfying [28} € D(S) for allt > 0, z €
CHR*;X), andy € C(RT;Y).

This lemma is proved in [9] (and also in [20]).*

By taking Laplace transforms in (14) we find that if u is Laplace trans-

formable with transform 4, then the output y is also Laplace transformable
with transform

#(s) = (s — A) a0 + (s — Ayx) ' Ba(s),

~ 15
9(s) = O(s — A)""wo + D(s)a(s), o

for Rs large enough. Thus, our definition of the transfer function is equiva-
lent to the standard definition in the classical case.

“Well-posed versions of this lemma (see Definition 2.6) are (implicitly) found in [11]
and [13] (and also in [21]). In the well-posed case we need less smoothness of u: it suffices
to take w € W2?(RT;U). In addition y will be smoother: y € W22(R*;Y).

loc loc

10



Definition 2.4. By the linear system X generated by a system node S we
understand the family . of maps defined by

HEAREN
O |0, qu 0,0y]

parametrized by ¢ > 0, where zg, z(t), u, and y are as in Lemma 2.3 and
T, u and 7,y are the restrictions of u and y to [0,t]. We call z the state
trajectory and y the output function of X with initial state xy and input
function wu.

In one of our proofs we shall use a technique which we refer to as ‘expo-
nential shifting:’

Lemma 2.5. If § = [égg] is a system node on (U,X,Y), then so is
Sa = [éé‘;g] —[4 98] for every & € C. The domains of these two nodes are the
same: D(Sy) = D(S). If x is the state trajectory and y is the output function
of the system % generated by S with initial state zo and input function
u (as described in Lemma 2.3), then the functions z4(t) = e *z(t) and
Ya(t) = e=y(t) are the state trajectory and output function of the system
Yo generated by S, with initial state xo and input function uy(t) = e~ “tu(t).

We leave the easy proof to the reader. The same transform is also appli-
cable to the more general (distribution) solutions which will be defined in a
moment. Observe that by choosing Ra large enough we can make the semi-
group of the system X, exponentially stable. (Therefore, in many cases we
may assume without loss of generality that the system has an exponentially
stable semigroup.)

So far we have defined Xl only for the class of smooth data given in
Lemma 2.3. It is possible to extend this definition by allowing the state to
take values in the larger space X_1 instead of in X, and by allowing y to be
a distribution.

Let us first take a look at the state, which is supposed to be a solution of
the equation () = A xz(t) + Bu(t) for t > 0, with initial value z(0) = .
However, since B € L(U;X_4), if 29 € X and if u € L, (RT;U), then
this equation has a unique strong solution z € I/V&)C1 (RT; X 1) (see, e.g.,
20, Section 3.8]; the operator Ay is the generator of the Cp semigroup
that we get by extending the semigroup generated by A to X_1). Thus, the
notion of the state trajectory causes no problem if we are willing to accept
a trajectory with values in X ;.

To get a generalized definition of the output y under the same premises

we can do as follows (see [20, Section 4.7] for details). Let g € X, u €

11



LL (RT;U), and let z € I/V&)C1 (R™; X 1) be the corresponding state trajec-

tory. Define [32] by

6] = [ [59] @ 120

(this is the second order integral of [{]). Then {i;g” € D(S) forallt > 0,

and we may define the output y by

y(t) = (C&D [ugg]) £>0, (16)

where we interpret the second order derivative in the distribution sense.’
Another possibility to extend X} to a larger class of data is based on an

additional well-posedness assumption.

Definition 2.6. A system node S is well-posed if, for some t > 0, there is
a finite constant K (¢) such that the solution (z,y) in Lemma 2.3 satisfies

2O + 122000 < K0 (120 + lul2q0)- (WP)

It is energy stable if there is some K < oo so that, for all ¢ € R, the
solution (z,y) in Lemma 2.3 satisfies

O + 1220 < K (70l + [ull32(0,)- (ES)

It is not difficult to show that if (WP) holds for one ¢ > 0, then it holds
for all t > 0.

If a system node S is well-posed, then the corresponding system ¥ can
be extended by continuity to a family of operators

t . Q[t %t
% = ot

from [L%[(ft];U)} to [Lz([gft];y)]. (We still denote the extended family by
X))

For more details, explanations and examples we refer the reader to [1], [2],
[4], [5, 6] [7], [10], [11, 12], [13], [14, 15, 16, 17, 20], [21, 22], [23, 24, 25, 26, 27],
(28], [29], and [30] (and the references therein).

°In the well-posed case, if u € LY .(RT; U), then it suffices to integrate [ ] once, then
apply C&D, and finally differentiate once in the distribution sense.

12



3 Scattering Passive and Conservative Systems

The following definition is a slightly modified version of the definitions in the
two classical papers [31, 32] by Willems (although we use a slightly different
terminology: our passive is the same as Willems’ dissipative).

Definition 3.1. Let J be a bounded self-adjoint operator on [g] A system
node S on (U,X,Y) is J-passive if, for all ¢ > 0, the solution (z,y) in
Lemma 2.3 satisfies

() = |zof? < /Ot< (1077 [29] ) as. (JP)

It is J-energy preserving if the above inequality holds in the form of an
equality: for all ¢ > 0, the solution (z,y) in Lemma 2.3 satisfies

2 — |ol? = /X[g%” T[E0] Y as (JE)

Physically, passivity means that there are no internal energy sources. An
energy preserving system has neither any internal energy sources nor any
sinks.

Different choices of J give different passivity notions. The case J =
[ '] is known as scattering. The case whereU =Y = [V ] and J = [{ §]is
known as impedance (admittance, immittance, resistance, conductance). The

10100
case where U =Y = [V‘[/,], and J = [E 781 2 81] is known as transmission
. . . . . o —10
(chain scattering). In this article we focus on the scattering (J = [3'?])

and impedance (J = [9}]) settings.

Definition 3.2. A system node S is scattering passive” if, for all t > 0, the
solution (z,y) in Lemma 2.3 satisfies

2O — Jeol® < lalZagor) — 1912200 (SP)

It is scattering energy preserving if the above inequality holds in the form
of an equality: for all ¢ > 0, the solution (z,y) in Lemma 2.3 satisfies

2O — lwof? = ulZe(0) — 19220, (SE)

6 Another difference is that we have replaced Willems’ more general storage function
S(x) by the quadratic function |z|%. Our setting becomes the scattering version of the
setting which Willems uses in the second part [32] if we simply take the norm in the state
space to be |z|?> = 1/S(z) (this is possible whenever the storage function is quadratic and
strictly positive).

"In [9], [28], [21, 22], [29], etc., these systems are called dissipative.
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Finally, it is scattering conservative if both S and S* are scattering energy
preserving.

Thus, every scattering passive system s well-posed: the passivity in-
equality (SP) implies the well-posedness inequality (WP).

A scattering passive system can be characterized in several different
ways:

Theorem 3.3. Let S = [A¥B] be a system node on (U,X,Y). Then the
following conditions are equivalent:

(i) X is scattering passive.

(ii) For allt > 0, the solution (z,y) in Lemma 2.3 satisfies

Sle@B <@l — k- 7)
(iii) For all [345] € D(S),
2R(ALB ], 20) < |uol} — |C&D[%][5. (18)

(iv) For some (or equivalently, for all) o € p(A) we have®

[ A+ A (a+ Ajy) (o - A)x)"'B ]
B*(@— A*)"(@+A) B*(@- A" (2Re)(a - Ajx)"'B

~ (19)
c*C C*D(e) | [0 0]
D(a)*C D(a)*D(a)| ~— |0 I’
which is an operator inequality in E([)[(Jl] ; [X[;ID

(v) For some o € p(A)NC™T (or equivalently, for all « € CT), the operator

[A(a) ]§(a)] _ [(&—l—A)(oz—A)1 \/2?]%04(/(\1—14)13] (20)
Cla) D(a) V2Ra C(a — A)~! D(a)

is a contraction. (Here C* is the open right half-plane.)

This is [21, Theorem 7.4]. The main part of this theorem is also found
in [2] (see, in particular, Definition 4.1, Proposition 4.1, Subsection 4.5, and
Theorem 5.2 of [2]).

A similar result is valid for scattering energy preserving systems:

8See the paragraph before Definition 2.1 for the definition of Al*X and X¢,.
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Theorem 3.4. Let S = [égg] be a system node on (U,X,Y). Then the
following conditions are equivalent:

(i) X is scattering energy preserving.
(ii) For allt > 0, the solution (z,y) in Lemma 2.3 satisfies

e = )l — )R- (21)

(iii) For all [35] € D(S),
2R(A&B 53], 70) = [uolf — [C&D [53]]3- (22)

(iv) For some (or equivalently, for all) a € p(A) we have

[ At Ay (c+ Ajy) (o = Apx) 7' B ]
B'(@— A") @+ 4) B'@-A") (2Ra)(a - Ax) B

o o o
o 1]

(23)
c*C C*D(«)
which is an operator identity in E([Xl] ; [X&D.

D(a)*C D(a)*D(a)
U U

(v) For some a € p(A)NC™T (or equivalently, for all o € C™), the operator
[égz; ggz” defined in (20) is isometric.

This theorem is proved in [9]. Most of this theorem is also found in [2].

By applying Theorem 3.4 both to the original system node S and to the
dual system node §* we get a set of systems which characterize scattering
conservative system nodes. Some equivalent but simpler conditions are given
in [9].

A finite-dimensional system is scattering conservative if and only if it
is energy preserving and the input and output spaces have the same dimen-
sion. Some related (but more complicated) results are true also in infinite-
dimensions. See [2], [9], and [21, 22] for details.

4 Impedance Passive and Conservative Systems

As we mentioned above, we get into the impedance setting by taking J =
[94] in Definition 3.1.
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Definition 4.1. A system node S on (U,X,U) (note that ¥ = U) is
impedance passive if, for all ¢ > 0, the solution (z,y) in Lemma 2.3 sat-
isfies

t
(t)% — |ool% <2 / R(y(t), u(t))yrdt. (IP)
0

It is impedance energy preserving if the above inequality holds in the form
of an equality: for all ¢ > 0, the solution (z,y) in Lemma 2.3 satisfies

()% — |zofk =2 / Ry (1), u(t)) . (IE)
0

Finally, S is impedance conservative if both S and the dual system node S*
are impedance energy preserving.

Note that in this case well-posedness is neither guaranteed, nor always
relevant.

Theorem 4.2. Let S = [A¥B] be a system node on (U, X,U). Then the
following conditions are equivalent:

(i) S is impedance passive.
(ii) For all t > 0, the solution (z,y) in Lemma 2.3 satisfies

%|x(t)|§( < 2R(y(t), u(t)). (24)

(iii) For all [33] € D(S),

R(A&B 2], 30) < R(C&D[%3], uo)y. (25)

(iv) For some (or equivalently, for all) a € p(A) we have

A+ Ary (a+A|*X)(a—A|X)—1B ]
Ba- A @+ 4) B(@- A7) Ra)a-Ax) Bl
0 o (26)
- [c 33(a)*+53(a)]’

which is an operator inequality in E([)[(jl] ; [X[;ID
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(v) For some o € p(A)NC™T (or equivalently, for all « € CT ), the operator
[A(a) g(a)} defined in (20) satisfies

C(a) D(a)
A(a)*A(a) A(a)*B(w) o C(oz)\*
[B(a)*A(a) B(a)*B(a)]S[C(m @(a)m(a)*]' 27

(vi) The system node [_égg] 18 a dissipative operator in [5], i.e., for all

[u] € D(S),
(LD = e

Note that if S = [égg] is a system node, then so is [_égg], and that
the domains of these two nodes are the same (it depends only on A& B, and
not on C&D).

Proof. The proof of parts (i)—(v) of this theorem is (almost) identical to the
proof of Theorem 3.3 (= [21, Theorem 7.4]), so we leave it to the reader.
Clearly, (vi) is just another way of writing condition (iii). O

As the following lemma shows, condition (vi) given above is actually true
in a stronger sense.

Lemma 4.3. Let S = [égg] be an impedance passive system node on

(U,X,U). Then [§ 0] - [_égg] has a bounded inverse for all o, B € CT.

In particular, [_égg] 1s maximal dissipative.

Proof. Tt follows from (iii) that the operator A is dissipative, and by the
basic assumption on the system node S, A generates a Cy semigroup. This
implies that the semigroup generated by A is a contraction semigroup, and
hence A is maximal dissipative (i.e., every o € CT belongs to the resolvent
set of A). As discussed at length in [9], for all a € p(A), the operator

[(0‘70‘4)71 (0‘7‘4\{()713] maps [ | one-to-one onto D(S) (and both this op-

erator and it inverse are continuous). A short algebraic computation shows
that, for all « € p(A) and g € C,

(6 Lo o



By part (iv) of Theorem 4.2, the operator —ZA)(a) is dissipative. It is also
bounded, hence it is maximal dissipative, i.e., 8 + 5(04) is invertible for all
B € CT. However, this combined with the preceding factorization shows
that [8‘ 0] — [_égg] has a bounded inverse for all o, 5 € C*. At the same
time we get an explicit expression for the inverse, namely

(5o -[a])
S PR R | 0o 1"
’ ! Cla—4)t B+9(a)

_ [(a - A) ! 0] n [(a — A|X)1B] B4+ D)L [-Cla— A 1]

0 0 1
(29)
Taking « = 8 we find that [7&%5] is maximal dissipative. O

Corollary 4.4. Let S = [égg] be a system node on (U, X,U). Then the
following conditions are equivalent, and they are also equivalent to conditions
(i1)-(vi) in Theorem 4.2:

(i) S is impedance passive.

(vii) The operator [_égg] is the generator of a contraction semigroup on
X
[&]-
viii) For some a € p(A)NC™T (or equivalently, for all o € C™), the operator
P

a— [_égg] 18 invertible, and

e I e G ) IR
1§ a contraction.

Proof. By Theorem 4.2 and Lemma 4.3, S is impedance passive if and only
if the operator [_égg] is maximal dissipative, or equivalently, if and only
if this operator generates a contraction semigroup on [5 ] This proves the
equivalence of (i) and (vii). The contraction semigroup mentioned above
may be regarded as the one corresponding to a scattering passive system
with input space {0}, state space [5 ], and output space {0} (i.e., the system
has no input or output, just a state). The equivalence of (vii) and (viii) now
follows from the equivalence of (i) and (v) in Theorem 3.3 applied to this

special system. O
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Corollary 4.5. A system node S is impedance passive if and only if the
dual system node S* is impedance passive.

Proof. If § = [ég‘jg] is impedance passive, then both A and [(1) 91] S are
maximal dissipative on X respectively [ | (see Corollary 4.4). This implies
that A* and S*[§ ° | are maximal dissipative. The latter condition is
equivalent to the maximal dissipativity of [§ % ] S*. By Corollary 4.4, this
implies that also S* is impedance passive. O

Let us next take a closer look at the energy preserving case.

Theorem 4.6. Let S = [A¢B] be a system node on (U, X,U). Then the
following conditions are equivalent:

(i) X is impedance energy preserving.
(ii) For allt > 0, the solution (z,y) in Lemma 2.3 satisfies

d

Sl = 2R(y(0), u(®))o- (31)

(iii) For all [35] € D(S),

" < [zg] ’ [—é‘g] m > ] =0. (32)

(iv) For some (or equivalently, for all) a € p(A) we have

A+ AT (a+A|*X)(a—A|X)—1B

| X
By, B(@- A7) '(2Ra)(a - Ax) 'B

(33)
[0 C*
0 D) +D(a)]’
which is an operator identity in [,([){,1] ; [Xng.
(v) For some a € p(A)NC™T (or equivalently, for all o € C™), the operator

A(a) B(w) ) _
[C(a) 5(04)} defined in (20) satisfies



(vi) The system node | A¢5 ] is skew-symmetric, i.e., D(S) = D([ _&¢8]) C

D([_AB]"), and
o] ] - [an) )

(vii) For some a € p(A)NC™ (or equivalently, for all « € CT), the operator

o— [_égg] is invertible, and the operator [égzg ]%EZH defined in (30)

1$ an isometry.

[mo] eD(S).  (35)

Proof. We again leave most of the proof to the reader (it is very similar
to the proof of Theorem 4.2). Note that S* [§ %] is a system node with
domain D(S* [§ % ]) = D(S*) [§ %] (it is the adjoint of the system node

[(1) ,01] S = [7({%3]). The only slight difference is that we claim that C' =
B"fX instead of the following formula which one first arrives at, namely

Cz = B*(a — A*) Y@+ A)z, z € X;.
However, as A* = —A on X1, the above formula can be rewritten as
Cr=B*(a-A")Ya- A"z =B, =zcX,. O
An analogous but even simpler result is true for conservative impedance
systems:

Theorem 4.7. Let S = [A¥B] be a system node on (U, X,U). Then the

following conditions are equivalent:

(i) X is impedance conservative.
(ii) For allt > 0, the solution (z,y) in Lemma 2.3 satisfies

() = 2Ry(1), (D), (36)

and the same identity is true for the adjoint system.

(iii) The system node [_égg] is skew-adjoint, i.e.,

A&B]" [ A&B
-C&D| —  |-C&D|"
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(iv) A*=—A, B* =C, and ®(a)+D(—a)* = 0 for some (or equivalently,
for all) o € p(A) (in particular, this identity is true for all o with

Ra #0).

(v) For some a € p(A)NC™T (or equivalently, for all o € C™), the operator
o— [_égg] is tnvertible, and the operator [égz; %&ZH defined in (30)
18 unitary.

Proof. Most of this follows directly from Theorem 4.6. The only fact which
requires a separate proof is that (iv) holds if and only if condition (iv) in
Theorem 4.6 holds both for the original system and for the dual system.

Suppose that (iv) holds. Then it is obvious that three out of the four
identities in (33) hold (the exceptional one being the one in the lower right
corner). This last identity is proved as follows: it follows from (iv) and (12)
that

B(e) = -D(-a)"

(@) + (—a—a@)B*(@— A*) "' (~a - A*)"'B
= —D(a)" +2RaB*(@— A*) (o — A)7'B.

>y )

The corresponding adjoint identity is proved in the same way (note that (iv)
is invariant under duality).

The proof of the converse direction is essentially the same: if (33) holds
both for the original system and the dual system, then A* = —A, B* = C,
and the bottom right corner of (33) together with the above computation
shows that ©(a) + D (—a)* = 0. O

Example 4.8. Let A be the generator of a contraction semigroup on X.
Define S = [_ﬂé _ill");] with D(S) = {[i] € [¥] | z +u € D(A)}.
Then S is an impedance passive system node on (X, X, X) (use part (vi)
of Theorem 4.2 and note that [44] = [1]A[1l 1] can be interpreted as
the dissipative operator A surrounded by another operator and its adjoint).
The transfer function of this node is easily computed, and it turns out to
be D(s) = —sA(s — A)"!, s € Ct. This example is impedance energy
preserving if and only if A generates an isometric semigroup (i.e, A is skew-
symmetric), and it is impedance conservative if and only if A generates a
unitary group (i.e, A is skew-adjoint).
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5 Well-Posed Impedance Passive Systems

Many impedance passive systems are well-posed. There is a simple way of
characterizing such systems:

Theorem 5.1. An impedance passive system node is well-posed if and only
if its transfer function D is bounded on some (or equivalently, on every)
vertical line in CT. When this is the case, the growth bound of the system is
zero, and, in particular, D is bounded on every right half-plane C = {s €
C | Rs > €} with e > 0.

Proof. Suppose that the system node S is both well-posed and impedance
passive. The growth bound of this system is then zero, and this implies that
D is bounded in every half-plane C}! with € > 0; see, e.g., [20, Section 4.6].

Conversely, suppose that ||D(s)|| < M for some M < oo and all s with
Rs = a > 0. Let us transform the vertical line Rs = « to the imaginary
axis by using an exponential shift of the type described in Lemma 2.5: we
replace S by So = [AZB] — [¢9]. This has the effect of replacing the
original transfer function ® by D, given by Dq4(s) = D(s+«). In particular,
]|5a(5)]| < M for all s with s = 0. Moreover, it follows immediately from
Lemma, 2.5 and Definition 4.1 that S, is impedance passive. We claim that
Sq is well-posed. Take a C'*° input function u supported on [0,¢], and let
the initial state (of the shifted system) be zero. The Fourier transforms
of u and the corresponding output function y are the restriction of the
Laplace transforms of these functions to the imaginary axis. Moreover,
7(s) = Da(s)i(s), so |g(s)| < Mla(s)| for all s with s = 0. This implies
that y € L2(R™;V) and that

lyllz20,0) < NYllp2mty < Mllullz2(0,0)

(where M does not depend on w or t). By the Cauchy-Schwarz inequality,

t
2 / Ry (), u(t))dt < 2yl lullizoy < 2M [ull3q -

By (PI),
y (PI) ) )
[z ()" < 2]M“UHH(o,t)-

Thus, for all C* input functions functions u supported on [0, ], the state
trajectory and the output function with initial state zero satisfy

lylB20 + le@OF < (M + 200)[[ull3 g -
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Since C* is dense in L2, this implies that both the input map and the
input-output maps are well-posed. The same argument applied to the dual
system shows that the output map is well-posed, as well. The semi-group is
always well-posed. Thus, the whole shifted system is well-posed, hence so is
the original one. U

Theorem 5.2. Let X be a well-posed system with system node S and transfer
function D. In addition, suppose that 1+ D is invertible on some right half-
plane and that (1 + 9) is bounded on this half-plane. (The last condition
is, in particular true, if X is a well-posed impedance passive system.) Then
the following claims are true:

(i) There is a unique well-posed system X with the following property: if
x 15 the state trajectory and y € LlOC(R"' U) is the output function of
31 with initial state xo and input function u € Lloc( T:U), and if we
use the same initial state Ty and the input function u* = %(u +y)

for the system X%, then the state trajectory =™ of 3* coincides with
the state trajectory x of X, and the output function of X is given by

y* = J5(u—y).

(ii) The system ¥* is scattering passive (or energy preserving or conser-
vative) if and only if ¥ is impedance passive (or energy preserving or
conservative).

(iii) The system node S* can be determined from its main operator A,
control operator B*, observation operator C*, and transfer function
5X, which can be computed from the following formulas, valid for all
o € p(A) N p(4%),?

(@ — A"t T(a—AEX) LB

LO% (- A1 L1 +D%(a)

V2 -1
-( - [-eez]) o
- [(a - A 8]
N [( - Ax)_lB] (1+D(a)™ [-Cla— 4)~ 1]

1

9A|XX is the extension of A* to an operator in £(X;X”,), where X, is the analogue
of X_; with A replaced by A*.
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Sl-

Figure 1: The diagonal transform

In particular, 1 +®(w) is invertible and
D%(e) = (1-D(@)(1 +D(e)™
for all a € p(A) N p(AX).

(iv) The transfer function D of S* has the property that 1+D% is always
invertible on some right half-plane and that (1+2>) "1 is bounded on
this half-plane. If we repeat the same transform with S replaced by S™,
then we recover the original system. Thus, in particular, the system
X% is impedance passive (or energy preserving or conservative) if and
only if ¥ is scattering passive (or energy preserving or conservative).
Furthermore, (38) also holds if we interchange S and S*.

Figure 1 contains a diagram of the transform described in this theorem.
Following [8], we shall refer to the above transform as the diagonal transform.
There is also a non-well-posed version of this theorem to which we shall
return in [19].

Proof. (i) Let us begin with the uniqueness. A system is uniquely defined if
we know its state trajectory and its output for all initial states zy € X and

all input functions u* € L%OC(R+; U), so uniqueness follows as soon as we

have shown that, given any g € X, we can produce every possible function
u* € L2 (R*;U) by choosing v € L2 (R*;U) appropriately and defining

loc loc
u* = %(u + y). This will become evident from the proof below.
Clearly, by slightly modifying the system X we can replace its original

output function y by u* = %(u + y): to do this it suffices to keep A&B

unchanged but replace the original control/feedthrough operator C&D by

58\5/D = % (C&D + [0 1]) The transfer function of the resulting system

Y is %(1 + ’}3) The extra assumption that we imposed on Y implies that

N
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this transfer function has a bounded inverse on some right half-plane, which
means that ¥ is flow-invertible (see [22]). In particular, this means that
given any zp € X and u* € L (R*;U), we can find an input function

v € L2 (RT;U) so that u* = %(u + y) (as needed in the uniqueness

loc

proof). Let us denote the flow-inverted system by 3% and its system node

~ —— X ~ ~

by §* = [ﬁ@x } The only difference between ¥ and X is that we have
C&D

interchanged the meaning of the input and the output: the relationships

between all the different signals are the same, but whereas the input of X is

u and the output is u*, the input of ¥ is u* and the output is u. From X
X

we easily get the final system X*: we keep the top row A& B of the system
—~~—— X
node unchanged but replace C&D by (notice that y* = v/2u — u>)

C&D* =v2C&D —[0 1].

The transfer function of ¥ then becomes
D% =2 (i(u@))l 1= (1-9)(1+D) "
V2
(ii) With the same notations as above, a short mechanical computation
shows that
[ * = |y * = 2R(y, u).

Hence, it follows from Definitions 3.2 and 4.1 that ¥ is impedance passive
if and only if ¥* is scattering passive. For the same reason, ¥ is impedance
energy preserving if and only X is scattering energy preserving. Finally,
by applying this result to the dual system (the construction of the system
Y% described above commutes with the duality transform) we find that X
is impedance conservative if and only if ¥* is scattering conservative.

(iii) This follows from the above construction, Lemma 4.3 and the for-
mulas in [22].

(iv) The invertibility of 1 + ®* follows from the fact that 1 4+ D% =

2(1 + @)*1, and the remaining claims from the fact that u* = %(u +y)

and y* = %(u—y) if and only if u = %(uxwLyX) and u = %(ux—yx). O

In our following theorem we need some additional notions that we have
not used so far, namely the reachable and unobservable subspaces of a system
node S. By the reachable subspace of S we mean the closure in X of the
set of all possible values of z(¢) in Lemma 2.3 if we take o = 0 (and let u
and t vary). Its orthogonal complement is the unreachable subspace. By the
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unobservable subspace of S we mean the closure of the set of all zg € X;
for which the output y in Lemma 2.3 with initial state xp and zero input
function v is identically zero. Its orthogonal complement is the observable
subspace. It is well-known that the orthogonal complement of the reachable
subspace of S is the unobservable subspace of the dual system node S* (and
the same statement is true if we interchange S and S*). A system is simple
if the intersection of the unreachable and unobservable subspaces is {0}.

Theorem 5.3. Every positive analytic function on CT which is proper (i.e.,
it is bounded on some right half-plane) has a simple well-posed impedance
conservative realization, which is unique modulo a unitary similarity trans-
form in the state space.

Proof. Since D is a positive, (1 —i—Aﬁ(oz))*1 exists and is bounded on C*.
Define ®*(a) = (1 — D(a))(1 + D(a))~!. This is a contractive analytic
function on CT, so by it has a simple scattering conservative realization
3%, which is unique modulo a unitary similarity transform in its state space
(see, e.g., [2, Theorem 6.4] or [20, Chapter 11]). From here we get a simple
impedance conservative realization of D by applying Theorem 5.2. The
uniqueness claim remains true (the diagonal transform does not influence
the unreachable and unobservable subspaces). O

We call a system node S (and the corresponding system ) on (U, X,Y")
(approzimately) controllable if the reachable subspace is all of X and (ap-
prozimately) observable if the observable subspace is all of X. A system
which is both controllable and observable is minimal. The realization de-
scribed in Theorem 5.3 will not be minimal in general. However, from this
realization we can derive a minimal realization, e.g., as follows (see [2, Sec-
tion 7] or [20, Section 9.1] for details). We proceed in two steps. Let R be
the reachable subspace of 3. By ‘restricting > to R’ we get a controllable
system ¥ on (U,R,Y) whose main operator is A; = A, control operator

is By = B, observation operator is C1 = C|g, and transfer function D is
the same as the original transfer function. It is not difficult to show that
if the original system ¥ is conservative (scattering or impedance), then the
new system is a energy preserving (scattering or impedance), and that it is
unique among all controllable energy preserving (scattering or impedance)
realizations of ® modulo a unitary similarity transform in the state space.
If ¥, is observable, then we have obtained a minimal passive (and even
energy preserving) realization. If not, then we let O; be the observable
subspace of X1, denote the orthogonal projection of R onto O; by =, and
‘project X7 onto O;’ to get the minimal system Y9 whose main operator is
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Ay = mA; = mAg, control operator is By = wB; = mB, observation oper-

ator is Co = Cyjg = C|r, and transfer function D is still the same as the
original transfer function. This system is passive (scattering or impedance)
whenever ¥ is passive. Thus, we arrive at the following result:

Corollary 5.4. Every proper positive analytic function on CT has a mini-
mal well-posed impedance passive realization.

The above realization is not unique (for example, we could, instead first
have projected the system onto the observable subspace to get a system
whose adjoint is energy preserving, and then restricted the new system to
the reachable subspace), but it is possible to make it unique by requiring it
to be ‘optimal’ in a certain sense.!? See [2, Section 7] and [32, Section 4] for
details.

6 A Feedback Interpretation

The diagonal transform in Theorem 5.2 has a natural output feedback in-
terpretation. In that transform we introduce a new input signal u*, choose
the input of the original system ¥ to be u = v/2u* — y, and regard the new

output signal to be y* = %(u —y). If we ignore the trivial scaling factors

V2 and 1/+/2, then the replacement of u by the new input «* is a typical
negative identity state feedback, whereas the replacement of y by y* just
amounts to the addition of an extra feedthrough term to the resulting closed
loop system. Recall that if 3 is a well-posed linear system on (U, X,Y"), then
K € L(Y;U) is called an admissible feedback operator if the replacement of
the input signal v by u = v’ + Ky leads to a new well-posed linear system
with input signal ©®. In the special case where U = Y considered above
we may use negative identity output feedback, i.e., we let K = —1. Thus,
Theorem 5.2 implies the following result:

Corollary 6.1. Let X be a well-posed impedance passive system induced by
a system node S = [A¥B] on (U, X,U). Then —1 is an admissible feedback
operator for X, and the closed loop system corresponding to this feedback
operator is energy stable (in the sense of Definition 2.6).

10The above construction produces Arov’s optimal realization. This is the minimal
realization which uses the norm in the state space induced by Willems’ available storage.
If we instead first project onto the observable subspace and then restrict to the reachable
subspace, then we get Arov’s *-optimal realization. This is the realization which uses the
norm induced by Willems’ required supply function.

27



S
g
b

Sl

Figure 2: Modified diagonal transform

Instead of using negative identity feedback we may use any scalar nega-
tive feedback. As a matter of fact, even every strictly positive operator-valued
feedback will make the closed loop system energy stable. To see this we may

argue as follows. If § = [ égg] is an impedance passive system node, then

SO 18
S, — I 0 A&B| (I 0
E= 1o E*| |c&D| |0 E|’

where E is an arbitrary bounded linear operator on U; this follows from
Theorem 4.2. Moreover, Sg is impedance energy preserving or conservative
whenever S has this property. If E is invertible, then the converse is also
true: passivity, or energy preservation, or conservativity of Sg implies that
S has the same property. We can apply Theorem 5.2 to the system node
SE instead of the system node S to get the scattering passive system drawn
in Figure 2 (this is true independently of whether E is invertible or not).
If E is invertible, then this effectively amounts to the feedback connection
with feedback operator EE* > 0 drawn in Figure 3. In this figure we
have ignored the feedforward connection in Figure 2, and we have used the
invertibility of E to replace the output § by the output y = (E*)~ !¢ (the
mapping from u* to y in Figure 2 need not be well-posed in general, but
g is always a well-posed output). The invertibility of F is also needed if
we want to replace the input v* in Figure 3 by the new independent input
v = [\/EE]*luX.

Acknowledgments. This paper would not have been written, had it
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workshop in the summer of 2001, and she made me realize that there were
many aspects of these functions that I did not understand properly. An
additional significant source of inspiration was the paper [29] by George

28



u” v u Yy
L E et ®
o]
EE*

Figure 3: Equivalent feedback connection

Weiss and Marius Tucsnak discussed above. Much of my present knowledge
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Jarmo Malinen and George Weiss.
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