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Abstract. We study the optimal input-output stabilization of discrete time-invariant linear
systems in Hilbert spaces by output injection. We show that a necessary and sufficient condition
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Another equivalent condition is that the filter Riccati equation (of an arbitrary realization) has a
solution (in general unbounded and even non densely defined). We further show that after renorming
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1. Introduction. This is the second in a series of articles dealing in a novel way
with the quadratic cost minimization problem for infinite-dimensional time-invariant
linear systems in discrete and continuous time. In the first article [6] we investigated
the full information infinite-horizon LQ (Linear Quadratic) problem, and here we will
study a deterministic version of the discrete time infinite-horizon Kalman filtering
problem.

In [6] we studied the linear dynamical system in discrete future time defined by

xn+1 = Axn + Bun, yn = Cxn + Dun, n ∈ Z+; x0 = z, (1.1)

where A : X → X , B : U → X , C : X → Y , and D : U → Y are bounded linear
operators, X , U and Y are Hilbert spaces, and Z+ is the set of nonnegative integers.
Here we shall study the same system in discrete past time

xn+1 = Axn + Bun, yn = Cxn + Dun, n ∈ Z−; x0 = z,

∃N ∈ Z+ : xn = 0 = un ∀n ≤ −N,
(1.2)

where Z− is the set of negative integers.
A classical problem is to modify the properties of these systems by using either

state feedback or output injection. State feedback was studied in [6], and here we
focus on output injection. In the case of state feedback one chooses the control un to
be given by un = Kxn + vn, where K : X → U is bounded linear (state feedback)
operator, which in the future time setting results in the closed loop state feedback
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system

xn+1 = (A + BK)xn + Bvn, n ∈ Z+,

yn = (C + DK)xn + Dvn, n ∈ Z+,

un = Kxn + vn, n ∈ Z+,

x0 = z.

(1.3)

Here the input u of the original system plays the role of one of the two outputs of the
closed loop system, and the new input sequence to the closed loop system is v. In the
case of output injection we relax the output equation in (1.2) by allowing a nonzero
error term wn := Cxn + Dun − yn, and injecting a multiple Hwn of this term back
into the state equation in (1.2), where H : Y → X . Thus, we now treat y like an
input. This leads to the closed loop output injection system

xn+1 = (A−HC)xn + (B −HD)un + Hyn, n ∈ Z−,

wn = Cxn + Dun − yn, n ∈ Z−,

x0 = z,

∃N ∈ Z− : xn = 0 = un = yn ∀n ≤ −N.

(1.4)

One typical goal is to make this closed loop system stable, or at least input-output
stable in the sense that the mapping from the two input sequences u and y to the
output sequence w is bounded from `2(Z−; U × Y ) to `2(Z−; Y ). In the optimal
version of this problem one does not only require this input-output map to be bounded,
but to have the smallest possible norm.

A special solution to this optimal control problem can be found in the following
way if we assume X , U , and Y to be finite-dimensional. For each z ∈ X in
the reachable subspace we look for the infimum of

∑−1
n=−∞(‖yn‖2Y + ‖un‖2U ) over

all input sequence u in (1.2) with finite support for which the final state satisfies
x0 = z. In some cases this infimum can be zero even if z 6= 0, namely when z is an
eigenvector corresponding to an eigenvalue of A which is unstable and controllable
but unobservable. To exclude this case we require the system to satisfy the state
coercive past cost condition: There exists a finite constant M such all solutions of
(1.2) satisfy ‖z‖2X ≤ M2

∑−1
n=−∞(‖yn‖2Y + ‖un‖2U ). (We shall later replace this by

a weaker condition.) Even when this condition holds the infimum is typically not
achieved for a sequence u with finite support, but it is then possible to find unique
`2-sequences u and y and a corresponding sequence x tending to zero as n → −∞
satisfying the first line of (1.2) which minimizes

∑−1
n=−∞(‖yn‖2Y + ‖un‖2U ) within

this class of solutions. The optimal solution is of output injection type, i.e., there
exists a bounded linear operator H : Y → X such that the first equation in (1.4)
holds, and this output injection operator H minimizes the norm of the map from y
and u to w in (1.4). The optimal cost of a given final state z ∈ X can be written
in the form 〈z, Pz〉X for some bounded nonnegative self-adjoint operator P , and the
output injection operator H is explicitly given by H = −(A∗PC∗ + BD∗)S−1

P where
SP = I + DD∗ + CPC∗. The optimal cost operator P is the minimal nonnegative
self-adjoint solution of the so called filter Riccati equation. The output injection H
that we get in this way is optimal even in a stronger sense: if we replace wn in (1.4)
by Wwn for some bounded linear operator W : Y → W , then it is still true that the
same output injection operator minimizes the `2 operator norm from the pair [ y

u ] to w.
The optimal norm of this operator is equal to the norm of (WPW ∗)1/2. Additionally,



OPTIMAL INPUT-OUTPUT STABILIZATION BY OUTPUT INJECTION 3

the same output injection operator also minimizes the `2 to `∞ operator norm from
the pair [ y

u ] to w, as well as the `2 to W norm of the operator from [ y
u ] to w−1. In

stochastic control theory the system (1.4) with this particular choice of H is known
as the Kalman filter, and x0 in (1.4) is interpreted as the minimal variance estimate
of the state at time zero based on past values of [ y

u ] of a stochastic version of (1.2).
We refer the reader to [3, Section 5.3] for a discussion of the stochastic interpretation
of (1.4).

In the above formulation of the input-output stabilization problem there is a
hidden assumption which is redundant in the finite-dimensional case, but not in the
infinite-dimensional case. Let us denote the different transfer functions u 7→ y, y 7→ w,
and u 7→ w of the systems (1.2) and (1.4) by, respectively,

Gu,y(z) = zC(I − zA)−1B + D,

Gy,w(z) = zC(I − z(A−HC))−1H − I,

Gu,w(z) = zC(I − z(A−HC))−1(B −HD) + D.

Then all of these are defined in a neighbourhood of the origin and satisfy Gu,y(z) =
Gy,w(z)−1Gu,w(z) in this neighbourhood. The input-output stability of (1.4) implies
that both Gy,w and Gu,w can be extended to H∞-functions (i.e., bounded analytic
functions) in the open unit disc D. Thus, a necessary condition for the input-output
stabilizability of (1.2) by output injection is that the transfer function Gu,y has a left
H∞ factorization in the unit disc. This factorization condition is always satisfied in
the finite-dimensional case. Moreover, in the finite-dimensional case every observable
realization satisfies the coercive state past cost condition, so that the above outlined
procedure can be applied after one factors out the unobservable subspace. In the
infinite-dimensional case the situation is considerably more complicated. Obtaining a
realization that satisfies the state coercive past cost condition is no longer a matter
of simply factoring out the unobservable subspace: one has to choose the realization
(and especially the norm in the state space) with care. In the continuous-time case
this question is strongly related to choosing the proper function spaces on which to
consider a given (formal) partial differential equation, a problem that is well-known
to be extremely delicate. The situation is very similar to the situation in [6], where
the analogous problem with the finite future cost condition was discussed.

The first main novelty in the present article is the introduction of a condition,
which we call the output coercive past cost condition, which is weaker than the state
coercive past cost condition: there exists a finite constant M such that all solutions
of (1.2) satisfy ‖Cz‖2Y ≤M2

∑−1
n=−∞(‖yn‖2Y +‖un‖2U ). Thus, compared to the state

coercive past cost condition we have replaced the arbitrarily chosen finitely reachable
vector z in (1.2) by Cz, and replaced the norm in X by the norm in Y . Since
C : X → Y is bounded, the output coercive past cost condition is clearly weaker
than the state coercive past cost condition. We show (in Theorem 6.10) that every
realization of a function that has a left H∞ factorization satisfies this output coercive
past cost condition and that the transfer function of any system that satisfies the
output coercive past cost condition has a left H∞ factorization. Theorem 6.10 also
gives a third equivalent condition: the filter Riccati equation has a solution. This
solution may not be bounded, or even densely defined. By allowing the optimal cost
operator and the optimal output injection operator to be unbounded we are able
(in Theorem 7.1) to extend the procedure described above so that it can always be
applied to the given system, as soon as the necessary condition that Gu,y has a left H∞

factorization holds. The resulting closed loop system will be input-output stable and
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have a minimal input-output norm, but is not necessarily internally stable (it may not
even be internally well-posed). By changing the norm in the state space (where the
new norm is defined in terms of the solution of the input-output stabilization problem)
and keeping the same formal operators we construct a new realization that does
satisfy the state coercive past cost condition and whose closed-loop system is strongly
internally ∗-stable. This change of norm for the open-loop system is considered in
Theorem 3.11 and Remark 3.12 and for the closed-loop system in Theorem 7.2.

Another major feature of this work is that we extend the theory about the duality
of the optimal control and optimal filtering from the standard setting where all possible
operators are bounded to a setting which allows for unbounded and not even densely
defined state feedback and output injection operators, as well as unbounded and not
necessarily densely defined solutions of the control and filter Riccati equations. We
prove that the original system satisfies the output coercive past cost condition if and
only if the dual system satisfies the future incremental cost condition introduced in [6].
Instead of giving direct proofs (which is possible) of our main results for the optimal
output injection problem we have chosen to base the proofs given in this article on the
extended duality between state feedback and output injection mentioned above. The
main advantage with this approach is that the proofs become simpler and shorter,
thanks to the fact that we can make full use of the results proved in [6]. When
we convert the results given in [6] for the control Riccati equation to the dual filter
Riccati equation we get more or less for free a new and natural setting for the study of
the filter Riccati equation, where the filter Riccati operator and the output injection
operator are allowed to be unbounded, and not even densely defined.

2. Discrete-time systems. In this section we collect definitions and known
results on discrete-time systems that are needed in this article.

We first associate some operators on sequences spaces to the dynamical systems
(1.1) and (1.2). In the following definition `p

c(Z−; H ) with 1 ≤ p ≤ ∞ is the subspace
of `p(Z−; H ) consisting of sequences with compact support and s(Z+; H ) is the space
of all sequences Z+ →H .

Definition 2.1.
• The input map B : `p

c(Z−; U )→X is the map that sends {un}n∈Z− to z:

Bu =
∞∑

k=0

AkBu−k−1.

• The output map C : X → s(Z+; Y ) is the map that sends z to {yn}n∈Z+ :

(Cz)n = CAnz.

• The future input-output map D : s(Z+; U ) → s(Z+; Y ) is the map that
sends {un}n∈Z+ to {yn}n∈Z+ :

(Du)n =
n−1∑
k=0

CAkBuk + Dun.

• The past input-output map D− : `p
c(Z−; U ) → `p

c(Z−; Y ) is the map that
sends {un}n∈Z− to {yn}n∈Z− :

(D−u)n =
n−1∑

k=−∞

CAn−1−kBuk + Dun.
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If we equip `p
c(Z−; U ) with its natural LF topology and s(Z+; H ) with its natural

Fréchet topology, then the above maps are continuous.
Definition 2.2. A state z is called finite-time reachable if there exist sequences

u, x, y such that (1.2) holds. The set of finite-time reachable states is denoted by Ξ−.
If the closure of Ξ− equals X , then the node [ A B

C D ] is called controllable. Note that
Ξ− = R(B).

Definition 2.3. A state z is called unobservable if for initial condition z and
zero input u the output y of the system (1.1) is zero. The set of unobservable states
is denoted by N . The node [ A B

C D ] is called observable if N = {0}. Note that
N = N(C).

Definition 2.4. The node [ A B
C D ] is called

• exponentially stable if r(A) < 1,
• strongly stable if limk→∞Akz = 0 for all z ∈X ,
• strongly ∗-stable if limk→∞A∗kz∗ = 0 for all z∗ ∈X ′,
• input stable if B extends to a bounded operator `2(Z−; U )→X ,
• output stable if C is a bounded operator X → `2(Z+; Y ),
• input-output stable if D restricts to a bounded operator

`2(Z+; U )→ `2(Z+; Y ),
• strongly internally stable if it is strongly stable, input stable, output stable and

input-output stable,
• strongly internally ∗-stable if it is strongly ∗-stable, input stable, output stable

and input-output stable,
Exponential stability implies strong internal stability and strong internal

∗-stability, but the converse is not true. As announced in the introduction, by output
injection and changing the norm in the state space we will be able to make the closed-
loop system strongly internally ∗-stable, but it will in general not be exponentially
stable.

3. The final state optimal control problem. In this section we investigate
the open loop final state optimal control problem, the synthesis of the optimal control
as an output injection is considered in Section 7.

We first of all define some spaces and operators that allow us to re-phrase the
open loop final state optimal control problem in a form appropriate for the application
of a standard optimization technique( the orhogonal projection lemma).

For a finite-time reachable state z define

Wc(z) =
{[

y
u

]
∈ `2

c(Z−; Y ×U ) : ∃x such that (1.2) holds
}

,

the set of compactly supported input-output trajectories with z as final state. Further
define

Gc :=
{[

y
u

]
∈ `2

c(Z−; Y ×U ) : ∃x, z such that (1.2) holds
}

,

the set of compactly supported input-output trajectories. Note that Gc is the inverse
graph of the past input-output map.

Define the operator

Jc : Gc →X , Jc

[
y
u

]
= z,
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where u, y and z are related by (1.2); i.e. Jc maps a compactly supported input-
output trajectory to the corresponding final state.

Further define the operator

Γp : Gc → s(Z+; Y ), Γp = CJc,

that maps a compactly supported input-output trajectory on Z− to the corresponding
output on Z+ when the input is chosen to be zero on Z+. Finally, define the set of
stable past input-output trajectories G as the closure of Gc in `2(Z−; Y ×U ). Note
that G is the closure of the inverse graph of the past input-output map considered as
an unbounded operator `2(Z−; U )→ `2(Z−; Y ).

To obtain a satisfactory theory for the final state optimal control problem men-
tioned in the introduction, it is crucial to extend Γp to G . For that we make the
following assumption.

Definition 3.1. A node satisfies the output coercive past cost condition if there
exists a M > 0 such that for all z ∈ Ξ− and all [ y

u ] ∈ Wc(z)

‖Cz‖Y ≤M

∥∥∥∥[ y
u

]∥∥∥∥
`2(Z−;Y ×U )

.

A stronger condition (which ensures that Jc extends to G ) is the following.
Definition 3.2. A node satisfies the state coercive past cost condition if there

exists a M > 0 such that for all z ∈ Ξ− and all [ y
u ] ∈ Wc(z)

‖z‖X ≤M

∥∥∥∥[ y
u

]∥∥∥∥
`2(Z−;Y ×U )

.

Remark 3.3. The output coercive past cost condition is equivalent to CJc : Gc →
Y extending to a bounded operator G → Y and is equivalent to Γp : Gc → s(Z+; Y )
extending to a bounded operator G → s(Z+; Y ), where this latter space is equipped with
its natural Fréchet space topology. The state coercive past cost condition is equivalent
to Jc : Gc →X extending to a bounded operator G →X .

Not only Jc but also its closure will play an important role. This closure will
allow us to interpret the notion of final state for some non compactly supported
input-output trajectories. In general, Jc may not be a closable operator. However
the closure of the graph of Jc always defines a closed linear relation (or multi-valued
operator) which we will denote by J . The development of a satisfactory theory does
not hinge on J being single-valued. Multi-valuedness of J relates to ill-posedness of
the dynamical system defined on Z− when the compact support assumption is not
made. We recall some basic definitions regarding multi-valued operators.

Definition 3.4. A multi-valued operator (or relation) T : H1 → H2 is a sub-
space VT of H1×H2. The operator T is called closed when the subspace VT is closed.
We have for the domain, kernel, range and multi-valued part of T :

D(T ) = {h1 ∈H1 : ∃h2 such that (h1, h2) ∈ VT },
N(T ) = {h1 ∈H1 : (h1, 0) ∈ VT },
R(T ) = {h2 ∈H2 : ∃h1 such that (h1, h2) ∈ VT },
M(T ) = {h2 ∈H2 : (0, h2) ∈ VT }.
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Lemma 3.5. If the node [ A B
C D ] satisfies the output coercive past cost condition,

then M(J ) = N(C).
Proof. We denote the closure of Γp by Γp. Since Γp = CJ , we have z ∈ M(J )

if and only if Cz ∈M(Γp). Since under the output coercive past cost condition Γp is
single-valued, M(Γp) = {0} and it follows that z ∈ M(J ) if and only if Cz = 0, i.e.
M(J ) = N(C).

Lemma 3.6. If the node [ A B
C D ] is observable and satisfies the output coercive past

cost condition, then Jc is a closable operator.
Proof. From Lemma 3.5 and observability it follows that M(J ) = {0} so that J

is single-valued. Hence Jc has a closed extension that is a single valued operator, so
it is a closable operator.

We define Ξp := R(J ). This space has the interpretation of finite cost reachable
elements in the state space X . For z ∈ Ξp we define

W (z) :=
{[

y
u

]
∈ D(J ) : J

[
y
u

]
= z

}
,

the set of stable input-output trajectories with z as final state. The final state optimal
control problem consists of finding the element of minimal norm in W (z). To solve
that problem we utilize the following well-known orthogonal projection lemma.

Lemma 3.7. Let H be a Hilbert space and K a nonempty closed subspace of
H . Define, for h0 ∈H , the affine set

K (h0) := {h ∈H : h = h0 + k for some k ∈ K }.

Then there exists a unique hmin ∈ K (h0) such that

‖hmin‖ = min
h∈K (h0)

‖h‖.

The vector hmin is characterized by the fact that K (h0) ∩ (H 	K ) = {hmin}.
Proof. A proof can be found in many books, e.g. [4, Section 3.2]. Applying this

orthogonal projection lemma to our problem gives the following.
Lemma 3.8. For any z ∈ Ξp, the space W (z) has a unique element of minimal

norm which is characterized by the fact that it is in `2(Z−; Y ×U )	W (0).
Proof. Apply the orthogonal projection lemma (Lemma 3.7) with

H = `2(Z−; Y ×U ) and K = W (0). Then W (z) takes the role of K (h0). We have
that W (0) = N (J ) is a closed subspace since J is closed and W (z) is nonempty since
z ∈ Ξp.

We define the set Gopt := D(J ) 	 W (0). This set has the interpretation of the
set of all optimal input-output trajectories with a final state in X . We restrict J to
this set to obtain the (possibly multi-valued) operator

Jr : Gopt →X .

This operator is clearly closed, injective and has range Ξp. We further define

Ip : Ξp ⊂X → Gopt, Ip = J−1
r ,

the closed operator that maps a final state to the corresponding optimal input-output
trajectory. We note that N(Ip) = M(Jr) = M(J ), so that Ip is not injective if
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J is multi-valued (i.e. in that case two different final states have the same optimal
input-output trajectories). Note that

IpJ = P`2(Z−;Y ×U )	W (0)|D(J ), (3.1)

the orthogonal projection onto `2(Z−; Y × U ) 	 W (0), since both equal the map
that sends an input-output trajectory to the optimal input-output trajectory with
the same final state.

For the final state optimal control problem only the subspace Ξp of finite cost final
states is of importance, the rest of the state space should be ignored. The norm in
the state space is also not relevant in the final state optimal control problem. There
is a more natural semi-norm on Ξp associated with the final state optimal control
problem. On Ξp we define the semi-norm

‖z‖p := ‖Ipz‖`2(Z−;Y ×U ).

Note that since Ip is a closed operator, the associated nonnegative symmetric
sesquilinear form 〈Ipz1, Ipz2〉`2(Z−;Y ×U ) in X is closed.

The following lemma shows that the space Ξp and the semi-norm on it interact
well with the node [ A B

C D ] if the output coercive past cost condition is satisfied.
Lemma 3.9. If the node [ A B

C D ] satisfies the output coercive past cost condition,
then it maps Ξp×U into Ξp×Y and its restriction to Ξp×U is bounded with respect
to the semi-norm ‖ · ‖p.

Proof. The operator B obviously maps into Ξ−, the space of finite-time reachable
states. Since Ξ− ⊂ Ξp, certainly B maps into Ξp. Since the input u defined by
u−1 = v, uk = 0 for k < −1 reaches Bv we have:

‖Bv‖2p = ‖IpBv‖2`2(Z−;Y ×U ) ≤ ‖v‖
2
U + ‖Dv‖2Y .

So B is bounded with respect to the semi-norm ‖ · ‖p. Note that the output coercive
past cost condition was not used for this.

For z ∈ Ξp we have that for all [ y
u ] ∈ W (z)

‖Cz‖Y = ‖
(

Γp

[
y
u

])
0

‖Y ≤M‖
[

y
u

]
‖`2(Z−;Y ×U ),

where we have used that Γp : G → s(Z+; Y ×U ) is a bounded operator. In particular,
the above holds for the element of minimal norm in W (z): [ y

u ] = Ipz. This shows
that C is bounded with respect to the semi-norm ‖ · ‖p.

If z = J [ y
u ], then Az is the image under J of the trajectory obtained by shifting

[ y
u ] one place to the left and adding [ Cz

0 ] at the last position. It follows that Az ∈ Ξp

if z ∈ Ξp and that

‖IpAz‖2`2(Z−;Y ×U ) ≤ ‖Ipz‖2`2(Z−;Y ×U ) + ‖Cz‖2Y ,

or equivalently that

‖Az‖2p ≤ ‖z‖2p + ‖Cz‖2Y .

Using that C is bounded with respect to the semi-norm ‖ · ‖p it follows that A is
bounded with respect to this semi-norm.

If Ip is injective, then ‖ · ‖p is a norm and Lemma 3.9 shows that we can extend
the restriction of the node to Ξp ×U to a node whose state space is the completion
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of Ξp under the norm ‖ · ‖p. In general, the situation is slightly more complicated but
essentially the same. On the set PX	N Ξp, the seminorm ‖ · ‖p is in fact a norm since
N = N(Ip) by Lemma 3.5. Lemma 3.9 shows that, under the output coercive past
cost condition, the conditions of [6, Theorem B.14] are satisfied so that the completed
Ip-compression of the node [ A B

C D ] exists. This has state space Xp, the completion
under the ‖ · ‖p norm of PX	N Ξp. In case Ip is injective these two procedures
obviously coincide.

Note that Xp may not be contained in the state space X .
The completed Ip-compression has Jc, J and Ip operators which we will denote

by JXp
c , JXp and IXp

p respectively.
Lemma 3.10. If the node [ A B

C D ] satisfies the output coercive past cost condition,
then Jc = PX	N JXp |Gc

.
Proof. This follows directly from [6, Theorem B.16].
Theorem 3.11. The completed Ip-compression satisfies the state coercive past

cost condition and is observable. The operator IXp
p is a unitary map onto its range.

The operator JXp is a partial isometry with kernel W (0).
Proof. Using (3.1) we have the following for [ y

u ] ∈ Gc∥∥∥∥JXp
c

[
y
u

]∥∥∥∥
p

=
∥∥∥∥IXp

p JXp
c

[
y
u

]∥∥∥∥
`2(Z−;Y ×U )

=
∥∥∥∥P`2(Z−;Y ×U )	N(JXp )

[
y
u

]∥∥∥∥
`2(Z−;Y ×U )

≤
∥∥∥∥[ y

u

]∥∥∥∥
`2(Z−;Y ×U )

,

which shows that JXp
c : Gc → Xp is bounded. It follows that the state coercive past

cost condition is satisfied.
We just showed that JXp

c has a single valued bounded extension to G and since
the state coercive past cost condition is satisfied (which implies the output coercive
past cost condition), it follows from Lemma 3.5 that N(CXp) = {0}, so that the
completed Ip-compression is indeed observable.

By definition of norms, IXp
p is an isometry; so it is a unitary map onto its range.

By definition of the norm and (3.1) we have for g ∈ D(JXp)

‖JXpg‖p = ‖IXp
p JXpg‖`2(Z−;Y ×U ) = ‖P`2(Z−;Y ×U )	W (0)g‖`2(Z−;Y ×U ),

which implies that JXp is a partial isometry with kernel W (0).
Remark 3.12. Define Ip,− := Ip|Ξ− . Similar as for the completed Ip-compression,

it can be shown that the completed Ip,−compression is well-defined. It has as state
space Xp,−, the completion of PX	N Ξ− under the norm ‖ · ‖p, and is controllable,
observable and satisfies the state coercive past cost condition.

4. Recap of the initial state optimal control problem. In this section we
review the relevant results from [6], which by the duality theory of the next two
sections will lead to synthesis of the optimal control as an output injection in Section
7.

The system under study in this section is the initial state problem (1.1) with the
associated cost function

∑∞
n=0 ‖un‖2 + ‖yn‖2. For z ∈X , define

V (z) :=
{[

u
y

]
∈ `2(Z+; U × Y ) : ∃x such that (1.1) holds

}
,
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the set of stable input-output trajectories with z as initial state. Further define Ξf

as the subspace of X consisting of those z for which V (z) is non-empty. This is the
subspace of finite future cost states (denotes by Ξ+ in [6]).

The orthogonal projection lemma guarantees that for z ∈ Ξf , V (z) has a unique
element of minimal norm. This provides us with a closed operator If : Ξf ⊂ X →
`2(Z+; U ×Y )	V (0), the future minimizing cost operator, which maps a finite cost
initial state to the corresponding optimal input-output trajectory.

Definition 4.1. The finite future incremental cost condition is the condition
BU ⊂ Ξf (equivalently: Ξ− ⊂ Ξf ). The finite future cost condition is the condition
Ξf = X .

If the finite future incremental cost condition holds, then the operator

Γf := IfB : `2
c(Z−; U )→ `2(Z+; U × Y )

that maps a compactly supported past input to the corresponding optimal future
input-output trajectory is well-defined and bounded. If the finite future cost condition
holds, then If : X → `2(Z+; U × Y ) is bounded.

On Ξf define the semi-norm

‖z‖f := ‖Ifz‖`2(Z+;U×Y ).

Lemma 4.2. If the node [ A B
C D ] satisfies the finite future incremental cost condi-

tion, then it maps Ξf ×U into Ξf ×Y and its restriction to Ξf ×U is bounded with
respect to the semi-norm ‖ · ‖f .

Proof. This follows from [6, Lemma 4.8] with q = qf .
Similarly to Xp, the state space Xf is defined as the completion under the ‖ · ‖f

norm of PX	N Ξf . The restriction of the node mentioned in Lemma 4.2 extends
continuously to a node with this state space. That node is called the completed If -
compression (the completed qf -compression in [6]) and it satisfies the finite future
cost condition and is observable. Similarly, we may define If,− := If |Ξ− and the
completed If,−-compression (the completed q−f -compression in [6]) which has as state
space Xf,−, the completion of PX	N Ξ− under the norm ‖·‖f , and satisfies the finite
future cost condition and is both controllable and observable.

Note that Xf and Xf,− may not be contained in the state space X .
Remark 4.3. Denote the If operator of the completed If -compression by IXf

f ,

then IXf

f is an isometry onto its range (which equals the closure of the range of the
If operator of the original node that the completed If -compression was constructed
from). The inverse of IXf

f (defined on the range of IXf

f ) is a unitary map that sends
the optimal input-output trajectory to the initial state.

The following is the standard control algebraic Riccati equation re-written in a
way (using sesquilinear forms) that easily allows for unbounded solutions.

Definition 4.4. The triple (q, s, K) is called a (nonnegative) solution of the
control Riccati equation of the node [ A B

C D ] if
1. q is a closed nonnegative symmetric sesquilinear form in X whose domain

satisfies AD(q) ⊂ D(q), BU ⊂ D(q).
2. s is a bounded nonnegative symmetric sesquilinear form on U .
3. K : D(q)→ U is a linear operator.
4. For all z ∈ D(q), u ∈ U we have

q(Az+Bu, Az+Bu)+‖Cz+Du‖2Y +‖u‖2U = q(z, z)+s(Kz−u, Kz−u). (4.1)



OPTIMAL INPUT-OUTPUT STABILIZATION BY OUTPUT INJECTION 11

The solution is called classical when D(q) = X .
To discuss transfer functions, we use the following notation: H∞ denotes the

Hardy space of uniformly bounded holomorphic functions and D denotes the unit
disc. The transfer function of the node [ A B

C D ] is defined in a neighbourhood of zero
by zC(I − zA)−1B + D. A node is called a realization of a holomorphic function
defined in a neighbourhood of zero if that function is the transfer function of the
node. We note that any holomorphic function defined in a neighbourhood of zero has
a realization (in fact, it has infinitely many).

Definition 4.5. Let G : D(G) ⊂ C → L(U , Y ) be holomorphic at the origin.
A function

[
M
N

]
∈ H∞(D,L(U , U × Y )) is called a right factorization of G if M(z)

is invertible for all z in a neighbourhood of the origin and G(z) = N(z)M(z)−1 in a
neighbourhood of the origin.

Theorem 4.6. Let G : D(G) ⊂ C → L(U , Y ) be holomorphic at the origin and
let [ A B

C D ] be a realization of G. The following are equivalent conditions.
• [ A B

C D ] satisfies the finite future incremental cost condition.
• The control Riccati equation of [ A B

C D ] has a (nonnegative self-adjoint) solu-
tion.

• G has a right factorization.
Under these equivalent conditions, the triple (qf , sf , Kf ) defined by

qf (z1, z2) := 〈Ifz1, Ifz2〉`2(Z+;U×Y ),

sf (u, v) := 〈u, v〉U + 〈Du,Dv〉Y + qf (Bu, Bv),
Kfz = PU (Ifz)0,

is the smallest nonnegative self-adjoint solution of the control Riccati equation. Here
PU is the canonical projection U × Y → U .

Proof. This follows from [6, Theorem 6.3] combined with [6, Theorem 3.14].
We consider the closed-loop system

xn+1 = (A + BK)xn + BEwn, n ∈ Z+,

yn = (C + DK)xn + DEwn, n ∈ Z+,

un = Kxn + Ewn, n ∈ Z+,

x0 = z,

(4.2)

where E : W → U is a bounded linear operator and K : D(K) ⊂X → U is a linear
operator with a domain that is A-invariant and that contains the image of B. For
such a K, the map from {wn}n∈Z+ to {[ un

yn ]}n∈Z+ in (4.2) (with z = 0) is well-defined
on the sequences with compact support.

Theorem 4.7. Assume that the finite future incremental cost condition holds.
Then Kf minimizes both the L(`1(Z+, W ), `2(Z+, U × Y )) and the
L(`2(Z+, W ), `2(Z+, U ×Y )) norm of the map from {wn}n∈Z+ to {[ un

yn ]}n∈Z+ in (4.2)
(with z = 0), where K ranges over all linear maps D(K) ⊂ X → U with a domain
that is A-invariant and that contains the image of B. The operator Kf also minimizes
the L(W , `2(Z+, U × Y )) norm of the map w0 → [ u

y ] over the same set of feedback
operators.

These minimum norms all equal the square root of sup‖v‖=1 sf (Ev, Ev).
Proof. The statements on the L(`1(Z+, W ), `2(Z+, U × Y )) and

L(`2(Z+, W ), `2(Z+, U ×Y )) norms follow directly from [6, Theorem 5.1]. The state-
ment about the L(W , `2(Z+, U × Y )) norm follows from slightly adapting the proof
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of [6, Theorem 5.1] as follows. The lower bound proof remains unchanged and in the
upper bound proof v now has to be chosen as v0 = Ew0 and vk = 0 for k > 0.

Remark 4.8. The operator underlying the closed-loop system (4.2) is generally
not a node with state space X (because K is generally not bounded on X ), but it
does become a node with state space Xf once we replace [ A B

C D ] with its completed
If -compression. This resulting closed-loop node equals what is called the completed
qf -compression of the graph closed-loop node in [6, Theorem 5.3]. Hence, by that
theorem, it is strongly internally stable.

5. Duality of discrete-time systems. In this section we re-consider duality
for discrete-time systems in order to investigate the duality between the initial state
and final state optimal control problems in the next section.

We consider the adjoint of the node [ A B
C D ] as an operator from X ′ × Y ′ to

X ′ ×U ′ where H ′ denotes the dual space of the Hilbert space H . A dual space is
not identified with the Hilbert space itself unless this is explicitly stated. We denote
the duality product between H and its dual H ′ by 〈·, ·〉H ,H ′ and consider this to
be linear in the H component and anti-linear in the H ′ component.

The dynamical system that we associate to [ A B
C D ]∗ is the following initial state

problem

x∗n+1 = A∗x∗n + C∗y∗n, u∗n = B∗x∗n + D∗y∗n, n ∈ Z+; x∗0 = z∗, (5.1)

with state space X ′, input space Y ′ and output space U ′. We throughout apply the
theory from Section 4 to this dual system. To indicate the distinction between spaces
associated to the primal system and the dual system we often use the subscript d, so
e.g Vd(z∗) is the space introduced in the beginning of Section 4 consisting of stable
input-output trajectories but now for the dual system with initial state z∗.

We define the weighted `p spaces

`p
r(Z−; U ) = {u : Z− → U : (r−nun)n∈Z− ∈ `p(Z−; U )},

`p
r(Z+; Y ) = {y : Z+ → Y : (r−nyn)n∈Z+ ∈ `p(Z+; Y )}.

Any continuous linear functional on `2
r(Z−; H ) is of the form

∞∑
n=0

〈h−−n−1, h
+
n 〉H ,H ′ (5.2)

for some h+ ∈ `2
r(Z+; H ′) and any such h+ through the expression (5.2) gives rise

to a continuous linear functional on `2
r(Z−; H ). Similarly, any continuous anti-linear

functional on `2
r(Z+; H ′) is of the form (5.2) for some h− ∈ `2

r(Z−; H ) and any such
h− gives rise to a continuous anti-linear functional. So we may treat `2

r(Z−; H ) and
`2
r(Z+; H ′) as each others duals. With some abuse of notation we denote the duality

product by

〈h−, h+〉`2(H ) :=
∞∑

n=0

〈h−−n−1, h
+
n 〉H ,H ′ . (5.3)

The dual of `1
r(Z+; H ) can similarly be identified with `∞r (Z−; H ′) through the

expression (5.2). The dual of the subspace `∞r,0(Z−; H ) of `∞r (Z−; H ) consisting of
those sequences h such that limk→−∞ r−khk = 0 can be identified with `1

r(Z+; H ′)
through (5.2).
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If r > r(A), the spectral radius of A, then the input map extends to a bounded op-
erator `2

r(Z−; U )→X and the output map is a bounded operator X → `2
r(Z+; Y ).

The input map B of the node [ A B
C D ] is adjoint to the output map Cd of the dual node

[ A B
C D ]∗ in the sense that

〈Bu, z∗〉X ,X ′ = 〈u, Cdz∗〉`2(U ).

The past input-output map of the node [ A B
C D ] extends to a bounded operator

`2
r(Z−; U ) → `2

r(Z−; Y ) and the future input-output map of the dual node [ A B
C D ]∗

restricts to a bounded operator `2
r(Z+; Y ′) → `2

r(Z+; U ′). With the above identifi-
cation of dual spaces, these operators are adjoints. Similarly, the restriction of the
future input-output map of the adjoint node to a bounded operator `1

r(Z+; Y ′) →
`2
r(Z+; U ′) and the extension of the past input-output map to a bounded operator

`2
r(Z−; U ) → `∞r,0(Z−; Y ) are adjoint operators with the above identification of dual

spaces.
The following lemma characterizes duality in terms of trajectories without explicit

reference to the node. It can be derived from [1, Lemma 4.6], but for the convenience
of the reader we include a direct proof.

Lemma 5.1. If [ y
u ] ∈ Gc, z = Jc [ y

u ] and
[

y∗

u∗

]
is a trajectory of (5.1) with initial

condition z∗, then

〈z, z∗〉X ,X ′ =
〈
R
[

y
u

]
,

[
y∗

u∗

]〉
`2(Y ×U )

, (5.4)

where the operator R is defined by

R : `2(Z−; Y ×U )→ `2(Z−; Y ×U ), R
[

y
u

]
=
[
−y

u

]
,

and we have used the duality (5.3). Conversely, if
[

y∗

u∗

]
∈ s(Z+; Y ′×U ′) and z∗ ∈X ′

satisfy (5.4) for all [ y
u ] ∈ Gc with z = Jc [ y

u ], then
[

y∗

u∗

]
is a trajectory of (5.1) with

initial condition z∗.
Proof. The first part of the lemma simply follows by substitution. The converse

follows by iteratively applying the assumption as follows. Apply (5.4) with [ y
u ] the

sequence that is zero everywhere except at position −1 where it equals [ Dv
v ] with

v ∈ U arbitrary. It follows that

〈v, u∗0 −D∗y∗0〉U ,U ′ =
〈[
−Dv

v

]
,

[
y∗0
u∗0

]〉
= 〈Bv, z∗〉 = 〈v, B∗z∗〉,

which since v was arbitrary implies u∗0 = B∗z∗ + D∗y∗0 . Taking the element of Gc

whose second component is zero everywhere except at position −2 where it equals v
and whose first component is the corresponding output (i.e. Dv at position −2, CBv
at position −1 and zero elsewhere) gives u∗1 = B∗A∗z∗+D∗y∗1 +B∗C∗y∗0 . Continuing
in this fashion shows that

[
y∗

u∗

]
is an input-output trajectory of the node [ A B

C D ]∗ with
initial condition z∗ as desired.

We will also use the adjoint of R:

R∗ : `2(Z+; Y ′ ×U ′)→ `2(Z+; Y ′ ×U ′), R∗
[

y∗

u∗

]
=
[
−y∗

u∗

]
.
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Since we do not identify the dual of a Hilbert space with itself, a subspace V of a
Hilbert space H has two orthogonal subspaces: the subspace V ⊥ ⊂H ′ of continuous
linear functionals on H that are zero on the subspace V and the subspace H 	 V
that is the orthogonal complement of V in the sense that V ⊕ (H 	 V ) = H . In
this article we use both of these notions of orthogonal subspace and use the notations
⊥ and 	 as above to distinguish these two notions.

Remark 5.2. We identify the dual G′ of a closed subspace G of H by the corre-
sponding subspace of H ′, so that 〈g, g′〉G,G′ = 〈g, g′〉H,H′ for all g ∈ G and g′ ∈ G′.
Under this identification G′ = H ′ 	G⊥ and G⊥ = (H 	G)′. In particular, we have
G ′ = `2(Z+; Y ′ ×U ′)	 G⊥.

Remark 5.3. The above duality set-up is somewhat non-standard. We would in
principle lose nothing by using the standard duality set-up (i.e. identifying the dual of
a Hilbert space with the Hilbert space itself and sequences spaces on Z+ with sequence
spaces on Z+) which has dual systems running backwards in time. However, in [5]
we will consider an optimal control problem on Z where the state has to pass through
a target state x0 at n = 0 and this problem naturally breaks down into a final state
problem on Z− and an initial state problem on Z+. This is our main reason for
wanting to study final state systems defined on Z− and therefore to identify the dual
of an initial state system defined on Z+ to be a final state system defined on Z−. The
Kalman filter is also most naturally posed on Z−, which is another reason for treating
the equivalent optimal output injection problem on Z− as well. Not identifying the
state space X with its dual is appropriate since we want to identify the ‘natural state
space’ Xp on which to consider the final state problem as the dual of the ‘natural
state space’ Xf,d on which to consider the initial state problem for the dual system
(Lemma 6.6). The only reason for not identifying U and Y with their respective
duals is consistency.

6. Duality between the optimal control problems. We next lemma relates
the spaces G and Vd(0) of stable past and future input-output trajectories.

Lemma 6.1. We have RG = Vd(0)⊥.

Proof. It immediately follows from (5.4) with z∗ = 0 that RGc ⊥ Vd(0). By
continuity of R we conclude that RG ⊥ Vd(0), so that RG ⊂ Vd(0)⊥.

We now prove that (RGc)⊥ ⊂ Vd(0), which through Vd(0)⊥ ⊂ (RGc)⊥⊥ = RGc =
RGc = RG gives the desired other inclusion. So assume that

[
y∗

u∗

]
is orthogonal to

RGc. Then
[

y∗

u∗

]
satisfies (5.4) for all [ y

u ] ∈ Gc with z∗ = 0 and it follows from Lemma

5.1 that
[

y∗

u∗

]
is a trajectory of the dual system with initial condition zero. Since by

assumption
[

y∗

u∗

]
∈ `2(Z+; Y ′×U ′) we have that it is an element of Vd(0) as desired.

Lemma 6.2. We have R∗
(
`2(Z+; Y ′ ×U ′)	 Vd(0)

)
= G ′.

Proof. Denote the identification map implicit in (5.3) by I : `2(Z−; Y × U ) →
`2(Z+; Y ′ ×U ′) (i.e. if we would identify Y and U with their respective duals then
it is simpy the reflection). Then it is easily seen that I∗R∗IR = I. From Lemma 6.1
it follows that RG = Vd(0)⊥ so that IRG = `2(Z+; Y ′ ×U ′)	 Vd(0). We conclude
that I∗R∗

(
`2(Z+; Y ′ ×U ′)	 Vd(0)

)
= G from which the result follows using that

I∗ is an isomorphism from G ′ onto G .
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Lemma 6.3. The input-output trajectory to final state map Jc for the node [ A B
C D ]

and the future minimizing operator If,d of its dual node [ A B
C D ]∗ are related by

J ∗c = R∗If,d (6.1)

as unbounded operators X ′ → G ′.
Proof. The basic duality relationship (5.4) with z∗ ∈ Ξf,d and

[
y∗

u∗

]
= If,dz

∗

gives for [ y
u ] ∈ Gc:〈

Jc

[
y
u

]
, z∗
〉

X ,X ′
=
〈
R
[

y
u

]
, If,dz

∗
〉

`2(Y ×U )

.

By Lemma 6.2 we have R∗If,dz
∗ ∈ G ′ so the above can be re-written as〈

Jc

[
y
u

]
, z∗
〉

X ,X ′
=
〈[

y
u

]
,R∗If,dz

∗
〉

G ,G ′
,

which shows that Jc and R∗If,d are adjoint to each other. So we only still need to
show D(If,d) ⊃ D(J ∗c ). By definition

D(J ∗c ) =
{

z∗ ∈X ′ : ∃
[

y$

u$

]
∈ G ′ such that ∀

[
y
u

]
∈ Gc〈

Jc

[
y
u

]
, z∗
〉

X ,X ′
=
〈[

y
u

]
,

[
y$

u$

]〉
G ,G ′

}
.

Using Lemma 6.2 it follows that

D(J ∗c ) =
{

z∗ ∈X ′ : ∃
[

y#

u#

]
∈ `2(Z+; Y ′ ×U ′)	 Vd(0) such that ∀

[
y
u

]
∈ Gc〈

Jc

[
y
u

]
, z∗
〉

X ,X ′
=
〈
R
[

y
u

]
,

[
y#

u#

]〉
`2(Y ×U )

}
.

Using Lemma 5.1 it follows from the equality in the domain definition that
[

y#

u#

]
is

a trajectory of the dual node for initial condition z∗. So z∗ ∈ D(J ∗c ) has finite cost
and so z∗ ∈ D(If,d). Hence J ∗c = R∗If,d.

Theorem 6.4. The node [ A B
C D ] satisfies the output coercive past cost condition if

and only if its dual node [ A B
C D ]∗ satisfies the finite future incremental cost condition.

Proof. The output coercive past cost condition implies that CJc : Gc → Y
extends to a bounded operator G → Y . By [7, Theorem 13.2] its adjoint equals
J ∗c C∗. It follows that J ∗c C∗ is a bounded operator Y ′ → G ′. In particular the range
of C∗ is contained in the domain of J ∗c , which by Lemma 6.3 equals Ξf,d. This is
exactly the finite future incremental cost condition for the dual node.

Conversely, assume that the range of C∗ is contained in Ξf,d. The operator J ∗c C∗

is closed as it is the adjoint of the densely defined operator CJc (we again use that
(CJc)∗ = J ∗c C∗ by [7, Theorem 13.2]). By the range assumption J ∗c C∗ is defined on
all of Y ′, so that by the closed graph theorem it is a bounded operator Y ′ → G ′.
Since (CJc)∗ is a bounded (and everywhere defined) operator, the operator CJc is
closable, and its closure is the bounded operator ((CJc)∗)∗. Thus, CJc extends to a
bounded operator G → Y . So the output coercive past cost condition holds.
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In the next proposition, we again use the weighted `2 space duality from (5.2).
Lemma 6.5. The map Γp : Gc → s(Z+; Y ) for the node [ A B

C D ] and the map
Γf,d : `2

c(Z−; Y ′)→ Vd(0) for the dual node [ A B
C D ]∗ are related by

Γ∗p = R∗Γf,d.

Proof. Using Lemma 6.3 we have

Γ∗p = (CJc)∗ = J ∗c C∗ = R∗If,dBd = R∗Γf,d.

As the next lemma shows, the dual space of the state space of the completed Ip-
compression can be identified with the state space of the completed If -compression
of the dual node of the completed Ip-compression.

Lemma 6.6. Any bounded linear functional on Xp can be identified with an
element z∗ of (Xp)f,d through

〈z, z∗〉Xp,X ′
p

=
〈
IXp

p z,R∗I
(Xp)f,d

f,d z∗
〉

`2(Y ×U )
. (6.2)

This duality is with respect to the pivot space X in the sense that

〈z, z∗〉Xp,X ′
p

= 〈z, z∗〉X ,X ′

if z ∈ Xp ∩X and z∗ ∈ (Xp)f,d ∩X ′. Moreover, this duality is norm-preserving in
the sense that ‖z∗‖(Xp)f,d

equals the X ′
p norm of the corresponding functional.

Proof. It is easily seen that for a given z∗ ∈ (Xp)f,d the expression (6.2) defines
a bounded linear functional on Xp, so it remains the prove the converse. By the
duality between `2(Z−; Y × U ) and `2(Z+; Y ′ × U ′) and the identification of Xp

with R(IXp
p ) it follows that any linear functional on Xp must be of the form〈

IXp
p z, v

〉
`2(Y ×U )

for some v ∈ `2(Z+; Y ′×U ′). We have R(IXp
p ) = D(JXp

r ) = D(JXp)	N(JXp) so
we may assume that v ∈ N(JXp)⊥. So v ∈ R(JXp∗) since JXp as a partial isometry
has closed range. Applying Lemma 6.3 to the completed Ip-compression (and using
that J ∗c = J ∗) then gives the result.

That the duality is with respect to X follows from (5.4) with [ y
u ] = IXp

p z and[
y∗

u∗

]
= I

(Xp)f,d

f,d z∗. The norm preservation follows from the fact that I
(Xp)f,d

f,d , R and

IXp
p are isometries.

Lemma 6.7. The operator JXp is a co-isometry.
Proof. According to Lemma 6.3 this is equivalent to showing that If,d : X ′

p →
`2(Z+; Y ′ × U ′) is an isometry. By the identification of the dual space in Lemma
6.6 this in turn is equivalent to If,d : (Xp)f,d → `2(Z+; Y ′ ×U ′) being an isometry,
which is true by definition of the norm in (Xp)f,d.

The filter Riccati equation of the node [ A B
C D ] is simply the control Riccati equation

of the dual node [ A B
C D ]∗.

Definition 6.8. The triple (p, r, T ) is called a (nonnegative) solution of the filter
Riccati equation of the node [ A B

C D ] if
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1. p is a closed nonnegative symmetric sesquilinear form in X whose domain
satisfies A∗D(p) ⊂ D(p), C∗Y ⊂ D(p).

2. r is a bounded nonnegative symmetric sesquilinear form on Y .
3. T : D(p)→ Y is a linear operator.
4. For all z ∈ D(p), y ∈ Y we have

p(A∗z+C∗y, A∗z+C∗y)+‖B∗z+D∗y‖2U +‖y‖2Y = p(z, z)+r(Tz−y, Tz−y).
(6.3)

The solution is called classical when D(p) = X .
Definition 6.9. Let G : D(G) ⊂ C → L(U , Y ) be holomorphic at the origin.

A function [M̃, Ñ] ∈ H∞(D,L(Y ×U , Y )) is called a left factorization of G if M̃(z)
is invertible for all z in a neighbourhood of the origin and G(z) = M̃(z)−1Ñ(z) in a
neighbourhood of the origin.

Theorem 6.10. Let G : D(G) ⊂ C→ L(U , Y ) be holomorphic at the origin and
let [ A B

C D ] be realization of G. The following are equivalent conditions.
• [ A B

C D ] satisfies the output coercive past cost condition.
• The filter Riccati equation of [ A B

C D ] has a (nonnegative self-adjoint) solution.
• G has a left factorization.

Under these equivalent conditions, the filter Riccati equation of [ A B
C D ] has a smallest

(nonnegative self-adjoint) solution (pp, Tp, rp) with domain Ξf,d.
Proof. According to Theorem 6.4 the output coercive past cost condition implies

that the dual node [ A B
C D ] satisfies the finite future incremental cost condition. Theo-

rem 4.6 then shows that the dual node has a solution to its control Riccati equation.
This implies that the original node has a solution to its filter Riccati equation.

If the node has a solution to its filter Riccati equation, then the dual node has a
solution to its control Riccati equation. It follows from Theorem 4.6 that the transfer
function of the dual node has a right factorization: Gd(z) = N(z)M(z)−1. Realizing
that the transfer function of the original node G and that of the dual node Gd are
related by Gd(z) = G(z̄)∗ we obtain G(z) = M̃(z)−1Ñ(z) with M̃(z) := M(z̄)∗ and
Ñ(z) := N(z̄)∗. So the transfer function of the original node has a left factorization.

Assuming that the transfer function of the original node has a left factorization,
it is easily seen as above that the transfer function of the dual node has a right
factorization. It follows from Theorem 4.6 that the dual node satisfies the finite
future incremental cost condition. Theorem 6.4 then shows that the original node
satisfies the output coercive past cost condition.

Existence of the smallest solution follows from the existence of the smallest solu-
tion (qf , Kf , sf ) of the control Riccati equation of the dual node.

7. The optimal output injection problem. We consider the closed-loop sys-
tem

xn+1 = (A−HC)xn + (B −HD)un + Hyn, n ∈ Z−,

wn = WCxn + WDun −Wyn, n ∈ Z−,

x0 = z,

∃N ∈ Z− : xn = 0 = un ∀n ≤ −N.

(7.1)

where W : Y →H is a given bounded linear operator and H : Y →Xe is a bounded
linear operator. Here H is a Hilbert space and Xe is a Hilbert space that contains
PX	N Ξp as a dense subspace and is such that the restriction of the node [ A B

C D ] to
PX	N Ξp × U extends continuously to a bounded linear operator from Xe × U to
Xe × Y .
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Theorem 7.1. Assume that [ A B
C D ] satisfies the output coercive past cost condi-

tion. Define Hp : Y →Xp by

Hpy = JXpPG g, (7.2)

where g−1 = [ y
0 ] and gn = 0 for n < −1 and PG is the orthogonal projection

`2(Z−; Y ×U )→ G .
Then Hp minimizes both the L(`2(Z−, Y ×U ), `∞(Z−, H )) and the L(`2(Z−, Y ×

U ), `2(Z−, H )) norm of the map from {[ yn
un

]}n∈Z− to {wn}n∈Z− in (7.1), where H
ranges over all linear maps Y →Xe with Xe a Hilbert space that contains PX	N Ξp

as a dense subspace and is such the restriction of the node [ A B
C D ] to PX	N Ξp ×

U extends continuously to a node with Xe as state space. The operator Hp also
minimizes the L(`2(Z−, Y ×U ), H ) norm of the map {[ yn

un
]}n∈Z− 7→ w−1.

Denote the smallest nonnegative self-adjoint solution of the filter Riccati equation
of [ A B

C D ] by (pp, Tp, rp). Then the minimum norms mentioned above all equal the
square root of sup‖h‖=1 rp(W ∗h, W ∗h).

Proof. The assumption that PX	N Ξp ⊂ Xe implies that PX	N Ξ− ⊂ Xe and
so ensures that the extended node has the same transfer function as the original node.
In particular, it too satisfies the output coercive past cost condition (this follows from
Theorem 6.10). So the dual of the extended node satisfies the finite future incremental
cost condition.

We have that K := −H∗ is a bounded operator from X ′
e to Y ′ and E := W ∗ is

a bounded operator from H ′ to Y ′. Obviously, the domain of K (which equals the
whole state space X ′

e ) is A∗ invariant and contains the range of C∗. The adjoint of
the closed-loop system (7.1) considered as a dynamical system on Z+ then is

xd
n+1 = (A∗ + C∗K)xd

n + C∗Ew∗n, n ∈ Z+,

u∗n = (B∗ + D∗K)xd
n + D∗Ew∗n, n ∈ Z+,

−y∗n = Kxd
n + Ew∗n, n ∈ Z+,

xd
0 = z∗,

(7.3)

i.e. it is the closed-loop system (4.2) of the adjoint node of the extended node with u
replaced by −u.

From the above it follows that the search over H in the optimal output injection
problem translates to the search over K in the optimal feedback problem.

By the discussion in Section 5, the input-output maps of (7.1) and (7.3) are
adjoints when both are considered `2 → `2 and also when considered `1 → `2 and
`2 → `∞ respectively. Also the maps {[ yn

un
]}n∈Z− 7→ w−1 and w∗0 7→

{[
y∗n
u∗n

]}
n∈Z+

are

adjoints.
From the fact that the operator norm of an operator equals that of its adjoint

and Theorem 4.7, it follows that the square root of sup‖h‖=1 rp(W ∗h, W ∗h) is a lower-
bound for all three operator norms considered and that this lower-bound is reached for
H = −K∗f,d. The formula for Hp follows once we show that Hp = −K∗f,d as operators
Y →Xp, which we now obtain.

We have, for y ∈ Y and z∗ ∈ (Xp)f,d = X ′
p ,

〈Hpy, z∗〉Xp,X ′
p

= 〈JXpPG g, z∗〉Xp,X ′
p
,

which by Lemma 6.6 equals〈
IXp

p JXpPG g,R∗I
(Xp)f,d

f,d z∗
〉

`2(Y ×U )
.
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By (3.1) the above equals〈
P`2(Z−;Y ×U )	N(JXp )PG g,R∗I

(Xp)f,d

f,d z∗
〉

`2(Y ×U )
.

By Lemma 6.3 we can omit the projection onto the orthogonal complement of the
kernel in this last formula. By Lemma 6.2 and Remark 5.2 we have R∗I

(Xp)f,d

f,d z∗ ∈
`2(Z+; Y ′ ×U ′)	 G⊥ so that the projection onto G may also be omitted. Hence

〈Hpy, z∗〉Xp,X ′
p

= 〈Rg, I
(Xp)f,d

f,d z∗〉`2(Y ×U ) = −〈y, Kf,dz
∗〉Y ,Y ′ ,

where the last equality holds by definition of Kf,d and R. This proves Hp given by
(7.2) is indeed the optimal output injection.

The formula (7.2) shows that the optimal output injection Hpy for the node
[ A B
C D ] is the final state of the dynamical system associated to that node for some

input defined on Z− in terms of y.
Theorem 7.2. Assume that [ A B

C D ] satisfies the output coercive past cost condi-
tion. Then the closed-loop system of the completed Ip-compression with the optimal
output injection is strongly internally ∗-stable.

Proof. The proof of Theorem 7.1 shows that the dual of the closed-loop system
of the completed Ip-compression with the optimal output injection is the closed-
loop system of a completed If -compression with the optimal state feedback. From
Remark 4.8 it follows that this latter system is strongly internally stable. The result
immediately follows.

Remark 7.3. Many of the operators defined here are closely related to analogous
operators introduced in [2]. More precisely, the completed Ip-compression is a passive
observable and backward conservative i/s/o system if we equip its output space Y
with the (equivalent) inner product induced by the quadratic form r in Definition 6.8
and use U × Y as the input space. With regard to this system, the co-isometry
JXp coincides with the input map BΣi/s/o

in [2, Section 10], the isometry If,d is the
output map of the adjoint system, and the two Hankel operators Γp and Γf,d can be
interpreted as compressions of the past/future map ΓΣ in [2] and its adjoint.
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