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Abstract. We study the problem of strongly coprime factorization over H-infinity of the unit
disc. We give a necessary and sufficient condition for the existence of such a coprime factorization
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1. Introduction. This is the third in a series of articles dealing in a novel way
with the quadratic cost minimization problem for infinite-dimensional time-invariant
linear systems in discrete and continuous time. In the first article [9] we investigated
the full information infinite-horizon LQ (Linear Quadratic) problem, in the second
article [10] we studied a deterministic version of the discrete time infinite-horizon
Kalman filtering problem. In this third article we combine the results from the pre-
vious two articles to study dynamic stabilization, coprime factorization and optimal
control on the whole Z axis. Perhaps surprisingly, in our general setting, in addition
to assuming the solvability of both the full information LQ problem and the Kalman
filtering problem, a coupling condition has to be imposed.

In the remainder of this introduction we will explain our results starting with the
simplest possible case (a minimal finite-dimensional system) and gradually build up
to the very general case for which precise definitions and proofs are given in the main
body of the article.

1.1. Minimal systems. So at first we consider the system

xn+1 = Axn +Bun, yn = Cxn +Dun,

where [ A B
C D ] is assumed to be minimal and the input, state and output spaces are

finite-dimensional. A classical problem is to consider this system on the positive time
axis and for a given initial state x0 to minimize the cost functional

Jf (x0, u) :=

∞∑
n=0

‖un‖2 + ‖yn‖2,

over all input sequences u. It is well-known that for any x0 in the state space there
exists a minimizing input umin, that the minimal cost is given by

Jf (x0, u
min) = 〈Qx0, x0〉,
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where Q is the unique positive self-adjoint solution of the control algebraic Riccati
equation

A∗QA−Q+ C∗C − (A∗QB + C∗D)(I +D∗D +B∗QB)−1(B∗QA+D∗C) = 0,

and that umin is of state feedback form

umin
n = Kxn,

where

K = −S−1(B∗QA+D∗C), S = I +D∗D +B∗QB.

It is also interesting to consider the situation when the input is not equal to the
minimizing one, but there is some disturbance: u = umin + v. It is then natural to
consider a new system with the disturbance as input and [ uy ] as the output (the effect
of the disturbance on the cost is then the same as its effect on the `2 norm of this
new output). This new system is described by the equations

xn+1 = (A+BK)xn +Bvn,[
u
y

]
n

=

[
K

C +DK

]
xn +

[
I
D

]
vn.

Interestingly, the transfer function
[
M
N

]
of this closed-loop system provides a right

factorization of the transfer function of the original system.
Less well-studied than the initial state optimal control problem is the similar final

state optimal control problem. In this problem for a given final state x0 the objective
is to minimize the cost functional

Jp(x0, u) :=

−1∑
n=−∞

‖un‖2 + ‖yn‖2.

In this final state optimal control problem some care is needed in defining the tra-
jectories of the system for a given input. The most natural choice seems to be to
initially only consider compactly supported inputs, i.e. to assume that there exists a
N > 0 such that un = 0 for n ≤ −N , and take x−N = 0 (i.e the system starts at rest).
Within this class of inputs the cost functional Jp does in general not have a minimum,
only an infimum, but the minimizing sequence converges to a unique element umin of
`2(Z−; U ) and the corresponding state xmin and output ymin can be defined (details
are given in [10]). The minimal cost is given by

Jp(x0, u
min) = 〈P−1x0, x0〉,

where P is the unique positive self-adjoint solution of the filter algebraic Riccati
equation

APA∗ − P +BB∗ − (APC∗ +BD∗)(I +DD∗ + CPC∗)−1(CPA∗ +DB∗) = 0.

We remark that when A is invertible, then this final state optimal control problem is
equivalent to the initial state optimal control problem for the time-inverted system

xn+1 = A−1xn −A−1Bun, yn = CA−1xn + (D − CA−1B)un.
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The final state optimal control problem is related to left factorizations of the transfer
function. The output injection closed-loop system

xn+1 = (A−HC)xn + (B −HD)un −Hyn,
wn = Cxn +Dun + yn,

with

H = −(APC∗ +BD∗)R−1, R = I +DD∗ + CPC∗

provides a left factorization [M̃, Ñ] of the transfer function of the original system.
Once the initial state and final state optimal control problems are posed, it is

natural to consider the cost functional

J(x0, u) :=

∞∑
n=−∞

‖un‖2 + ‖yn‖2,

where the state is required to pass through the given state x0 at time zero. It seems
reasonable to call this the intermediate state optimal control problem. Obviously this
problem splits into a final state optimal control problem and an initial state optimal
control problem and the minimum cost is given by

J(x0, u
min) = 〈P−1x0, x0〉+ 〈Qx0, x0〉.

Using the operators associated to these optimal control problems we can define the
following system whose transfer function [X̃,−Ỹ] is a Bézout factor for the right factor-
ization that came from the initial state optimal control problem (i.e. X̃M̃− ỸÑ = I):

xn+1 = (A−HC)xn + (B −HD)un +Hyn,

wn = Fxn + un. (1.1)

It follows from the factorization approach to control theory (as in e.g [14]) that X̃−1Ỹ
is the transfer function of a stabilizing dynamic controller for the original system
[ A B
C D ]. The realization of this controller resulting from the above realizations of the

Bézout factors is

x̂n+1 = [A+BF −H(C +DF )]x̂n −Hyn,
un = Fx̂n.

This is the well-known LQG or H2 controller.

1.2. Finite and coercive cost systems. A weaker condition than controlla-
bility is the following finite future cost condition: for every x0 there exist a control uf

such that Jf (x0, u
f ) < ∞. All that was said about the initial state optimal control

problem carries through under only this assumption with two exceptions. Uniqueness
of the solution of the control Riccati equation need no longer hold. The solution
that has to be chosen is the smallest nonnegative semi-definite one (since we consider
optimal control problems without an internal stability constraint). The second ex-
ception is that in contrast to the minimal case, the smallest solution Q of the control
Riccati equation is only nonnegative semi-definite (it need not be strictly positive).
This means that certain initial states can have zero cost associated to them (these are
exactly the unobservable ones).



4 M.R. OPMEER AND O.J. STAFFANS

The similarly weaker replacement for observability seems to have appeared first
in [10]. It is the state coercive past cost condition: there exists a constant M such
that for all x0 and all up: ‖x0‖2 ≤ M2Jp(x0, u

p). Again, everything that was said
about the final state optimal control problem carries through with two exceptions.
The first is again the statement about the uniqueness of the solution of the filter
Riccati equation (and again the smallest nonnegative semi-definite solution is the
right one). The second exception relates to the fact that certain final states may now
not be reachable. This means that for these final states Jp(x0, u

p) will not be finite for
any choice of control up. This relates to the smallest solution P of the filter Riccati
equation being only nonnegative semi-definite and not necessarily strictly positive.
See [10, Section 1.2] for some simple examples illustrating this.

When both the finite future cost condition and the state coercive past cost con-
dition hold then the statements made above about Bézout factors and stabilizing
dynamic controllers hold without change.

1.3. No assumptions at all. The condition that for every x0 there exist a
control uf such that Jf (x0, u

f ) < ∞ is actually also stronger than is needed. To
obtain a satisfactory theory it is enough to assume this condition only for certain x0.
We will now give a Riccati equation based argument for what would be reasonable
conditions to put on the set of finite cost initial conditions, we have shown in [9] that
those conditions indeed lead to a satisfactory theory. Since 〈Qx0, x0〉 = ‖Q1/2x0‖2
is the optimal cost, the set of finite cost initial conditions is exactly D(Q1/2). So
we will get a solution Q of the control Riccati equation that is only defined on some
subset of the state space. At this point it makes sense to write the control Riccati
equation in a slightly different form. In terms of the sesquilinear forms q[x, z] :=
〈Qx, z〉 = 〈Q1/2x,Q1/2z〉 and s[x, z] := 〈Sx, z〉 it (and the definitions of S and K)
can equivalently be written as

q[Az +Bu,Az +Bu] + ‖Cz +Du‖2Y + ‖u‖2U = q[z, z] + s[Kz − u,Kz − u].

A glance at this equation shows that for this equation to make sense we must have
that the image of B is in D(q) (because the equation should make sense for z = 0)
and that D(q) must be invariant under A (since the equation should make sense for
u = 0). This exactly means that the reachable states should be in the domain of q.
As argued above, the domain of q will consist exactly of those initial states for which
the initial state optimal control problem can be solved. So from the point of view of
making sense of the Riccati equation we naturally arrive at the condition that for every
reachable x0 there should exist a control uf such that Jf (x0, u

f ) < ∞. We coined
this the finite future incremental cost condition in [9] and there we showed that under
this condition a satisfactory theory for the initial state optimal control problem can
indeed be developed. We summarize those results (for the general possibly infinite-
dimensional case) in Section 2. The upshot is that with some slight modifications
(essentially boiling down to replacing the state space with the reachable subspace)
everything that we said above about the initial state optimal control problem in the
minimal case still holds under the finite future incremental cost condition. When the
input, output and state space of the system are finite-dimensional then it turns out
that the finite future incremental cost condition always holds, so that in this case in
fact no assumptions at all are needed!

For the final state optimal control problem the state coercive past cost condition
can be weakened to the output coercive past cost condition: there exists a constant M
such that for all x0 and all up: ‖Cx0‖2 ≤M2Jp(x0, u

p). We studied this situation (for
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the general possibly infinite-dimensional case) in [10] and those results are summarized
in Section 3. Again, in the finite-dimensional case this output coercive past cost
condition is in fact always satisfied.

The focus of this article is the intermediate state optimal control problem. The
appropriate assumption for that problem turns out to be the past cost dominance
condition (Definition 4.1): there exists a M and a uf such that for any up with
compact support Jf (x0, u

f ) ≤ M2Jp(x0, u
p) where x0 is the state reached at time

zero by applying the control up. Also this condition is always satisfied in the finite-
dimensional case, so that in the next subsection we highlight its significance in the
infinite-dimensional case.

1.4. Infinite-dimensional systems. We start our remarks on infinite-dimensional
systems by reviewing some work on the initial state optimal control problem that
predates our [9]. We first of all note that in the infinite-dimensional case minimal-
ity no longer implies the finite future cost condition. The results surveyed above for
finite-dimensional systems were first obtained for infinite-dimensional systems under
exponential stabilizability and detectability conditions. That the Riccati equation and
the feedback operator can be obtained under the weaker finite future cost condition
has been known for some time. The relation with right factorizations at this level of
generality was perhaps first made in [8] (the fact that the

[
M
N

]
is in H∞ is trivial un-

der the exponential stabilizability assumption whereas it requires considerable work
under the finite future cost condition). In Mikkola [6] it was shown that the obtained[
M
N

]
is actually weakly right coprime (in this article we are interested in the stronger

property of strong or Bézout right coprimeness). The above mentioned result on the
finite future cost condition and right factorizations is optimal in the sense that not
only does the fact that the finite future cost condition holds for some realization imply
that the transfer function has a right factorization, but also the converse is true: if
the transfer function has a right factorization, then it has a realization for which the
finite future cost condition holds.

As mentioned earlier, the results from [9] are reviewed in some detail in Section
2. Here we just mention that whereas the result about the finite future cost condition
states the existence of a realization, the similar statement concerning the finite future
incremental cost condition is: if the transfer function has a right factorization, then
for any realization the finite future incremental cost condition holds. We also remark
that (even for a minimal system) the solution of the control Riccati equation of an
arbitrary realization may be unbounded (and for nonminimal systems it need not even
by densely defined).

In this article we are interested in the intermediate state optimal control problem
and its relation to (strong or Bézout) coprime factorizations and stabilizing dynamic
controllers as expounded upon above for finite-dimensional systems. We note that
in the infinite-dimensional case it is also no longer true that every transfer function
has a coprime factorization. We first mention some previous work in continuous-time.
Under exponential stabilizability and detectability conditions the results are well-
known. In [13] the concept of a jointly stabilizable/detectable system was introduced
and it was shown that this implies that the transfer function has a strongly coprime
factorization and that a stabilizing dynamic controller exists. Conversely, if a transfer
function has a strongly coprime factorization (or equivalently: a stabilizing dynamic
controller), then it has a realization that is jointly stabilizable/detectable. This result
was improved upon in [1] where it was shown that ‘jointly stabilizable/detectable’
can be replaced here by the condition that the finite future cost condition holds for
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both the system and its dual system (this condition on the dual is equivalent to the
coercive past cost condition holding for the system itself). Interestingly, the Bézout
factors constructed in [1] are not (1.1) which result in the LQG controller, but rather
the ones that result in a robustly stabilizing controller as in Glover and McFarlane [3].
Whether (1.1) provides a Bézout factor is —at this level of generality— still an open
problem. The formulas obtained in [1] for the Bézout factors are however still in terms
of the solutions Q and P of the control and filter Riccati equation respectively. These
solutions exist and are bounded by the cost conditions assumed. The discrete-time
equivalents of the results from [1] can be found in [2].

In this article we show that the above mentioned past cost dominance condition
implies the existence of Bézout factors and therefore of a stabilizing dynamic con-
troller. Conversely, if a transfer function has a strongly coprime factorization (or
equivalently a stabilizing dynamic controller), then any realization satisfies the past
cost dominance condition. Another equivalent condition is that the control Riccati
equation and the filter Riccati equation of an arbitrary realization both have a (pos-
sibly unbounded) solution and that a coupling condition is satisfied. This coupling
between the full information and filtering problems is reminiscent of H∞ control the-
ory.

2. The initial state optimal control problem. In this section we review and
extend the relevant results from [9]. The system under study in this section is

xn+1 = Axn +Bun, yn = Cxn +Dun, n ∈ Z+; x0 = z, (2.1)

where A : X → X , B : U → X , C : X → Y , and D : U → Y are bounded linear
operators, X , U and Y are Hilbert spaces, and Z+ is the set of nonnegative integers.
By the node [ A B

C D ] we mean operators as above. The associated cost function is
Jf (z, u) :=

∑∞
n=0 ‖un‖2 + ‖yn‖2. Define Ξf as the set of those z ∈X for which there

exists a u such that Jf (z, u) < ∞. Standard arguments show that for each z ∈ Ξf

there exists a unique optimal control. We define If : Ξf → `2(Z+; U ×Y ) as the map
that sends z to the corresponding optimal input-output pair. We further define the
sesquilinear form ξf with D(ξf ) = Ξf as ξf [z1, z2] := 〈Ifz1, Ifz2〉`2(Z+;U×Y ). The
corresponding quadratic form ξf [z, z] gives the optimal cost.

Definition 2.1. The finite future incremental cost condition is the condition
BU ⊂ Ξf . The finite future cost condition is the condition Ξf = X .

The following is the standard control algebraic Riccati equation re-written in a
way (using sesquilinear forms) that easily allows for unbounded solutions.

Definition 2.2. The triple (q, s,K) is called a (nonnegative) solution of the
control Riccati equation of the node [ A B

C D ] if
1. q is a closed nonnegative symmetric sesquilinear form in X whose domain

satisfies AD(q) ⊂ D(q), BU ⊂ D(q).
2. s is a bounded nonnegative symmetric sesquilinear form on U .
3. K : D(q)→ U is a linear operator.
4. For all z ∈ D(q), u ∈ U we have

q[Az+Bu,Az+Bu]+‖Cz+Du‖2Y +‖u‖2U = q[z, z]+s[Kz−u,Kz−u]. (2.2)

The solution is called classical when D(q) = X .
Remark 2.3. In Part 1 [9] we gave several equivalent formulations of the con-

trol Riccati equation. Among them is the following in terms of operators instead of
sesquilinear forms. The triple (Q,S,K) is called a (nonnegative) solution of the op-
erator control Riccati equation of the node [ A B

C D ] if:
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1. Q is a closed nonnegative self-adjoint operator in X whose domain satisfies
AD(Q1/2) ⊂ D(Q1/2), BU ⊂ D(Q1/2).

2. S is a bounded nonnegative self-adjoint operator on U .
3. K : D(Q1/2)→ U is a linear operator.
4. For all z ∈ D(Q1/2), u ∈ U we have

‖Q1/2(Az +Bu)‖2X + ‖Cz +Du‖2Y + ‖u‖2U = ‖Q1/2z‖2X + ‖S(Kz − u)‖2U .

The solution is called classical when D(Q) = X .
We note that if Q is not densely defined, then what it means for it to be self-

adjoint is not immediately obvious. We defined this in an ad-hoc way in [9]. A
better way (which amounts to the same as what we did in [9]) is to say that Q is
the operator part of a nonnegative self-adjoint multi-valued operator, which is always
unambiguously defined (see Appendix A, especially example A.2).

To discuss transfer functions, we use the following notation: H∞ denotes the
Hardy space of uniformly bounded holomorphic functions and D denotes the unit
disc. The transfer function of the node [ A B

C D ] is defined in a neighbourhood of zero
by zC(I − zA)−1B + D. A node is called a realization of a holomorphic function
defined in a neighbourhood of zero if that function is the transfer function of the
node. We note that any holomorphic function defined in a neighbourhood of zero has
a realization (in fact, it has infinitely many).

Definition 2.4. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic at the origin.
A function

[
M
N

]
∈ H∞(D,L(U ,U × Y )) is called a right factorization of G if M(z)

is invertible for all z in a neighbourhood of the origin and G(z) = N(z)M(z)−1 in a
neighbourhood of the origin.

Theorem 2.5. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic at the origin and
let [ A B

C D ] be a realization of G. The following are equivalent conditions.
• [ A B

C D ] satisfies the finite future incremental cost condition.
• The control Riccati equation of [ A B

C D ] has a (nonnegative self-adjoint) solu-
tion.

• G has a right factorization.
Under these equivalent conditions, the triple (qf , sf ,Kf ) defined by

qf [z1, z2] := 〈Ifz1, Ifz2〉`2(Z+;U×Y ),

sf [u, v] := 〈u, v〉U + 〈Du,Dv〉Y + qf [Bu,Bv],

Kfz = PU (Ifz)0,

is the smallest nonnegative self-adjoint solution of the control Riccati equation. Here
PU is the canonical projection U × Y → U .

Proof. This follows from [9, Theorem 6.3] combined with [9, Theorem 3.14].
In this article we are mainly interested in strongly coprime factorizations for whose

existence more assumptions are needed than those made in the above theorem. Under
the assumptions of the above theorem weakly right coprime factorizations however do
already exist (Corollary 2.7). We first recall the relevant definition (note that by [5,
Theorem 2.19] this definition is equivalent to other definitions of weakly right coprime
factorization in the literature).

Definition 2.6. A right factorization
[
M
N

]
of G is called weakly right coprime

if the range of the operator on H2 of multiplication with
[
M
N

]
equals the graph of the

operator on H2 of multiplication with G. It is called normalized if multiplication with[
M
N

]
is an isometry on H2.
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Corollary 2.7. Assume that the node [ A B
C D ] satisfies the finite future incremen-

tal cost condition. Then its transfer function has a normalized weakly right coprime
factorization

[
M
N

]
and with

M(z) = zKf [I − z(A+BKf )]
−1
BS
−1/2
f + S

−1/2
f ,

N (z) = z [C +DKf ] [I − z(A+BKf )]
−1
BS
−1/2
f +DS

−1/2
f ,

P(z) = −zS1/2
f Kf (I − zA)−1B + S

1/2
f ,

where Sf is the nonnegative self-adjoint operator corresponding to the sesquilinear
form sf , we have ρ(A + BKf ) ∩ D ⊂ ρ(A) ∩ D and on the connected component of
ρ(A) ∩ D that contains zero we have

M(z) = M(z), N (z) = N(z), P(z) = M(z)−1.

Proof. Consider the graph node associated to qf of the node [ A B
C D ] as defined

in [9, Definition 4.10]. It follows from part 1 of [9, Lemma 4.11] that the transfer
function of [ A B

C D ] and that of its graph node are the same. It follows from [9, Lemma
4.11] that this graph node has (qf ,Kf , sf ) as the smallest nonnegative self-adjoint
solution of its control Riccati equation and that this solution is classical (that it is
the smallest solution is not stated in [9, Lemma 4.11], but in this special case where
q = qf , it follows from [9, Theorem 3.14]). From [6, Theorem 1.2] it then follows that
the transfer function of the graph node has a normalized weakly coprime factorization
given in a neighbourhood of zero by the above formulasM and N . The formula P for
M−1 follows from applying [12, (12.1.7) on page 701] to the formula M. The claims
about the resolvent sets and the validity of the above formulas on the connected
component of ρ(A) ∩ D that contains zero follow using the argument from the proof
of [5, Theorem 2.21]. The proof is then complete.

We recall that a node is called minimal if it is both approximately controllable
and approximately observable [12, Definition 9.1.2].

Definition 2.8. The node [ A B
C D ] is called LQ future normalized if [ A B

C D ] is
minimal, satisfies the finite future cost condition and If : X → `2(Z+; U ×Y ) is an
isometry.

An LQ future normalized realization can be constructed from a node [ A B
C D ] that

satisfies the finite future incremental cost condition by (see [9]) compressing the sys-
tem onto its reachable subspace, then factoring out the unobservable subspace, sub-
sequently taking ξf [z, z] —or more accurately the quadratic form that it induces on
the quotient space— as the new norm and finally completing the so obtained state
space with respect to this norm.

Remark 2.9. Like input and output normalized systems [12, Section 9.5] and
optimal and ∗-optimal systems [12, Section 11.8], LQ future normalized realizations
of a transfer function are unique up to a unitary similarity transformation in the
state space (Lemma 2.11). Just as optimal and ∗-optimal realizations are natural
for contraction valued transfer functions and input and output normalized realizations
are natural for transfer functions which induce a bounded Hankel operator, LQ future
normalized realizations are natural realizations for transfer functions that have a right
factorization over H∞ (Theorem 2.12).

Before we state and prove the next lemmas, we recall the operator (introduced in
part 2 [10])

Γf : D(Γf ) ⊂ `2(Z−; U )→ `2(Z+; U × Y ),
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that sends a compactly supported input to the corresponding optimal future input-
output trajectory. We note that this operator depends only on the transfer function
and not on the realization.

The following lemma shows that in some sense a LQ future normalized realization
has the largest state space among minimal realizations that satisfy the finite future
cost condition.

Lemma 2.10. Let
[
A1 B1

C1 D1

]
be minimal and satisfy the finite future cost condition.

Let
[
A2 B2

C2 D2

]
be a LQ future normalized realization of the same transfer function. Then

there exists an injective operator U ∈ L(X1,X2) such that[
U 0
0 I

] [
A1 B1

C1 D1

]
=

[
A2 B2

C2 D2

] [
U 0
0 I

]
.

Proof. We first show that R(I1f ) = R(I2f ). By controllability, the closure of R(Iif )

(for i = 1, 2) equals the closure of R(Γf ). Since I2f is an isometry, its range is closed,
which proves the assertion.

Since I2f is an isometry, as an operator X2 → R(I2f ) it is invertible. It follows

from this and the above established R(I1f ) = R(I2f ) that the operator U :=
(
I2f
)−1
I1f

is well-defined. Since
[
A1 B1

C1 D1

]
is observable, I1f is injective [9, Lemma 4.4] so that U

is injective.
It remains to show the intertwining conditions. We first show that UB1 = B2,

or equivalently that I1fB1v = I2fB2v for all v ∈ U . This follows since both sides
equal Γfu where u is given by uk = 0 for k 6= −1 and u−1 = v. It similarly follows
that I1fAn

1B1 = I2fAn
2B2 for all n ∈ Z+, i.e. UAn

1B1 = An
2B2 for all n ∈ Z+.

Now consider the equality I1fA1A
n
1B1 = I2fA2A

n
2B2 (which is just a re-writing of the

just obtained one) and use the just established UAn
1B1 = An

2B2 to re-write this as
I1fA1A

n
1B1 = I2fA2UA

n
1B1. By controllability it follows that I1fA1 = I2fA2U on a

dense set, which by continuity extends to all of X1. We then note that this equality
is nothing else than UA1 = A2U , which is one of the other desired intertwining
conditions. The last intertwining condition C1 = C2U is proven somewhat differently.
By definition of U we have I2fU = I1f . Projecting onto the zero-th component shows
that [

K2
f

C2 +DK2
f

]
U =

[
K1

f

C1 +DK1
f

]
,

from which it follows that C2U = C1.
The next lemma shows that LQ future normalized realizations are essentially

unique.
Lemma 2.11. Let

[
A1 B1

C1 D1

]
and

[
A2 B2

C2 D2

]
be two LQ future normalized realizations

of the same transfer function. Then there exists a unitary operator U : X1 → X2

such that [
U 0
0 I

] [
A1 B1

C1 D1

]
=

[
A2 B2

C2 D2

] [
U 0
0 I

]
.

Proof. By Lemma 2.10 it only remains to show that U is unitary. By the proof of

Lemma 2.10 we have U =
(
I2f
)−1
I1f and R(I1f ) = R(I2f ). As the composition of two
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isometries, U is an isometry and as the composition of two surjective operators —
where the intermediate space is R(I1f )—, it is surjective. It follows that U is unitary.

Theorem 2.12. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic at the origin.
The following are equivalent:

• G has a right factorization,
• G has a LQ future normalized realization.

Proof. We first prove 1 implies 2. The competed q−f -compression from [9], which
is there shown to exist under the condition that G has a right factorization, is a LQ
future normalized realization.

We now show 2 implies 1. A LQ future normalized realization by definition
satisfies the finite future cost condition, so it follows from Theorem 2.5 that its transfer
function G has a right factorization.

3. The final state optimal control problem. In this section we review and
extend the relevant results from [10]. The system under study in this section is

xn+1 = Axn +Bun, yn = Cxn +Dun, n ∈ Z−; x0 = z,

∃N ∈ Z+ : xn = 0 = un ∀n ≤ −N,
(3.1)

where A : X → X , B : U → X , C : X → Y , and D : U → Y are bounded linear
operators, X , U and Y are Hilbert spaces, and Z− is the set of negative integers.
The associated cost function is Jp(z, u) :=

∑−1
n=−∞ ‖un‖2 + ‖yn‖2. In [10], the set Ξp

of finite cost final states and the map Ip : Ξp → `2(Z+; U × Y ) that sends a finite
cost final state to the optimal input-output trajectory that reaches it are defined.
We define the (closed nonnegative) sesquilinear form ξp with domain D(ξp) = Ξp by
ξp[z1, z2] = 〈Ipz1, Ipz2〉`2(Z+;U×Y ). The corresponding quadratic form ξp[z, z] then
gives the optimal cost.

We define Ξ− as the subset of X of states that are reachable in a finite time. For
Ξ− define

Wc(z) =

{[
y
u

]
∈ `2c(Z−; Y ×U ) : ∃x such that (3.1) holds

}
,

the set of compactly supported input-output trajectories with z as final state.
Definition 3.1. A node satisfies the output coercive past cost condition if there

exists a M > 0 such that for all z ∈ Ξ− and all [ yu ] ∈ Wc(z)

‖Cz‖Y ≤M
∥∥∥∥[ y

u

]∥∥∥∥
`2(Z−;Y ×U )

.

The node satisfies the state coercive past cost condition if there exists a M > 0 such
that for all z ∈ Ξ− and all [ yu ] ∈ Wc(z)

‖z‖X ≤M
∥∥∥∥[ y

u

]∥∥∥∥
`2(Z−;Y ×U )

.

Definition 3.2. The triple (p, r, T ) is called a (nonnegative) solution of the filter
Riccati equation of the node [ A B

C D ] if
1. p is a closed nonnegative symmetric sesquilinear form in X whose domain

satisfies A∗D(p) ⊂ D(p), C∗Y ⊂ D(p).
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2. r is a bounded nonnegative symmetric sesquilinear form on Y .
3. T : D(p)→ Y is a linear operator.
4. For all z ∈ D(p), y ∈ Y we have

p[A∗z+C∗y,A∗z+C∗y]+‖B∗z+D∗y‖2U +‖y‖2Y = p[z, z]+r[Tz−y, Tz−y].
(3.2)

The solution is called classical when D(p) = X .
Just as for the control Riccati equation (Remark 2.3) an equivalent operator

version of the filter Riccati equation can be defined.
Definition 3.3. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic at the origin.

A function [M̃, Ñ] ∈ H∞(D,L(Y ×U ,Y )) is called a left factorization of G if M̃(z)
is invertible for all z in a neighbourhood of the origin and G(z) = M̃(z)−1Ñ(z) in a
neighbourhood of the origin.

Theorem 3.4. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic at the origin and
let [ A B

C D ] be a realization of G. The following are equivalent conditions.
• [ A B

C D ] satisfies the output coercive past cost condition.
• The filter Riccati equation of [ A B

C D ] has a (nonnegative self-adjoint) solution.
• G has a left factorization.

Under these equivalent conditions, the filter Riccati equation of [ A B
C D ] has a smallest

(nonnegative self-adjoint) solution (pp, Tp, rp) with pp = ξ−1p .
Proof. This is [10, Theorem 6.10], where the precise description pp = ξ−1p has now

been made explicit.
In the above theorem we used the inverse of the closed nonnegative sesquilinear

form ξp. When a sesquilinear form is given by 〈Tx, y〉 for some bounded nonnegative
self-adjoint operator T with a bounded inverse, then its inverse sesquilinear form is
simply 〈T−1x, y〉. When dealing with sesquilinear forms corresponding to unbounded
or non-invertible operators, some more care is needed. We deal with that case in
Appendix A by relating sesquilinear forms to nonnegative self-adjoint multi-valued
operators.

Definition 3.5. A left factorization
[
M̃, Ñ

]
is called weakly left coprime if[

M
N

]
defined by M(z) = M̃(z)∗, N(z) = Ñ(z)∗ is weakly right coprime and it is called

normalized if multiplication with
[
M
N

]
is an isometry on H2.

Corollary 3.6. Assume that the node [ A B
C D ] satisfies the output coercive past

cost condition. Then its transfer function has a normalized weakly left coprime fac-

torization
[
M̃, Ñ

]
and with

M̃(z) = zR−1/2p C [I − z(A+ TpC)]
−1
Tp +R−1/2p ,

Ñ (z) = zR−1/2p C [I − z(A+ TpC)]
−1

[B + TpD] +R−1/2p D,

P̃(z) = −zC(I − zA)−1TpR
1/2
p +R1/2

p ,

where Rp is the nonnegative self-adjoint operator corresponding to the sesquilinear
form rp, we have ρ(A + TpC) ∩ D ⊂ ρ(A) ∩ D and on the connected component of
ρ(A) ∩ D that contains zero we have

M̃(z) = M̃(z), Ñ (z) = Ñ(z), P̃(z) = M̃(z)−1.

Proof. This is the dual of Corollary 2.7.
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Definition 3.7. The node [ A B
C D ] is called LQ past normalized if [ A B

C D ] is mini-
mal, satisfies the state coercive past cost condition and Ip : X → `2(Z−; U × Y ) is
an isometry.

An LQ past normalized realization can be constructed from a node [ A B
C D ] that

satisfies the output coercive past cost condition by [10] factoring out the unobservable
subspace, restricting the result to its reachable subspace, taking the new norm in this
subspace to be ξp(z, z) —or more accurately the quadratic form that it induces on
the quotient space— and completing this space.

The following lemma shows that in some sense a LQ past normalized realization
has the smallest state space among minimal realizations that satisfy the coercive past
cost condition.

Lemma 3.8. Let
[
A1 B1

C1 D1

]
be minimal and satisfy the state coercive past cost

condition. Let
[
A2 B2

C2 D2

]
be a LQ past normalized realization of the same transfer

function. Then there exists an injective operator U ∈ L(X2,X1) such that[
A1 B1

C1 D1

] [
U 0
0 I

]
=

[
U 0
0 I

] [
A2 B2

C2 D2

]
.

Proof. We use the notation from [10]. We recall the operator Γp that maps
a compactly supported input-output trajectory on Z− to the corresponding output
on Z+ when the input is chosen to be zero on Z+. We note that this operator
depends only on the transfer function and not on the realization. The closure of Γp

(which exists due to the output coercive past cost condition being satisfied, see [10,
Remark 3.3]) is denoted by Γp. We further note that for observable realizations the
space Gopt of optimal past input-output trajectories with a well-defined final state is
equal to D(Γp) 	 N(Γp) since D(Γp) = D(J ) and N(Γp) = N(CJ ) = N(J ), where
observability is used in the last equality. It follows that Gopt depends only on the
transfer function and not on the realization (as long as the realization is observable).
The output coercive past cost condition implies that Γp is a bounded operator, so
that Gopt is closed. Moreover, Γp restricted to Gopt is injective.

By the definition of Ip in [10] it follows that R(Ip) = Gopt. So R(I1p) = R(I2p)

and this set is closed. It follows that the operator U :=
(
I1p
)−1 I2p is well-defined.

By the state coercive past cost condition
(
I1p
)−1

is bounded —with domain R(I1p)—
and since I2p is an isometry it is also bounded. It follows that U is a bounded and
injective.

It remains to show the intertwining conditions. We first show that C1U = C2. By
definition of U we have I1pU = I2p . Since both sides belong to Gopt and Γp is injective
on that set, this is equivalent to ΓpI1pU = ΓpI2p . We have ΓpIp = C, the initial state
to output map, so that equivalently C1U = C2. Projecting onto the zero-th component
shows that C1U = C2 as desired.

Next we show thatB1 = UB2, or equivalently that I1pB1 = I2pB2. Since both sides
belong to Gopt and Γp is injective on that set, this is equivalent to ΓpI1pB1 = ΓpI2pB2.
We have ΓpIp = C, the initial state to output map, so that equivalently C1B1 = C2B2.
This equality holds since the Hankel operators of the two systems are the same.

Entirely similarly it follows that An
1B1 = UAn

2B2 for all n ∈ Z+. Now consider the
equality A1A

n
1B1 = UA2A

n
2B2 (which is just a re-writing of the just obtained one) and

use the just established An
1B1 = UAn

2B2 to re-write this as A1UA
n
2B2 = UA2A

n
2B2.

By controllability it follows that A1U = UA2 on a dense set, which by continuity
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extends to all of X2. Thus the last remaining intertwining conditions is established.

The next lemma shows that LQ past normalized realizations are essentially unique.
Lemma 3.9. Let

[
A1 B1

C1 D1

]
and

[
A2 B2

C2 D2

]
be two LQ past normalized realizations of

the same transfer function. Then there exists a unitary operator U : X2 → X1 such
that [

A1 B1

C1 D1

] [
U 0
0 I

]
=

[
U 0
0 I

] [
A2 B2

C2 D2

]
.

Proof. By Lemma 3.8 it only remains to show that U is unitary. By the proof of

Lemma 3.8 we have U =
(
I1p
)−1 I2p and R(I1p) = R(I2p). As the composition of two

isometries, U is an isometry. The operator I2p : X2 → R(I2p) is obviously surjective.

The range of
(
I1p
)−1

equals the domain of I1p , which is dense by controllability and

closed since I1p is an isometry. It follows that the range of
(
I1p
)−1

equals X1. So U
as the composition of two surjective operators is surjective. As a surjective isometry
it is unitary.

Theorem 3.10. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic at the origin.
The following are equivalent:

• G has a left factorization,
• G has a LQ past normalized realization.

Proof. We first prove 1. implies 2. The completed Ip,− compression from [10,
Remark 3.12] is a LQ past normalized factorization. It is shown in [10] to exist under
the condition that G has a left factorization.

We now show that 2. implies 1. A LQ past normalized factorization by definition
satisfies the state coercive past cost condition, so it follows from Theorem 3.4 that its
transfer function G has a left factorization.

4. The intermediate state optimal control problem. The following is the
fundamental new definition in this article. Its significance becomes clear from Theo-
rem 4.6.

Definition 4.1. The node [ A B
C D ] satisfies the past cost dominance condition if

there exists an M > 0 such that for every z ∈ Ξ− there exists a uf ∈ `2(Z+; U ) such
that

‖uf‖2`2(Z+;U ) + ‖yf‖2`2(Z+;Y ) ≤M
(
‖up‖2`2(Z−;U ) + ‖yp‖2`2(Z−;Y )

)
, (4.1)

for all up : Z− → U with compact support that reach z. Here y is the output for the
input u defined by un = upn for n ∈ Z− and un = ufn for n ∈ Z+; yf is the projection
of y onto `2(Z+; Y ) and yp the projection of y onto `2(Z−; Y ). Note that with the
earlier introduced cost functions (4.1) reads

Jf (z, uf ) ≤MJp(z, up).

The next lemma relates the just introduced cost condition to the cost conditions intro-
duced earlier for the initial state and final state optimal control problems, respectively.

Lemma 4.2. If [ A B
C D ] satisfies the past cost dominance condition, then it satisfies

both the finite future incremental cost condition and the output coercive past cost
condition.

Proof. Obviously the past cost dominance condition implies that each z ∈ Ξ− has
a finite future cost, so the finite future incremental cost condition holds.
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We now show that the output coercive past cost condition holds. Let z ∈ Ξ− and
let up be an input that reaches z. By the past cost dominance condition there exists
a control uf such that

‖uf0‖2U + ‖Cz +Duf0‖2 ≤M
(
‖up‖2`2(Z−;U ) + ‖yp‖2`2(Z−;Y )

)
. (4.2)

We further have

‖Cz‖2Y ≤ ‖Cz+Du
f
0‖2Y +‖Duf0‖2Y ≤ max{1, ‖D‖L(U ,Y )}

(
‖Cz +Duf0‖2Y + ‖uf0‖2U

)
,

So that by combining this with (4.2) we have

‖Cz‖2Y ≤ M̃
(
‖up‖2`2(Z−;U ) + ‖yp‖2`2(Z−;Y )

)
,

with M̃ := M max{1, ‖D‖L(U ,Y )}. Hence the output coercive past cost condition
holds.

The following lemma will be used in the proof of Theorem 4.6.
Lemma 4.3. If [ A B

C D ] satisfies the past cost dominance condition, then the LQ past
normalized realizations of its transfer function satisfy the finite future cost condition.

Proof. Since by Lemma 4.2 the past cost dominance condition implies the output
coercive past cost condition it follows from Theorems 3.4 and 3.10 that the transfer
function of [ A B

C D ] indeed has a LQ past normalized realization.
We first show that there exists a M > 0 such that for all z ∈ Ξ− there holds

ξf (z, z) ≤Mξp(z, z).
It follows from the past cost dominance condition by taking the infimum over uf

in (4.1), that for all z ∈ Ξ−

ξf (z, z) ≤M
(
‖up‖2`2(Z−;U ) + ‖yp‖2`2(Z−;Y )

)
,

for any up : Z− → U with compact support that reach z. Taking the infimum over
such up gives the desired ξf (z, z) ≤Mξp(z, z).

It follows that ξf is bounded on the dense set Ξ− of the state space of the LQ
past normalized realization constructed from [ A B

C D ]. Hence this LQ past normalized
realization satisfies the finite future cost condition. Since all LQ past normalized
realizations of the same transfer function are unitarily equivalent (Lemma 3.9), the
result follows.

In the following theorem we again use the notion of inverse of a closed nonnegative
sesquilinear form as in Appendix A. The theorem relates the introduced cost condition
to solutions of Riccati equations.

Theorem 4.4. The node [ A B
C D ] satisfies the past cost dominance condition if

and only if there exists a (nonnegative self-adjoint) solution q of its control Riccati
equation and a (nonnegative self-adjoint) solution p of its filter Riccati equation with
Ξ− ⊂ D(p−1) such that there exists a M > 0 such that for all z ∈ Ξ− the following
holds q(z, z) ≤Mp−1(z, z).

Proof. First assume that the past cost dominance condition holds. Lemma 4.2
together with Theorems 2.5 and 3.4 implies the existence of solutions to the Riccati
equations. In fact, ξf and ξ−1p are the smallest solutions. It is therefore obviously
sufficient to prove that ξf (z, z) ≤ Mξp(z, z) for z ∈ Ξ−. This was already proven in
the proof of Lemma 4.3.
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Now assume the condition on the Riccati equations. Since ξf and ξp are the
smallest solutions, this condition obviously implies that ξf (z, z) ≤ Mξp(z, z) for z ∈
Ξ−. It follows that we can take uf in the past cost dominance condition to be the
optimal control starting at z.

Definition 4.5. A right factorization
[
M
N

]
is called strongly right coprime if

there exists a [X̃,−Ỹ] ∈ H∞ such that [X̃,−Ỹ]
[
M
N

]
= I. Similarly, a left factorization

[M̃, Ñ] is called strongly left coprime if there exist a
[

X
−Y
]

such that [M̃, Ñ]
[

X
−Y
]

= I.

It is known that existence of a strongly right coprime factorization and a strongly
left coprime factorization (over H∞) are equivalent [4], so we will just speak about a
function having a strongly coprime factorization.

The notion of strong coprimeness is stronger than the notion of weak coprimeness
from Mikkola [6]. Whereas every function that has a right factorization has a weakly
right coprime factorization (and similarly with right replaced by left), it is not true
that every function that has a right and a left factorization has a strongly coprime
factorization, see e.g [6, Example 7.2]. Note that this example also shows that the
converse of Lemma 4.2 is not true.

The following theorem is the main result of this article. In the remarks that
follow, some further equivalent conditions are pointed out.

Theorem 4.6. The following are equivalent for a L(U ,Y ) valued function G
that is holomorphic in zero:

1. G has a strongly coprime factorization;
2. For all realizations the past cost dominance condition holds;
3. There exists a realization for which the past cost dominance condition holds;
4. There exists a realization for which both the finite future cost condition and

the state coercive past cost condition hold;
5. There exists a realization [ A B

C D ] for which the finite future cost condition holds
for both [ A B

C D ] and [ A B
C D ]

∗
.

Proof. We show 1 implies 2, 3 implies 4 and 4 implies 5. The implication 5 implies
1 is proven in [1] for continuous-time systems and in [2, 7] for discrete-time systems.
The implication 2 implies 3 is trivial.

1 implies 2. Consider an arbitrary realization of G. Let z ∈ Ξ−. Let up ∈
`2(Z−; U ) with compact support be an input such that z is reached and let yp ∈
`2(Z−; Y ) denote the corresponding output restricted to Z−. Let

[
M
N

]
be a right

coprime factorization of G. Since by assumption M is invertible in a neighbourhood
of zero, we may define r : Z → U trough its Z-transform as: r̂(s) = M(s)−1ûp(s).
Define rp as the restriction of r to Z−. Since up has compact support, so does
rp. Define [u; y] ∈ `2(Z; U × Y ) by [û(s); ŷ(s)] = [M(s);N(s)]r̂p(s). Then y is
the output for the input u for the system defined by the node [ A B

C D ] since ŷ(s) =
N(s)r̂p(s) = N(s)M(s)−1û(s), where we then use that

[
M
N

]
is a right factorization.

Define [uf ; yf ] as the restriction to Z+ of [u; y]. By the Bézout equation we have
r̂p(s) = [X̃(s),−Ỹ(s)][û(s); ŷ(s)] and by causality [û(s); ŷ(s)] can be replace here by
[ûp(s); ŷp(s)]. This implies

∥∥∥∥[ uf

yf

]∥∥∥∥2
`2(Z+,U×Y )

≤
∥∥∥∥[ u

y

]∥∥∥∥2
`2(Z,U×Y )

≤
∥∥∥∥[ M

N

]∥∥∥∥2
H∞(D;U×Y )

‖rp‖2`2(Z−,U )

≤
∥∥∥∥[ M

N

]∥∥∥∥2
H∞(D;U×Y )

∥∥∥[X̃,−Ỹ]
∥∥∥2
H∞(D;U×Y )

∥∥∥∥[ up

yp

]∥∥∥∥2
`2(Z−,U×Y )

.
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Hence with

M :=

∥∥∥∥[ M
N

]∥∥∥∥2
H∞(D;U×Y )

∥∥∥[X̃,−Ỹ]
∥∥∥2
H∞(D;U×Y )

,

which is clearly independent of z, the past cost dominance condition is satisfied.
3 implies 4. This follows immediately from Lemma 4.3.
4 implies 5. It follows from [10, Theorem 6.4] that the state coercive past cost

condition is equivalent to the finite future cost condition of the dual system. This
gives the result.

Remark 4.7. Note that by Theorem 4.4 we could in Theorem 4.6 have replaced
conditions 2 and 3 with conditions on solutions of Riccati equations.

Remark 4.8. Since the existence of a strongly coprime factorization is equivalent
to the existence of a dynamic stabilizing controller [4], the conditions of Theorem 4.6
are also equivalent to the existence of a dynamic stabilizing controller.

Remark 4.9. Since all weakly coprime factorizations are strongly coprime if
strongly coprime factorizations exist, under the past cost dominance condition, the
formulas given in Corollary 2.7 provide a strongly right coprime factorization and
those given in Corollary 3.6 provide a strongly left coprime factorization. Formulas
for corresponding Bézout factors appear in [2].

Appendix A. Multi-valued operators and the inverse of a sesquilinear
form. In this appendix we define the inverse of a closed nonnegative symmetric
sesquilinear form by relating them to multi-valued operators.

Definition A.1. A multi-valued operator (or relation) T : H → K is a subspace
VT of H ×K . The operator T is called closed when the subspace VT is closed. We
have for the domain, kernel, range and multi-valued part of T :

D(T ) = {x ∈H : ∃y such that (x, y) ∈ VT },
N(T ) = {x ∈H : (x, 0) ∈ VT },
R(T ) = {y ∈ K : ∃x such that (x, y) ∈ VT },
M(T ) = {y ∈ K : (0, y) ∈ VT }.

A multi-valued operator T is called single-valued if M(T ) = {0}. In that case T is the
graph of an operator in the usual sense and since there is no possibility of confusion
we will not distinguish between an operator and its graph.

The inverse of a multi-valued operator T : H → K is the multi-valued operator

T−1 := {(y, x) ∈ K ×H : (x, y) ∈ T}.

Clearly,

D(T−1) = R(T ), R(T−1) = D(T ), N(T−1) = M(T ), M(T−1) = N(T ).

In the sequel we shall only deal with closed multi-valued operators. In the case of
a closed multi-valued operator T both N(T ) and M(T ) are closed. Let us denote the
orthogonal projections onto N(T )⊥ and M(T )⊥ by PN(T )⊥ and PM(T )⊥ , respectively.
It is easy to see that D(T ) is invariant under PN(T )⊥ and R(T ) is invariant under

PM(T )⊥ , i.e., if x ∈ D(T ) then PN(T )⊥x ∈ D(T ) ∩ N(T )⊥, and if y ∈ R(T ), then

PM(T )⊥y ∈ R(T ) ∩M(T )⊥.
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If T is a multi-valued operator, then Ts := PM(T )⊥T is a single-valued operator.
This single-value operator is called the operator part of the multi-valued operator T ,
and it is closed whenever T is closed. Note that D(Ts) = D(T ), N(Ts) = N(T ), and
R(Ts) = R(T ) ∩M(T )⊥. By restricting Ts to D(T ) ∩ N(T )⊥ we get the injective
single-valued operator Ti := PM(T )⊥T |D(T )∩N(T )⊥ . This operator has the same range

as Ts, so that D(Ti) = D(T ) ∩N(T )⊥ and R(Ti) = R(T ) ∩M(T )⊥. It is easy to see
that also Ti is closed as an operator D(T ) ∩N(T )⊥ → R(T ) ∩M(T )⊥ whenever T is
closed.

The structure of a closed multi-valued operator T can be seen most easily by
decomposing the domain space H and the range space K orthogonally into

H = N(T )⊕
(
D(T ) ∩N(T )⊥

)
⊕D(T )⊥,

K = R(T )⊥ ⊕
(
R(T ) ∩M(T )⊥

)
⊕M(T ).

(A.1)

With respect to these two decompositions the multi-valued operator T is given by

T =


x0x1

0

 ,
 0
Tix1
y0

 :

x0x1
y0

 ∈
N(T )
D(Ti)
M(T )

 , (A.2)

and T−1 is given by

T−1 =


 0

y1
y0

 ,
 x0
T−1i y1

0

 :

x0y1
y0

 ∈
N(T )
R(Ti)
M(T )

 . (A.3)

The adjoint of a multi-valued operator T is the multi-valued operator T ∗ : K →
H defined by

T ∗ = {(y∗, x∗) ∈ K ×H : 〈x∗, x〉H = 〈y∗, y〉K ∀h = (x, y) ∈ T}.

Note that the adjoint is always closed and that the adjoint of the adjoint of T is equal
to T whenever T is closed (otherwise it is the closure of T ). It is easy to check that
M(T ∗) = D(T )⊥, N(T ∗) = R(T )⊥, and if T is closed (so that (T ∗)∗ = T ) we also have
M(T ) = D(T ∗)⊥ and N(T ) = R(T ∗)⊥. Moreover, if we use the same decomposition
of H and K as in (A.1), then T ∗ is decomposed into

T ∗ =


y0y1

0

 ,
 0
T ∗i y1
x0

 :

y0y1
x0

 ∈
R(T )⊥

D(T ∗i )
D(T )⊥

 , (A.4)

where T ∗i is the adjoint of Ti as a closed unbounded operator D(T ) ∩ N(T )⊥ →
R(T ) ∩M(T )⊥

A multi-valued operator T is called self-adjoint when the domain space H and
the range space K coincide and T = T ∗. In particular, every self-adjoint multi-valued
operator is closed. Note that in this case N(T ) = R(T ∗)⊥ = R(T )⊥ and M(T ) =
D(T ∗)⊥ = D(T )⊥, so in the case of a closed self-adjoint multi-valued operator, the
two different decompositions of H = K in (A.1) conicide. In particular, we also have
D(T ) ∩N(T )⊥ = R(T ) ∩M(T )⊥.

Example A.2. An (single-valued) operator A whose domain is not dense in the
domain space H cannot be self-adjoint, since A∗ always contains a nontrivial multi-
dimensional part M(A∗) = D(A)⊥. However, a self-adjoint multi-valued operator
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is uniquely determined by its operator part Ts. This can be seen as follows. If
T is a self-adjoint multi-valued operator, then Ts := PM(T )⊥T = P

D(T )
T has the

following characteristic properties: a) R(Ts) ⊂ D(Ts) = D(T ), and b) Ts is self-
adjoint when regarded as a densly defined operator in D(Ts). Conversely, let A be a
(closed) operator with properties a) and b) above, i.e., suppose that R(A) ⊂ D(A) and
that A is self-adjoint regarded as an operator in D(A). Let Ai be the injective part of
A, i.e., Ai = A|D(A)∩N(A)⊥ . Then Ai is self-adjoint as an operator in D(A)∩N(A)⊥.
Define

T =

{(
x,

[
Ax
y

])
: x ∈ D(A), y ∈ D(A)⊥

}
.

Then T is self-adjoint with

D(T ) = D(A), N(T ) = N(A), M(T ) = D(A)⊥, R(T ) = R(A) +M(T ),

Ts = A, Ti = Ai,

D(Ti) = D(Ai) = D(A) ∩N(A)⊥, R(Ts) = R(Ti) = R(A) = R(Ai),

(A.5)

and (A.2) holds with the above substitutions. That T is determined uniquely by A
follows from the fact that both Ts and M(T ) = D(A)⊥ are determined uniquely by
A.

A multi-valued self-adjoint operator T : H →H is called nonnegative if 〈x, y〉H ≥
0 for all (x, y) ∈ T . This condition is equivalent to the condition that the injective
single-valued part Ti of T is nonnegative. Note that a multi-valued operator is self-
adjoint and nonnegative if and only if its inverse is.

Two multi-valued operators T : H → K and S : K → L can be multiplied as
follows

ST = {(x, z) ∈H ×L : ∃y ∈ K , (x, y) ∈ T, (y, z) ∈ S}.

As for single-valued operators, it can be shown that for a nonnegative self-adjoint
multi-valued operator T , there exists a unique nonnegative self-adjoint multi-valued
operator, denoted T 1/2, such that (T 1/2)2 = T . The operator T has the same decom-

position (A.2) as T , except that Ti has been replaced by T
1/2
i . In particular,

N(T 1/2) = N(T ), D(T 1/2) = D(T ), R(T 1/2) = R(T ), M(T 1/2) = M(T ).

See [11, Section 4.2] for details.
There is the following one-to-one correspondence between closed nonnegative sym-

metric sesquilinear forms t and nonnegative self-adjoint multi-valued operators T on
H :

D(t) = D(T 1/2), t(x, y) = 〈(T 1/2)sx, (T
1/2)sy〉H , x, y ∈ D(T 1/2),

see [11, Lemma 4.4.2]. In particular, this implies that

D(t) = D(T 1/2) = D((T 1/2)s) = N(T ) +D((T 1/2)i).

Also note that t[x, x] = 0 if and only if x ∈ N(T 1/2) = N((T 1/2)s).
This correspondence allows as to define the inverse of a closed nonnegative sym-

metric sesquilinear form t as the closed nonnegative symmetric sesquilinear form cor-
responding to the nonnegative self-adjoint multi-valued operator T−1.
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Example A.3. We continue example A.2. Assume A satisfies not only the
conditions listed in Example A.2, but also that A is nonnegative. Let Ai be the injective
part of A, i.e., Ai = As|D(A)∩N(A)⊥ . Then Ai is densely defined, self-adjoint and

positive in the space D(A) ∩ N(A)⊥. We denote the nonnegative self-adjoint square
roots of A and Ai, regarded as a densely defined operator in D(A) and D(A)∩N(A)⊥,

by A1/2 and A
1/2
i , respectively. In the same way as in Example A.2 we associate a

self-adjoint multi-valued operator T with A. Then (A.5) holds, and so does (A.2) with
the substitutions listed in (A.5).

Let T 1/2 be the nonnegative self-adjoint square root of T . Then

D(T 1/2) = D(A1/2), N(T 1/2) = N(A), M(T 1/2) = D(A)⊥,

R(T 1/2) = R(A1/2) +M(T ),

(T 1/2)s = A1/2, (T 1/2)i = A
1/2
i ,

D(T 1/2)i = D(A
1/2
i ) = D(A1/2) ∩N(A)⊥,

R(T 1/2
s ) = R(T

1/2
i ) = R(A1/2) = R(A

1/2
i ),

(A.6)

and (A.2) holds with the above substitutions.
Next we associate a closed nonnegative sesquilinear form t with T and T 1/2 as

described above. Then

D(t) = D(T 1/2) = D(A1/2) = N(A) +D(A
1/2
i ),

and with respect to the decomposition N(A) ⊕ D(Ai) = N(A) ⊕ D(A
1/2
i ) the form t

has the representation

t

[[
x0
x1

]
,

[
y0
y1

]]
=

〈
A1/2

[
x0
x1

]
, A1/2

[
y0
y1

]〉
=
〈
A

1/2
i x1, A

1/2
i y1

〉
,

[
x0
x1

]
,

[
y0
y1

]
∈ D(t).

The inverse sesquilinear form t−1 has

D(t−1) = R(T 1/2) = R(A1/2) +M(T 1/2) = R(A
1/2
i ) +D(A)⊥,

and with respect to the decomposition R(Ai)⊕D(A)⊥ the form t−1 has the represen-
tation

t−1
[[
x1
x∞

]
,

[
y1
y∞

]]
=
〈
A
−1/2
i x1, A

−1/2
i y1

〉
,

[
x1
x∞

]
,

[
y1
y∞

]
∈ D(t).

Note, in particular, that the kernel of t−1 is the orthogonal complement to D(t), and
that the kernel of t is the orthogonal complement to D(t−1). The intuitive explanation
for this phenomenon is that a nonnegative quadratic form “takes the value +∞” in
the complement of its domain, and this forces the inverse form to vanish there.
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