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This is a slightly abbreviated version of my talk at the Oberwolfach meet-
ing “Spectral Theory and Weyl Functions” at January 9, 2015. In the
talk itself I presented an additional example which illustrates the differ-
ence between the resolvent set of a state/signal system and the resolvent
sets of its input/state/output representations.

1. Input/state/output systems in time and frequancy domain

One way to model the dynamics of an i/s/o (input/state/output) system is to
use an equation of the following form, where S : [XU ] →

[X
Y
]

is a closed linear
operator:

(1) Σiso :


[
x(t)
u(t)

]
∈ dom (S) ,[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
,

t ∈ R+, x(0) = x0.

Here X , U and Y are Hilbert spaces, x(t) ∈ X is the state, u(t) ∈ U is the input,
and y(t) ∈ Y is the output. By a classical future trajectory of Σiso we mean

a triple of functions
[ x
u
y

]
which satisfies (1) for all t ∈ R+, with x continuously

differentiable with values in X and [ uy ] continuous with values in
[ U
Y
]
. Different

classes of i/s/o systems of this type are described in [Sta05].
A general i/s/o system can be seen as an extension of a standard finite-dimensional

i/s/o system. If S is bounded, the S can be written in block matrix form S =
[A B
C D ], and (1) becomes

(2) Σiso :

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
t ∈ R+, x(0) = x0.

In this case we say that A is the main operator, B is the control operator, C is the
observation operator, D is the feedthrough operator. The case where A generates
a C0 semigroup and B, C, and D are bounded is described in the book [CZ95].

Let
[ x
u
y

]
be a classical future trajectory which is, for example, bounded. Multi-

plying the equation (1) by e−λt and integrating over R+ we find that the Laplace

transforms
[
x̂
û
ŷ

]
of
[ x
u
y

]
satisfy

(3) Σ̂iso :

[
λx̂(λ)− x0

ŷ(λ)

]
= S

[
x̂(λ)
û(λ)

]
,

[
x̂(λ)
û(λ)

]
∈ dom (S) , λ ∈ Ω,

where Ω is the open right half-plane.
In the sequel we concentrate our attention on the equation (3), where we allow

Ω to be and arbitrary open subset of C. In the setting described above one natural
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choice is to take Ω to be the open right half-plane. In the study of discrete time
i/s/o system one natural choice is to take Ω to be the open unit disk.

We arrived at the frequency domain equation (3) by taking Laplace transforms
in the time domain equation (1). In the original time domain setting x0 was the
initial state, u was the input, x the “final” state, and y the output. The analogous
interpretation in the frequency domain would be to interpret x0 and û as “given
data” and x̂ and ŷ as “dependent data”. In other words,

(i) x0 and û(λ) should be “free” in the sense that x0 can be an arbitrary
vector in X and û can be an arbitrary analytic function in Ω with values
in U ;

(ii) x̂(λ) and ŷ(λ) should be determined uniquely by x0 and û(λ).

Definition 1. (i) A point λ ∈ C belongs to the resolvent set ρ(Σ) of Σ, or
equivalently, to the i/s/o resolvent set ρi/s/o(S) of S, if for every x0 ∈ X
and for every û(λ) ∈ U there is a unique pair of vectors

[
x̂(λ)
ŷ(λ)

]
satisfying

(3), and
[
x̂(λ)
ŷ(λ)

]
depends continuously on

[
x0

û(λ)

]
.

(ii) The L
(
[XU ] ;

[X
Y
])

-valued matrix function Ŝ : [XU ] →
[X
Y
]

with domain

ρ(Σ) which at the point λ maps
[
x0

û(λ)

]
into

[
x̂(λ)
ŷ(λ)

]
is called the i/s/o

resolvent matrix of Σ (or of S).1

Since Ŝ(λ) ∈ L
(
[XU ] ;

[X
Y
])

for every λ ∈ ρ(Σ) this operator has a block matrix
representation

(4) Ŝ(λ) :=

[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
, λ ∈ ρ(Σ).

The components of this operator are called as follows:

• Â is the s/s (state/state) resolvent function,

• B̂ is the i/s (input/state) resolvent function,

• Ĉ is the s/o (state/output) resolvent function,

• D̂ is the i/o (input/output) resolvent function.

The different components of Ŝ are known under different names in the literature.

The operator Â is the standard resolvent of the main operator A of the system, i.e.,

Â(λ) = (λ−A)−1, where Ax = PXS [ x0 ] with dom (A) =
{
x ∈ X

∣∣ [ x0 ] ∈ dom (S)
}

(“top left corner” of S). If Σiso has been constructed from a conservative boundary

triplet as described in [AKS12a, AKS12b], then B̂ is the so called “Gamma field”

and D̂ is the “Weyl function”. Two other names for D̂ are “the transfer function”
(used in control theory) and the “characteristic function of the main operator”
(used in operator theory).

1It is, of course, possible to define Ŝ(λ) also for λ /∈ ρ(Σiso) by means of its graph determined

by (3). For such λ the operator Ŝ(λ) will still be closed, but it will be unbounded or multi-valued
or not defined on all of

[X
U
]
.
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Theorem 2. Let S : [XU ] →
[X
Y
]

be an operator with dense domain. Then
ρi/s/o(S) 6= ∅ if and only if S is an “operator node” in the sense of [Sta05, Defi-
nition 4.7.2].

Lemma 3. (i) The i/s/o resolvent matrix Ŝ =
[
Â B̂
Ĉ D̂

]
is analytic in ρ(Σ).

(ii) Ŝ satisfies the i/s/o resolvent identity

(5) Ŝ(λ)− Ŝ(µ) = (µ− λ)

[
Â(µ)

Ĉ(µ)

] [
Â(λ) B̂(λ)

]
for all µ, λ ∈ ρ(Σ).

(iii) If ρi/s/o(S) 6= ∅, then ρi/s/o(S) = ρ(A), where A is the main operator of
S.

Thus in particular, if ρi/s/o(S) 6= ∅, then ρ(A) 6= ∅. However, the condition
ρ(A) 6= ∅ does not imply that ρi/s/o(S) 6= ∅.

2. State/signal systems in the time domain

One option to model the dynamics of an electrical circuit with lumped elements
is to use a finite-dimensional i/s/o system of the following type. The state x(t)
is an N -vector whose components are the currents in the coils and the voltages
over the capacitors. If the circuit has M terminals, then we can, e.g., use the
currents entering these terminals as inputs, and the voltages over the terminals
as the outputs. The equation (1) describing the dynamics of the system can be
deribed from the Kirchoff’s and Ohm’s laws. However, we could just as well have
picked the voltages to be the inputs and the currents to be the outputs. This
would give a different i/s/o system, but the underlying physical system remains
the same! Thus, every electrical circuit can be used to construct an infinite family
of i/s/o systems (by choosing different combinations of voltages and currents as
inputs and outputs).

The following question arises: Is there a simple equation which describes the
curcuit itself (instead of an infinite family of i/s/o systems)?

Another special case of an infinite-dimensional i/s/o system is the following
boundary control system:

(6) Σiso :


ẋ(t) = Lx(t),

Γ0x(t) = u(t),

Γ1x(t) = y(t),

t ∈ R+, x(0) = x0.

Here L is, e.g., a partial differential operator in some Lipschitz domain in Rn,
and Γ0 and Γ1 are two boundary mappings, e.g., Γ0 = Neumann trace and Γ1 =
Dirichlet trace. See [Sta05] for details. Above we may interpret u as the input and
y the output, or the other way around. Or we could replace Γ0 and Γ1 by some
other boundary mappings. Different choices of inputs and outputs lead completely
different i/s/o system of the type (1). Thus, to every boundary control system of
the type (6) there corresponds an infinite family of i/s/o systems.
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The same question as above rises in this case, too: Is there a simple way to
describe the boundary control system itself (instead of using an infinite family of
i/s/o systems)?

In the case of the boundary control system (6) the solution is obvious: We
simply combine the two variables u and y into a common “interaction” signal
w = [ uy ] which contains both the input and the output, define Γ =

[
Γ0

Γ1

]
, and write

(6) in the form

(7) Σiso :

{
ẋ(t) = Lx(t),

Γx(t) = w(t),
t ∈ R+, x(0) = x0.

In the case of the more general i/s/o system (1) the solution is less obvious, but
such a solution still exists. One way to proceed is the following. We again take
the signal space W to be the product space W =

[ U
Y
]
, move the output equation

in (1) into the domain of a new generator F : [ XW ]→ X (whose domain no longer
is dense in W), and rewrite (1) in the form

(8) Σ:


[
x(t)
w(t)

]
∈ dom (F ) ,

ẋ(t) = F
([

x(t)
w(t)

])
,

t ∈ R+, x(0) = x0,

where the state/signal generator F is given by

(9)
dom (F ) =

{[
x0

[u0
y0 ]

]
∈ [ XW ]

∣∣∣ [ x0
u0

] ∈ dom (S) , y0 =
[
0 1Y

]
S [ x0

u0
]
}
,

F
[

x0

[u0
y0 ]

]
=
[
1X 0

]
S [ x0

u0
] .

The above representation can be further “simplified” by using the graph repre-

sentation of (1). We still take W =
[ U
Y
]
, let K be the product space K =

[ X
X
W

]
,

and rewrite (8) in the form

(10) Σ:

[
ẋ(t)
x(t)
w(t)

]
∈ V, t ∈ R+, x(0) = x0,

where the generating subspace V is the (reordered) graph of S (or of F ):

(11)

V =

{[
z0
x0

[u0
y0 ]

]
∈ K

∣∣∣∣ [ x0
u0

] ∈ dom (S) , [ z0y0 ] = S [ x0
u0

]

}
=

{[
z0
x0

[u0
y0 ]

]
∈ K

∣∣∣∣ [ x0

[u0
y0 ]

]
∈ dom (F ) , z0 = F

[
x0

[u0
y0 ]

]}
.

A classical future trajectory of (8) or (10) is a pair of continuous functions [ xw ],
with x continuously differentiable, which satisfies (8) or (10). It follows from the

above construction that
[ x
u
y

]
is a classical future trajectory of the i/s/o system

Σiso if and only if
[ x,

[uy ]

]
is a classical future trajectory of the corresponding s/s

system Σ.
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3. The s/s resolvent set and the characteristic node bundle

If x, ẋ, and w in (10) are Laplace transformable, then it follows from (10) (since
we assume V to be closed) that the Laplace transforms x̂ and ŵ of x and w satisfy

(12) Σ̂ :

λx̂(λ)− x0

x̂(λ)
ŵ(λ)

 ∈ V, λ ∈ Ω,

where Ω is some open right half-plane. (To prove this it suffices to multiply by
e−λt and integrate by parts in the ẋ-component.) This formula can be rewritten
in the form

(13)

 x0

x̂(λ)
ŵ(λ)

 ∈ Ê(λ) :=

−1X λ 0
0 1X 0
0 0 1W

V.
Definition 4. The above family of subspaces Ê : {Ê(λ) | λ ∈ C} of K =

[ X
X
W

]
is

called the characteristic node bundle of Σ. We refer to each of the subspaces Ê(λ)

as the fiber of Ê at the point λ ∈ C.

Thus, Ê is an “analytic subspace-valued function” defined on C.
It follows from (8) and (10) that (3) holds for some x̂(λ), û(λ), and ŷ(λ) if and

only if (12) holds with ŵ(λ) =
[
û(λ)
ŷ(λ)

]
. If λ ∈ ρiso(S), then[

x̂(λ)
ŷ(λ)

]
= Ŝ(λ)

[
x0

û(λ)

]
=

[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

] [
x0

û(λ)

]
,

which can be rewritten in the form x0

x̂(λ)
ŵ(λ)

 =

 x0

x̂(λ)[
û(λ)
ŷ(λ)

]
 =

 1X 0

Â(λ) B̂(λ)[
0

Ĉ(λ)

] [
1U

D̂(λ)

]
[ x0

û(λ)

]
.

Here
[ x0

û(λ)

]
∈ [XU ] can be arbitrary, and we get the following result:

Lemma 5. Let Σiso be an i/s/o representation of the s/s system Σ, and suppose

that λ ∈ ρ(Σiso). Then the fiber Ê(λ) of the characteristic node bundle Ê at λ has
the representation

(14) Ê(λ) = im


 1X 0

Â(λ) B̂(λ)[
0

Ĉ(λ)

] [
1U

D̂(λ)

]



Note that this can be interpreted as a graph representation of Ê(λ) over the
first copy of X and the input space U .

Suppose that λ ∈ ρ(Σiso) for some i/s/o representation Σiso of Σ. Then it is

easy to see that Ê(λ) has the following properties:
5



(i)
[

0
x
0

]
∈ Ê(λ)⇒ x = 0;

(ii) For every z ∈ X there exists some [ xw ] ∈ [ XW ] such that
[
z
x
w

]
∈ Ê(λ).

(iii) The projection of Ê(λ) onto its first and third components is closed in
[ XW ].

Definition 6. Let Σ = (V ;X ,W) be a s/s node with node bundle Ê. Then the
resolvent set ρ(Σ) of Σ consists of all those points λ ∈ C for which conditions
(i)–(iii) above hold.

Theorem 7. Let Σ = (V ;X ,W) be a s/s node. Then ρ(Σ) is the union of the
resolvent sets of all i/s/o representations of Σ.

4. The characteristic signal bundle

In i/s/o systems theory one is often intersted in the “pure i/o behavior”, which
one gets by “ignoring the state”. More precisely, one takes the inital state x0 = 0,
and only looks at the relationship between the input u and the output y, ignoring
the state x. If we take x0 = 0 in (3) and ignore x̂, then the full frequency

domain relation
[
x̂(λ)
ŷ(λ)

]
=
[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

] [ x0

û(λ)

]
is replaced by the i/o relation ŷ(λ) =

D̂(λ)û(λ), where D̂(λ) is the i/o resolvent function of Σiso.
The same procedure can be carried out in the case of a s/s system: Taking

x0 = 0 and ignoring the value of x̂(λ) in (13) we see that ŵ(λ) ∈ F̂(λ), where

(15) F̂(λ) =

w ∈ W
∣∣∣∣∣∣
0
z
w

 ∈ Ê(λ) for some z ∈ X

 .

Definition 8. The family of subspaces F̂ : {F̂(λ) | λ ∈ C} of W is called the

characteristic signal bundle. We refer to each of the subspaces F̂(λ) as the fiber of

F̂ at the point λ ∈ C.

Whereas the characteristic node bundle Ê is analytic everywhere in C (i.e., the
fibers depend on λ in an analytic way), the same is not true for the singal bundle

F̂. Even the dimension of the fibers F̂(λ) may change from one point to another.
However, the following result is true:

Lemma 9. The characteristic signal bundle F̂ is analytic in ρ(Σ).

5. Details and Proofs

An introduction to what I have been explaining above is written down in [Sta14].
Proofs are given in [AS15]. The connection to boundary triplets and generalized
boundary triplets is explained in [AKS12a, AKS12b].
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