OPTIMAL CONTROL ON THE DOUBLY INFINITE
CONTINUOUS-TIME AXIS AND COPRIME FACTORIZATIONS
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Abstract. We study the problem of existence of weak right or left or strong coprime factor-
izations in H-infinity over the right half-plane of an analytic function defined in some subset of the
right half-plane. We give necessary and sufficient conditions for the existence of such coprime fac-
torizations in terms of an optimal control problem over the doubly infinite continuous-time axis. In
particular, we show that an equivalent condition for the existence of a strong coprime factorization is
that both the control and the filter algebraic Riccati equation (of an arbitrary realization that need
not be well-posed) have a solution (in general unbounded and not even densely defined) and that
a coupling condition involving these two solutions is satisfied. The proofs that we give are partly
based on corresponding discrete time results which we have recently obtained.
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1. Introduction. Linear finite-dimensional time-invariant systems in continu-
ous time are typically modeled by the equations

&(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), (1.1)
2(0) = zo,

on a triple of finite-dimensional vector spaces, namely, the input space U, the state
space X, and the output space Y. We have u(t) € U, z(t) € X and y(t) € Y. In this
article we are interested in the infinite-dimensional generalization of this situation
(which models, e.g., evolutionary partial differential equations). The main subject
of this article is the interplay between linear quadratic optimal control theory, the
factorization approach to control theory, and Riccati equations.

In the remainder of this introduction we describe these connections (highlighting
our new contributions) without getting into too much technical detail (which we leave
for the main body of the article).

In the standard infinite-dimensional setting the main operator A in is un-
bounded and it generates a Cj semigroup in X, whereas the control operator B and
the observation operator C' may be bounded or unbounded, and the feedthrough op-
erator D is sometimes difficult to define. One common approach to discuss this case
is to re-write into the form

a(t)| _ o |2

[ym] =5 [uu)] ’ (1.2)
z(0) = .

where S is an (in general unbounded) operator dom(S) C [§] — [$]. In the case

where B and D in (1.1]) are bounded it is usually possible to split S into the block
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matrix form S = [4 B], where dom(A) = dom(C) C X, dom(B) = dom(D) = U, and
dom(S) = dom(A) x U. However, in the most interesting cases (e.g., in boundary
control systems) one is forced to use an unbounded operator B, and neither dom (.5)
nor S itself is of the above form. In this case we denote S = [ A¥5 |, where A&B 5] is
the first component of S [y ] and C&D [ ] is the second component of S [ ]. The above
idea is formalized in the notion of an operator node (see, e.g., [2L[171/28] or [33, Section
4.7]) which we review in Section

One of the most classical problems in control theory, the Linear Quadratic Reg-
ulator (LQR) problem, is to minimize the quadratic cost function

Jrut (o, u) = /OOO(IIU(t)IIZ{ +ly@I3) dt, (1.3)

subject to the linear dynamics (L.I). This problem goes back to Kalman [11] (at
least in this formulation, its origins can be tracked back further) and has now been a
textbook subject in control theory for decades. The objective is not just to find an
optimal control u°Pt, but also to prove that it is of feedback form, i.e., that by adding
the equation

u(t) = Kx(t),

to the equations , the unique solution of this new system of equations is the
solution of that minimizes the cost . Moreover, a crucial aspect of the
solution of this problem is that the optimal feedback operator K can be obtained
from the control Riccati equation as follows: We have

K=-WYB*Q+D*C), W =1y+D*D, (1.4)
where @ is the minimal nonnegative solution of the control Riccati equation
QA+ A*Q+C*C = (B*Q + D*C)*'W~1(B*Q + D*0), (1.5)
which can also be written in the form
QA+AQ+C'C=K"WK. (1.6)

We note that depends on the individual operators A, B, C' and D and not
only on the “unsplit” operators A& B and C&D. This precludes a straightforward
generalization of that form of the Riccati equation to operator nodes, except in the
special case where B and D are bounded. In particular, the interpretation of the
term B*Q in and causes significant problems. The Riccati equation has
proven to be a notoriously difficult issue for unbounded control operators B; see,
e.g., [10,[15/[161[291[30}[32/[39,/40] and Remark [5.11]

In order to also include the case of an unbounded control operator B we replace
the above “standard” Riccati equation by the Lur’e form of the Riccati equation
(which is in common use for singular optimal control problems). Instead of defining
K by we define K and F by (the sign change in K compared to is not
significant, but it leads to a slight simplification of the formulas)

K=w"Y*B*Q+D*C), F=WY%  W=1,+D*D. (1.7)

Then (|1.6]) is replaced by
QA+ A"Q+C"C=K"K, (1.8)
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and equations (|1.7)) and ([1.8) can be rewritten in block matrix form as

QA+A*Q+C*C QB+C*D]| [K*K K*F
B*Q + D*C ly+D*D |~ |F*K F*F

This in turn can be re-written as (applying the above equation to [§], taking the
inner-product with [§, ] and re-arranging):

(a1 [Jos)(enta a1 [])-fie orf][aer =i mif]

As we show in Section replacing [A B] by A&B, [C D] by C&D, [K F| by
K&F and requiring this equation to hold only for [7] € dom(S) (or for [{] in a
subspace of dom(S) if @ is unbounded), this is indeed the correct Riccati equation
in the sense that it provides the solution to the optimal control problem. We note
that the non-singularity condition that F' is invertible in general has to be replaced
by another condition (since in general only the combination K&F exists); this is
discussed further in Remark .11l We believe that the use of Lure’s form of the
Riccati equation is crucial in avoiding some of the pitfalls in the existing Riccati
equation theory in the case of an unbounded control operator.

The classical companion to the LQR problem is the optimal filtering problem
[12{13]. In its original formulation the filtering problem (whose solution is the Kalman
filter) amounts to finding the best estimate of the state at some given time ¢y based
on measurements of the past values of a signal. If we take ¢ty = 0, then this leads to
a minimization problem over R™, namely to the problem of minimizing the past cost
function

2

0
Tows(osa) = [ (@)l + (03 e, (1.9)

—0o0
where this time xg is the final value in . The optimal cost is a quadratic function
of the state xg, which can be written in the form (xg, Rzo)x. Here R~ turns out to
be the minimal nonnegative solution of the control Riccati equation for the adjoint
system, i.e., the system that one gets by replacing [4 B] by [4 B]" = [4- G- ]. The
control Riccati equation for the adjoint system is commonly called the filter Riccati
equation of the original problemﬂ Observe that in the case of the filter Riccati
equation it is the possible unboundedness of the observation operator C' that becomes
problematic if one wants to rewrite it in “standard form”, as the control operator of
the adjoint system is C*.

Since most infinite-dimensional systems cannot be solved backwards in time, the
minimization problem on R~ is a genuinely different problem than the minimization
problem on R*. In particular, it is typical that not every final value xy can be
reached. This implies that the operator R above will be unbounded in such cases.
Another issue is that existence and uniqueness of solutions on R~ is problematic
(see e.g. [36l Section 5]). We overcome this latter problem by considering only linear
combinations of exponential trajectories of the form

x(t) xo
u(t)| = e |uo |, teR™.
y(t) Yo

IThe name “filter Riccati equation” is somewhat misleading in the sense that it is the inverse
of the solution of the filter Riccati equation that solves the original filtering problem, and not the
solution itself!
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In the finite-dimensional case zg = (A — A) ' Bug and yo = C(\ — A)~*Bug + Duy
and in the general case appropriate generalizations of these formulas turn out to hold.
It is clear from these formulas that we should restrict A to lie in the resolvent set of
A. Tt is also clear that to have a meaningful infimization of , we should consider
“enough” trajectories, i.e. we should consider all A € 2 for some large enough set €.
In the standard setting where the main operator A in generates a Cy semigroup
we can, e.g., take 2 to be the right half-plane Cy(4) := {A € C | RA > w(A)} where
w(A) is the growth bound of the semigroup generated by A, but other choices of 2 are
also possible (especially in those cases where A does not generate a Cyy semigroup).

To obtain the filter Riccati equation we employ duality, i.e., we relate the opti-
mization problem on R~ for the system [ B] to the optimization problem on R for
the system [4 £]". Because of this it makes sense to minimize over the set of
trajectories on Rt which is dual to the set of exponential trajectories considered on
R™. A pair of functions [y ] belongs to this set if and only if both u and y belong to
L?(R*), and if the Laplace transforms of u and y satisfy

JA) =CA—A)rzo+ (D+C(A— A)'B) a(N), NEQ, (1.10)

where 2 is the same set as before. This equation coincides with the equation that one
gets by taking formal Laplace transforms in .

Before commenting on the optimal control problem on R, we indicate how the
above considered optimal control problems on Rt and R~ relate to the factorization
approach to control theory.

The factorization approach [35] leads to a parameterization of all stabilizing con-
trollers and also has links to metrics that measure robustness of controllers. There
are well-known connections between the optimal control problem and the factoriza-
tion approach. See, e.g., [141|18/[21] for the finite-dimensional case, the bibliography
of |5, Chapter 9] for the infinite-dimensional case, and [4,/19,/31] for more recent con-
tributions in the infinite-dimensional case. The characteristic function (or transfer
function) of the system is defined and analytic on the resolvent set p(A) of the
main operator A, and it is given by G(\) := D+C(A—A)"!B, X € p(A). It is possible
to introduce the notion of the characteristic function G of in an analogous way,
and it is still defined and analytic on p(A), where A is the main operator of
(see Section [2] for details). For simplicity, let us assume that this transfer function
G is well-posed, i.e., that p(A) contains some open right-half plane 2, and G is uni-
formly bounded on this half-plane €. The basic idea in the factorization approach
is to write the restriction of G to  as a quotient G(A) = N(A)M(A)~1, X € Q, of
two analytic functions N and M which are defined and uniformly bounded on the full
open right half-plane C; := {\ € C | R\ > 0}, and in addition, M(}) is invertible
for all A € Q and M~ is uniformly bounded in . In the finite-dimensional case, G
is a rational function and such a factorization always exists. This is not true in the
infinite-dimensional case (e.g. when G has an essential singularity in the right half-
plane). Given a function G, a system with G as its transfer function is called a
realization. We note that realizations are never unique.

To relate the optimal control problem on R to right factorizations, we recall
the state finite future cost condition, i.e., the condition that for every xo € X there
exists a control w such that Je, (2o, u) < co. It is known that that if G is well-posed,
then G has a right factorization of the type described above if and only if G has a
realization of the type which is well-posed in the sense of [33], and which satisfies
the state finite future cost condition (see [20]). Even though this is a necessary and
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sufficient condition, it is still problematic in two respects: first of all, the condition
that must be well-posed is not a natural assumption for this problem (i.e., in
order to define G there is no need to assume that is well-posed, only that it is
given by an operator node), and secondly, if it turns out that a given realization
(well-posed or not) of G does not satisfy the state finite future cost condition, then
the above result says nothing. In Theorem below we improve the above mentioned
result from [20] by giving a necessary and sufficient condition for the existence of a
right factorization over H° in terms of an arbitrary operator node realization of G
(which need not be well-posed, and which need not satisfy the state finite future cost
condition). In this theorem the state finite future cost condition has been replaced
by the weaker input finite future cost condition (see Definition . It follows from
our results that for finite-dimensional systems the input finite future cost condition
always holds (the state finite future cost condition may not hold) although this is
not obvious from the definition. Another necessary and sufficient condition in terms
of an arbitrary operator node realization is that the control Riccati equation of this
realization has a solution (Theorem [5.9)); however this solution may be unbounded.
This is the main reason why we have to allow for unbounded solutions of our Riccati
equations. In this case it is technically more convenient to work with the sesquilinear
form ¢ associated to the operator () through

qlz,yl = (Qr,y), =,y € dom(Q),

rather than with @ itself, and we therefore formulate our Riccati equations in terms
of sesquilinear forms.

The optimal control problem on R~ is related to left factorizations in a similar
manner (Theorem 7 and it can be reduced to the the problem on R by means of
duality. The dual of the input finite future cost condition, which we call the output
coercive past cost condition (Definition , says roughly that the cost of reaching an
observable state should have a nonzero lower bound.

A right factorization is called strongly coprime if there exist uniformly bounded
analytic functions X and Y on the open right half-plane such that XM — YN = 1;, on
the open right half-plane. Not every transfer function which has a right factorization
has a strongly coprime right factorization. It is known that a transfer function has
a strongly coprime right factorization if and only if it has a realization for which the
state finite future cost condition is satisfied both for the system itself and for the
dual system (see [4,20]). In our context this is also equivalent to the existence of a
realization for which both the control and the filter Riccati equation have a bounded
solution. For a general realization it is not sufficient to have (unbounded) solutions
to both the control and the filter Riccati equation. It turns out that there is an
additional coupling condition: we show in Theorem that for a general realization
the necessary and sufficient condition is that both the control and the filter Riccati
equation have a (possibly unbounded) solution @ respectively P, and that there exists
a finite constant M such that @ < MP~! (in the sense of nonnegative self-adjoint
operators, or more generally, in the sense of nonnegative self-adjoint relations). We
remark that this is reminiscent of the famous “coupling condition” in H* control [9].
Also the solution of the H*® control problem involves the solutions of two algebraic
Riccati equations. One of them is of “control” type and the other of “filter” type, and
they tend to the LQG/H? control and filter Riccati equations that we consider in this
article when a certain parameter - tends to infinity. Let us call these solutions X and
Y, respectively. The standard coupling condition in H® control is that r(XY) < ~2,
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where r denotes the spectral radius. If Y is invertible, then this is equivalent to
the condition X < v2Y ~! in the sense of nonnegative self-adjoint operators (if Y is
not invertible, then it is still true in the sense of nonnegative self-adjoint relations).
Thus, in this article we prove that in the LQG/H? setting the H>* coupling condition
X < 4?Y ! must be replaced by the analogous coupling condition Q@ < MP~!,
where M must be finite, but without any size limitation on M. The reason why this
LQG/H? coupling condition has not been discovered before is that in the existing
literature on LQG/H? control it has been hidden in the general setting: if both P
and @ are required to be bounded, then automatically r(PQ) < oo, and we may take
M =r(PQ).

The optimal control problem related to strongly coprime factorizations is the one
given by the two-sided cost function obtained by adding the past and future costs,
ie.,

o0

I (o, u) = / a1z + lly@)1I3) dt, (1.11)
— 00

where this time x( is the intermediate value in . In this setting the LQG/H?

coupling condition that we mentioned above is equivalent to the past cost dominance

condition (Definition , which says that the future cost should be dominated by

the past cost, or equivalently, that the full cost should be dominated by the past cost.

One characteristic feature of this article is that we allow solutions of the control
and filter Riccati equations to be unbounded (and not even densely defined). For the
results that we present here this amount of generality is unavoidable, since our main
theorems would be false in a less general setting. Unbounded solutions of Riccati
equations have been considered before, but not in the present setting. In the discrete
time setting unbounded solutions appear in, e.g., |1}23}24/25]. Technically the discrete
time setting is much easier than the continuous time setting due to the boundedness
of the discrete time versions of the operators A, B, C, and D. Unbounded solutions
in the continuous time setting with bounded B and D are discussed in [6}(7}8], and
also this special setting is technically much easier than the setting in this article. The
most closely related result that we have been able to find in the literature is the study
of the continuous time Kalman—Yakubovich-Popov inequality in 3] (which has been
the main source of inspiration for this article in addition to [23}/24,25]). There the
setting is essentially the same as our present setting, apart from the fact that there
A is throughout required to generate a Cjy semigroup, and our positive cost function
is replaced by an indefinite cost function of KYP-type. The connection with the
factorization approach is absent from the above references, and the connections with
optimal control described there were far more limited.

The discrete time counterpart of the present theory has recently been developed
in a series of three papers [23]|24,125]. This article is the first in a series of three where
we discuss the continuous time case, and it is partly based on the above discrete time
results. To round off this introduction, we comment on why we in this first article
have chosen to work with systems of the type (1.2)) where S is an operator node.

In the discrete time setting it is natural to assume that the operators A, B, C,
and D appearing in the discrete time equation

Tn+1 = Az, + Buy,

1.12

are bounded, but in continuous time the choice of the setting in which the problem
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is studied is less obvious. Basically we can think the following four alternatives (in
increasing order of generality):

A) Operator nodes of the type which are well-posed in the sense of [33],
B) Systems nodes in the sense of [33], i.e., operator nodes with the extra property
that the main operator A generates a Cy semigroup (see Section for details),
C) Operator nodes for which the main operator A satisfies p(A)NC™ # () (so that
the transfer function G is defined at least in some part of the right half-plane
Ch),
D) Resolvent linear systems in the sense of [22].
As we mentioned above, out of these possibilities we have in this article chosen to work
in the class C). In our opinion, this is the class of systems that the most resembles
the standard finite-dimensional set-up , and thereby the one which is intuitively
easiest to comprehend. It is also the class of systems which is easiest to use in
applications in the following sense. To show that a given system is of type A) or type
B) one must first show that it is of type C), and then one needs additional, often
nontrivial, arguments to show that it actually of type A) or type B). By working
directly in the class C) those additional arguments are no longer needed. Furthermore,
as it turns out, the additional structure present in classes A) and B) does not lead to
any significant simplifications of either the statements of our main results nor of their
proofs. The setting D) is, of course, much more general than the settings A)-C), but
it is very different from A)-C), and in the setting D) both the statements of the main
results and their proofs become more complicated. We shall return to the settings A)
and B) in our second article in this series, and to class D) in the third.

To model a continuous time system one often starts with a (formal) partial dif-
ferential equation, a (formal) input operator, and a (formal) output operator, and
then tries to show that the system belongs to one of the classes A)-D) above. To do
so one must first choose a function space in which to study this partial differential
equation, which will then become the state space of the realization. As we observed
in the discrete time setting in [23, p. 481]: “Choosing the proper state space is usually
considered to be something that has to be done before one can solve control problems.
One of the main points of the present series of articles is that it should instead be
considered as an integral part of the control problem.” The same statement is even
more true in the continuous time setting. As we shall show in our second continuous
time article, the results that we obtain here can in some cases be used in the following
way: we start with a realization of class C), solve the future or past cost minimization
problem, and then use the solution of this problem to get a realization of class A) by
redefining the norm in the state space. This is illustrated by two simple examples
(a one-dimensional wave equation and a one-dimensional heat equation) in [24, pp.
5089-5090], as well as in the example given in Section [§] below. More precisely, the
following additional claims are true (as will be proved in our next paper):

(i) Both the optimal state feedback system that one gets from the future cost
minimization problem and the optimal output injection system that one gets
from the past cost minimization problem are actually well-posed with respect
to the appropriate norm in the state space (i.e., the norm induced by the
optimal future and past costs respectively),

(i) If the transfer function is well-posed (in the sense described earlier), then the
open loop system is also well-posed with respect to the appropriate norms
derived from the optimization problems.

(iii) The norm derived from the future cost minimization problem is in a certain
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sense the weakest possible norm within the class of all operator node realiza-
tions that satisfy the state finite future cost condition, and the norm derived
from the past cost minimization problem is in a certain sense the strongest
possible norm within the class of all operator node realizations that satisfy
the state coercive past cost condition.
Unfortunately, if the transfer function is not well-posed, then the open loop system
with the appropriate norms derived from the optimization problems does not always
seem to be an operator node. However, under some relatively weak assumptions it
can be shown that it is a system of the class D). We shall return to this question in
our third article on the continuous time cost minimization problem.

The present article consists of 9 sections and an appendix, this introduction being
the first section. In Section 2] we collect some background material on operator nodes,
the class of systems that we consider in this article. In Section [3] we solve the optimal
control problems on RT, R~ and R. The main result in this section is Theorem
which describes the connection between the past cost minimization problem for
the original system and the future cost minimization problem for the adjoint system.
Section [4] describes the connection between the present continuous time setting and
the discrete-time setting used in [23}24,125]. In Section [5| we consider the control
Riccati equation and right factorizations. That section contains the already mentioned
Theorem which is the first of our three main results. Section [6] contains results
on the filter Riccati equation and left factorizations. The results presented there
(including the second of our main results, Theorem follow easily from those in
Section [f] with the help of Theorem [3.I8 Section [7] contains our results on doubly
coprime factorizations, including our third main result, Theorem [7.5] This third main
result contains the already mentioned new LQG/H? coupling condition. In Section
we apply our theory to investigate a partial differential equation example originally
presented in [6, Section 2.2], and which turns out to have a transfer function which
does have right and left factorizations, but no strongly coprime factorization. This
example also shows how one may start from a system of type C) and arrive at a
system of type A) by solving the forward and backward cost minimization problems.
Finally, Section [J] contains an example which illustrates that the minimization and
factorization results obtained here depend on the component Q of p(A) N CT that is
chosen in the precise problem formulation.

2. Continuous Time Operator Nodes. In this article we will use a natural
continuous time setting (that of operator nodes), earlier used in, e.g., [2,/17./27}/28,|33]
(in slightly different forms). In this section, for easy reference, we collect some results
on operator nodes from the literature that we will need in this article.

In the sequel, we think about the block matrix S = [é 51 as one single closed
(possibly unbounded) linear operator from [¥] = X ® U to [g,(] with dense domain

dom (S) C [{], and write (1.1)) in the form

S { Bg;] —_ mg] . te(—o00,0),z(0) = . (2.1)

In the infinite-dimensional case such an operator S need not have a four block decom-
position corresponding to the decompositions [5 ] and B,( ] of the domain and range

spaces. However, we shall throughout assume that the operator

Az = PxS[§],

x €dom (A):={zx e X |[§] € dom(S)}, (22)
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is closed and densely defined in X' (here Py is the orthogonal projection onto X’). We
define X1 := dom (A) with the graph norm of A, X! := dom (A*) with the graph
norm of A*, and let X! be the dual of X} when we identify the dual of X with itself.
Then X! ¢ X € X~! with continuous and dense embeddings, and the operator A has
a unique extension to an operator A|y = (A*)* € B(X; X~!) (with the same spectrum
as A), where we interpret A* as an operator in B(X!; X). Additional assumptions on
S will be imposed in Definition [2.1] below.

The remaining blocks of S are only partially defined. The ‘block’ B will be an
operator in B(U; X~1). In particular, it may happen that img (B) N X = {0}. The
‘block’ C' will be an operator in B(X*';)). We shall make no attempt to define the
‘block’ D in general since this can be done only under additional assumptions (see,
e.g., [33, Chapter 5] or [34137,38]). Nevertheless, we still use a modified block notation
S = [A¢B], where A&B = PxS and C&D = PyS.

DEFINITION 2.1. By an operator node on a triple of Hilbert spaces (X,U,))
we mean a (possibly unbounded) linear operator S: [{] — [3] with the following
properties. We decompose S into S = [égg], where A&B = PyS:dom(S) —» X
and C&D = PyS: dom (5) — Y. We denote dom (A) = {z € X | [§] € dom (5)},
define A: dom (A) — X by Az = A&B§], and require the following conditions to
hold:

(i) S is closed as an operator from [%] to 5] (with domain dom (S)).

(ii) A&B is closed as an operator from 1] to X (with domain dom (S)).

(iii) A has a nonempty resolvent set, and dom (A) is dense in X.

(iv) For every u € U there exists a x € X with [ ] € dom (5).

We call S a system node if, in addition, A is the generator of a Co semigroup.

LEMMA 2.2. Ewvery operator node S on (X,U,Y) has the following additional
properties:

(v) The operator A&B (with dom (A&B) = dom (S)) can be extended to an op-

erator [Alx  B| € B([£]; X71).

(vi) dom (S) = {[%] € [¥]| Alxz + Bu e X}.

(vii) For every u € U, the set {x € X | [&] € dom (S)} is dense in X. (Thus, in
particular, dom (S) is dense in [1}].)
(viii) C&D € B(dom (S);Y), where we use the graph norm

N o ac ) = IAEB 5 + I3 + lul (2:3)

of A&B on dom (S5).
(ixz) The graph norm of A&B on dom (S) defined above is equivalent to the full
graph norm

1My = 1A&B 215 + lC&D[E5 + el + lulZ (24)

of S on dom (5).

() For every o € p(A) = p(Alx), the operator [16‘ _(O‘_A“‘)AB} maps dom (.59)

lu
one-to-one onto [)Zjl] and it is bounded and invertible on []. The inverse of
this operator (which maps |7} | one-to-one onto dom (S) and ] one-to-one
. | 1x (a—Alx)"'B
onto itself) is [ Fle 1;) .

(xi) For each o € p(A) the graph norm of S is equivalent to the norm

1121 = (I — (@ — Alx) " Bul%, + [lull?) .
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Proof. See 33 Lemmas 4.7.3 and 4.7.7]. O
Each operator node has a main operator, a control operator, an observation op-
erator, and a transfer function:
DEFINITION 2.3. Let S = [AYB] be an operator node on (X,U,Y).
(i) The operator A in Deﬁnition is called the main operator of S. If S is a

system mode, then we shall also refer to A as the semigroup generator of S.

(ii) The operator B in Lemma is called the control operator of S.

(iii) The operator C: X1 — Y defined by Cx = C&D [§] is called the observation
operator of S.

(iv) The transfer function of S is the operator-valued function

(Oé — A|X)_1B

D(a) = C&D { 1

] , a € p(A). (2.5)
By the resolvent identity, for any two «, 8 € p(A),

(B—a)(a—Alx) 1 (B—Alx)"'B
0 (2.6)
=(B—a)Cla—A)"YB—-Alx)"'B.

D(a) —D(B) = C&D [

Note that if B € B(U;X), then dom (S) = [} ], and we can define the operator

D e B(U;Y) by D = PyS| (0] after which formula (2.5)) can be rewritten in the form
u
DN =D+CA—A)"'B, A€ plA). (2.7)
Let
~1
o= ([0 ] - [5%3])
0 1y 0 0
(a=A)"! (a—Alx)"'B 2
= { 0 1; ] , a€p(A).

Then, for all a € p(A), G4 is a bounded bijection from [7¥] onto dom (S), and

~1 ~1

{ggg} Go = [égg - jg_l a(a @f(‘ij;) B] L aepd). (29

As shown in 33} Lemma 4.7.6], one way to construct an operator node S = [égg]
is to specify a densely defined main operator A with nonempty resolvent set, a control
operator B € B(U;X~!), and an observation operator C € B(X1;)), to fix some
a € p(A) and an operator D, € B(U;Y), define dom (S) by condition (vi) in Lemma
let A&B be the restriction of [A|x B] to dom (S), and define C&D [%] for all

+] € dom (S) by

C&D m = O(z — (a — Alx)"'Bu) + Dau. (2.10)

The transfer function D of this operator node satisfies D(a) = D,.

LEMMA 2.4. Let S be an operator node on (X,U,Y) with main operator A, control
operator B, observation operator C, and transfer function ©. Then the adjoint S*
of S is an operator node on (X,Y,U). The main operator of S* is A*, the control
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operator of S* is C*, the observation operator of S* is B*, and the transfer function
of S* is D(Q)*, a € p(A*). If S is a system node, then so is S*. Moreover,
a—Alx)'B)" =B*(@- A",
(¢ %) 1)* ( ) (2.11)
(Cla—A)Y) = @=-A3)7'C", aeplA).
For a proof (and for more details), see, e.g., |2, Section 3], [17, Proposition 2.3],
or [33, Lemma 6.2.14].
DEFINITION 2.5. Let S be an operator node on (X,U,)). By a classical tra-
jectory of the system ¥ = (S;X,U,Y) on some interval I C R we mean a triple of
x CH(I;x)
functions [u} € [ C(I;U) } satisfying
Y C(1;Y)

In Section [3] we shall extend this definition by introducing the notion of a gener-
alized stable trajectory of ¥ in the case where I is one of the intervals I = R™, I = R,
or I = R*. The state of such a trajectory is defined only at time ¢t = 0, and the input
and output components u and y belong to L?(I). This extended notion is not the
standard one, but it is the natural one for the problem at hand.

3. The Future, Past, and Full Cost Minimization Problem. In principle,

the future, past, and two-sided cost minimization problems are the following;:
e In the future cost minimization problem we fix an initial state xo € X and
minimize the future cost over a suitable set of generalized stable future

trajectories {;ﬂ of ¥ with the given initial state 2(0) = x.
e In the past cost minimization problem we fix a final state g € X and minimize
the past cost (1.9) over a suitable set of generalized stable past trajectories

[g} of ¥ with the given final state 2(0) = xo.
e In the two-sided cost minimization problem we fix an intermediate state zg €
xT
X and minimize the two-sided cost (|1.11]) over all two-sided trajectories [Z}

of ¥ with the given intermediate state x(0) = xg, with the property that the
restrictions of these trajectories to RT and R~ are of the type considered
above.

The definition of a classical trajectory of a system ¥ = (S;X,U,)) is straight-
forward (see Definition . However, in the cost minimizations problems we shall
use generalized stable trajectories of ¥ instead of classical trajectories. Our defini-
tion of generalized stable trajectories of X uses a frequency domain approach. This
approach works under minimal assumptions, and it makes it possible to treat a very
general class of continuous time systems, namely the class of systems ¥ induced by
an operator node S introduced in Section

In the definitions of the generalized stable trajectories (future, past, or two-sided)
we throughout fix one particular open subset Q of p(A) N C*, where A is the main
operator of the operator node S.

Remark 3.1. Throughout the rest of this article X will be induced by
an operator node S = [A¢5] with main operator A, and Q) will be a fixed
nonempty open subset of p(A) NC*. (Thus in particular, we throughout assume

that p(A)NCT #£10.)
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If A is the generator of a Cy semigroup, then we may take Q to be the right
half-plane right half-plane C,,4) := {\ € C | RX\ > w(A)} where w(A) is the growth
bound of the semigroup generated by A, but other choices of €2 are also possible.
The result is actually independent of the choice of Q under the weak assumption that
p(A)NCT is connected, but if p(A) NC* is disconnected then the result may depend
on the choice of Q, as we show with an example in Section [9]

First in Section [3.I] we consider the future cost minimization problem, then in
Section we consider the past cost minimization problem, and subsequently in
Section we consider the two-sided cost minimization problem. Finally, in Section
we consider the duality between the past and future cost minimization problems
that plays a crucial role in the remainder of the article.

3.1. The Future Cost Minimization Problem. In the future cost minimiza-
tion problem we must first define the set of trajectories over which we minimize the
cost function Jru (o, u). If the given operator node is well-posed in the sense of [33],
then we could define the notion of a generalized future trajectory for every given
u € L2(R*;U) in the standard way, and define this trajectory to have finite future
cost if the output y is a function in L2(RT;Y), so that the cost is finite. However, for
the purpose of this paper it is more convenient to use a different frequency domain
definition, which works well also in the non-well-posed case.

To motivate the following definition we look at the Laplace transform of a trajec-
tory satisfying on the time interval RT. Formal Laplace transforms give

§(N) = D)a(N) + C(A — A) g,

for all A € p(A). However, in the definition below we require the above identity to
hold only in the open subset Q of p(A) N C* that was fixed in Remark
DEFINITION 3.2.
(i) By the set of generalized stable future trajectories of ¥ we mean the set of

o X
all triples [ u } € [ijgﬁi?};] which satisfy
GO = DN a\) + CA— A) 'z, AeQ, (3.1)

where . and § are the Laplace transforms of u and y, respectively. We denote

this set by Wy, and call x¢ the initial state, u the input component, and y
the output component of a triple ﬁﬂ eW, .
2mt.
(ii) By the stable future behavior of ¥ we mean the set of all pairs [y] € Hzﬁ*l)j{/; }I
which satisfy

~

) =DNa(\),  Aeq. (3.2)

We denote this set by 0%, and call u the input component and y the output
component of a pair [y] € 2.

Note that we here do not actually define the state component x(t) of the trajectory
for t > 0, but only for £ = 0. However, the input v and output y are almost everywhere
defined L?-functions. If ¥ is well-posed in the sense of [33, Definition 2.2.1] and if
we choose Q to be the right-half plane Q = C,, := {s € C | ®s > w}, where w is

the maximum of zero and the growth rate of 3, then the set 20, coincides with the
0

set of all triples {Ig)}, where [;ﬂ is an generalized trajectory on R (in the sense
Yy
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of [33]) with the property that both u and y are L?-functions. In the well-posed
case the significance of the set 20 in the solution of the future time quadratic cost
minimization problem is well understood, at least in the case where the state finite
future cost condition holds (see Definition [5.7| below).

DEFINITION 3.3. The future cost minimization problem for ¥ is the following:
Given a vector xy € X, find the generalized stable future trajectory of ¥ with initial
state xg which minimizes the future cost Ju(x0,u) defined in .

In the setting described above, it is easy to solve the future cost minimization
problem. It is convenient here to use the language of linear relations in the form
presented in |25, Appendix A].

LEMMA 3.4. The set W of all generalized stable future trajectories of ¥ is a
closed subspace of {LQ(RJTM) .

L2(R;Y)
Proof. For each A € €, the set of all triples which satisfy is a closed subspace

X
of {LZ(R?U)} . The set 20, is the intersection over all A € Q of these subspaces, and
L7 (R75Y)
hence 20, is a closed subspace, too. O
DEFINITION 3.5. By the stable s/s (state/signal) output map € of ¥ we mean

. L2(RT;U)
the relation X — {L2(]R+;y)

LEMMA 3.6. The output map € defined above is closed. Thus, for each z €

dom (&) the set €z is a closed affine subspace of ngﬁig’g

— o0 ; L2(RT5U)
valued part €0 = W of € is a closed subspace of [L"‘(R*;y)] .

Proof. This follows from the fact that the graph of € is closed. O

As any closed relation, € has an orthogonal decomposition into a an operator part
and a multi-valued part (see |25, Appendix A] for details). The multi-valued part is
mul (¢) = Qﬁ(}r, and the operator part is the operator &€, = P[Qn(i]Le. Note that the

} whose graph is W, .

] In particular, the multi-

domain of €, is the same as the domain of €. Moreover, for every z € dom (€) the
vector €,z is the element in €z which has the minimal norm. Thus, we immediately
get the following solution to the future cost minimization problem.

THEOREM 3.7. A necessary and sufficient condition for a vector xo € X to have
a finite future cost is that xog € dom (€). The future cost of xg is then equal to

lzollfee = inf  (lullfe@e ) + 19122 @ep)) = €020l 2t 07 (3.3)
[y]eezo [L%R*;y)}

and it is achieved for the generalized stable future trajectory [gjgo].

3.2. The Past Cost Minimization Problem. Also in the past cost mini-
mization problem we must first define the set of trajectories over which we minimize
the cost function Jpast(zo,u). We again use a frequency domain approach to define
a reasonable set of generalized stable past trajectories. Recall that Q stands for a
particular fixed open subset of p(4) N CT (see Remark .

Above we commented that the significance of the notion of “stable future tra-
jectories” that we introduced in Definition [3.2| is well understood, at least in the
well-posed case. The same statement is no longer true about the set of “stable past
trajectories” that we shall introduce in Definition [3.8 below. In the discrete time case
we solved the past cost minimization problem by interpreting it as the dual of the
future cost minimization problem for the adjoint system. In order to be able to solve
the continuous time past cost minimization problem in the same way we must choose
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the set of stable past trajectories of the system ¥ in such a way that this set is “dual”
to the set of all stable future trajectories of 3* (in the sense described in Lemma
below). When ¥ is replaced by ¥*, then the fixed subset € in Remark must be
replaced by Q* = {\ | A € Q} (recall that p(A*) = {\ | A € p(A)}). If, for example,
Y« € L2(R*; ) is the output of the adjoint system ¥* and A € Q*, then the Laplace
transform ¢, () of a y. evaluated at A can be interpreted as the inner product of y.
with the function ¢ ++ e~**. This (combined with a time reflection) motivated us to
take a closer look at the set of classical past trajectories of ¥ the type

x(t) x
ut) | = eM [ug} , teR™,
y(t) Yo

where A € Q. A direct substitution into the appropriate equation shows that this
triple of functions is a classical trajectory of ¥ on R~ if and only if

Azg = Alxwo + Bug and yo = D(A)uo,

or equivalently,

Zo (/\ — A‘X)_lB
= = . 3.4
=[P (34
DEFINITION 3.8. For each A € CT we denote the function t — e, t € R™, by
€e).
(i) By the set of classical stable past exponential trajectories of ¥ we mean

[(A — Alx) " Bug X
U_ := span exuo ANEQ, upeU p C |L2R7;U)| . (3.5)
exD(Nug L?(R™;))

We call xq the final state, u the input component, and y the output compo-
S

nent of a triple u } ey_.

(i) By the set of generalized stable past trajectories of ¥ we mean the closure
x
in | L°R™U) | of W_. We denote this set by 25_.
L2(R™;Y)
(iii) By the classical exponential past behavior of ¥ we mean

0 ._ €\lUo
U7 := span { LAC‘D()\)UJ

We call u the input component, and y the output component of a pair [y] €
7Y .
(iv) By the (generalized) stable past behavior of ¥ we mean the closure in [

of V° . We denote this set by 23V .
Observe that we again ignore the values of the state component z(t) for ¢ # 0.
DEFINITION 3.9. The past cost minimization problem is the following: Given
a vector xg € X, find the generalized stable past trajectory with final state xo which
minimizes the past cost Jpast(2o,u) defined in .
As we saw above, the solution of the future cost minimization problem can be
expressed in terms of the (possibly multi-valued) s/s output map € of X. In the

(3.6)

AeQ, u eu} - {Lz(R;u)} .

L*(R7;))

L?(R™;U)
L%2(R™;Y)
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same way the solution of the past cost minimization can be expressed in terms of the
(possibly multi-valued) s/s input map B of X.
DEFINITION 3.10. By the stable s/s input map B of ¥ we mean the relation
[LQ(R_;M)
L2(R™;Y)
LEMMA 3.11. The s/s input map B defined above is closed, and its domain is

a dense subspace of the stable past behavior 20°.. For each x € img (B) the inverse

image (B)"'x is a closed affine subspace of ngﬁ:gg

ker (B) := (B) 710 of B is a closed subspace of 1Y .

Proof. This all follows from the fact that the graph of B is closed, except for the
density of the domain, which follows from the fact that 239 is the closure of 0% . O

Since the inverse image (B) 'z of any x € img (B) is is closed and convex, it
has an element of minimal norm, namely Pyer ()¢ (B)~1z. Thus, the solution to the
past cost minimization problem is the following.

THEOREM 3.12. A necessary and sufficient condition for a vector xo € X to have
a finite past cost is that xg € img (B). The past cost of xq is then equal to

} — X whose (inverse) graph is 2_.

] In particular, the kernel

||I0||12)ast = [u]eigﬁ_l (HUHQLZ(R_;Z,{) + ”y”zLQ(]R_;y))
y To
= 1 Pper()+ (B) " oll? 2g+ )7
[Lz(R+;37)]

and it is achieved for the generalized stable past trajectory I:P[ker(B)]fo(%)ilxo} .

3.3. The Two-Sided Cost Minimization Problem. DEFINITION 3.13. By
the set of generalized stable two-sided trajectories of ¥ we mean the set of all triples
x
[:Zo} € {Lz(R;U)] for which {Wﬁou} is a generalized stable future trajectory of ¥ and
Yy LQ(R;)}) T~+Y
[f?ﬂ is a generalized stable past trajectory of X (here my and m_ are the obvious
projections). We denote this set by 20, and call x( the intermediate state, u the input
o

component, and y the output component of a triple [ u } €.

DEFINITION 3.14. The two-sided cost minimization problem is the following:
Given a vector xg € X, find the generalized stable two-sided trajectory with interme-
diate state xg which minimizes the two-sided cost J(xo,u) defined in .

The solution to the two-sided cost minimization problem can be derived from the
future and past cost minimization problems as follows.

THEOREM 3.15. A necessary and sufficient condition for a vector xo € X to have
a finite two-sided cost is that xo € dom (€) Nimg (BW). The two-sided cost of xq is

then equal to the sum of the future and past costs of xo, and it is achieved for the
generalized stable two-sided trajectory GOzo+P[kC,f;]L(‘B)*1wo

3.4. The Duality Between the Past and Future Cost Minimization
Problems. The duality of the future and past cost minimization problems depends
on the fact that the set of all generalized stable past trajectories of ¥ is the annihi-
lator in a certain sense of the set of all generalized stable future trajectories of the
adjoint system T with the fixed open subset 2 of p(4) N C* replaced by the re-

flected set Q* = {\ | X € Q} of p(A*) NC*. To describe this connection we denote
X X
A= {LQ(R;U)} and R := | L°(®":Y) | and identify the dual of & with & by means
L*(R™;Y) L2(RTU)
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of the duality pairing

x zt 0 0
(G0 =wahe= [ wonatconudss [ o/ o as
u R,R — 00 —00
(3.8)
We further denote Ky := [?EE:Z; and R(T) = Higii?j; ] , and use the corresponding

duality pairing

0 0
([0 = o s+ [ el opds @)
s Ko —00 —0o0

LEmMmA 3.16.

(i) The annihilator of the set UV_ of all classical stable past exponential tra-
jectories of X with respect to the duality pairing is the set QITL of all
generalized stable future trajectories of the adjoint system X1 induced by the
reflected subset Q* of p(A*)NCT.

(i) The annihilator of the set Qﬂl of all generalized stable future trajectories of
the adjoint system S induced by the reflected subset Q* of p(A*) N C* with
respect to the duality pairing is the set W_ of all generalized stable past
trajectories of 2.

(iii) The annihilator of the classical exponential past behavior B_ of ¥ with respect
to the duality pairing is the stable future behavior EZBT of the adjoint
system L1 induced by the reflected subset Q* of p(A*) N C+.

(iv) The annihilator of the stable future behavior ‘,ZU?: of the adjoint system X7
induced by the component Q* of p(A*)NCT is equal to the stable past behavior
WY of X.

Proof. Clearly (ii) follows from (i), and (iv) follows from (iii), so it suffices to

prove (i) and (iii). The proof of (iii) is very similar to the proof of (i), so here we only
given the proof of (i).

By (3.8), a triple [

mT ()\—A‘X)ilBug
y*] is orthogonal to eMug €Y _ if and only if
:

u MDD (N)ug

0
0=((\— Alx) ' Bug,z")x — / (eMug, ul (—5))y ds

— 00

0 ~
+ /_ (eASﬁD()\)uo, yT(—s)>y ds

=(ug, B*(\ — A") "zt — <u0,/ e Ml (s) ds>
0 u
(B0 [Ty as)
0 u
=(ug, B*(X = A*) "2y — (o, a(N)),, + (uo, D(N)*5(X)),, -
This is true for all ug € U if and only if
a(X) =D\ I(N) + B* (X — A") et

ot
which is true for all A € Q if and only if |:yT:| € QUL ]
t

u
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As we shall see below, it follows from Lemma [3.16] that the past cost for the given
system ¥ is the inverse and the dual (in to be described senses) of the future cost for
the adjoint system Xf. The proof of this fact is based on the following lemma (which
also describes the notion of inverse and dual of a nonnegative quadratic form). The
consequences for the optimal control problems are drawn in Theorem [3.18

LEMMA 3.17. Let X and W be Hilbert spaces, and let V' be a closed subspace of
[w] =X @&W. We denote the orthogonal projections in [},] onto X and W by Px
and Py, respectively. Let

Xy ={x e X|[§] €V for somew e W},
Xyi = {IT € XH;’;;} e V* for some w' € W} )
and define
lzllv = inf{Jlw] | [5] € V}, T € Xy,

i 3.10
ol =it | [2] e vi} ol e, (3.10)

Then the following claims are true.
(i) ||l and ||-|3,. are closed nonnegative quadratic forms in X.
(i) The forms ||-|3, and ||-||},. are inverses of each other in the following sense.
If we denote the self-adjoint relations in X that induce the quadratic forms
I3 and ||-|2,. by Qv and Qv+, respectively, i.e.,

||517||%/ = (z,Qvz)x, x € dom(Qy)C dom (Q%/m) = Xy,
el = (2. Quea)x, @€ dom(Qur) € dom (QyF) = Xy,

then Qy1 = Q.
(iii) The forms ||-|[} and ||-|3,. are dual to each other in the sense that

dom (1) = { e, Sl < OO} |
atex, |zl . <1 (3.11)
dom(llvs) = ot e x| sw @ ahhal <oor,
r€Xy,|z|lv <1
and
lz|ly = sup (@, 2") 2, v € Xy,
xTGXVLyﬂﬂ?THVLSl (312)

sup [z, z") x|, xt e Xyu.
TEXy,|lz|lv <1

The proof of Lemma is given in Appendix[A]

THEOREM 3.18. Let ||-||2,s be the past cost defined in Theorem and let
17,1 be the future cost defined in Theorem applied to the adjoint system 1.
Then ||-||2. and ||-||3,; are closed nonnegative quadratic forms in X which are dual
to each other and inverses of each other in the senses described in Lemma[3.17

Proof. We replace W in Lemma [3.17| by [ézgi:?};] and take V =2J_. By that
lemma, the costs |3, and ||-||?,. are duals and inverses of each other. It follows

[y
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immediately from the definition of ||-||?, and Theorem that [|-[|f = [|-[2.s- We
claim that |-[|3.. = [|-[|3,;- To see that this is true it suffices to observe that by

definition [|-[|?,. is the cost induced by the subspace V+ = 20~ of X @ [iiﬁim’

whereas, by Theorem ||[I7,;+ is the cost induced by the subspace Qﬁi of X @

L2 ®5U T o0 the adjoint system. By L 316, [ %] € L if and only if | —#Hu
L2(z+.y) | for the adjoint system. By Lemma/3. u| €W ifandonlyif | -Hu|

0., where S is the reflection operator (fu)(t) = u(—t), t € R™. Since the norm of

[y]in Hzﬁ:gﬁﬂ is equal to the norm of [_ny“} in [izgig’g }, we find that, indeed,

1152 = [l O
4. The Connection to the Discrete Time Cost Minimization Problem.
The continuous time future and past cost minimization problems described above for

the system ¥ = ([égg] ,X,U,Y) can be connected to discrete time problems in the
following way. We fix some « € €2, define A, B,, C,, and D, by

Ay =@+ A)(a—-A)"1

B
v (4.1)
C,=V2RaCla — A)7, D, = 9(a),
and consider the discrete time system
s . Tp+1 = Aaajn + Bauna (4 2)
o Yn = Coy + Doty -

with these coefficients. We denote this system by X, and call it the (internal) Cayley
transform (with parameter «) of ¥. The (discrete time) transfer function of ¥, is
the function

-~

D.(2) = 2Co(1x — 2A,) !B, + Dy, z € A(AL), (4.3)

where A(A,,) is the Fredholm resolvent set of A, i.e., the set of point z € C for which
the operator 1y — zA,, has a bounded inverse. The transform A — z, where
a— az a— A

A= 5. fTain A€ p(4), zeA(AL), (4.4)

maps p(A) one-to-one onto A(A,) if A is unbounded, and it maps p(A) U {oo} one-
to-one onto A(A,) if A is bounded. The connection between the resolvent of A and
the Fredholm resolvent of A, is

a— A
2R

21y — 2A,) ") = (a—AA—A)"L Xepd), zeAAy),  (45)

and the continuous time transfer function ® is related to the discrete time transfer
function D, by

Do(z) =D(N), A€ p(A), zeA(Ay), (4.6)

The same transformation maps C* one-to-one onto the unit disk D := {z € C | |z| <
1}. Thus

A(A)ND = {Z:i‘Aep(A)m@}.
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We denote the image under this transformation of the subset 2 in Remark [B.1] by Q.
Then

{0} C Q= {z;i’AeQ} C A(Ay)ND.

Moreover, €, is connected if and only if Q is connected. See |33, Chapter 12] for
more details. Note, however, that the Cayley transform in [33] is defined in a slightly
different way, so that to pass from the formulas given in [33] to the formulas used here
one needs to replace z by 1/z (and to replace the exterior of the unit disk by the unit
disk itself).

4.1. The Discrete Time Future Cost Minimization Problem. We begin
by solving (4.2) with a given initial state g € X and a given input sequence u € ut'.
By solving (4.2)) recursively we get

n—1
Yn = Datin + Y CaAlBoun 11 + CoAllzy,  neZb. (4.7)
k=0

DEFINITION 4.1.
(i) By the set of stable future trajectories of X, we mean the set of all triples
X
[?} € 42(21;14)} which satisfy (4.7). We denote this set by MWy, and call
¢ (ZHY)

o the initial state, u the input component, and y the output component of
xr

a triple [ ZO] €eW,+.

(ii) By the stable future behavior of X we mean the set of all pairs [y] €

[i;g:g;] which satisfy (4.7)) with xg = 0. We denote this set by Qﬁg+, and

call u the input component and y the output component of a pair [i] € 25° 4

DEFINITION 4.2. The future cost minimization problem for 3 is the following:

Given a vector xg € X, find the stable future trajectory of X, with initial state xg
which minimizes

I (@o, u) = [lulliz g 20y + 1117 2+ 13-

LEMMA 4.3. If Q is connected, then the set 20+ of all stable future trajectories

" x
of Lo has the following alternative characterization: [;ﬂ € [42(21:01)} is a stable
L(ZT5Y)
future trajectory of X, if and only if
§(2) = Da(2)(2) + Cally — 2A4) 20, z € Qq, (4.8)

where 4 and Z are the Z-transforms of u and y, defined for all z € D by u(z) =
Spezs 2wk and §(2) =3 peze 2k

Proof. Let [TZO ] be a stable future trajectory of ¥,. Then x is power bounded, and
the Z-transform &(z) of « converges for all z in some (sufficiently small) neighborhood
O of the origin. By multiplying the two equations in by 2", adding over n € Z*,
and simplifying the result we find that holds for all z € O. Since 2 is connected
also 2, is connected, and since both sides of are analytic in Q,, the same identity
must then hold for all z € Q.
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The converse direction follows from the fact that a sequence in ¢2(Z™) is uniquely
determined by its Z-transform. O

LEMMA 4.4. If Q is connected, then the following conditions are equivalent:
X

(i) The triple [20} € | L*®"U) | is a generalized stable future trajectory of X.
Y L2(R';Y)

zo
(i) For some a € , the triple [ﬁaﬂ is a stable future trajectory of 3, where
ay

Lo is the Laguerre transform with parameter o (see [33, Definition 12.5.2]).

zo
(ii) For all o € Q, the triple [ﬁau} is a stable future trajectory of Xg,.
aly

Proof. Trivially (iii) = (ii). That (i) = (iii) and that (ii) = (i) follows from
Definition Lemma equations , , and |33, Theorem 12.3.1]. O

THEOREM 4.5. If Q is connected, then for each xq € X, the future continuous
time cost of xq is finite if and only if the future discrete time c-cost is finite for some,
or equivalently, for all a € Q. Moreover, the optimal costs for all these problems are
the same.

Proof. This follows from Lemma [.4] and the fact that the Laguerre transform is
L2REU ] e [eetu
L*(R*.) e (Z.y)

z
tinuous time trajectory [ﬂ of ¥ coincides with the cost of the transformed trajectory

[ﬁau} of B, 0

aly

a unitary map of { } , and hence the cost of a generalized con-

4.2. The Discrete Time Past Cost Minimization Problem. In the discrete
time past cost minimization problem we start with the case where we have a trajectory
of on Z~ whose support is bounded to the left. Using the fact that z,, = 0 and
u, = 0 for sufficiently large negative n we can solve zy and y from to get

To = Z AFBou_j_1,
F=0 (4.9)

o
Yn =Datn + Y CoAlBaun 4 1, nez .
k=0

DEFINITION 4.6.
(i) By the set of compactly supported past trajectories of 3, we mean the set

x
of all triples Fj] € fz(Z_;U)] , where the supports of y and u are bounded
L(Z5Y)
to the left, which satisfy (4.9). We denote this set by B,—_, and call o the
final state, u the input component, and y the output component of a triple
o

|§] €0

(i) By the set of generalized stable past trajectories of X, we mean the closure
X

in | @ U | of W,_. We denote this set by W, .
2(275Y)
(i) By the compactly supported past behavior of ¥, we mean the set of com-
0227 3U)
2(275Y)
(4.9). We denote this set by 5% and call u the input component and y the

a—

pactly supported sequences in [ } which satisfy the second equation in

output component of a pair [§] € B _.
(iv) By the (generalized) stable past behavior of ¥, we mean the closure in

[ﬁzg: Z;” of W _. We denote this set by 2 _.
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DEFINITION 4.7. The past cost minimization problem for ¥, is the following:
Given a vector xg € X, find the generalized stable past trajectory of 3, with final
state xo which minimizes

35 (o, w) = [l g + Il

Remark 4.8. We note that in [24)] the compactly support past behavior was denoted
by 9. and the generalized stable past behavior by ¢. The operator denoted J in that
article is the discrete-time equivalent of the s/s input map B defined in Definition

210

4.3. The Duality Between the Discrete Time Past and Future Cost
Minimization Problems. As we shall see below, the discrete time past cost min-
imization problem is dual to the future cost minimization problem in a well-defined
sense (this is the discrete-time analogue of Lemma . To describe this connection

x x
we denote & = [EQ(Z;U)} and &' := {EZ(WW)} and identify the dual of & with &%
2(273Y) e2ztu)
by means of the duality pairing

<[ﬂ ' [zw>ﬁ7m = (z,2")x — i@—n—l,uil)u +§<y—n—1,yl>3}. (4.10)

n=0

We further denote K¢ := [ﬁzg:gﬂ and K1 .= [ﬁz gii ; } , and use the corresponding

duality pairing
" " (o] (o]
<[y] ’ [ZT]>KO &Ot = - Z<U_n—17UL>L{ + Z<y—n—17yl>y- (411)
’ n=0 n=0

LEMMA 4.9.

(i) The annihilator of the set W of all compactly supported past trajectories of
3, with respect to the duality pairing (4.10) is the set QBZH_ of all generalized
stable future trajectories of the adjoint system EL.

(ii) The annihilator of the set QUL+ of all generalized stable future trajectories

of the adjoint system EL with respect to the duality pairing (4.10) is the set
Q3 of all stable past trajectories of 3.
(iii) The annihilator of the compactly supported past behavior ‘th of X, with

respect to the duality pairing (4.11)) is the stable future behavior QUSL_ of the
adjoint system EL.

(iv) The annihilator of the stable future behavior Qﬂgl of the adjoint system EL
is the stable past behavior %27 of Xy

Proof. As in the case of Lemma we only prove (i) and leave the remaining
proofs to the reader.
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. xt ] o . .
By (4.10), a triple |:u]{:| is orthogonal to { u ] €W, if and only if

Yy
0= Z <A§Bau_k_1,xf>x — Z(u_n_l,ubu
k=0 n=0
+Z all—n— 17yny+ZZCABaU2nk7yn>
n=0 k=0

=3 (u i BLAL + Dy~ )

n=0

SYY e BATCIL )y
k=0n=k+1

n—1
—Z<u_n LBLA T DLyl —ul + > BLAYCLY 1> :
n=0 k=0 X

This is true for all sequences u with finite support if and only if
ot
which is equivalent to the condition |:yT:| € QB’

LEMMA 4.10. If Q is connected, then the followmg conditions are equivalent:

- x
(i) The triple { ZD} € {LE(R;M)} s a generalized stable past trajectory of X.
L*R7:Y)

(i) For some a € Q, the triple {ganﬂ is a stable past trajectory of 3, where L,
is the Laguerre transform with parameter o (see [33, Definition 12.3.2]).

(iii) For all o € Q, the triple [gcfﬂ is a stable past trajectory of X .

Proof. We map L?(R™;U) onto ¢*(Z~;U) and L*(R™;)) onto ¢*(Z~;)) by us-
ing the Laguerre transform L, (restricted to negative time), and we map L?(R*;U)
onto ¢2(ZT;U) and L?*(R™;Y) onto ¢2(Z*;Y) by using the Laguerre transform Lz
(restricted to positive time). These two transforms are unitary, and they map the
duality pairing onto the duality pairing . We know from Lemma that
the image of the set of all generalized stable future trajectories of X induced by the
set 2% is equal to the set of all generalized stable future trajectories of EL. Conse-
quently, by Lemmas [3.16 and [1.9] the set of all generalized stable past trajectories of
¥ induced by the set 2 is equal to the set of all generalized stable past trajectories of
.. 0

THEOREM 4.11. If Q is connected, then for each xg € X, the past continuous
time cost of xg is finite if and only if the past discrete time a-cost is finite for some,
or equivalently, for all a € Q. Moreover, the optimal costs for all these problems are
the same.

Proof. This follows from Lemma and the fact that the Laguerre transform

L2(R™U) 02(Z7U)

L2(R™,Y) 2(Z7,Y)
x

continuous time future trajectory { ZO } of ¥ coincides with the cost of the transformed

is a unitary map of [ } onto }, and hence to cost of a generalized

x

0
past trajectory [ﬁau} of ¥,. 0
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5. The Control Riccati Equation and Right Factorizations. In this sec-
tion we consider the control Riccati equation satisfied by the optimal future cost
quadratic form |[|-||Z,,. This equation contains a parameter o € €2, where Q is the
open subset of p(A) N CT that was fixed in Remark After the formal definition
(Definition 5.1]), we make the connection with the discrete-time Riccati equation (The-
orem [5.6)) and, in the main theorem of this section, with right factorizations (Theorem
. In Remark we comment further on how the results in this section relate to
known finite-dimensional results.

As in the discrete time case, considered in 23], we want to show that the mini-
mizing trajectory can be written in feedback form. The underlying idea is as follows.
In the discrete time case we introduced a “state feedback” in the following way: we
take the input u to be given by uw = Ka — v, where K is a (unknown and possibly
unbounded) feedback operator, and v is a new disturbance. The minimizing control
u is given by u = Kz, i.e., v = 0. (The minus sign in front of v is not significant, but
it leads to a slight simplification of some later formulas.)

In order to apply the same idea in the continuous time case we reinterpret the
above procedure as follows: We first create an extra output to the original equation,
namely v = Kx — u, and then we require this output to be zero. This interpretation
can be applied also in the continuous time case. To the original set of equations

s [0 - [As] 0], eere o

we add one more output

DE ;8 - égg {z(t)} teRT (5.2)
: u(t)| . .
v(t) K&F
For v =0, i.e., for
K&F [igg] —0, teR (5.3)

we expect this set of equations to give us the optimal control v which minimizes the
future cost if K&F' is chosen appropriately. However, as in the discrete time case,
this will not be true, in general, for all possible initial states xg, but only for a certain
subset of initial states. In the discrete time case this critical set of initial states are
those that can be reached in finite time [23]. It turns out (Theorem that in the
continuous time case the critical set of initial states is those that can be reached by
means of a classical stable past exponential trajectory.

After this digression, we now introduce the control Riccati equation.

DEFINITION 5.1. Let 3 := ([égg] ;X,L{,y) be an operator node with main op-
erator A, and control operator B, and let o € p(A)NC*. By an a-normalized solution
of the (generalized) continuous time control Riccati equation induced by [égg} we
mean a form q on X with the following properties:

(i) q is a closed nonnegative sesquilinear symmetric form on X with domain Z;

(ii) (a — A)"1ZC Z;

(iii) (o — Alx)"'BU C Z;

(i) There exists an operator [K&F|o: [3Y] — U with

dom ([K&F)y) = {[ud] € dom (A&B)|zg € Z and A&B 3] € Z}  (5.4)
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and a self-adjoint operator W, € B(U) such that (here Rz denotes the real
part of the complex number z)

2

2Rq | [A&B] |7, C&D ”““0} 2
o ] ] o ]
- <[K&F]a FO} WalK&F]a {ZCOD . [E0] € dom ([K&F]a),
Uug Uug U
(5.5)
and
_ -1
[K&F]q [(O‘ Alx) B} = 1. (5.6)
157
Here the term [K&F)y [45] can alternatively be written in the form
[K&F|o [13] = Ka(zo — (o — Alx) ™" Bug) — o, (5.7)
where
Kyzg = [K&Fo [V, dom (K, ) := {zp € dom (A) N Z| Azy € Z}.
(5.8)

Note that dom ([K&F],) and dom (K,) do not depend on a, but only on Z,
A& B, and dom (S) = dom (A&B).

Remark 5.2. We remark that condition above could be weakened, without
loss of generality, to the condition

The operator Fo, := [K&F, [(0‘7‘41';)713} is invertible in B(U). (5.9)

Indeed, if holds, then we get a solution of the generalized control Riccati equation
in the sense of Deﬁnition by replacing [K&F), by —F_ ' [K&F], and replacing
Wo by FrLWF,. See also Remark[5.11] below.

As we shall see below, the continuous time control Riccati equation is essentially
equivalent to the discrete time Riccati equation that one gets by applying the Cayley
transform to the continuous time Riccati equation.

DEFINITION 5.3. Let [éz g‘:] € B([X1;[$])- By a solution of the (generalized)
discrete time control Riccati equation induced by [é: BZ] we mean a form q on X
with the following properties:

(i) q is a closed nonnegative sesquilinear symmetric form on X with domain Z;

(ii) AL Z C Z;

(#i) img (B,) C Z;

(iv) There exists an operator Ko: X — U with dom (K,) = Z and a self-adjoint

operator W, € B(U) such that

q[Asz0 + Batg, Anzo + Bauo) + [|Cazo + Dauoll3 + luollZ
= q[zo0, 20] + (Kazo — uo, Wa(Kazo — wo))uy, 20 € Z, up €U.
(5.10)
We shall also need the following alternative version of the discrete time control
Riccati equation.

LEMMA 5.4. Equation (5.10)) in Deﬁm'tion can be replaced by the equivalent
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(Lure) version, still valid for all zo € Z and ug € U,

q[Anz0, Auzo] + |Caz0ll3 = alz0, 20) + (Kazo, WaKazo)u,
(uo, Watto)u = (uo, o)y + (Dato, Dauo)y + q¢[Baug, Baugl, (5.11)
(Kazo, Wouo)u = —q[Aazo, Bato] — (Cazo, Dato)u-

Moreover, W, is always boundedly invertible.

Proof. The equivalence is proved in 23] Lemma A.2]. That W, must have a
bounded inverse follows from the self-adjointness of W, and the fact that, according
to (B.11)), Wo > 1. D

In order to connect the continuous and discrete time Riccati equations to each
other we need the following lemma.

LEMMA 5.5 ( [3| Lemma 4.4]). Let ¥ := (S;X,U,Y) be an operator node with

S = [égg], main operator A, and control operator B, and let Z be a subspace of X .

Let oo € p(A) and define G, as in (2.8).

(i) [£] is invariant under Go, if and only if
(a—A)1Z2czZ (a—Ax)"'BUC2Z. (5.12)

(i) If (5.12)) holds, then [i] belongs to the range of Ga\[g] if and only if [1] €
u

dom ([K&F),) defined in (5.4).
In particular, the range of Ga|[5] does not depend on the particular o € p(A), as
long as (7] is invariant under Gq.

Proof. This lemma is identical to [3, Lemma 4.4], except for the fact that there A
was supposed to generate a Cy semigroup. However, that additional assumption was
not used in the proof given in [3]. O

The following theorem connects the continuous-time Riccati equation for an op-
erator node to the discrete-time Riccati equation for its Cayley transform.

THEOREM 5.6. Let ¥ := (S;X,U,Y) = ([A&B],X,U,Y) be an operator node
with main operator A, let o € p(A)NC™T, and let [Aa B“} be the Cayley transform

C. D,
of [égg]. Then the following claims hold.
(i) q is a solution of the a-normalized continuous time control Riccati equation

induced by [ A8 if and only if q is a solution of the discrete time control

Riccati equation induced by [éz Ba

(i) The operators [K&F|o, Wa, andCIa(a in parts (iv) of Definitions[5.1] and
as well as the operator K, defined in are uniquely determined by [égg ,
q, and a, and the discrete time version of W, coincides with the continuous
time version of W,. Moreover, W, always has a bounded inverse.
(iii) The restriction of the operator G4 to [F] maps [F] one-to-one onto dom ([K&F1,) i
and the operators [K&F|, and K, can be recovered from each other by

K20 = V2Ra [K&F], {m - f01>1:c0] |

[K&Flo = [VﬁKa _1“] ({g 1?/{] - [é&ﬂ)'

Proof. We begin by proving that if ¢ is a solution of the continuous time control
Riccati equation, then ¢ is also a solution of the discrete time Riccati equation. Thus,
let us suppose that ¢ is a solution of the continuous time control Riccati equation,

(5.13)
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let [K&F], and W, be the operators in part (iv) of Deﬁnition and define K, by
the first equation in (5.13). By Lemma the restriction of G, to [#] maps ]
onto dom ([K&F],), and this operator is injective. In particular, this implies that
dom (K,) = Z, as required by condition (iv) in Definition

The two invariance conditions (ii) and (iii) in Definition [5.3| are equivalent to the
corresponding invariance conditions (ii) and (iii) in Deﬁnition

By Lemma we can replace the parameter [7° ] in . by G [ 25}3@20} where

(%] is a free parameter in [Z]. Doing so the dlfferent terms in can be rewritten
in the following form:

1
0 Na ( a~0 0 « 0)
(0] 1 -
A&B I (@A qzo — @z + aBgug),

2Rq [[A&B] [ig] 2o | = q[Aqzo + Bauo, Aazo + Bauo] — ql20, 20),

L%J ] [er 2o [2].

Substituting this into we get (5.10).
It follows from Lemma 5.4/ that W, and K, are determined uniquely by [A ga]

and ¢, and hence by [2¢2 ], ¢, and a. Accordlng to the same lemma, W, always has

(=)

-1, K&F],
By applying the inverse Cayley transform we see that [K&F,, is determined uniquely
by [4¢B], ¢, and a.

We have now proved (ii) and one half of (i) and (iii). To prove the remaining
claims we assume that ¢ is a solution of the discrete time control Riccati equation
induced by [éz gz ]. Let K, and W, be as in part (iv) of Deﬁnitionm As above we
find that the restriction of the operator G;! to dom ([K&F],) maps dom ([K&F],)
one-to-one onto 7], so that we can define [K&F], by the second equation in (5.13).

We can then replace the free parameter [ ;3] in (5.10) by [ } G, [°] where

[e3%
[%0] is a free parameter in dom ([K&F],). All the Computatlons that we did above to
pass from to get (5.10)) are reversible, and by carrying out the same computation
backwards we get from (5.10) to . |
The following conditions are important to connect the Riccati equation to the
future cost minimization problem (which will be done in Theorem [5.9)).
DEFINITION 5.7.
(i) The system X satisfies the input finite future cost condition at the point o € §2
if (. — A|x) "1 Bug has a finite future cost for every ug € U.
(ii) The system X satisfies the state finite future cost condition if every initial
state in X has a finite future cost.
Note that in part (i) of the above definition the vector xg := (o — A|x) ! Bug is
the state of ¥ at time zero corresponding to the input u(t) = e* tug; cf. (3.4).
DEFINITION 5.8. Let D be the transfer function of the system X.
(i) D has a right H>(C") factorization valid in Q if there exist two functions
M e H>(CH; BU)) and N € H>*(C*; B(U;Y)) such that M(X) has a bounded
inverse and CD()\) =NAM)™t for all X € Q.

A&
a bounded inverse. By construction, {B Ca ] is the Cayley transform of [[ C&D } .
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(i) The factorization in (i) is normalized if the multiplication operator

i [M] a: H2(CHU) — [

’ H2(<C+;u)]

H?(CHY)

18 1sometric.

(iii) The factorization in (i) is weakly coprime if the range of the multiplication
operator in (ii) is equal to the Laplace transform of the future behavior Qﬂg
defined in Definition[3.3

Note that by [20, Section 2] the above definition of weakly coprime is equivalent

to several seemingly different notions that go by that name in the literature.

The following theorem is the main result in this section.

THEOREM 5.9. If Q) is connected, then the following conditions are equivalent for

the system X:
(i) X satisfies the input finite future cost condition at some point « € €.

(ii) 3 satisfies the input finite future cost condition at every point o € Q.

(iii) The control Riccati equation for ¥ has an a-normalized nonnegative solution
q for some a € ().

(iv) The control Riccati equation for ¥ has an a-normalized nonnegative solution
q for every o € Q2.

(v) The transfer function ® of ¥ has a right H* -factorization valid in some open
subset of €. R

(vi) The transfer function © of ¥ has a normalized weakly coprime right H-
factorization valid in 2.

If these equivalent conditions hold, then the optimal future cost is equal to the minimal
a-normalized nonnegative solution of the continuous time control Riccati equation for
all a € ), and it is also the minimal nonnegative solution of the corresponding discrete
time control Riccati equations for all a € Q. In particular, these minimal solutions
do not depend on the value of a € ().

Proof. Proof of (i) < (ii): This follows from Theorem

Proof of (i) < (iii) and (ii) < (iv): This follows from Theorem and [23|
Theorem 6.3].

Proof of (i) = (vi): If (i) holds, then by Theorem the discrete time system
[éz gz] satisfies the condition which in [25] was called the finite future incremental

cost condition. By [25, Corollary 2.7], the discrete time transfer function D, has a
weakly right coprime H factorization over the unit disc D which is valid in €, (this
set was defined at the beginning of Section . When this factorization is mapped
into continuous time by replacing the discrete time frequency variable z by the con-
tinuous time frequency variable A according to the formula in in we get a weakly
right coprime H*® factorization of ® over the right half-plane valid in 2. For weak
coprimeness, note that the restriction of the Laguerre transform to the stable future
behavior Qﬂi of ¥ maps QU& unitarily onto the stable future behavior Qﬁg 4 of X,

Proof of (vi) = (v): This implication is trivial.

Proof of (v) = (i): This is essentially the same proof as the proof of the implica-
tion (i) = (vi) carried out backwards. O

It is also possible to use the minimal solution of the control Riccati equation to
compute a normalized weakly right coprime factorization of © of the type mentioned
in Theorem [5.9] These generalize the well-known finite-dimensional formulas.

THEOREM 5.10. Suppose that Q) is connected, let the equivalent conditions in
Theorem[5.9 hold, and let q be the optimal future cost sesquilinear form obtained from
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the quadratic form ||-||3,, (so that q is the minimal solution of the a-normalized control
Riccati equation for every a € Q). For each a € Q, let [K&F)o, Ko, Wa, and K,
be the operators in part (i) of Theorem and for all o, B € Q define K, (8) and

F.(3) by

[Ka(8) Fa(B)] = [K&F]a (ﬂ_OA)_l (B_’Lﬂj‘)_lB] [\/%TB 1(;]. (5.14)

(i) For all o, B € Q the operator Fo(B) has a bounded inverse, Fo(a) = —1y,
and Ky (o) = K,.
(i) Fiz « € Q and define

Ma(A) i= —[WL2Fo (M) Na(A) :=D(BMa()), AeQ. (5.15)

Then M, and N, can be extended to H>-functions over <C+, and ® = N, M !
is a normalized weakly right coprime H* factorization 0f© valid in .
(ii) For all o, B € Q we have

[K&F]ﬁ ~Fo(B)  [K&Fla,
() = —Fa(B) "' Ka(N),
( ) = —Fa(B)"'Fa(N), (5.16)
,6’: Fa(ﬁ) 1Kou

Ws = Fa(B) WaFa(B).

In particular, the factors My and Ny in (i) differ from the factors Mg and
Ng only by the multiplication to the right by a unitary operator (which may
depend on a and f3).

Proof. Proof of (i) and (ii). The condition F,(a) = —1 is equivalent to (5.6)).
That F,(f) is invertible and that (ii) holds follows from |25 Corollary 2.7] by mapping
that result back into continuous time using the transformation z — A given in .

Proof of (iii). We repeat the first part of the proof of Theorem starting from
the a-normalized continuous time Riccati equation, but this time we replace the free
parameter [5] in (5.4) by G [ V2RB= |, where [73] is a free parameter in [Z]. The
result remains the same, except for that « is replaced by S, and that the identity
[K&Fy = [Ka —1u] [Z?)] is replaced by the identity [K&F|s = [Ka(8) Fa(®)] [ ].
Thus, instead of the S-normalized control Riccati equation (with « replaced by
B) we get the slightly modified equation

q[Aaz0 + Bauo, Aazo + Bauo] + [[Cazo + Dauo||3 + [luollz I
= q[20, 20] + (Ka(8)z0 + Fo(B)uo, Wa(Ka(B)20 + Fa(B)uo))u, 20 € Z, ug €U.
(5.17)
Comparing this equation to the equation (5.10) with « replaced by 8 and using Re-
mark and the uniqueness claim in part (ii) of Theorem we find that Kg =
F.(8) 'K, and W3 = F,(8)*W,F,(8). Once this is known the proofs of the re-
maining claims are straightforward. O
The next remark indicates how our results in this section relate to known finite-

dimensional results.
Remark 5.11. 1In the finite-dimensional setting, if Q, K, and S satisfy (1.4)-

([L.6), and if we add the equation v(t) = [K —1y] [ig” = Ka(t) — u(t) to (1.1),
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then the transfer functions from —v to u and y are given by

M(A) := [K(A— A— BK) !B + 1],
N()\) := [(C + DK)(A\— A— BK) 'B+ D],

respectively (cf. Remark below). Thus, if we denote the transfer function from u
to y by G, then this gives the right factorization G(A) = N(A)M(X)~L. Note that the
transfer function from u to —v is —K (A — A) "B+ 1y, and thus M()\) is invertible for
all X € p(A) with inverse M(\) ™! = —K(A— A)"'B +1y. If the system in observable
and if @ is the minimal nonnegative solution of , then the above factorization
is right coprime. It is “almost” normalized in the sense that it suffices to multiply
both factors to the right by S='/2 to get the normalized right coprime factorization
G(A) = Ns(A)Mg(N\) ™1, where

Mg(A) := [K(A — A — BK)"'B +1,]5~1/2,
Ng(\) := [(C + DK)(A— A— BK) !B+ D]S~%/2,

This factorization is determined uniquely (among all normalized right coprime factor-
izations of G) by the fact that

lim Mg(\) = S~'/2 = (1 + D*D)~1/2, (5.18)

A— 400

Under the same assumptions, if we define K&F = [K —12,,] then the quadratic
form q[-,] = {-,Q-)x satisfies the Riccati equation in Definition with [K&F),
and W, replaced by K&F and S, respectively, except for the normalization condition
(5.6). Thus, as we saw in Remark if we define

F, = K&F [W*A)‘lB} — K(a—A)"'B 1,

1u
[K&F)o = -F'[K —1y] = [-F,'K F '],
Wa - FZWaFaa

then we get a solution of the Riccati equation in Definition[5.1] which also satisfies the
normalization condition .

In the general infinite-dimensional case it is not possible to use the normalization
due to the fact that the limit in need not exist. For the same reason
one cannot expect it to always be possible to rewrite the Riccati equation in the
form f by reversing the steps described above. Moreover, as was first noticed
in [32], even if the limit in does exist, the formula for the operator S should
still contain an extra correction term, namely

S=1,+D*D + Jim B*Q(\— Alx) !B,
— 00

where B* is a certain extension of B* (in the finite-dimensional case and also in
some infinite-dimensional cases the above correction term vanishes). Since we cannot
always normalize M by fizing the value of M at infinity we have instead chosen to
use the different “a-normalization” , which together with results in the

normalization M, (a) = w2,
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6. The Filter Riccati Equation and Left Factorizations. In this section
we consider the filter Riccati equation satisfied by the inverse of the optimal past cost
quadatic form || - [|2 ;.

DEFINITION 6.1. Let X := ([égg] ;X,Ll,y) be an operator node, and let o €
p(A)NC*. By an a-normalized solution of the (generalized) continuous time filter

Riccati equation induced by [ééjg] we mean a a-normalized solution of the continuous

time control Riccati equation induced by the adjoint system N7 = ([égg]* X,V U).
DEFINITION 6.2.
(i) The system 3 satisfies the output coercive past cost condition at the point
a € Q if there exists a constant M > 0 such that

IC (e = A) " ol < M([ullZz @0 + 1Yl1Z2@-3)) (6.1)

for every generalized stable past trajectory [zﬂ of X.
(ii) The system X satisfies the state coercive past cost condition at the point
a € Q if there exists a constant M > 0 such that

lwoll% < M (lullZae- 20 + 191722~ 3)) (6.2)

for every generalized stable past trajectory ﬁﬂ of X.

LEMMA 6.3.

(i) ¥ satisfies the output coercive past cost condition at some point « € Q if and
only if the adjoint system LT = ([égg]* X,V U) satisfies the input finite
future cost condition at the point & € Q*.

(i) ¥ satisfies the state coercive past cost condition at some point a € Q if and
only if the adjoint system L1 satisfies the state finite future cost condition at
the point & € Q*.

Proof. By Theorem the future continuous time cost of an initial state xg is
equal to its future discrete time cost, and by Theorem the past continuous time
cost of a final state xg is equal to its past discrete time cost. Both the claims above
therefore follow from and [24, Theorem 6.4] and [24, Lemma 6.3 and Remark
3.3).0

DEFINITION 6.4. Let D be the transfer function of the system X.

(i) © has a left H>°(CT) factorization valid in Q if there emist two functions

M e H®(Ct;B(Y)) and N € H>(C*t; B(U;Y)) such that M(X) has a bounded
inverse and ’)5()\) =M(A)"IN()) for all X € Q.

(i) The factorization in (i) is normalized if the operator

- - 20—
m = Pracry) [N W] m : [Z?Eg—gﬂ s HX(C3Y)
18 co-1sometric.
(iii) The factorization in (i) is weakly coprime if the kernel of the operator in (ii)
coincides with the (past time) Laplace transform of the past behavior 259 .
The following is the main theorem of this section (we note that the inverse of a
quadratic form is understood here in the sense of part (ii) of Lemma [3.17).
THEOREM 6.5. If Q is connected, the following conditions are equivalent for the
system X:
(i) X satisfies the output coercive past cost condition at some point a € S).
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(i) X satisfies the output coercive past cost condition at every point o € €.

(iii) The filter Riccati equation for ¥ has an a-normalized nonnegative solution
for some a € Q.

(iv) The filter Riccati equation for ¥ has a a-normalized nonnegative solution for

every a € Q. R

(v) The transfer function ® of ¥ has a left H* -factorization valid in some open
subset of §2. R

(vi) The transfer function © of ¥ has a weakly coprime left H-factorization
valid in €.

If these equivalent conditions hold, then the optimal past cost is the inverse of the
minimal a-normalized nonnegative solution of the continuous time filter Riccati equa-
tion for all a € Q, and it is also the inverse of the minimal nonnegative solution of
the corresponding discrete time filter Riccati equations for all a € Q. In particular,
these minimal solutions do not depend on the value of o € €.

Proof. This follows from Lemmas E and |4.9 -(1V ), Theorems and . the fact
that the transfer function D% of the adjoint system T is given by ok (A = DN,
that © = NM~! is a rlght H® factorization of D if and only if D% = M~IN is a left
H™ factorization of D¢ where M(X) = M(X)* and N(A) = N(X)*, and that one of these
factorizations is normalized or weakly coprime if and only if the other is normalized
or weakly coprime. O

There is also an analogue of Theorem [5.10]for the past cost minimization problem
and left factorizations. We leave the formulation and proof of this result to the reader.

7. Doubly Coprime Factorizations and Past Cost Dominance. In this
section we look at the case where both the input finite future cost condition and the
output coercive past cost conditions hold, and the future cost is dominated by the
past cost. This last notion is made precise in the following two definitions.

DEFINITION 7.1. Let q and r be two closed symmetric nonnegative sesquilinear
forms on the Hilbert space X. Then we say that r dominates ¢ if dom (r) C dom (q)
and there exists a constant M > 0 such that gz, z] < Mr[z,z] for all x € dom (r).

DEFINITION 7.2. The system ¥ satisfies the past cost dominance condition (with
respect to Q) if the optimal future cost ||-||3,, is dominated by the optimal past cost
H Hpast

LEMMA 7.3. If the system ¥ satisfies the past cost dominance condition (with
respect to §), then it satisfies both the input finite future cost condition and the output
coercive past cost condition (with respect to Q). Thus, in particular, the past cost
dominance condition implies that both the control Riccati equation and the filter Riccati
equation for ¥ have nonnegative solutions.

Proof. This follows from Theorems and and the fact that the corre-
sponding statement is true for discrete time systems according to [25, Lemma 4.2].
0

DEFINITION 7.4. Let © be the transfer function of the system X.

(i) A right H®(C") factorization ['\,\ﬂ valid in  is strongly coprime if there
exist two functions X € H®(C*; BU)) and Y € H>®(Ct; B(Y;U)) such that
X(AMM) = YOAN(N) = 1y for all A € C+.

(ii) A left H*(CT) factorization [M,N] valid in ) is strongly coprime if there
exist two functions X € H>®(CT; B(Y)) and Y € H>®(C*; B(U;Y)) such that
M(A)X(A) = N(A)Y () = 1y, for all A € C*.

(iii) © has a doubly coprime H>(C™") factorization valid in Q if there exist func-
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tions M € H>(C*;BU)), N € H>®(CH;BU;Y)), X € H*(C*H;BU)),
Y € H®(CH;B(Y;U)), M € H®(CH;B(Y)), N € H®(CT;BU;D)), X €
H>(CT;B(Y)) and Y € H®(C*; B(U;Y)) such that [} ] is a right H*(C™)
factorization valid in €, [|\7|, N] is a left H>(CT) factorization valid in Q and

MR T M R A

on C*.

It is well-know that any strongly coprime factorization is weakly coprime in the
corresponding sense (right/left) and that a transfer function has a strongly right
coprime factorization if and only if it has a strongly left coprime factorization if and
only if it has a doubly coprime factorization (all over H>(C")), see e.g. [20].

The following theorem is the final result of this article. It involves the notion of
the inverse of a quadratic form as defined in part (ii) of Lemma

THEOREM 7.5. If Q is connected, then the following conditions are equivalent for
the system X:

(i) ¥ satisfies the past cost dominance condition with respect to Q.

(i) X satisfies both the input finite future cost condition and the output coercive
past condition at every point a € ), and the optimal future cost is dominated
by the optimal past cost.

(#i) For some o € Q the control Riccati equation for ¥ has an a-normalized non-
negative solution q and the filter Riccati equation for ¥ has an a-normalized
nonnegative solution p and these are such that q is dominated by the inverse
of p.

(iv) For all a € Q the control Riccati equation for ¥ has an a-normalized solution
q and the filter Riccati equation for ¥ has an a-normalized solution p and
these are such that q is dominated by the inverse of p.

(v) The transfer function ® of ¥ has a doubly coprime H>-factorization valid
in some open subset of ).

(vi) The transfer function © of ¥ has a doubly coprime H-factorization valid
in Q.

Proof. Proof of (i) < (vi): This follows from the corresponding discrete-time
result [25, Theorem 4.6], the fact that the existence of a strongly coprime factorization
implies the existence of a doubly coprime factorization and the fact that all statements
translate to discrete-time (as in the proof of Theorem [5.9)).

Proof of (i) = (ii): This follows from Lemma

Proof of (ii) = (iv): Existence of solutions follows from Theorems|[5.9)and [6.5] It
is the minimal solutions that we consider. The dominance then follows from the fact,
again from Theorems and that the optimal future cost is given by the minimal
solution of the control Riccati equation and the optimal past cost by the inverse of
the minimal solution of the filter Riccati equation.

Proof of (iii) < (i): This follows from the corresponding discrete-time result |25
Theorem 4.4] and the fact that all statements translate to discrete-time (as in the
proof of Theorem .

Proof of (v) = (i): This follows from the corresponding discrete-time result [25,
Theorem 4.6] and the fact that all statements translate to discrete-time (as in the
proof of Theorem |5.9)).

(iv) = (iii) and (vi) = (v) are trivial.
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8. Example (transfer function without doubly coprime factorization).
We illustrate our theory further by considering an example. We investigate this
example from two different perspectives presented in this article. In Section we
directly consider the optimal control problem to verify the input finite future cost
condition and the output coercive past condition. We also obtain formulas for weakly
left and right coprime factorizations and for a state space on which the state finite
future cost condition is satisfied. In Section [8.2] we make an additional compactness
assumption and consider the Riccati equations. This approach allows us to prove
more, namely that the past cost dominance condition is not satisfied and that therefore
a doubly coprime factorization does not exist. This approach also allows us to precisely
characterize the spaces of finite cost states.

In Section [8.3] we consider a slight modification of the above mentioned example
where the transfer function does not even have left and right factorizations.

The basic example we consider in this section is somewhat academic. In Section
we consider an example that is physically more relevant. The computations for
that example become too burdensome to carry out algebraically in all detail, but we
indicate how the behavior is the same as that of our basic example.

Our example is the one originally presented in [6, Section 2.2]. Given is the
following second order differential equation with input u and output y:

W(t) + (=2 + T)i(t) — Tw(t) = u(t), y(t)=w(t). (8.1)

Here T': dom(T) C H — H is a nonnegative self-adjoint unbounded operator with a
bounded inverse on the infinite-dimensional Hilbert space H (e.g., minus the Dirichlet
Laplacian on L? of some bounded domain). For a > 0 we let H, = dom(7?) with
inner product (-, )3, = (T, T% )4, and let H_, be the corresponding extrapolation
space (i.e., the dual of H, with H as pivot space). Then T maps H,1 one-to-one
onto H, for all @ > 0, and it can be extended to an operator that maps H,4+1 one-
to-one onto H,, for all « < 0. We denote this extended operator by the same letter
T.

The input space U and output space ) are both taken to be 4, and the state
space will be a suitable subspace of [% ]. The second order system can be written
as a first order system in several different ways. As is usually done we throughout

take the state to be [z1]:=[4]. This gives the (formal) equation

#(t) = Ax(t) + Bu(t), y(t) = Cx(t), (8.2)
where
z1| 0 1y 21
A2l ol ) 6
B- [ 0 ] : (8.4)
Iy

C=[1yx 0. (8.5)

There are several possible choices of state space for which the above system is de-
scribed by an operator node. In all cases this operator node is the restriction of the
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— H
operator S': [%] — [Hq} defined by
H H
B 0 1y 0
S=|T 24-T 1x]. (8.6)
1y 0 0

His2

One possibility is to take the state space to be X := [ 2

}, in which case we take

the domain of the operator node S to be

21 (12
dom(S) = 22| € Hl/g z1—22€Hyp, (8.7)
u u

and the domain of the main operator A becomes

21 _7'[1/2
dom(A) = €
w={[2]< ]
In this setting both the control operator B and the observation operator C' are
bounded. Another choice is to take the state space to be X := [}t], in which case

(8.7) and (8.8)) are replaced by

Z1— 22 € 7'[1} : (8.8)

Z1 7‘[

dom(S) = zo| € |H||z1—22€Hip, (8.9)
u U

dom(A) = { [zj € Z} z21— 2 € 7—[1} . (8.10)

Also in this setting both B and C' are bounded. A third option is to take the state
space to be &} /5 1= [qujg ], in which case (8.7)) and (8.8]) are replaced by

z1 Hl
dOHl(S) = z2o| € | Ha T(Zl — Zg) +u € 7‘[1/2 s (8.11)
U U

o Al 7‘[1
dom(A) = { [22} € {Hl]
In this setting B is unbounded but C is still bounded.
It is easy to see that in the three cases above the spectrum of A coincides with the

set of points s € C where the operator s> + (=2 + T)s — T does not have a bounded
inverse which maps H into H1, and that the resolvent of A is given by

21— 29 € Hg/g} . (812)

, s € p(4), (8.13)

where

D(s):i=[s*+ (=24 T)s - T, s € p(A4) (8.14)
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is the transfer function of the operator node. From this it follows that 1 € o(A), and
that o(A) C (—o0,0)U[1,2). In particular, the system is unstable (since o(A)NCt #
), but p(A) NC* is connected, and we may take Q2 = p(A) NC*. Note that 2 € Q,
and that

2-A4)" = EZ 21;__11] (8.15)

(where the operator 13 has been restricted to the appropriate subspace of H).

The function ® is well-posed in the sense described in the introduction. More
precisely, ® is uniformly bounded in the half-plane C; = {s € C | Rs > 2}, which can
be seen as follows. For Rs > 2 we have D(s) = (s — 1)71(z(s) + T) !, where z(s) =
s(s—2)/(s—1). Here |(s—1)71] <1 for Rs > 2, and for Rs > 2 it can be shown by a
direct computation that Rz(s) > 0, which implies that ||(z(s) +T) || < [T~ < occ.
Thus, |D(s)|| < [|T~Y| for Rs > 2.

Remark 8.1. We note that the second order differential equation (8.1)) is not
written out explicitly in (6], and that the first order system in [6] looks different from
7. However, the system in [6]] is simply the first order form of with state
variables y1 ;= w and yo := w — 2w and T equal to minus the Dirichlet Laplacian on
L?(0,7). Note also that there is a misprint in the (four) boundary conditions [6, (39)
and (40)]; the correct boundary conditions that correspond to the domain [0, (43)] of
the main operator Q in (6] are y1(0,t) + y2(0,t) = 0 and y1 (7, t) + yao(m,t) = 0.

8.1. The optimal control problem. As our first approach to this problem,
we consider the optimal control problem directly. In Section we first identify
a stable ‘target system’ that we will convert our unstable system into by using (an
unbounded) feedback. In Section we implement this feedback on our original
example and draw some conclusions. Section [8.1.3|contains formulas for left and right
factorizations obtained by employing this feedback.

8.1.1. A stable second order system. Consider the abstract second order
differential equation

W(t) + (B+ T)w(t) + yTw(t) = 0. (8.16)

(Note that the system (8.1) when considered without input and output is the special
case f§ = —2 and 7 = —1.) As in the preceding section we can rewrite this as a first
order system with state variables [71] : =[] to get

#(t) = Aaz(t),

where A, is the restriction to the appropriate subspace of the operator Ag: [%] —
[7_2'_[ 1] defined by

Aq [zj = [_3T - ﬁl?j T] [zj . (8.17)

It is easy to check that by the Lumer—Phillips theorem, if we take the state space to
be X = [H;f} and take dom(A.) to be

dom(A.) = {[Z] < {Zi;j

YzZ1 + 22 € 7‘[1} s (8.18)
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then A generates an exponentially stable strongly continuous contraction semigroup
on X provided that 8 > 0 and v > 0. (Recall that the coefficients in (8.3 do not
satisfy these conditions, and that the operator A in ({8.3)) is unstable.)

We can also consider the same system with state space &y /p 1= H’sz ] In that

case the domain of A, becomes

donta = {2 < )

Again, by the Lumer—Phillips theorem, A generates an exponentially stable strongly
continuous contraction semigroup on X'/ provided that 8> 0 and v > 0.

It is easy to see that in the two cases above the spectrum of A.; coincides with the
set of points s € C where the operator s? + (8 + T)s + T does not have a bounded
inverse which maps #H into H1, and that the resolvent of A is given by

(s—Acnl:[(”“T)N(s) ”(s>], s € p(A), (8.20)

vz1 + 22 € 7-[3/2} . (8.19)

—~vTN(s) sN(s)
where
N(s):==[s*+ (B+T)s+~T) ", s € p(A). (8.21)

8.1.2. The cost conditions. We now return to the original example (8.1)—(8.5)).
With the input

u(t) = —=(B+2)w(t) — (v + 1)Tw(t)
—(B+2)z2(t) — (v + DTz (1),

the system (8.1]) becomes (The respective first order systems also correspond.)

This 1mphes that it 2(0) = xlgg” €EX = {H;f] and if we choose u as in with

8 > 0 and v > 0, then the solution = = [z1] of ) satisfies € L?(0, oc; X) ie.,
x1 € L?(0,00;H1/2) and 25 € L*(0,00; H). From thls it follows that y € L2(0 00; 7-[)
but it does not follow that u € L2(0,00;H), only that u € L?(0,00;H_1).

If we have more smoothness so that z(0) := [2;58” € Xy = {7332 }, then z €

LZ(O,oo;Xl/Q), ie., 1 € L?(0,00;H1) and x5 € LQ(O,oo;Hl/z). In particular, both
u € L*(0,00;H) and y € L*(0,00; ). This implies that the subspace X/, = [;32]

is contained in the set of finite future cost states. We note that

(2— A) 1B = [T} ,

(8.22)

2T

which maps H into [zi ], so that the input finite future cost condition at the point
a = 2 is satisfied. R

By Theorem the transfer function © has a normalized weakly coprime
right H>-factorization valid in p(4) N C*. Since the restriction of D to (0, o0) is
self-adjoint, it follows that the transfer function D¢ of the adjoint system coincides
with CD and therefore D also has a normalized weakly coprime left H°°-factorization
valid in p(A) N C. By Theorem [6.5 this means that our example also satisfies the
output coercive past condition (at every point « € ).

We finally remark that if we take X; /o as state space instead of &, then we still
have an operator node with the same transfer function, and in that case the state
finite future cost condition is satisfied.
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8.1.3. Weakly coprime factorizations of the transfer function. Formula
8.22) with 8 > 0 and v > 0 suggests that we can stabilize the original system
8.3)—(8.5) with the (formal) state feedback

K=[-(v+1)T —(B+2)]. (8.23)

Note that this state feedback operator is unbounded if we choose the state space to
be X = [H;L/Q} or X := [}], but it is bounded if we choose the state space to be

Xijp = [H}f}Q } We also consider the output injection

r=s]l]. o0

where § > 2. This output injection operator is unbounded if we choose the state space
to be X := [H;f} or Xy g 1= [H}f; }, but it is bounded if we choose the state space

to be X := [%]. Note that for all of the three considered state spaces either K or L
is unbounded (or both are).

Remark 8.2. For a finite-dimensional system with node [é g], the usual formulas
for a doubly coprime factorization in terms of a stabilizing state feedback K and a
stabilizing output injection operator L are as follows. A right factorization H\” 18
obtained as the transfer function of

A+BK | B
K 1y |,
C 0

a left factorization [|\7| N] s obtained as the transfer function of

[A-LC|-L B]
c |1y 0

Bezout factors [)~( ?] for the right factorization are the transfer functions of

[A-LC|-B L]
K Ly 0]

and Bezout factors [6] for the left factorization are the transfer functions of

A+BK | L
c |1y
K |0

By formally applying the state feedback K in (8.23) to our unstable system (8.3)—
(8.5) we get from Remark the (formal) right factorization [} ] with

M(s) = [s* = (2 = T)s = T] [s* + (B + T)s +~7T] 7",
N(s) = [s*+ (B+T)s+~T) "

To see that this actually is an H* factorization (which is at the same time both a
right and a left factorization since the two factors commute) we can argue as follows.
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By the boundedness of the resolvent of A in the state space X = {H;_[ 2} and the
explicit formula for this resolvent, N € H>(C*;B(H;H1/2)), s — sN(s) €
H>(CT;B(H)), and s — (s + B+ T)N(s) € H*(C"; B(H;/2)). Since H; o is contin-
uously embedded in H and all the involved operators commute with T/2, it follows
that N € H>°(C*; B(H)) and s — (s + 8+ T)N(s) € H>*(C*; B(H)), which implies
that furthermore TN € H>(C*; B(H)). Since

M(s) =1y — ((B+2)s+ (v + 1)T)N(s), seCt,

it follows that also M € H>(C*; B(H)).

If we instead apply the output injection L in (8.24)) we get the (formal) left
factorization [M N] with

M(s)=[s> = (2=T)s —T] [s> + (T + 6 —2)s + (6 — 1)T] 1,
N(s)=[s>+ (6 —2+T)s+ (6 — 1)T] 7.

This is the same factorization as we obtained above, with 8 = § —2 > 0 and v =
d —1 >0 (and hence it is a H* factorization).

However, the Bezout factors obtained from Remark will not be bounded. For
example, for the Bezout factor Y we formally obtain

Y(s) = =6 [(y+ )T + (28 +4)) s+ (v + )T + (8 +2)T]
X[+ (T+(6-2)s+ (5 —1)T] "

Due to the presence of the term T2, it is clear that ?(5) is not a bounded operator
for any s in the open right half-plane. So the obvious candidate for a Bezout factor
is in fact not a Bezout factor. Similarly it can be seen that the formal equation for
Y(s) gives an unbounded operator for all s in the open right half-plane.

8.2. The Riccati equations. For consideration of the Riccati equations we
follow [6] and use the state space X := [}]. (This is not important, but it leads to
simple computations.)

We will make the additional assumption on T that it has a compact inverse. Then
there exists an orthonormal basis of H consisting of eigenvectors {¢ : k € N} of T
Denote the corresponding eigenvalues by {\x : k¥ € N} and note that \; — oo as
k — co. The space X has an orthonormal basis of eigenvectors {[%*], [0 ]:keN}.
With respect to that basis, the operators A, B and C are block-diagonal (with the size
of the blocks equal to two). It follows that the sesquilinear forms giving the optimal
cost and the optimal feedback pairs are block diagonal as well.

An elementary calculation using the a-normalized control Riccati equation then
gives that for these diagonal blocks we have

Q1 Qk 0}
= ’ ’ K&F ak — K, K F; , Wa =W, ,
O [Qk,o Qrz2|’ [ Jae = [Kka Ki2 Fi] .
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with

Qro = \/ A2 + 14\,

39

Qra = \/2,/A§+1+A§2Ak

+4— M+ 2,

Qr2 = \/)\%+1\/2\/)\£+1+)\§2)\k+4+)\ﬁ2)\k,

k.0 + Q2 !
Fin = [14—0426—22,—&-)\;6%,—1)} ’
Ky 1= FQyp,
Ky o= FQyp,
Wy, = F~2,

here the optimal cost sesquilinear form ¢ is d
through q¢[z, z] = (Qz, z) for z, z € dom(Q).

efined on a dense subset of its domain

The asymptotic behavior of the above terms can be seen to be

L2 0 —2 2
1+a\? 1
wi-(12a) +o(5):
l1—« 1
F,=—— — .
T 1Y a O()\k>

It follows that W, € B(U) and that

1 0

1/2

||

from which we can conclude that dom(q) = dom(Q'/?) = |

future cost states Zf equals [7;‘_[1 ]

~1/2

5

5 0
0 2

1

i o+o(x)

1

Ak

1

1 0

).

}. So the set of finite

)=l

Ha
H

For the solution of the dual optimal control problem we utilize the filter Riccati
equation. A similar calculation shows that the minimal nonnegative solution corre-
sponds to the block diagonal operator with blocks that have the asymptotic behavior

2 2

P’“:{z 2

As Theorem indicates we are however int

|l

1

Ak

).

erested in the inverse of this operator.

The diagonal blocks of this have the asymptotic expansion

-1 2 =2 5/
b _Ak[—2 2}+[0
It follows that
—1/2 _ T -1
p, = I s O

1

Ak

2 0

—2

| o
)

).

1
VA
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and therefore we have for the set =, of finite past cost states

—_ — —1/2 Z1 H
=, = dom(p~!) = dom(P~1/?) = { LJ € {H} ‘ —z1+m€ Hl/g} )
Note that since =, ¢ =, the past cost dominance condition is not satisfied. This
can also be seen in the following ways. Firstly, from the asymptotic expansions of )
and P we have for the diagonal blocks of the product QP:

QrPr = Aj [3 é] + 0 (M)

It follows that QP is unbounded and that therefore the past cost dominance condition
is not satisfied. Secondly we can see from the expressions for @} and P, I that Q is
not dominated by a constant times P~!. From this we can also conclude that the
past cost dominance condition is not satisfied.

Since the past cost dommance condition is not satisfied, by Theorem [7.5] the
transfer function D in ) does not have a doubly coprime factorization.

In the 1ntroduct10n we hsted the additional conclusions (i)-(iii) which are valid
also in this particular example since ® is well-posed. If we choose the state space to
be the space 2 = [77{{1] of all vectors with finite future cost, then with this state
space both the original system and the optimal state feedback system are well-posed.
This is the weakest possible norm for which the system satisfies the state finite future
cost condition. We may also choose the state space to be the space of =, of finite past
cost states described above. Also with this norm both the original system and the
optimal output injection system are well-posed. This is the strongest possible norm
for which the system satisfies the state coercive past cost condition.

8.3. A slightly different example. With the same assumptions on T as in
Section we now consider

W(t) + (=2 + Tw(t) — Tw(t) = hu(t), y(t) = (w(t),h), (8.25)
where h € H is nonzero. The transfer function then is
D(s) = ([s*+ (=2 +T)s — T)""h, h).
Define

A +2+/A+4
5 .

Sk =

It is easily seen that
(53 + (=24 T)sk = T)pr = 0,

and that therefore sj is a pole of D. We have limg_ oo S = 1, so that the transfer
function ® has a non-isolated singularity in the open right-half plane. It follows
that © is not meromorphic in the right half-plane and in particular that it neither
has a right- nor a left-factorization. We conclude that there exists no realization of
® for which the input finite future cost condition holds nor a realization of D for
which the output coercive past cost condition holds. In particular, it is impossible to
choose a first order representation and a state space for that makes the first
order representation into an operator node that satisfies the input finite future cost
condition (or output coercive past cost condition). This implies that is is impossible
that an operator node first order representation exists for which the state finite future
cost condition holds.
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8.4. A more physical example. We next consider a physically better mo-
tivated example. The basic example from the start of Section [8| can be seen as a
simplification of this example.

Consider the plant

Wy (t) + Tpwy(t) = up(t),  yp(t) = wy(?).

Here T}, : dom(T,) C H — H is a nonnegative self-adjoint operator with a compact
inverse on the infinite-dimensional Hilbert space H (e.g. minus the Dirichlet Laplacian
on L? of some bounded domain). Denote the eigenvalues of 7' by Aj. The input space
U and output space ) are both taken to be H. This is an undamped flexible system
with force control and position measurement.

Consider a controller of the same form but with damping

We(t) + Detire(t) + Tewe(t) = ue(t),  ye(t) = we(t).
Interconnect the systems through positive feedback:
Up = Ye + U, Ue = Yp,

where v is an additional control to the plant. This is what the theory of negative
imaginary systems [26] suggests to do. That theory ensures (at least in the finite
dimensional case) stability of the feedback interconnection if the stiffness of the con-
troller T, is large enough (plus some more minor conditions).

Assume that the parameters of the controller are

L
De=1ly, T.=3T,"

This controller stiffness operator violates the condition from negative imaginary the-
ory. The closed loop system with as output the output of the plant and with w := [ 7]
is

w(t)+Dw(t)+Tw(t)=[18*] o), y(t) = [l 0] w(t),

where

oo [T, -1y
o=l n) =1 )

The operators in the first order form with state [ ] are

0

10 1y B
A{_T _D], B- Fﬂ ,

c=[[x 0] 0.

The solutions @ and P of the control and filter Riccati equation on H* are now (up to
re-ordering) block diagonal with block size 4. Numerical computations indicate that
for these blocks we have || Q|| & 2Xk, || Pkl & A\ and [|QPk|| ~ AZ. It follows that
QP is unbounded. We conclude that the transfer function of the closed-loop system
has a left and a right factorization (since both Riccati equations have solutions), but
no doubly coprime factorization (since the product of the solutions of the Riccati
equations is unbounded).
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9. Example (significance of the subset 2). The following example illustrates
what happens if one replaces the specifically chosen component € of p(A)NCT by some
other component. In particular, we show that the normalized coprime factorizations
obtained by choosing different components can be genuinely different (i.e. not related
by a constant unitary transformation), and that also the optimal costs can be different.

Consider the following function

An operator node with this transfer function can be constructed as follows. Let
X = (%(Z) and define the bounded operator A on X by

(Az)k = Zk+1-

We note that the spectrum of A equals the unit circle, so that the set o(A) N C*
consists of two components:

Op:={secCt:|s| <1}, Qu:={seCt:ls|>1}.

Further define B € B(C, X) by (Bv)y = biv, where b € X is defined by

2k k<0,
b =
0 k>0,

and define C' € B(X,C) by
Cz = 2.
It follows that for |s| > 1

skl g <0,

((s— 4)"'Bv), = {02

k>0,
and that for |s] <1
2k
) 7 k<0,
((S—A)_ Bv)k = Ss_’“
k>0
5—2

so that the given operator node indeed has the given function as its transfer function.
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Normalized strongly coprime factorizations (since we deal with a scalar function,
there is no difference between left and right) for Q5 and Qg can be easily computed.
If we pick Qpg, then we obtain

s—2 1
MB(S) = m7 NB(S) = m,
>~(B<s>_s+2+2ﬁ \73(s)=_(2+\/5)

 s+v5 ] s+v5

However, if we pick Qr, then we obtain
My(s) =1, Ny(s)=0, Xp(s)=1, Yy(s) =0,

which is clearly genuinely different.
We note that for |s| > 1 we have

C(s— Atz = Zs_j_lzj,
J=0

and that for |s| < 1 we have

oo

C(s—A)tz= Z —sl2_jq.

Jj=0

We see that if we pick y, the output y for initial condition z € X and input u is
given by

> .
y(t) = Z tz;.
=0

Therefore the optimal future control equals zero, the space of finite future cost states
is 2(Z~) and the optimal cost on this space equals zero. It is easily checked that the
control Riccati equation is satisfied for Z := ¢*(Z~) with ¢ := 0, K&F [59] := —uy,
Wy =1 and dom(K&F) = Z.

For Qp we consider the control Riccati equation. It is easily seen that the above
mentioned solution for €y is now not a solution: the conditions ii) and iii) from
Definition [5.1| are not satisfied. To obtain a solution for the choice 25, we choose
Z := (?(Z*) @ span{b}. It can then be computed that, with dom(K&F) as defined

in Definition [5.1]
Z _
dom(K&F) = { [i] € [(C] iz =2 120}.

With respect to the given orthogonal decomposition of Z, define

o|[2] [2]] = @+ VB,

Y1 Y2

and define K& F on its domain (given above) by

K&F[ } = (2+V5)z + .

z
v
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Using that for [Z] € dom(K&F') the projection of A&B|[7] onto span{b} equals
229 + v, that

z
v

C&D |: :| = 20,

and the equality
(24 V5)(220 +v)Z5 + (2 + V5) (225 + T)20 + |202 + [v]* = |(2 4+ V5) 20 + v/,

it is seen that the control Riccati equation indeed holds with W, := 1.

We remark that there is noting special about the functions zero and 5%2 which
appear in the example given in this section: by an appropriate modification of B,
other functions can be obtained. In particular, it is possible to construct a transfer
function such that if we pick g, then the function has a coprime factorization and

when we pick g, it doesn’t.

Appendix A. Proof of Lemma [3.1
Let us denote the closed linear relation X — W whose graph is V' by T". Then

Te={weW|[i]leV}, z € dom (T) = Xy,
ker (T) ={z e X|[§] e V}, mul (T) ={weW|[2] eV}, (A1)
img (T) :=={w e W|[§] €V for some z € X},
where ker (T') and mul (T") are closed subspaces of X and W, respectively. The sub-

space V- is the graph of the relation —(T~!)* = —(T*)"!. We denote T—* :=
(I=1)* = (T*)~'. Then

T**xfz{wTGWH_ﬂf} EVJ‘}, xfedom(T**):XvL,
ker (T7) ={al e x|[2/] e V*}, mul (T7%) = {wf e W[[ %] eV},

img (T7%) := {wT € WH ””;f} € V* for some z' € X} ,

(A.2)
where ker (T7*) and mul (T—*) are closed subspaces of X and W, respectively. More-
over, by standard properties of closed relations,

dom (T)* = mul (T*) = ker (T7)

img (7)™ = ker (T*) = mul (T~*) ,

dom (T_*)l =mul (T7") = ker (T),
T )J_ =ker (T7") = mul (7).

'_

img (T~

Proof of (i). In terms of the relation 7' we have ||z|y = inf{|w| | w € Tz}.
It follows that with T, := P+ T the operator part of T, [|z[|v = | Toz|w. This
implies that ||-|?, is a closed quadratic form on X with domain Xy = dom (T,) =
dom (7). An analogous argument shows that ||z'[|Z.. = ||T, *z'[|},, and that ||-[| .
is a closed quadratic form on X with domain Xy,. = dom (T~*) = dom (7, *), where
T %= Pmul(T,*)L T~* is the operator part of T—*.

Proof of (ii). In the proof of (ii) we need to further factor out ker (T") from
dom (T) in order to make the operator T; := T | jom () rker()+ njective. As explained
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in, e.g., [25, Appendix A], T; is a closed injective densely defined operator with dense

range when regarded as an operator from dom (T') Nker (T)" = dom (7)) N dom (T—*)
to img (7) N mul (T)" = img (T) N img (I—*). Furthermore, if we decompose the
spaces X and W as

X =ker (T) ® (dom (T) N ker (T)L) ® dom (T)*,
= dom (T**)J' &> (ker (T**)J' Ndom (T—*) ) @ ker (T~*)
o (A.3)
W = img (T)*" & (mul (T)* Nimg (T)) @ mul (7))

= mul (T_*) @ (img (T—*) Nmul (T_*)L) @ img (T_*)L ,

then with respect to these decompositions (in this order) the (graphs of the) multi-
valued operators 7' and T~! and their adjoints are given by

(20 0 En ker (T
T = x1 |, T;xq x| € dom

L 0 wo _U}() mul
(0] [ o Zo ker

Tl = wr |, Ti_lwll w1 img (T; ]
wo 0 wWo mul (T
- o _ (A.4)
wo 0 wo mul T *)

T = wy |, | T w ) wi| € |img (T *) ,

L0 | o | Zo ker (T—*)
i 0 Wo wo mul (T *)

T* = x|, | T "o ) r1| € |dom (T;*)
Zo 0 Zo ker (T—*)

From here we can, among others, obtain the corresponding decompositions of the
operator parts of T and T~* by restricting them to the closures of their domains and
dropping the multi-valued part of the range space, and they are given by

T, = [0 O] , dom (75,)

ker(T)
0 T |:dom(T,;)} ’
T [O ! ] dom (T, *) = {ker(T*) }

o 0 11_>k dom(T;*)

(A.5)

where dom (T;) = dom (T') Nker (T)" and dom (T;) = dom (T~*) Nker (T’*)J‘ have
the same closure, equal to the middle component in the decomposition of X given
in (A23). Here the injective operator part T, * of T7* is equal to (T}) ™1 = (T;")*.
See |25, Appendix A] for details.

After this digression we now return to the proof of Part (ii) of Lemma
As we saw in the proof of part (i), ||zol|?, = ||Toz0% and Hx(];H%/l = Tz} %
If we interpret T, as a densely defined operator on dom (7,), then T is a (single-
valued) operator, and ||xo||}, = (wo, Ty Tpzo)x for all o € dom (T;T,). However,
if we instead interpret T, as an operator acting in X, then T is a relation with
mul (T7%) = dom (T,,)". The self-adjoint relation Qv defined in (ii) is equal to Qy =
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T;T, where T} is interpreted in the latter sense. This implies that

mul (Qy) = mul (7)) = dom (TO)J‘ = dom (T)J‘ = ker (T_*) ,
ker (Qv) = ker (T,) = ker (T') = dom (T_*)L ,
dom (Qv) = ker (T') + dom (T, T,),

where dom (T¥T,) refers to the domain of TT,, with T the single-valued operator as
above, and that the graph of QQy can be decomposed with respect to the decomposition

of X in (A.3) as

Zo 0 xo ker (T')
Qv = x|, | T Tiay x| € |dom (T7T;)
0 T2 T2 dom (T)™*

The same argument with 7' replaced by T~* gives an analogous decomposition of
Qv 1, namely

0 b @) dom(Tf”‘)L
Qu. = ol | | T ad 2l | € |dom (T;'T;7%)
xg 0 x; ker (T—*)

Here ker (T') = dom (T_*)l, dom (T)* = ker (T~*), and T, ' = (T7T;) "' Thus,
Qve =Qy"

Proof of (i). Let Q%,/2 and Q%//f be the nonnegative self-adjoint square roots of

the relations Qv and Qy1 whose graphs are given by

(o] [ 0 ES ker ([|-{|v-)
%//2 = 1, Q;/2:E1 T1| € dom(Q;/g) )
L0 L [ 72 ker ([|-{}v+)
v L8] Toma M ] [t
QVL = Ly > Qi .’ﬂj{ T| € lmg(Qi ) ,
b] Lo o} ker ([|-{|y+)

where (); = T;T; is the injective operator part of QJy and
Xy =er (T) + dom (Q;’*) = ker (| [lv) + dom(Q;”?),

i i

Xy = img(QY2) + ker (T™) = img(QY2) +ker (|-).

Let x € Xy and ' € Xy, 1, and decompose = and z! according to the decomposition of
X above into x = zg+x; and z7 = zJ{er(T) with 2 € ker (||[]v), x1 € dom(Qg/Q), 9:2; €

. 1/2 1/2 —1/2
ker (|| |v), and 2] € img(Q}’?). Then |lzllv = [Q}* 1, lat|lve = 1Q; /*2] |,
and

(e, 2Mx = (e, 2l x = (QV2Q1 a1, ) v = (Q1 %1, Q) Pal) e
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Therefore, since dom(Q; /2) lmg(le)’

l]lv

1/2 1/2
19221l 2 = sup QM a1, ) x|
zledom(Q}/?), |2 |x <1

= sup Q) w1, Q; Pal) o

. 1/2 —1/2
ol eimg(Q}/?),1Q; el x <1

_ sup (@1, 2) |
ol eimg(Q;’?) ll2]ll, L <1

B sup [, ") x|,
wteXy 1 oty 1 <1

and thus x € Xy. This proves the first half (3.12). The proof of the second half of

(3-12) is analogous.
It follows from (3.12)) that if € Xy then the first supremum in (3.11)) is finite,

and if 7 € A}, . then the second supremum in ([3.11)) is finite.
Conversely, suppose that the supremum in the first half of (3.11)) is finite, and

decompose z into z = [%(1)] in accordance with the decomposition in (A.3). Then
2
x € Xy if and only if z; € dom(Q}p) and z9 = 0.

0

For each z' = [r” € Xy with 21 € img(Qzﬂ) and x:g € ker (||||yy+) we have
Zo

(z,2M)x = (x1,20)x + (z2,2}) x. Here z{ can be an arbitrary vector in ker (||-||y+),

so the finiteness of the supremum in the first half of (3.11)) implies that 3 = 0. It
remains to show that z; € dom(Ql/Z).

Each :1:1 € 1mg(Q /2) can be rewritten in the form xl{ = Qll/gzl where ZI €

dom(Q}?) and |al|ly: = |Q; *2i|x = ||2]|x. Thus, the first half of (11) can
be rewritten in the form

sup a1, Q2 2]) x| = sup [z, 2 | < co.
2l edom(Q}/?) |21 | x <1 zteX, o llzt, L <1

This implies that z; € dom((Q1/2) ) dom(Ql/Q) = Xy, and completes the proof
of the converse part of the first half of . The proof of the converse part of the
second half of (3.11]) is analogous.
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