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Abstract

We apply a spectral factorization approach to the in�nite

horizon quadratic cost minimization problem for a stable

parabolic equation, and show that this approach leads to

the same conclusions as the classical approach based on

the algebraic Riccati equation. In particular, we �nd that

the so called regular spectral factorization assumption is

valid in this case.

1 Introduction

We study the in�nite horizon quadratic cost minimization

problem for a parabolic equation, and look for a feedback

representation of the function u which minimizes the cost

function

Q(x

0

; u) =

Z

1

0

�

ky(t)k

2

+ ku(t)k

2

�

dt; (1)

where y is the output of the system

x

0

(t) = Ax(t) +Bu(t); t � 0;

y(t) = Cx(t); t � 0;

x(0) = x

0

:

(2)

Here u(t) 2 U , x(t) 2 Z, and y(t) 2 Y , where the input

space U , the state space Z, and the output space U are

separable Hilbert spaces. The operator A generates an

exponentially stable analytic semigroup A on Z, and the

observation operator C is not too unbounded compared

to the control operator B. More precisely, there exists

some  < 1 such that C(�A)

�

B is a bounded linear

operator fromU to Y , where (�A)

�

represents the usual

fractional power of A [Pazy, 1983, Section 2.6].

There is a well-developed state space solution of this

problem, based on the di�erential and algebraic Riccati

equations. The major part of this theory up to the early

90's is summarized in Bensoussan et al. [1992], Lasiecka

and Triggiani [1991], and some more recent developments

are found in, e.g., Lasiecka et al. [1995, 1997], Pandol�

[1997], Triggiani [1994].

Recently another similar but seemingly di�erent theory

has been developed for the solution of the same problem

(without the parabolicity assumption) within the class

of regular well-posed linear systems in the sense of Sala-

mon and Weiss. See Sta�ans [1997, 1998b] and Weiss

and Weiss [1997]. The latter theory is based on spectral

factorization, and it su�ers from the fact that some of

the more speci�c conclusions (including all those that re-

fer to the algebraic Riccati equation) utilize a \regular

spectral factorization hypothesis" which can be di�cult

to verify. We show that the regular spectral factoriza-

tion hypothesis is satis�ed in the parabolic case (1){(2),

which means that the spectral factorization approach of

Sta�ans [1997, 1998b] and Weiss and Weiss [1997] applies

to this problem in its full strength. The key ingredient in

the regularity proof is the \boot-strap argument" intro-

duced in [Lasiecka and Triggiani, 1983, pp. 52{53]). The

conclusions that we get are essentially the same as the

conclusions obtained with the more classical approach,

restricted to stable systems.

2 The Parabolic Equation

We let A generate an exponentially stable analytic semi-

group A in Z. For each � 2 R we let Z

�

= (�A)

��

Z be

the domain of (�A)

�

, with norm kxk

Z

�

= k(�A)

�

xk

Z

and inner product hx

1

; x

1

i

Z

�

= hx

1

; (�A

�

)

�

(�A)

�

x

2

i

Z

.

Then the restrictions of A to Z

�

for � > 0 and the ex-

tensions of A to Z

�

for � < 0 (which we still denote by

A) generate analytic semigroups in Z

�

, for all � 2 R.

These semigroups are all similar to each other, and they

commute with A

�

for all � 2 R. We therefore denote

all of them by the same letter A. The generator of the

semigroup A on Z

�

is then A 2 L(Z

�+1

;Z

�

). Moreover,

for each t > 0 and � 2 R, A

t

maps Z

�

into \

�2R

Z

�

, and

for each � � 0, there exist constants K > 0 and � > 0



such that

kA

�

A

t

k � Kt

��

e

��t

; t > 0; (3)

where the norm represents the operator norm in any one

of the spaces Z

�

[Pazy, 1983, Theorem 6.13]. The same

construction can be repeated with A replaced by A

�

to

give another scale of Hilbert spaces Z

�

�

= (�A

�

)

��

Z with

similar properties. We identify Z

�

�

with the dual of Z

��

by using Z as the pivot space. Note that Z

0

= Z

�

0

= Z.

The assumptions on the operators B and C in (2) are

B 2 L(U ;Z

�

B

) and C 2 L(Z

�

C

;Y ). Here �

B

and �

C

are two �xed numbers satisfying �

B

� �

C

< �

B

+1. For

each � 2 R, x

0

2 Z

�

, and u 2 L

1

(R;U ) we de�ne

(Bu)(t) =

Z

t

�1

A

t�s

Bu(s) ds; t 2 R;

(Cx

0

)(t) = CA

t

x

0

; t 2 R

+

;

(Du)(t) = C(Bu)(t); t 2 R:

(4)

This results in a well-posed linear system:

Proposition 1 Let A generate an exponentially stable

analytic semigroup A in Z, and let B 2 L(U ;Z

�

B

) and

C 2 L(Z

�

C

;Y ), where �

B

� �

C

< �

B

+ 1. De�ne B,

C, and D as in (4), and �x any � satisfying �

C

� 1=2 <

� < �

B

+1=2. Then 	 = [

A B

C D

] is a stable strictly causal

regular well-posed linear system on (U;X; Y ), where X =

Z

�

. The generating operators of this system are A, B,

and C.

Here \well-posed" means that the initial value x

0

2

X (where X = the state space) and the input u 2

L

2

([0;1;U )) is mapped continuously into the �nal state

x(t) 2 X and output y 2 L

2

([0;1;Y )). Regularity

means that this system has a well-de�ned feedthrough

operator, and the strict causality means that this

feedthrough operator is zero. See, e.g., Curtain and Weiss

[1989], Sta�ans [1997, 1998a], and Weiss [1994a,b] for

details. The easy proof of this proposition is given in

Sta�ans [1998e] (and it is also found implicitly in Lasiecka

and Triggiani [1991]). It is based on (3) and Young's in-

equality [Stein and Weiss, 1971, p. 178] (the convolution

of an L

p

-function with an L

q

-function belongs to L

r

with

1=r = 1=p+1=q�1, and it is continuous if 1=p+1=q = 1).

(The exponential stability is not yet important here, but

we will use it later.)

3 LQ Optimal Control

Since 	 is an exponentially stable regular well-posed lin-

ear system, we can apply both the PDE approach of Ben-

soussan et al. [1992] and Lasiecka and Triggiani [1991]

and the spectral factorization approach of Sta�ans [1997,

1998b] and Weiss and Weiss [1997] to solve the quadratic

cost minimization problem where (1) is minimized over

all u 2 L

2

(R

+

;U ) subject to (2). The starting point is

the following simple result:

Proposition 2 Make the same assumptions and intro-

duce the same notations as in Proposition 1. Then,

for each x

0

2 X = Z

�

, there is a unique control

u

opt

2 L

2

(R

+

;U ) which minimizes the cost (1) subject to

(2). Denote the corresponding minimal cost by Q

opt

(x

0

).

Then Q

opt

is a positive (possibly unbounded) quadratic

functional on Z which can be written in the form

Q

opt

(x

0

) = min

u2L

2

(R

+

;U)

Q(x

0

; u) = hx

0

;�x

0

i

Z

;

where the inner product is computed in Z, and � (the

Riccati operator) is a positive (possibly unbounded) oper-

ator in Z.

A more interesting task is to �nd a feedback repre-

sentation of u

opt

(x

0

), and this requires a much deeper

analysis.

Theorem 1 Make the same assumptions and introduce

the same notations as in Proposition 1, and �x any �

satisfying 0 < � � 1+ �

B

��

C

. Then B, C, and � have

the following \smoothness" properties:

B 2 L(U ;Z

�

B

) � L(U ;Z

�

C

�1+�

);

C 2 L(Z

�

C

;Y );

B

�

2 L(Z

�

��

B

;U ) � L(Z

�

��

C

+1��

;U );

C

�

2 L(Y ;Z

�

��

C

);

� 2 L(Z

�

C

�1=2+�

;Z

�

��

C

+1=2��

);

� 2 L(Z

�

C

;Z

�

��

C

+1��

);

� 2 L(Z

�

C

�1+�

;Z

�

��

C

):

(5)

The Riccati operator � is the unique stabilizing solution

(in the sense of Mikkola [1997]) of the algebraic Riccati

equation

A

�

� +�A +C

�

C = �BB

�

�; (6)

valid in L(Z

�

C

+�

;Z

�

��

C

��

). The optimal control u

opt

(x

0

)

can be expressed in feedback form with feedback operator

K = �B

�

� 2 L(Z

�

C

;U ): (7)

More precisely, the operator

A

	

= A +BK (8)

generates an exponentially stable analytic semigroup A

	

on Z

�

for all � with �

C

�1 � � � �

B

+1, and u

opt

(x

0

) =

KA

	

x

0

for all x

0

2 Z

�

with �

C

� 1=2 < � < �

B

+ 1=2.

This is a slightly enhanced version of [Lasiecka

and Triggiani, 1991, Theorem 2.1] (which is based on

Da Prato and Ichikawa [1985], Flandoli [1987], and

Lasiecka and Triggiani [1987]). In the proof of this the-

orem we may, without loss of generality, take �

C

= 0

(as is done throughout in Lasiecka and Triggiani [1991]),

or �1=2 < �

B

� 0 � �

C

< 1=2 (as is done in Sta�ans

[1998e]). This is achieved with a simple change of pivot



space fromZ to Z

�

for some � 6= 0; see [Bensoussan et al.,

1992, Vol. I, Section 2.5] or [Sta�ans, 1998e, Proposition

1]. Today two di�erent proofs of this theorem are avail-

able: the original proof given in Lasiecka and Triggiani

[1991] (combined with some additional straightforward

estimates), and the proof given in Sta�ans [1998e] which

is based on spectral factorization combined with Lasieck-

a's and Triggiani's boot-strap argument.

4 Spectral Factorization

In the proof of Theorem 1 given in Sta�ans [1998e] the

following result plays a key role:

Theorem 2 Make the same assumptions and introduce

the same notations as in Proposition 1. De�ne K by (7),

and, for all � 2 R, x

0

2 Z

�

, and u 2 L

1

(R;U ), de�ne

(Kx

0

)(t) = KA

t

x

0

; t 2 R

+

;

(Fu)(t) = K(Bu)(t); t 2 R:

(9)

Then

h

A B

[

C

K

] [

D

F

]

i

is a strictly causal regular well-posed lin-

ear system on (U;X; Y ), and also the adjoint of this sys-

tem is regular. Moreover, I � F is the (unique) spectral

factor of I+D

�

D with identity feedthrough operator. The

inverse of this spectral factor is I + F

	

, where

(F

	

u)(t) = K

Z

t

�1

A

t�s

	

Bu(s) ds; t 2 R: (10)

The statement that X = I � F is a spectral factor of

I�D

�

D means that X is a bounded causal shift-invariant

operator on L

2

(R;U ) with a bounded inverse, and that

X

�

X = I + D

�

D; see Sta�ans [1997, 1998b], Weiss

and Weiss [1997] for details. This theorem can be de-

duced from Theorem 1, but the approach used in Sta�ans

[1998e] is the opposite one: �rst Theorem 2 is proved,

and then Theorem 1 is derived from Theorem 2. The

existence of a spectral factor X follows from a very gen-

eral result: every bounded strictly positive time invari-

ant operator on L

2

(R;U ) has a spectral factor [Sta�ans,

1997, Lemma 18]. Moreover, if we de�ne F = I � X ,

then it is possible to show that there is a output map

K such that

h

A B

[

C

K

] [

D

F

]

i

is a stable well-posed linear sys-

tem on (U;X; Y ), that the closed loop system that we get

by feeding the second output back into the input is also

well-posed and stable, and that u

opt

is equal to the second

output of this closed loop system in the absence of an ex-

ternal input [Sta�ans, 1997, Theorem 27]. This also gives

us the �rst estimate � 2 L(Z

�

C

�1=2+�

;Z

�

��

C

+1=2��

) on

� in (5). For this part of the theory the parabolic nature

of (2) is irrelevant.

The parabolicity comes into play when we want to de-

rive the algebraic Riccati equation (6), because for the

derivation of this equation we need, for example, both X

and X

�

to be regular in the sense of Weiss [1994a]. If

U is �nite-dimensional, then it is easy to prove this reg-

ularity by appealing to a classical spectral factorization

result in the Wiener algebra [Clancey and Gohberg, 1981,

Theorem 6.3, p. 63 and Corollary 1.1, p. 75]. To carry

out this step in the case where U is in�nite-dimensional

we use the boot-strap argument introduced by Lasiecka

and Triggiani in [Lasiecka and Triggiani, 1983, pp. 52{

53]. The same argument gives us the second estimate

� 2 L(Z

�

C

;Z

�

��

C

+1��

) on � in (5), and, via duality, the

third estimate � 2 L(Z

�

C

�1+�

;Z

�

��

C

). The claims about

the analyticity of the closed loop semigroup A

	

follows

from standard perturbation results for analytic genera-

tors [Lunardi, 1995, Propositions 2.2.15 and 2.4.1].

It is a interesting open problem to �nd additional ex-

amples on the existence of a regular spectral factor. See

Curtain and Sta�ans [1998].
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