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Abstract

The notion of reciprocity is well-known in circuit theory: if a linear passive
time-invariant circuit does not contain any gyrators, then it is reciprocal in
the standard input/state/output sense, i.e., the impedance and conductance
transfer functions are congruent to their adjoints. Here we extend this notion
to state/signal systems.
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In the state space approach to circuit theory one often models the relationship
between the port voltages u and currents i by a system of the type

ẋ(t) = Ax(t) + Bi(t),

u(t) = Cx(t) + Di(t), t ≥ 0,
(1)

where x(t) is the internal state of the system (the charges in the capacitors and the
currents in the coils). The impedance (transfer) matrix of this system is given by
D(λ) = C(λ − A)−1B + D, λ ∈ C. It is known that if the circuit does not contain
any gyrators, then the impedance matrix is congruent to the impedance matrix of
the adjoint system

ẋ∗(t) = A∗x∗(t) + C∗u∗(t),

i∗(t) = B∗x∗(t) + D∗u∗(t), t ≥ 0,
(2)

in the sense that

D(λ) = C(λ − A)−1B + D = Ψ
[

C∗(λ − A∗)−1B∗ + D∗
]

Ψ, (3)

where Ψ is the unitary matrix which defines the power product

e(t) = 2ℜ(u(t),Ψi(t)), t ≥ 0.
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When the continuous time system (1) is mapped into discrete time by the Cayley
transform, then the resulting system still has the same symmetry. We call D Ψ-
reciprocal whenever (3) holds.

As is well-known, if the system in (1) is minimal and balanced or simple and
conservative, then the reciprocal symmetry implies that the main operator A is
signature similar to its adjoint, i.e., A∗ = IAI for some signature matrix I = I∗ =
I−1. The converse is also true: If A is signature similar to its adjoint, and if Ψ∗

D

is strictly positive real, then D is Ψ-reciprocal. The same statement holds for the
corresponding discrete time system.

If the system is not lossless, then it is still possible to find a simple conservative
realization of the impedance matrix, but the state space in this realization is then
infinite-dimensional. However, also in this infinite-dimensional case the situation
remains the same: if the transfer function D is Ψ-reciprocal, then the main operator
A of every simple conservative realization of D is signature similar to its adjoint,
and if D has a realization whose main operator is signature similar to its adjoint
(conservative or not) and Ψ∗

D is strictly positive real, then D is Ψ-reciprocal.
In this talk we discuss the influence of the reciprocal symmetry when one replaces

the input/state/output (i/s/o) setting described above by the state/signal (s/s)
setting. To keep the presentation short we restrict the discussion to the discrete
time conservative case.

In the state/signal setting all the inputs and outputs are combined into one
vector signal. In the discrete time setting the standard i/s/o system is replace by
the s/s (graph) system

[

x(n+1)
x(n)
w(n)

]

∈ V, n = 0, 1, 2, . . . . (4)

where V is as closed subspace of
[

X
X
W

]

called the generating subspace; here X is the

state space (a Hilbert space) and W is the signal space. To model the passivity of
the system we introduce a Krĕın space inner product in the signal space W, and
defines the system to be passive if V is a maximal nonnegative subspace of the

Krĕın node space K :=
[

−X
X
W

]

. It is conservative if V = V [⊥]. The signal space of

the (causal) adjoint system is W∗ := −W, and its generating subspace V∗ is the
maximal nonnegative subspace

V∗ =

[

0 1X 0
1X 0 0
0 0 I(W∗,W)

]

V [⊥] (5)

of the adjoint nodes space K∗ :=
[

−X
X
W∗

]

; here I(W∗,W) is the identity mapping from

W to W∗.
In the s/s setting the transfer function is replaced by a behavior. These behaviors

appear in both time and frequency domain versions, but for simplicity we here focus
on only one version, namely the full time domain behavior, which is the subspace
of ℓ2(Z;W) consisting of all the signal components w of all full trajectories (x,w) of
Σ on Z satisfying x(n) → 0 as n → −∞. In the passive case W is a shift invariant
maximal nonnegative subspace of ℓ2(Z;W). The corresponding behavior W∗ of the
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adjoint system turns out to be a reflection of the orthogonal companion to W in
ℓ2(Z;W). Reciprocity means in the s/s setting that there exists a skew-adjoint
involution J = −J ∗ = J−1 such that W = JRW

[⊥], where R is the reflection
operator (Rw)(k) = w(−k − 1), k ∈ Z. In this case we call W J -reciprocal.

Before stating our main theorem about state/signal reciprocity we need two
more notions. The reachable subspace of Σ is the closed linear span in X of all
states x(n) of all trajectories (x,w) on Z

+ with zero initial state x(0) = 0. A s/s
system Σ = (V ;X ,W) is (internally) simple if the closed linear span of the reachable
subspaces of Σ and Σ∗ is the whole state space. It is (externally) pure if its behavior
is strictly positive in ℓ2(Z;W). (The corresponding i/s/o impedance condition for
purity is that the impedance function multiplied by Ψ∗ is strictly positive real, and
the corresponding i/s/o scattering condition is that the scattering function is strictly
contractive.)

Theorem 0.1. Let W be a passive behavior on the signal space W.

1. If W is J -reciprocal for some skew-adjoint involution J in W, then there
exists a simple conservative realization Σ = (V ;X ;W) of W satisfying

V =
[

0 I 0
I 0 0
0 0 J

]

V [⊥] (6)

for some signature operator I.

2. If Σ = (V ;X ;W) is a conservative realization of W satisfying (6) for some sig-
nature operator I and some skew-adjoint involution J , then W is J -reciprocal.

Reciprocal i/s/o systems setting are discussed, e.g., in a finite-dimensional set-
ting in [Wil72], [OJ85], [ABGR90], and [LR95], and in an infinite-dimensional setting
in [Fuh75], [Obe96], [GO99], and [AADR02]. More details about state/signal sys-
tems can be found in [AS05, AS07a, AS07b, AS07c, AS09a, AS09b] and [Sta06].
Continuous time state/signal systems have been studied in [KS09].
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plications, vol. 161, Birkhäuser-Verlag, 2005, pp. 115–177.

[AS07a] , State/signal linear time-invariant systems theory. Part II: Passive dis-
crete time systems, Internat. J. Robust Nonlinear Control 17 (2007), 497–548.

3



[AS07b] , State/signal linear time-invariant systems theory. Part III: Transmis-
sion and impedance representations of discrete time systems, Operator Theory,
Structured Matrices, and Dilations, Tiberiu Constantinescu Memorial Volume
(Bucharest Romania), Theta Foundation, 2007, Available from American Math-
ematical Society, pp. 101–140.

[AS07c] , State/signal linear time-invariant systems theory. Part IV: Affine rep-
resentations of discrete time systems, Complex Anal. Oper. Theory 1 (2007),
457–521.
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