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Abstract. We study the nonstandard in�nite horizon quadratic cost

minimization problem in a particular subclass of Salamon's and Weiss' well-

posed linear systems, more general than the Pritchard-Salamon class. In

particular, instead of just working with controls that are L

2

in time, we also

investigate how the system behaves under the action of continuous controls.

The additional structure has been modelled after existing results for parabolic

equations, and it provides a uni�ed framework for many of these results. We

prove that in this setting all possible input/output maps (both open and

closed loop; both original output and feedback output) are regular together

with their adjoints in the sense of Weiss, and that the recently discovered

correction term in the algebraic Riccati equation is absent in this case.
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1 Introduction

We study in�nite-dimensional systems that can formally be written in the

familiar form

x

0

(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t); t 2 R

+

;

x(0) = x

0

:

(1)

We interpret this equation in a weak \integral" sense that will be made precise

in a moment. As for now, let us think about the state x as a continuous

function of t in a Hilbert space H, and let us think of u and y are L

2

-

functions with values in two more Hilbert spaces U (the input space) and Y

(the output space), respectively, which satisfy (1) in a generalized sense.

For this system we de�ne a (slightly nonstandard) quadratic cost minimiz-

ation problem as follows. We are given a weighting operator J = J

�

2 L(Y ),

and, for each x

0

2 H, we minimize the cost

Q(x

0

; u) = hy; Jyi

L

2

(R

+

;Y )

; (2)

where y is the output of (1) de�ned in formula (24) below.

1

The minimization

takes place over all those u 2 L

2

(R

+

;U) for which the corresponding output

y belongs to L

2

(R

+

;Y ).

2

The problem that we have outlined above has been studied in, e.g.,

Sta�ans [1997abc] under minimal assumptions on A, B, and C. The the-

ory developed there was based on spectral factorization, and some parts

of that theory required a somewhat restricting \regular spectral factoriza-

tion assumption". The purposes of the present work is to present a class

of systems for which this regular spectral factorization assumption is always

satis�ed. The most important example belonging to this class is a system

built around an analytic semigroup, with operators B and C that allow the

\standard" amount of unboundedness that one �nds in the literature for this

class of systems.

3

1

As the examples discussed in Section 6 show, the standard quadratic cost minimization

problem where D = 0 and there is a direct cost on the input u is a special case of this

problem.

2

We shall actually most of the time limit the discussion to stable systems, in which

case the condition y 2 L

2

(R

+

;Y ) is redundant.

3

That is, C(�I �A)

�

B is bounded for some  < 1 and all � 2 �(A).
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Our assumptions being \standard", one asks the question as to what de-

gree our conclusions are new, especially since the quadratic optimal control

theory for parabolic equations appears to be in a fairly mature state. The ma-

jor part of this theory up to the early 90's is summarized in Bensoussan et al.

[1992], Lasiecka and Triggiani [1991b], and some more recent developments

are found in, e.g., Lasiecka et al. [1995 1997], Pandol� [1997], Triggiani [1994].

However, none of these works say anything explicit about the input/output

behavior of the resulting closed loop systems. This information may not be

that important in the standard quadratic cost minimization problem, but

it is crucial in, for example, the H

1

-theory, where the original problem is

to minimize the norm of a particular closed loop input/output map. Thus,

we �nd it necessary to study the input/output behavior of the closed loop

systems appearing in the references cited above.

However, this in not the only motivation, not even the main motivation

for the present work. It appears to be possible, even straightforward, to add

the missing statements about the input/output behavior of the closed loop

systems to the references cited above by using their original technique. On

the other hand, appropriate versions of these statements are already found

in the theory based on spectral factorization developed in Mikkola [1997],

Sta�ans [1997abcde], Weiss and Weiss [1997], and it is very tempting to try

to combine the two separate theories, the one based on spectral factorization,

and the one based on the analyticity of the semigroup, into one. Doing so

we expand both theories. On one hand, we get a better understanding of

the input/output behavior of systems built around an analytic semigroup

under the action of L

2

-controls (this behavior plays a very minor role in

the existing theory for parabolic systems), and on the other hand, we gain

information about the behavior of well-posed linear systems with a strong

internal damping under the action of continuous controls (as opposed to L

2

-

controls). In particular, as we mentioned above, for this class of systems we

are able to verify the troublesome regular spectral factor assumption which

is needed for the Riccati equation theory.

We use the following notation:

L(U ;Y ); L(U): The set of bounded linear operators from U into Y or from

U into itself, respectively.

I: The identity operator.

A

�

: The (Hilbert space) adjoint of the operator A.

A � 0: A is (selfadjoint and) positive de�nite.
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A >> 0: A � �I for some � > 0, hence A is invertible.

dom(A): The domain of the (unbounded) operator A.

range(A): The range of the operator A.

�(A): The resolvent set of the operator A.

N: N is the set of positive integers.

R; R

+

; R

�

: R := (�1;1), R

+

:= [0;1), and R

�

:= (�1; 0].

L

p

(J ;U): The set of U -valued L

p

-functions on the interval J .

L

p

c

(J ;U): Functions in L

p

(J ;U) whose support is bounded to the left.

L

p

(J ;U ;!): The set of functions u for which (t 7! e

�!t

u(t)) 2 L

p

(J ;U).

C(J ;U): This is the set of U -valued continuous functions on J .

C

c

(J ;U): Functions in C(J ;U) whose support is bounded to the left.

C

c�

(J ;Y ): Functions in C(J ;Y ) whose support is bounded to the right.

C

0

(J ;U): Functions in C(J ;U) vanishing at the left end-point of J (�nite,

or �1).

BC(J ;U): The set of U -valued bounded continuous functions on J .

BC

0

(J ;U): Functions in BC(J ;U) vanishing at in�nity. Here J = R

�

or

J = R

+

.

BC

0

(J ;U ;!): The set of functions u for which (t 7! e

�!t

u(t)) 2 BC

0

(J ;U).

H

1

(U ;Y ;!): The set of L(U ;Y )-valued H

1

functions over the half-plane

<z > !.

h�; �i

H

: The inner product in the Hilbert space H.

�(t): The bilateral time shift operator �(t)u(s) := u(t + s) (this is a

left-shift when t > 0 and a right-shift when t < 0).

�

J

: (�

J

u)(s) = u(s) if s 2 J and (�

J

u)(s) = 0 if s =2 J . Here J � R.

�

+

; �

�

: �

+

:= �

R

+

and �

�

:= �

R

�

.

We extend a L

2

-function u de�ned on a subinterval J of R to the whole

real line by requiring u to be zero outside of J , and we denote the extended

function by �

J

u. We use the same symbol �

J

both for the embedding operator

L

2

(J) ! L

2

(R) and for the corresponding projection operator L

2

(R) !

L

2

(J). With this interpretation, �

J

L

2

(R;U) = L

2

(J ;U) � L

2

(R;U) for each

interval J � R.

Acknowledgment. In the fall of 1997 we had a stimulating discussion

with Prof. Roberto Triggiani which enabled us to sharpen Corollary 1.
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2 The Main Result

Let us begin by describing our assumptions on the operator A in (1). We

let H be a Hilbert space, and let A generate a C

0

semigroup (i.e., a strongly

continuous semigroup) A in H. We denote the domain of A by H

1

. Choose

an arbitrary number � from the resolvent set of A. Then H

1

= (�I�A)

�1

H,

and we can choose the norm in H

1

to be kxk

H

1

= k(�I � A)xk

H

. Let H

�1

be

the completion of H under the norm k(�I � A)

�1

xk

H

. Then H

1

� H � H

�1

with dense and continuous embeddings, (�I � A) is an isomorphism of H

1

onto H, and (�I �A) extends to an isomorphism of H onto H

�1

. We repeat

the same construction with A and A replaced by their adjoints A

�

and A

�

to

get two more Hilbert spaces H

�

1

= dom(A

�

) and H

�

�1

, with H

�

1

� H � H

�

�1

:

It is possible to identify H

�

�1

with the dual of H

1

and H

�1

with the dual of

H

�

1

if we use H as the pivot space.

In addition to these spaces we shall need two more reexive

4

Banach

spaces W and V , satisfying

5

H

1

� W � H � V � H

�1

(continuous dense embeddings): (3)

Thus, with H as pivot space,

H

�

1

� V

�

� H � W

�

� H

�

�1

(continuous dense embeddings): (4)

We assume further that

A(t)W � W , t � 0, and A is strongly continuous in W; (5)

A(t)V � V , t � 0, and A is strongly continuous in V: (6)

Thus, A is a C

0

semigroup both in W and in V , in addition to being a

C

0

semigroup in H. We use the same letter A to represent any one of the

generators of these semigroups.

Before proceeding, let us remark that the spaces W and V did not appear

in our earlier work Sta�ans [1997abc] (although we there construct a space

4

In some hyperbolic cases it would be desirable to remove the reexivity assumptions

on W and V , and the assumptions about the embeddings being dense.

5

To �x the ideas, let us remark that we in the applications to a system based on a

parabolic semigroup take W = (�I � A)

�

1

H and V = (�I � A)



2

H , where � 2 �(A),

0 � 

1

<

1

2

, and 0 � 

2

<

1

2

. In particular, note that the total degree of unboundedness

 = 

1

+ 

2

is then less than one.
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W

B

� W that in some respect plays the role of the present space W , and

another space V

�

(C;K)

� V

�

that in some respect plays the role of V

�

).

6

On

the other hand, in much of the earlier literature on the parabolic equation

(see e.g., Lasiecka and Triggiani [1991b]) the space H is absent, and W is

used as the basic (pivot) space. This changes of pivot space changes the

Riccati operator and all dual operators in a straightforward way; see Section

5. As we remarked earlier, the use of the space H could be avoided here too,

at the expense of loosening the connection to Sta�ans [1997abc].

To this setting we add a control operator B, an observation operator C,

and a feed-forward operator D with the following continuity properties:

B 2 L(U ;V ); C 2 L(W ;Y ); D 2 L(U ;Y ); (7)

where U (the control space) and Y (the output space) are two more Hilbert

spaces, with U separable. We furthermore de�ne

(Lu)(t) :=

Z

t

0

A(t� s)Bu(s) ds; u 2 L

1

loc

(R

+

;U); t 2 R

+

; (8)

Bv :=

Z

0

�1

A(�s)Bv(s) ds; v 2 L

1

c

(R

�

;U); (9)

(Cx

0

)(t) := CA(t)x

0

; x

0

2 W; t 2 R

+

: (10)

Then, because of (5) and (7),

L : L

1

loc

(R

+

;U)! C

0

(R

+

;V ); (11)

B : L

1

c

(R

�

;U)! V; (12)

C : W ! C(R

+

;Y ); (13)

and

(Lu)(t) = B�(t)�

+

u; (14)

where � is the bilateral time shift operator �(t)u(s) = u(s+ t) and �

+

is the

cuto� operator (�

+

u)(s) = u(s) for s > 0, (�

+

u)(s) = 0 for s < 0.

We impose the following additional \admissibility" assumption on B and

C:

B : L

2

c

(R

�

;U)! H; (15)

B : C

c

(R

�

;U)!W; (16)

C : H ! L

2

loc

(R

+

;Y ): (17)

6

In those works the letter W was used as a synonym for H

1

, and the letter V was used

as a synonym for H

�1

.
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The precise interpretation of (17) is that for each T > 0 there should exist a

constant C

T

such that kCx

0

k

L

2

([0;T ];Y )

� C

T

kx

0

k

H

for all x

0

2 W , and hence,

C has a unique extension to a continuous operator H ! L

2

loc

(R

+

;Y ) (that

we still denote by the same letter C). As is well-known (and easy to see), the

two conditions on B can be replaced by the following equivalent conditions

on L:

L : L

2

loc

(R

+

;U)! C

0

(R

+

;H); (18)

L : C

0

(R

+

;U)! C

0

(R

+

;W ): (19)

The assumptions (7) and (16) make it possible to de�ne the (time-invariant)

input/output map D of the system (1) as follows:

(Du)(t) := CB�(t)u+Du(t)

= C

Z

t

�1

A(t� s)Bu(s) ds+Du(t);

u 2 C

c

(R;U); t 2 R:

(20)

If u is supported on R

+

, then we can alternatively write this as

(Du)(t) = C(Lu)(t) +Du(t) = C

Z

t

0

A(t� s)Bu(s) ds+Du(t);

u 2 C

0

(R

+

;U); t 2 R

+

:

(21)

Then it follows from (7) and (16) that

D : C

c

(R;U)! C

c

(R;Y ): (22)

As we shall see in a moment, this implies that D can be extended to a

continuous map

D : L

2

c

(R;U)! L

2

c

(R;Y ); (23)

that we still denote by D.

Appealing to the standard variation of constants formula in the case of

bounded control and observation operators and to the admissibility condi-

tions (17) and (23) we de�ne the solution x and the output y of (1) to be

given by

x(t) := A(t)x

0

+ (Lu)(t) = A(t)x

0

+ B�(t)�

+

u;

y := Cx

0

+D�

+

u;

x

0

2 H; u 2 L

2

loc

(R

+

;U); t 2 R

+

:

(24)
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Then, by (8){(23),

x

0

2 W and u 2 C

0

(R

+

;U) =) x 2 C(R

+

;W ) and y 2 C(R

+

;Y );

(25)

x

0

2 H and u 2 L

2

loc

(R

+

;U) =) x 2 C(R

+

;H) and y 2 L

2

loc

(R

+

;Y );

(26)

and if C : V ! L

1

loc

(R

+

;Y ), then

x

0

2 V and u 2 L

1

loc

(R

+

;U) =) x 2 C(R

+

;V ) and y 2 L

1

loc

(R

+

;Y ):

Let us summarize the various assumptions and claims that we have made

so far into the following lemma:

Lemma 1 Let (3), (5), (7), (15), (16), and (17) hold in the sense explained

above. Then so do (4), (11), (12), (13), (14), (18), (19), (22), (23), (25),

and (26).

In addition to the \standard" results listed above, we claim that the

following more speci�c results are valid:

Lemma 2 Let conditions (3), (5), (7), (15), (16), and (17) hold. Then

[

A B

C D

] is a regular well-posed linear system on (U;H; Y ) in the sense of

[Sta�ans 1997b, De�nition 2.5], with generating operators [

A B

C D

], state x,

and output y. Moreover,

L : C(R

+

;U)! C

0

(R

+

;W ); (27)

D�

+

: C(R

+

;U)! C(R

+

;Y ); (28)

(�I � A)

�1

BU � W; � 2 �(A); (29)

lim

�!1

k(�I � A)

�1

Buk

W

= 0; u 2 U; (30)

the claim (25) can be strengthened to

x

0

2 W and u 2 C(R

+

;U) =) x 2 C(R

+

;W ) and y 2 C(R

+

;Y )

(31)

(i.e., the assumption u(0) = 0 has been removed), and for each x

0

2 W and

u 2 C(R

+

;U), the state x and output y de�ned in (24) satisfy

y(t) = Cx(t) +Du(t); t 2 R

+

: (32)

8



These lemmas are proved in Section 3, together with analogous lemmas

for the dual system and for the stable case.

Let us remark that we have still not made any signi�cant use of the space

V , and we can without loss of generality take V = H

�1

in Lemmas 1 and 2.

The space V , or rather its dual space V

�

, becomes important when we get

to the dual system (see Section 3).

Thanks to the preceding lemma we can apply the technique used in

Sta�ans [1997abc] to study the quadratic cost minimization problem presen-

ted in the introduction, where we minimize the cost Q(x

0

; u) in (2). A central

role in this theory is played by the \optimal cost operator" �, also called the

Riccati operator :

De�nition 1 If, for each x

0

2 H, the minimum of Q(x

o

; u) is achieved for

some u 2 L

2

(R

+

;U), and if there exists an operator � = �

�

2 L(H) such

that the optimal cost is given by

hx

0

;�x

0

i

H

:= min

u2L

2

(R

+

;U)

Q(x

0

; u);

then � is called the Riccati operator of (1) with cost operator J .

For simplicity, we most of the time suppose that the system is stable. In

this connection stability means that for each x 2 H and each u 2 L

2

(R

+

;U),

the output y belongs to L

2

(R

+

;Y ). To achieve this we impose the following

additional stability assumptions on C and D:

C : H ! L

2

(R

+

;Y ); (33)

D : BC

0

(R;U)! BC

0

(R;Y ): (34)

As we shall see, this implies that

D : L

2

(R;U)! L

2

(R;Y ): (35)

We remark that these conditions are implied by the earlier admissibility

assumptions whenever A is exponentially stable in both H and W (but they

can be satis�ed even when A is unstable).

In order for the cost function Q to be bounded from below we impose the

following standard coercivity condition:

9



De�nition 2 Let J = J

�

2 L(Y ). The operator D�

+

de�ned in (21) is J-

coercive i� �

+

D

�

JD�

+

>> 0 on L

2

(R

+

;U), i.e., hD�

+

u; JD�

+

ui

L

2

(R

+

;Y )

�

�kuk

2

L

2

(R

+

;U)

for all u 2 L

2

(R

+

;U) and some � > 0. The system (1) is

J-coercive i� its input/output map D is J-coercive.

We recall the following basic result from Sta�ans [1997c]:

Lemma 3 ([Sta�ans 1997a, Lemma 13 and Theorem 27] and [Sta�ans

1997c, Lemma 2.5]) Let J = J

�

2 L(Y ) and let the system (1) be stable

and J-coercive in the sense explained above. Then, for each x

0

2 H, there

is a unique control u

opt

(x

0

) 2 L

2

(R

+

;U) that minimizes the cost function

Q(x

0

; u) in (2). This control is given by

u

opt

(x

0

) = �(�

+

D

�

JD�

+

)

�1

�

+

D

�

JCx

0

= �X

�1

S

�1

�

+

N

�

JCx

0

;

where NX is an arbitrary (J; S)-inner-outer factorization of D (cf. [Sta�ans

1997c, Lemma 2.4]). The corresponding state x

opt

(x

0

), output y

opt

(x

0

), and

the minimum Q(x

0

; u

opt

(x

0

)) of the cost function are given by

x

opt

(x

0

) = Ax

0

� B��

+

(�

+

D

�

JD�

+

)

�1

�

+

D

�

JCx

0

= Ax

0

� BX

�1

�S

�1

�

+

N

�

JCx

0

;

y

opt

(x

0

) = (I � P )Cx

0

;

Q(x

0

; u

opt

(x

0

)) = hx

0

; C

�

J (I � P ) Cx

0

i

H

;

where

P := D�

+

(�

+

D

�

JD�

+

)

�1

�

+

D

�

J = I �NS

�1

�

+

N

�

J

is the projection onto the range of D�

+

along the null space of �

+

D

�

J . In

particular, 	 has a Riccati operator, namely

� = C

�

J (I � P ) C

and y

opt

(x

0

) belongs to the null space of the projection P , i.e.,

�

+

D

�

Jy

opt

(x

0

) = �

+

D

�

J

�

Cx

0

+D�

+

u

opt

(x

0

)

�

= 0:

As shown in [Sta�ans 1997c, Theorem 2.6 and Remark 2.7], for a J-

coercive system, there is an one-to-one connection between the set of all

possible feedback solutions to the quadratic cost minimization problem and

the set of all possible (J; S)-inner-outer factorizations of the input/output

10



map D (or equivalently, of the transfer function of the system). Here S 2

L(U) is strictly positive. We shall not need that result here, so we refer the

reader to [Sta�ans 1997c, Theorem 2.6] for details.

Under a further regularity assumption on the system, and in particular,

on the outer factor in the inner-outer factorization mentioned in Lemma 3,

it is possible to show that Riccati operator is the solution of a (possibly

nonstandard) Riccati equation; see Sta�ans [1997c]. The converse is also

true, if we are able to �nd a su�ciently regular stabilizing solution � to this

Riccati equation, then we have in fact found the Riccati operator of De�nition

1, and this operator can then be used to construct both the feedback solution

of the quadratic cost minimization problem and the corresponding (J; S)-

inner-outer factorization of D; see Mikkola [1997].

The cited necessary and su�cient results for the existence of a stabilizing

solution to the Riccati equation appear to give a \de�nite answer" to the

general quadratic cost minimization problem, but in not quite the case. The

remaining problem is related to the extra regularity assumptions used in

these works. In this connection \regularity" means the following (cf. [Weiss

1994a, Theorem 5.8]):

De�nition 3 (i) An input/output map D : L

2

c

(R;U)! L

2

c

(R;Y ) is regu-

lar i� the strong limit Du

0

:= lim

�!+1

b

D(�)u

0

exists for every u

0

2 U ;

here � tends to +1 along the positive real axis and

b

D is the transfer

function (the distribution Laplace transform) of D.

(ii) The operator D : U ! Y de�ned above is called the feed-through (or

feed-forward) operator of D.

(iii) A regular input/output map D is strictly proper i� its feed-through op-

erator vanishes.

(iv) We say that D is regular together with its adjoint i�, in addition to (i),

the strong limit lim

�!+1

b

D

�

(�)y

0

exists for every y

0

2 Y . (This limit

is equal to D

�

y

0

whenever it exists.)

(v) The system 	 = [

A B

C D

] is regular [together with its adjoint] i� its in-

put/output map D is regular [together with its adjoint].

In Sta�ans [1997c] is was assumed throughout that all possible input/output

maps that appear in the development of the theory are regular together with

11



their adjoints. In particular, this applies both to the original input/output

map D, and to the outer factor X in the (J; S)-inner-outer factorization of D

mentioned in Lemma 3. In Weiss and Weiss [1997] and Mikkola [1997] this

condition is weakened to weak regularity

7

, but even so we are left with an

extra regularity assumption that can be di�cult to verify. This is partly due

to the very general setting used in Sta�ans [1997c], Weiss and Weiss [1997],

Mikkola [1997]. In particular, that setting makes no use of the spaces W

and V that we have introduced above; instead appropriate replacements for

these spaces are constructed from the regularity assumption. Here we shall

complement the basic theory presented in these works by adding assumptions

on the system related directly to the spaces W and V , and use these extra

assumptions to guarantee that the problem has enough regularity for the

theory developed in Sta�ans [1997c], Weiss and Weiss [1997], Mikkola [1997]

to apply. These assumptions (including all our previous assumptions related

to W and V ) are analogous to those found in, e.g., Lasiecka and Triggiani

[1991b].

Actually, we have already introduced most of the needed assumptions,

and only make the following additions. We add the following admissibility

and stability assumptions on the observability map C and its adjoint:

C : W ! BC

0

(R

+

;Y ); (36)

C

�

: BC

0

(R

+

;Y )! V

�

: (37)

Observe that the former is a consequence of (7) if A is strongly stable, and

that the latter is implied by

8

C : V ! L

1

(R

+

;Y ); (38)

a condition that we shall not require to be true.

We shall also need one extra condition on the input/output map D, which

is maybe the most restricting one in the whole setup. We assume (as is always

done in the �nite-dimensional case) that

D

�

JD >> 0; (39)

7

That is, the limits need only exist in the weak sense. In addition, these papers as-

sume that the feed-through operator of the outer factor is invertible, a condition that is

redundant in Sta�ans [1997c].

8

This condition should be interpreted in the same way as condition (17). Note that

condition (38) combined with (7) furthermore implies that D : L

1

(R

+

;U)! L

1

(R

+

;Y ).

12



de�ne the operator E by

Eu := u� (D

�

JD)

�1

�

+

D

�

JD�

+

u; u 2 L

2

(R

+

;U); (40)

or equivalently,

�

+

D

�

JD�

+

u = D

�

JD(u� Eu);

and require that E is \smoothing" in the following sense:

E

n

: L

2

(R

+

;U)! BC

0

(R

+

;U) for som n 2 N: (41)

Let us summarize all our admissibility and stability assumptions into the

following main hypothesis:

Hypothesis 1 Conditions (3), (5), (6), (7), (15), (16), (33), (34), (36),

(37), (39), and (41) hold.

The following is our main result:

Theorem 1 Let Hypothesis 1 hold, and let the system (1) be J-coercive.

Then both the open and the closed loop systems in [Sta�ans 1997c, Theorem

2.6] are regular together with their adjoints, the feed-through operator of the

outer factor X in an arbitrary (J; S)-inner-outer factorization of D is invert-

ible, and the Riccati equation theory in [Sta�ans 1997c, Theorem 6.1] and

Mikkola [1997] applies. Moreover, the correction term lim

�!1

B

�

�(�I �

A)

�1

Bu

0

in [Sta�ans 1997c, Corollary 7.2] is zero, hence S = D

�

JD if we

normalize the feed-through operator of the outer factor X to be the identity.

In particular, this means that the following claims are true. The Riccati

operator � and the feedback operator K satisfy

� 2 L(W ;V

�

); K 2 L(W ;U); (42)

K = �(D

�

JD)

�1

(B

�

�+D

�

JC) ; (43)

A

�

�+�A = �C

�

JC +K

�

D

�

JDK; (44)

where (43) is valid in L(W ;U) and (44) is valid in L(W ;W

�

+(�I�A)

�

V

�

) �

L(W ;H

�

�1

); here � 2 �(A). The normalized spectral factor X is given by the

\classical" formula

(X�

+

u)(t) = u(t)�K

Z

t

0

A(t� s)Bu(s) ds; u 2 C(R

+

;U);

(45)

13



and it maps the function spaces C(R

+

;U), BC

0

(R

+

;U), L

2

loc

(R

+

;U), and

L

2

(R

+

;U) continuously into themselves. The Laplace transform of this spec-

tral factor and its inverse are given by

b

X (s) = I �K(sI � A)

�1

B; <s > 0; (46)

b

X

�1

(s) = I +K(sI � A

	

)

�1

B; <s > 0; (47)

where A

	

= A+BK is the generator of the closed loop semigroup A

	

. This

semigroup is strongly continuous both in H and in W , and (�I �A

	

)

�1

H �

W and (�I � A

	

)

�1

BU � W for all � 2 �(A

	

). The Riccati operator � is

the unique self-adjoint stabilizing solution (in the sense of Mikkola [1997]) of

the Riccati equation

hAx

0

;�x

1

i

H

+ hx

0

;�Ax

1

i

H

+ hCx

0

; JCx

1

i

Y

=




(B

�

� +D

�

JC)x

0

; (D

�

JD)

�1

(B

�

� +D

�

JC)x

1

�

U

; (48)

x

0

; x

1

2 H

1

;

and this equation is, in fact, valid for all x

0

, x

1

2 W \ (�I �A)

�1

V , where

� 2 �(A).

In the parabolic examples given in Section 6 we shall throughout apply

this theorem in the following form:

Corollary 1 Suppose that the semigroup A generated by A is analytic and

exponentially stable in H, that

W = (�A)

�

1

H; V = (�A)



2

H (49)

for some 0 � 

1

<

1

2

and 0 � 

2

<

1

2

, that (7) holds, and that the system

is J-coercive. Then Hypothesis 1 holds and Theorem 1 applies. In this case

the conclusion of Theorem 1 can be strengthened as follows. For all � > 0,

� 2 L(W ; (�A

�

)

�1+

1

+�

H), equation (44) is valid in L(W ; (�A

�

)



1

+�

H),

and equation (48) is valid for all x

0

, x

1

2 (�A)

�

1

��

H.

9

The closed loop

semigroupA

	

is exponentially stable and analytic in (�A)



H for 

2

�1 �  �

0, and it can be extended to an exponentially stable and analytic semigroup

in (�A)



H for 0 �  � 1�

1

. In particular, it is analytic in H and W , and

9

It is possible to get rid of the extra � in the case where A is normal; see Lasiecka and

Triggiani [1991b].
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it can be extended to an analytic semigroup in V . All possible input/output

maps (open or closed loop, adjoint or not) are convolution operators with

kernels that are analytic on (0;1) and belong to L

p

(R

+

) for all 1 � p <

1=(

1

+ 

2

).

3 Proofs.

Proof of Lemma 1. All of the claims in Lemma 1, except for (23), are either

obvious or well-known from standard semigroup theory, so we leave their

veri�cation to the reader.

To prove (23) we �rst remark that D can be (uniquely) extended to a

bounded linear time-invariant operator

D : BC

0

(R;U ;!)! BC

0

(R;Y ;!); (50)

where ! is an arbitrary number bigger than the growth rate of A in W . We

have not been able to �nd this particular result in the literature, but its

proof is essentially the same as the proofs given for the corresponding L

p

-

statements; see, e.g., [Salamon 1989, Lemma 2.1], [Weiss 1989a, Proposition

2.5], or [Weiss 1994a, Proposition 4.1]. We therefore leave the proof of (50)

to the reader.

We claim that (50) implies that D satis�es

D : L

2

(R;U ;!)! L

2

(R;Y ;!): (51)

Clearly, if this is true, then (23) follows. By, e.g., [Sta�ans 1997b, Lemma

2.9], to prove this it su�ces to show that the Laplace transform

b

D of D

satis�es

b

D 2 H

1

(U ;Y ;!); (52)

and this is done as follows. Take some arbitrary s 2 C with <s > ! and

u

0

2 U . De�ne u(t) = e

st

u

0

, t 2 R. Then (Du)(0) =

b

D(s)u

0

. Thus, using

also (50), we �nd that there is some constant M > 0 such that

k

b

D(s)u

0

k

Y

= k(Du)(0)k

Y

� kDuk

BC

0

(R

�

;Y ;!)

�Mkuk

BC

0

(R

�

;U ;!)

=Mku

0

k

U

:

This shows that (52) holds.
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Proof of Lemma 2. As can be seen easily, all the algebraic properties listed

in [Sta�ans 1997b, De�nition 2.1](i){(iv) hold for all x 2 W and u 2 C

c

(R;U)

satisfying u(0) = 0. By density and continuity, the same conditions then

hold for all x 2 H and all u 2 L

2

c

(R;U). However, this implies that the

same conditions hold for all u 2 L

2

(R;U ;!) where ! is an arbitrary number

bigger than the growth rate of A in H; see, e.g., [Salamon 1989, Lemma

2.1] or [Weiss 1989a, Proposition 2.5], [Weiss 1989b, Proposition 2.3], and

[Weiss 1994a, Proposition 4.1]. Thus, we conclude that [

A B

C D

] is a well-posed

linear system on (U;H; Y ). Comparing (24) with the corresponding formula

in Sta�ans [1997b] we see that the state of this system (in the initial value

setting) is x, and its output is y. It is also easy to show that the generators

of A, B, and C are A, B, and C, respectively.

It still remains to prove the claim about the regularity of the system,

the claim that the feed-through operator is D, and the additional claims

(27){(32).

For each u 2 C

1

(R

+

;U) and � 2 �(A), we can integrate by parts and

divide by �I � A to get

(Lu)(t) =

Z

t

0

A(t� s)Bu(s) ds

= (�I � A)

�1

�

Bu(t)�A(t)Bu(0) +

Z

t

0

A(t� s) (�Bu(s)�Bu

0

(s)) ds

�

:

In particular, by taking t = 1 and u(s) = s

2

u

0

for some �xed u

0

2 U we get

(�I � A)

�1

Bu

0

=

Z

1

0

A(1� s)Bs

2

u

0

ds

� (�I � A)

�1

Z

1

0

A(1� s)B(�s

2

� 2s)u

0

ds;

(53)

which together with (5) and (19) implies (29).

If we instead take u(s) � u

0

2 U (a constant function), then we get

(Lu)(t) =

Z

t

0

A(t� s)Bu

0

ds

=

�

I �A(t)� �

Z

t

0

A(s) ds

�

(�I � A)

�1

Bu

0

;

and by (5), this tends to zero inW as t! 0. This, together with (19) implies

(27), which in turn together with (7) implies (28) and (31).
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Referring to (53), we observe that both

R

1

0

A(1� s)Bsu

0

ds and

R

1

0

A(1�

s)Bs

2

u

0

ds belong to W . Therefore, by letting � ! 1 in (53) and using

the fact that �(�I � A)

�1

w ! w in W for each w 2 W we get (30). This

condition, in turn, implies that the system is regular, and that the feed-

through operator of D is D. The claim (32) follows from, e.g., [Weiss 1994a,

Remark 6.2].

Since we shall need part of the preceding argument later, too, let us

separate it into a lemma of its own:

Lemma 4 Let 	 = [

A B

C D

] be a well-posed linear system on (U;H; Y ) with

generators [

A B

C �

]. Suppose that H

1

� W � H with continuous and dense

injections, that C 2 L(W;Y ) (i.e., C has a unique continuous extension to

this space), that (�I � A)

�1

BU � W for all � 2 �(A), and that, for each

w 2 W , �(�I �A)

�1

w! w in W as �! +1 (which is true, in particular,

when (5) holds). Then 	 is regular, (�I�A)

�1

Bu! 0 in W for each u 2 U

as �!1, and the transfer function of 	 is given by

b

D(s) = C(sI � A)

�1

B +D

for all s 2 C with su�ciently large real part (D is de�ned in De�nition 3).

Proof. By the resolvent identity, for each �, � 2 �(A) and each u 2 U

(cf. [Salamon 1989, pp. 148{149])

b

D(�)u =

b

D(�)u+ (� � �)C(�I � A)

�1

(�I � A)

�1

Bu:

As C 2 L(W ;Y ), (�I � A)

�1

Bu 2 W , and �(�I � A)

�1

w ! w in W

for all w 2 W , the limit of the right hand side as � ! 1 exists in Y

and is equal to

b

D(�)u � C(�I � A)

�1

Bu. Thus the system is regular, and

b

D(�)� C(�I � A)

�1

B = D.

To show that (�I�A)

�1

Bu! 0 inW for all u 2 U we argue in the same

way, starting from the identity

(�I � A)

�1

Bu = (�I � A)

�1

Bu+ (� � �)(�I � A)

�1

(�I � A)

�1

Bu:

Lemmas 1 and 2 have the following counterpart for the dual system:

Lemma 5 In addition to (3), (5), (6), (7), (15), (16), (17), suppose that

C

�

: C

c�

(R

+

;Y )! V

�

: (54)
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Then

D

�

: C

c�

(R;Y )! C

c�

(R;U); (55)

D

�

: L

2

c�

(R;Y )! L

2

c�

(R;U); (56)

and D

�

is regular. Moreover, B

�

, C

�

and D

�

are given by

(B

�

x

�

0

)(s) := B

�

A

�

(�s)x

�

0

; x

�

0

2 V

�

; s 2 R

�

; (57)

C

�

y

�

:=

Z

1

0

A

�

(t)C

�

y

�

(t) dt; y

�

2 L

1

c�

(R

+

;Y ); (58)

(D

�

y

�

)(s) := B

�

C

�

�(s)y

�

+D

�

y

�

(s)

= B

�

Z

1

s

A

�

(t� s)C

�

y

�

(t) dt+D

�

y

�

(s); (59)

y

�

2 C

c�

(R;Y ); s 2 R:

Proof of Lemma 5. The proofs of these two lemmas are virtually identical

to the proofs of Lemmas 1 and 2. For the main part of the proof it su�ces

to apply exactly the same arguments, with the replacements A! A

�

, H

1

!

H

�

1

, W ! V

�

, U ! Y , Y ! U , [

A B

C D

] ! [

A

�

C

�

B

�

D

�

], etc., and to revert the

direction of time. In particular, we de�ne B

�

, C

�

, and D

�

by (57){(59), and

observe that (15) and (17) are equivalent to

B

�

: H ! L

2

loc

(R

�

;U);

C

�

: L

2

c�

(R

+

;Y )! H:

There is only one potential problem with this approach: How do we know

that the system that we construct in this way is indeed the adjoint of the

earlier constructed system 	? Fortunately, this follows from the fact that

the new system has the same generators [

A

�

C

�

B

�

D

�

] as the adjoint system 	

�

,

and every (causal or anti-causal) regular well-posed linear system is uniquely

determined by its generators, cf. [Weiss 1994a, Theorem 2.3].

In the proof of Theorem 1 we shall also need the following stable version

of Lemmas 1{5.

Lemma 6 In addition to the assumptions of Lemma 2, let (33), (34), and

(36) hold. Then (35) holds, and

x

0

2 W and u 2 BC

0

(R

+

;U) =) y 2 BC

0

(R

+

;Y ); (60)

x

0

2 H and u 2 L

2

(R

+

;U) =) y 2 L

2

(R

+

;Y ): (61)
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In particular,

D�

+

: BC

0

(R

+

;U)! BC

0

(R

+

;Y ): (62)

If, in addition both the assumption of Lemma 5 and (37) holds, then

D

�

: BC

0

(R;Y )! BC

0

(R;U): (63)

The proof of this lemma is similar to the proofs of Lemmas 1 and 2, and

it is left to the reader.

For the convenience of the reader, let us cite the following result from

Sta�ans [1997c], which is a key ingredient in the proof of Theorem 1:

Theorem 2 ([Sta�ans 1997c, Theorem 7.1]) Let Hypothesis 1 hold, and

let the system (1) be J-coercive. Denote the generating operators of 	 by the

same letters as the corresponding operators [Sta�ans 1997a, Section 7], and

let

b

D and

b

F be the transfer functions (i.e., distribution Laplace transforms)

of D and F [Sta�ans 1997b, Lemma 2.9]. Let x

0

2 H and u

0

2 U satisfy

Ax

0

+Bu

0

2 H.

If � 2 C has real part bigger than the growth rate of 	, then the vectors

y

0

2 Y and w

0

2 U de�ned by

y

0

= C(�I � A)

�1

(�x

0

� Ax

0

�Bu

0

) +

b

D(�)u

0

; (64)

w

0

= �K(�I � A)

�1

(�x

0

� Ax

0

� Bu

0

) + (I �

b

F(�))u

0

(65)

are independent of �. Moreover,

A

�

�x

0

+ C

�

Jy

0

+K

�

Sw

0

= �� (Ax

0

+Bu

0

) 2 H; (66)

and, for all � 2 C with real part bigger than the growth rate of 	,

(I �

b

F(�))

�

Sw

0

= B

�

(�I � A

�

)

�1

�(�x

0

+ Ax

0

+Bu

0

) + (

b

D(�))

�

Jy

0

: (67)

We are �nally ready to prove Theorem 1.

Proof of Theorem 1. The idea behind this proof is to show that all possible

signals appearing in the system are continuous functions of time whenever

x

0

2 W .

10

To do this it su�ces to show that

u

opt

2 BC

0

(R

+

;U); (68)

10

Here we follow the route outlined in Lasiecka and Triggiani [1991b].
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because if this is true, then it follows from (31) and (60) that

x

opt

2 C(R

+

;W ); y

opt

2 BC

0

(R

+

;Y ): (69)

Thus, let us prove (68). For this we use the explicit expression for u

opt

given

in Lemma 3, writing in the form (cf. (40))

u

opt

= Eu

opt

� (D

�

JD)

�1

�

+

D

�

JCx

0

:

By (36) and (63), �

+

D

�

JCx

0

2 BC

0

(R

+

;U). Furthermore, we know that

u

opt

2 L

2

(R

+

;U). By iterating the preceding equation n� 1 times we get

u

opt

= E

n

u

opt

�

n�1

X

k=0

E

k

(D

�

JD)

�1

�

+

D

�

JCx

0

:

The �rst term on the right-hand side belongs to BC

0

(R

+

;U) because of (41),

and other terms belong to BC

0

(R

+

;U) because of (40), (62), and (63). Thus,

(68) and (69) hold.

Now let us turn our attention to the Riccati operator �. It follows from

the fact that

�x

0

= C

�

Jy

opt

= C

�

JC

	

x

0

and from (37) and (69) that � 2 L(W ;V

�

). Clearly, this combined with (7)

and (30) implies that, for all u

o

2 U

lim

�!1

B

�

�(�I � A)

�1

Bu

0

= 0:

Note that this means that the correction term mentioned in the statement

of Theorem 1 is zero.

At this point we turn to our attention to Theorem 2. By the regularity

of D established in Lemma 2, we have (in the notations of Theorem 2)

y

0

= Cx

0

+Du

0

(to see this, let �!1 in (64) and use (30)).

We next want to let � = � !1 in (67), so let us examine the terms in

this equation. From Lemma 5 we know that D

�

is regular, i.e.,

lim

�!1

(

b

D(�))

�

Jy

0

= D

�

Jy

0

= D

�

J(Cx

0

+Du

0

):
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The term Ax

0

+ Bu

0

belongs to H, so �(Ax

0

+ Bu

0

) 2 H, and (�I �

A

�

)

�1

�(Ax

0

+Bu

0

)! 0 in H

�

1

� V

�

as � !1, hence

lim

�!1

B

�

(�I � A

�

)

�1

�(Ax

0

+Bu

0

) = 0:

It follows from (29) and [Sta�ans 1997a, Lemma 32] that x

0

2 W , hence

�x

0

2 V

�

. As �(�I � A

�

)

�1

tends strongly to the identity in V

�

as � !1

(this follows from (6)), we �nd that

lim

�!1

B

�

(�I � A

�

)

�1

��x

0

= B

�

�x

0

:

Thus, combining these three estimates with (67) we conclude that the limit

lim

�!1

(I �

b

F(�))

�

Sw

0

= B

�

�x

0

+D

�

J(Cx

0

+Du

0

) (70)

exists for all quadruples (x

0

; u

0

; y

0

; w

0

) of the type mentioned in Theorem 2.

We claim that (70) implies that X

�

is regular, arguing as follows. In

the statement of Theorem 2 w

0

and y

0

are functions of x

0

and u

0

, but it is

possible to use w

0

as an independent variable and let the other parameters

depend on w

0

; for example, we can let u

	

(t) = w(t) be an arbitrary function

in W

1;2

(R

�

;U) with compact support and with w(0) = w

0

, and let x

0

, y

0

,

and u

0

be given by x

0

= x(0), y

0

= y(0), and u

0

= u(0), where x, y and u

are the corresponding signals in the time invariant setting of [Sta�ans 1997c,

Figure 2.1] (see that paper for details). Thus, S being invertible, (70) implies

that the limit

lim

�!1

(

b

X (�))

�

u

0

= lim

�!1

(I �

b

F(�))

�

u

0

exists for all u

0

2 U , i.e., X

�

is regular. Moreover, if we denote the feed-

through operator of X

�

by X

�

, then

X

�

Sw

0

= (B

�

� +D

�

JC)x

0

+D

�

JDu

0

:

From this equation it is possible to solve w

0

for the following reason. We know

that X

�

is regular and that

b

X is invertible in H

1

(U ;U ; 0). This implies that

X

�

has a left inverse

11

M

�

= (XX

�

)

�1

X. Thus,

w

0

= S

�1

M

�

((B

�

�+D

�

JC)x

0

+D

�

JDu

0

): (71)

11

This is true since hu

0

; XX

�

u

0

i = hX

�

u

0

; X

�

u

0

i = lim

�!1

h

b

X

�

(�)u

0

;

b

X

�

(�)u

0

i �

inf

<s>0

h

b

X

�

(s)u

0

;

b

X

�

(s)u

0

i � �

2

ku

0

k

2

for all u

0

2 U ; here 1=� =

sup

<s>0

k(

b

X

�

(s))

�1

k

L(U)

< 1. This is the adjoint version of [Weiss 1994b, Proposition

4.6].
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At this point, let us take x

0

2 H

1

and u

0

= 0. Then (65) and (71) give

Kx

0

= �S

�1

M

�

(B

�

�+D

�

JC)x

0

; x

0

2 H

1

:

But this implies that K 2 L(W ;U) (since H

1

is dense inW and the operators

on the right hand side belong to L(W ;U)).

The regularity on F now follows from Lemma 4, and this implies that

also X = I � F is regular. Thus, both X and X

�

are regular.

The rest of the claims in Theorem 1 follow from [Sta�ans 1997c, Theorem

6.1] and Mikkola [1997], except that these papers only tell us that (44) is

valid in L(H

1

;H

�

�1

) and that (48) is valid for all x

0

, x

1

2 H

1

. To derive

the stronger statement given here it su�ces to observe that H

1

is dense in

W , that the �rst operator in (44) belongs to L(W ; (�I � A

�

)V

�

), and that

the operators on the right hand side of (44) belong to L(W ;W

�

); hence the

remaining operator �A in (44) must belong to L(W ;W

�

+ (�I � A)

�

V

�

).

Proof of Corollary 1. Clearly, conditions (3), (5), and (6) hold with this

choice of W and V .

The proofs of (15), (16), (33), (34), (36), and (37) are straightforward.

They are all consequences of well-known properties of convolutions operators

(in particular, of Young's inequality) and of the simple fact that for all ,

0 �  < 1, and all � 2 �(A),

k(�I � A)



A(t)k � Ct

�

e

��t

(72)

for some C > 0, � > 0, and all t > 0; here the norm represents the operator

norm in any one of the three basic spaces W , H, and V . In particular, this

means that for each �xed x 2 W , the function t 7! (�I � A)



A(t)x belongs

to L

p

(R

+

;W ) for all p < 1=, and the same claims are true with W replaced

by H and by V . We leave the proofs of these six claims to the reader.

To prove the positivity condition (39) it su�ces to observe that the J-

coercivity implies that

b

D

�

(j!)J

b

D(j!) � �I for some � > 0 and all ! 2 R,

and to let ! !1.

To verify (41) we make repeated use Young's inequality and the fact that

for each u 2 U , Eu 2 L

p

(R;Y ) for some p > 1. This argument is known

under the name \boot-strap argument", see, e.g., [Lasiecka et al. 1995, pp.

556{557] (the same argument appears already in [Lasiecka and Triggiani

1983, pp. 52{53]).

We clonclude that Hypothesis 1 holds, and that Theorem 1 applies.
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To prove that the closed loop semigroup A

	

is analytic in the given

spaces we �rst use [Weiss 1994b, Theorem 7.2] to show that its generator is

given by A

	

= A + BK where BK 2 L(W ;V ). This, together with, e.g.,

[Lunardi 1995, Propositions 2.2.15 and 2.4.1] implies that A

	

= A + BK

generates an analytic semigroup in V , and that (�I�A

	

)

�1

V = (�I�A)

�1

V

for all � 2 �(A

	

) \ �(A). Thus (�I � A

	

)

�

V = (�I � A)

�

V for all

0 �  � 1, and A

	

generates analytic semigroups in (�A)

�

V for all 0 �

 � 1. By repeating the same argument with A

	

replaced by its adjoint

A

�

	

= A

�

+ K

�

B

�

we conclude that A

�

	

generates analytic semigroups in

(�A

�

)

�

W

�

for all 0 �  � 1. Together these two claims imply the claim

that A

	

generates analytic semigroups in (�A)



H for all 

2

�1 �  � 1�

1

.

The exponential stability of A

	

follows from [Datko 1970, Corollary, p.

615] and the fact that x

opt

= A

	

x

0

2 L

2

(R

+

;H) for all x

0

2 H; this in turn

follows from (72), Young's inequality, and the fact that u

opt

2 L

2

(R

+

;U).

The proof of the �nal claim about the regularity of the input/output maps

is also based on the estimate (72). We leave this easy proof to the reader.

The only thing left to verify is that the Riccati equation has the additional

smoothness property; i.e., that � 2 L(W ; (�A

�

)

�1+

1

+�

H) for all � > 0, be-

cause the claims about the exact sense in which (44) and (48) are valid follow

once this claim has been proved. To get this property we apply Theorem 1

with a di�erent choice of V , i.e., we replace V by

e

V = (�A)

1�

1

��

H, where

0 < � � 1 � 

1

� 

2

(we can always decrease the value of � without loss of

generality). As V �

e

V � H

�1

, only one condition in Hypothesis 1 becomes

stronger when V is replaced by

e

V , namely (37), but the same argument that

establishes (37) for the original space V is valid for

e

V , too. Thus, we con-

clude that Theorem 1 applies with V replaced by

e

V , and we get the extra

smoothness of �.

4 Comments on the Unstable Case.

According to [Sta�ans 1997c, Theorems 4.4 and 6.1], most of the basic results

on which the proof of Theorem 1 are based remain valid for unstable systems

which are jointly stabilizable and detectable. This means that Theorem 1,

too, can in principle be extended to certain unstable but jointly stabilizable

and detectable systems. The idea of the proof for this case is to �rst stabilize

the system, and to then apply Theorem 1 to the stabilized system. For

this to be possible we need the stabilized system to have the same type of
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smoothness properties as the original system, i.e., the assumptions listed in

Hypothesis 1 should be satis�ed by the stabilized system. This limits the

set of permitted preliminary feedbacks: They should have the same type of

continuity properties as the original system, i.e., among others we need to

assume that the preliminary feedback operator K

1

and the corresponding

input/output map F

1

satisfy

K

1

2 L(W ;U); (I � F

1

)

�1

�

+

: C(R

+

;U)! C(R

+

;U):

Since our results for this case are still far from complete, we leave the study

of the unstable system to a later time.

12

5 Change of Pivot Space.

In much of the earlier literature on parabolic equations our basic state space

H is absent, and its role as pivot space is taken over by some other space

Z � W , usually Z = W . Fortunately, in the applications of the theory

that we shall present below, there is a simple relationship between H and Z,

and this makes it possible to pass from one formulation to the other without

di�culty.

In the rest of this section we suppose that the semigroup A is analytic in

H, and that

Z = (�I � A)

��

H; (73)

where � 2 �(A), � 2 R, and (�I�A)

��

represents the usual fractional power

of (�I � A). If we use Z as pivot space instead of H, then the de�nition

of all the adjoint operators change, and so does the de�nition of the Riccati

operator. Let us continue to denote adjoints with respect to the space H by

�

, and let us use

#

to denote adjoints with respect to Z. Moreover, let us

denote the Riccati operator in Z by �

Z

, i.e.,

hx

0

;�

Z

x

0

i

Z

:= min

u2L

2

(R

+

;U)

Q(x

0

; u): (74)

12

Among others, the su�ciency result presented in Mikkola [1997] applies so far only to

the stable case. An extension of Mikkola [1997] to the unstable case is being worked out

at the moment.
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Proposition 1 Suppose that (73) holds, and introduce the notations ex-

plained above. De�ne

~

A := �I � A, and use the abbreviation

~

A

��

:= (

~

A

�

)

�

and

~

A

���

:= (

~

A

�

)

��

. Then the following identities hold: x

hx; yi

Z

=

D

~

A

�

x;

~

A

�

y

E

H

;

A

#

=

~

A

��

A

�

~

A

�

;

B

#

= B

�

~

A

��

~

A

�

= B

�

~

A

�

~

A

�#

;

C

#

=

~

A

��

~

A

���

C

�

=

~

A

��#

~

A

��

C

�

;

D

#

= D

�

;

K

#

=

~

A

��

~

A

���

K

�

=

~

A

��#

~

A

��

K

�

;

�

Z

=

~

A

��

~

A

���

� =

~

A

��#

~

A

��

�;

B

�

� = B

#

�

Z

;

V

#

=

~

A

��

~

A

���

V

�

=

~

A

��#

~

A

��

V

�

;

H

#

=

~

A

��

~

A

���

H =

~

A

��#

~

A

��

H =

~

A

��#

Z;

W

#

=

~

A

��

~

A

���

W

�

=

~

A

��#

~

A

��

W

�

:

In particular, the connection between K and � given in Theorem 1 and stays

the same in both settings, and the Riccati equation is multiplied by the invert-

ible operator

~

A

��

~

A

���

=

~

A

��#

~

A

��

and it takes its values in

~

A

��

~

A

���

H

�

�1

instead of in H

�

�1

. In the new setting the continuity properties of the adjoint

operators and the Riccati operator become

B

#

2 L(V

#

;U);

C

#

2 L(Y ;W

#

);

K

#

2 L(U ;W

#

);

�

Z

2 L(W ;V

#

) \ L(H;H

#

):

If, furthermore

W =

~

A

�

Z = (�I � A)

�

Z; V =

~

A

�+

Z = (�I � A)

�+

Z;

for some constants  and �, then

W

#

=

~

A

��#

Z; V

#

=

~

A

�(�+)#

Z;
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and the continuity requirements on B

#

and �

Z

in Corollary 1 become

B

#

~

A

�(�+)#

2 L(Z; U);

~

A

(1+���)#

�

Z

~

A

��

2 L(Z;Z);

where  = 

1

+ 

2

and � > 0 is arbitrary.

We leave the straightforward proof of this proposition to the reader.

Thus, generally speaking, the input operator B becomes more unbounded

in this setting, the output and feedback operators C and K become bounded,

and the Riccati operator gets an additional \smoothing" property, but the

nature of the problem does not change.

13

6 Comparison to Earlier Work.

Let us begin by comparing our Theorem 1 with the theory for the parabolic

equation presented in Lasiecka and Triggiani [1991b]. In this comparison we

take (the left hand side refers to concepts used in this work, and the right

hand side gives the corresponding entry in [Lasiecka and Triggiani 1991b,

Sections 2 and 5.1], and � 2 �(A)): x := y (the state), y := [

Ry

u

] (the output),

C := [

R

0

] (the observation operator), D := [

0

I

] (the feed-through operator),

J := [

I 0

0 I

] (the weighting operator), C

�

JC := R

�

R, D

�

JD := I, D

�

JC := 0,

Y := [

Y

U

] (the output space), Z = W = (�I � A)

��

H = (�I � A)

�

V := Y

(the pivot space), � := =2 (relation between W and H), and � := 0 (since

Z = W ) (the operator G in Lasiecka and Triggiani [1991b] is a �nite horizon

weight that has no counterpart in our work).

Comparing our Corollary 1 with the theory for the parabolic equation

presented in Lasiecka and Triggiani [1991b] we �nd many similarities, but

also di�erences. With the choice of parameters described above the setting

in Lasiecka and Triggiani [1991b] is the one presented Proposition 1, except

for the facts that there the system need not be stable, and that no explicit use

is made of our basic pivot space H. In the stable case the basic conclusions

are essentially the same, and our additional admissibility assumptions on

13

The setting described in Proposition 1 agrees with the parabolic setting in Lasiecka

and Triggiani [1991b] in the stable case. We remark that the continuity properties in

our original setting resemble those that are used for the hyperbolic case in Lasiecka and

Triggiani [1991b]. Thus, in our setting the sharp distinction between the parabolic case

and the hyperbolic case made in Lasiecka and Triggiani [1991b] disappears. We regard

this is one of the major advantages with our setting.
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B and C related to the space H are satis�ed in all the parabolic examples

presented in Lasiecka and Triggiani [1991b]. However, a major di�erence is

that Lasiecka and Triggiani [1991b] gives a much more complete treatment

of the unstable case. In particular, it is shown that the so called \�nite cost

condition" implies that the system is stabilizable (which in principle makes

it possible to apply the result outlined in Section 4 in the unstable case). On

the other hand, our cost function Q is slightly more general (for example,

it can be used in the setting of the bounded real and positive real lemmas),

and we are able to say something about the input/output behavior of the

open and closed loop systems, to which no attention is paid in Lasiecka and

Triggiani [1991b]. In particular, we show that the closed loop system is a

regular well-posed linear system. Moreover, our Theorem 1 can easily be

extended to cover the full information H

1

problem as well.

14

Although this work is primarily aimed at the parabolic case, it is interest-

ing to observe that our Theorem 1 is not that distant from the results given

in Lasiecka and Triggiani [1991b] for hyperbolic equations. In the \second

class (�rst form)" (originally published in Flandoli et al. [1988]) it is assumed

that [Lasiecka and Triggiani 1991b, condition (H.2)] holds; that condition is

equivalent to our condition (15) if we take Y = H = W . This implies that

the input/output map D : L

2

c

(R;U) ! C

c

(R; Y ) is more \smoothing" than

in our condition (28). The crucial assumptions missing in [Lasiecka and Trig-

giani 1991b, Theorem 5.2] are our (37) and (41), and in that theorem u

opt

(x

0

)

need not be continuous for all x

0

2 H = W .

In spirit our Theorem 1 is even closer to the �nite horizon result described

in [Lasiecka and Triggiani 1991b, Section 3.3] (originally in Da Prato et al.

[1986]) which gives su�cient conditions for the existence and uniqueness of

a solution of the di�erential Riccati equation in the same general class. We

again take H = W . Our Theorem 1 is not directly comparable to [Lasiecka

and Triggiani 1991b, Theorem 3.3] because of the (�nite horizon and the) fact

that there the assumptions on the adjoint operators D

�

and C

�

are formulated

in a di�erent way. In the setting of [Lasiecka and Triggiani 1991b, Theorem

3.3], these operators are always followed in all the important formulas by

(in our notation) the operator JC, and our assumptions (37) and (63) are

replaced by assumptions on (in our notation) D

�

JC and C

�

JC.

15

These

assumptions are approximately of the same strength as our assumptions on

14

It su�ces to replace the references to Sta�ans [1997c] by the corresponding references

to Sta�ans [1997de].

15

Recall that our operator C

�

JC corresponds to the operator R

�

R in Lasiecka and
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D

�

and C

�

under the extra restriction that H = W . In particular, in the

setting of [Lasiecka and Triggiani 1991b, Theorem 3.3], the �nite horizon

version of (41) holds with n = 1.

Lasiecka and Triggiani [1991b] also treats another hyperbolic case, i.e.,

the \second class (second form)" studied in [Lasiecka and Triggiani 1991b,

Section 4] (originally in Lasiecka and Triggiani [1991a]). The basic assump-

tion for that class imply (in our notation) that D : L

2

c

(R;U) ! C

c

(R;Y ),

D

�

: L

1

c�

(R

+

;Y ) ! L

2

c�

(R

+

;U). That setting is studied only in the �nite

horizon case. Our conditions (37) and (41) are still missing in [Lasiecka and

Triggiani 1991b, Theorem 4.1], and there u

opt

(x

0

) need not be continuous

for all x

0

2 H = W . On the other hand, by taking the set U in [Lasiecka

and Triggiani 1991b, Theorem 4.2] to be the space of continuous functions

we get a result which resembles a �nite horizon version of our Theorem 1.

There is a number of other recent results for hyperbolic equations to

which our Theorem 1 does not apply, e.g, Lasiecka and Triggiani [1993].

On the other hand, it does apply to the examples studied in a sequence of

related papers Lasiecka et al. [1995 1997], Triggiani [1994]. For simplicity,

let us just discuss the most recent of these paper, i.e., Lasiecka et al. [1997],

and compare it with our Corollary 1. In both cases the semigroup (= A in

our notation) is exponentially stable. For simplicity (and without signi�cant

loss of generality) we assume that the constants  and  in Lasiecka et al.

[1997] satisfy  � 1+ . We take (again the left hand side refers to concepts

used in this work, and the right hand side gives the corresponding entry in

Lasiecka et al. [1997], and � 2 �(A)): x := z�B

1

u (the state), y := [

Rz

u

] (the

output), B := AB

1

+ B

0

(the control operator), C := [

R

0

] (the observation

operator), D :=

�

RB

1

I

�

(the feed-through operator), J := [

I 0

0 I

] (the weighting

operator), C

�

JC := R

�

R,D

�

JD := I+B

�

1

R

�

RB

1

,D

�

JC := B

�

1

R

�

R, B

�

� :=

[B

�

0

+ B

�

1

A

�

]P , K := G (the optimal feedback operator), Y = [

W

U

] (the

output space; here W is our space W ), (�I � A)

��

W = (�I � A)

��

H =

(�I � A)

�(�+)

V := Y = (�I � A)



Z (the pivot space), � :=  (relation

between the pivot space and W ), � := ( +  + 1)=2 (relation between the

pivot space and H), and  := 1 +  �  (relation between W and V ). In

particular, the space Z in Lasiecka et al. [1997] relates to our space W as

W := (�I�A)

�

Z � W . Note that we have chosen the constants �, , and

� in such a way that (7) holds and � +  � � = � � � = =2 < 1=2, hence

Corollary 1 applies.

Triggiani [1991b].
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Comparing the conclusion of Corollary 1 to the result given in Lasiecka

et al. [1997] we observe the following. The statements about the smoothness

of the Riccati operator and the optimal u

opt

, x

opt

, and y

opt

given in Lasiecka

et al. [1997] are the same as those given here. We say a little bit more about

the input/output behavior of the closed loop system and about the spectral

factors, but apart from this, the conclusion of Theorem 1 is essentially equi-

valent to those conclusions of Lasiecka et al. [1997] that refer to \the �rst

algebraic Riccati equation (ARE1)".

In addition, Lasiecka et al. [1997] develop another algebraic Riccati equa-

tion (ARE2).

16

That equation, too, has a simple interpretation in terms of

Theorem 1: it is a feedback solution which corresponds to an inner-outer

factorization for which the feed-through term X of the outer factor X has

not been normalized to be the identity operator, but instead it has been

chosen to be equal to X := (I +GB

1

)

�1

. It is possible to do so if and only if

this inverse exists, and a (highly nontrivial) proof of its existence is given in

Lasiecka et al. [1997] under an extra compactness assumption. This changes

the sensitivity operator S from the earlier S = D

�

JD := I +B

�

1

R

�

RB

1

into

S = (X

�1

)

�

D

�

JDX

�1

:= (I +GB

1

)

�

(I +B

�

1

R

�

RB

1

)(I +GB

1

) = I � B

�

0

PB

1

�B

�

1

PB

0

:

Observe, in particular, that the Riccati equation that we get in this way

is nonstandard in the sense that the sensitivity operator S now becomes a

function of the Riccati operator �, hence it is not known in advance.

17

As

observed in Lasiecka et al. [1997], this particular feedback can be interpreted

as a feedback from the variable z = x+B

1

u, which is used as \state" variable

in Lasiecka et al. [1997]. This feedback is equivalent to the one in Corollary

1 in the absence of an external input to the closed loop system, but the

controllability map and the input/output maps of the closed loop system

change, and so does the cost of a nonzero input to the closed loop system

(because of the change in the sensitivity operator). For details, see [Sta�ans

1997c, Lemma 2.4, Theorem 2.6(iii), and Proposition 4.8].

16

This is the main result of that paper.

17

Although it is easy to modify Corollary 1 in such a way that the feed-through operator

of X is allowed to di�er from the identity, even the modi�ed version does not apply to this

case because of the coupling between S and �.
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