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Discrete Time-Invariant I/S/O Systems

A linear discrete-time-invariant i/s/o (input/state/output) system is of the form

Σi/s/o :

{
x(n + 1) = Ax(n) + Bu(n), n ∈ Z

+, x(0) = x0,

y(n) = Cx(n) + Du(n), n ∈ Z
+.

(1)

A, B, C, D, are bounded linear operators and Z
+ = {0, 1, 2, . . .}.

the input u(n) ∈ U = the input space,
the state x(n) ∈ X = the state space,
the output y(n) ∈ Y = the output space (all Hilbert spaces).

A trajectory = a triple of sequences (u, x, y) satisfying (1).
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Forward J-Conservative I/S/O System

Σi/s/o is forward J-conservative if all trajectories satisfy

‖x(n + 1)‖2
X = ‖x(n)‖2

X +
〈[

y(n)
u(n)

]
, J

[
y(n)
u(n)

]〉

Y⊕U
, n ∈ Z

+.

Here
j(u, y) = 〈[ y

u ] , J [ y
u ]〉Y⊕U .

is the supply rate induced by the signature operator J = J∗ = J−1.
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Adjoint I/S/O System

The (causal) adjoint system is given by

Σ∗
i/s/o :

{
x∗(n + 1) = A∗x∗(n) + C∗y∗(n), n ∈ Z

+, x∗(0) = x∗0,

u∗(n) = B∗x∗(n) + D∗y∗(n), n ∈ Z
+.

(2)

The adjoint system is forward J∗-conservative if all the trajectories satisfy

‖x∗(n + 1)‖2
X = ‖x∗(n)‖2

X +
〈[

u∗(n)
y∗(n)

]
, J∗

[
u∗(n)
y∗(n)

]〉

U⊕Y
, n ∈ Z

+.

Here J∗ =
[

0 −1U
1Y 0

]
J

[
0 −1Y
1U 0

]
defines the adjoint supply rate.
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Simple J-conservative System

Σi/s/o is J-conservative if Σi/s/o is forward J-conservative and Σ∗
i/s/o is forward

J∗-conservative.
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Simple J-conservative System

Σi/s/o is J-conservative if Σi/s/o is forward J-conservative and Σ∗
i/s/o is forward

J∗-conservative.

The reachable subspace R of Σi/s/o is the closed linear span of all the values
x(n), n ≥ 0, as (u, x, y) varies over all trajectories of Σi/s/0 with x0 = 0.

The unobservable subspace U of Σi/s/o is the set of all initial states x(0) of all
“unobservable” trajectories (0, x, 0) of Σi/s/o (i.e., both u and y are identically
zero).

Σi/s/o is simple if the closed linear span of R and U⊥ is all of X .
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Simple J-conservative System

Σi/s/o is J-conservative if Σi/s/o is forward J-conservative and Σ∗
i/s/o is forward

J∗-conservative.

The reachable subspace R of Σi/s/o is the closed linear span of all the values
x(n), n ≥ 0, as (u, x, y) varies over all trajectories of Σi/s/0 with x0 = 0.

The unobservable subspace U of Σi/s/o is the set of all initial states x(0) of all
“unobservable” trajectories (0, x, 0) of Σi/s/o (i.e., both u and y are identically
zero).

Σi/s/o is simple if the closed linear span of R and U⊥ is all of X .

Theorem 1. An simple J-conservative i/s/o system Σi/s/o is uniquely deter-
mined, up to a unitary similarity transformation in its state space, by its transfer
function (defined in some neighborhood of the origin)1

D(z) := zC(1 − zA)−1B + D.

1The same statement is true true for the balanced minimal realization.
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Externally Reciprocal Impedance Systems

By an impedance supply rate we mean the following: There is a unitary operator
Ψ: U → Y (= a ”unit resistance”) such that the supply rate (power product) is
given by jimp(u, y) = 2ℜ(y, Ψu). The signature operator is Jimp =

[
0 Ψ

Ψ∗ 0

]
, and

the dual signature operator is J∗ =
[

0 Ψ∗

Ψ 0

]
.

The impedance (= transfer) function D is always a Ψ-Nevanlinna (= positive
real) function in the unit disk, i.e., Ψ∗

D(z) + D(z)∗Ψ ≥ 0 for all z ∈ D.
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Externally Reciprocal Impedance Systems

By an impedance supply rate we mean the following: There is a unitary operator
Ψ: U → Y (= a ”unit resistance”) such that the supply rate (power product) is
given by jimp(u, y) = 2ℜ(y, Ψu). The signature operator is Jimp =

[
0 Ψ

Ψ∗ 0

]
, and

the dual signature operator is J∗ =
[

0 Ψ∗

Ψ 0

]
.

The impedance (= transfer) function D is always a Ψ-Nevanlinna (= positive
real) function in the unit disk, i.e., Ψ∗

D(z) + D(z)∗Ψ ≥ 0 for all z ∈ D.

If ϕ satisfies, in addition,

ϕ(z) = Ψϕ∗(z)Ψ, z ∈ D,

where Ψ: U → Y is unitary, then we call ϕ is Ψ-reciprocal, and say that Σi/s/o

is externally reciprocal.

CDPS 2009 7



Externally Reciprocal Impedance Systems

By an impedance supply rate we mean the following: There is a unitary operator
Ψ: U → Y (= a ”unit resistance”) such that the supply rate (power product) is
given by jimp(u, y) = 2ℜ(y, Ψu). The signature operator is Jimp =

[
0 Ψ

Ψ∗ 0

]
, and

the dual signature operator is J∗ =
[

0 Ψ∗

Ψ 0

]
.2

The impedance (= transfer) function D is always a Ψ-Nevanlinna (= positive
real) function in the unit disk, i.e., Ψ∗

D(z) + D(z)∗Ψ ≥ 0 for all z ∈ D.

If ϕ satisfies, in addition,

ϕ(z) = Ψϕ∗(z)Ψ, z ∈ D,

where Ψ: U → Y is unitary, then we call ϕ is Ψ-reciprocal, and say that Σi/s/o

is externally reciprocal.

2Σi/s/o is impedance conservative ⇔

»
A∗A A∗B
B∗A B∗B

–
=

»
1X C∗Ψ

Ψ∗C Ψ∗D + D∗Ψ

–
..
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Internally Reciprocal Impedance Systems

(External) reciprocity is a very common property:

• If dimU = dimY = 1, and ϕ is real on the real axis, then ϕ is reciprocal.

• The impedance function (transfer function from current to voltage) of every
passive electrical circuit which does not contain any gyrators is reciprocal.
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Internally Reciprocal Impedance Systems

(External) reciprocity is a very common property:

• If dimU = dimY = 1, and ϕ is real on the real axis, then ϕ is reciprocal.

• The impedance function (transfer function from current to voltage) of every
passive electrical circuit which does not contain any gyrators is reciprocal.

Theorem 2. A pure (= strictly positive real) Nevanlinna function D is Ψ-
reciprocal if and only if the (essentially unique) simple conservative realization
Σi/s/o of D is internally reciprocal (= signature similar to its adjoint) in the
sense that there exists a signature operator I = I∗ = I−1 such that

[
A B

C D

]
=

[
I 0
0 Ψ

] [
A∗ C∗

B∗ D∗

] [
I 0
0 Ψ

]
(⇒ A = I∗A∗I).
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Internally Reciprocal Impedance Systems

(External) reciprocity is a very common property:

• If dimU = dimY = 1, and ϕ is real on the real axis, then ϕ is reciprocal.

• The impedance function (transfer function from current to voltage) of every
passive electrical circuit which does not contain any gyrators is reciprocal.

Theorem 2. A pure (= strictly positive real) Nevanlinna function D is Ψ-
reciprocal if and only if the (essentially unique) simple conservative realization
Σi/s/o of D is internally reciprocal (= signature similar to its adjoint) in the
sense that there exists a signature operator I = I∗ = I−1 such that

[
A B

C D

]
=

[
I 0
0 Ψ

] [
A∗ C∗

B∗ D∗

] [
I 0
0 Ψ

]
(⇒ A = I∗A∗I).

Thus, external reciprocity of a pure impedance function ⇔ internal reciprocity of
the simple conservative realization.3

3The same statement is true true for the balanced minimal realization.
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Other Supply Rates

Analogous results are true for other supply rates as well (such as scattering and
transmission).

Reciprocal i/s/o systems setting are discussed, e.g., in a finite-dimensional setting
in

[Wil72], [OJ85], [ABGR90], and [LR95],

and in an infinite-dimensional setting in

[Fuh75], [Obe96], [GO99], and [AADR02].
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Other Supply Rates

Analogous results are true for other supply rates as well (such as scattering and
transmission).

Reciprocal i/s/o systems setting are discussed, e.g., in a finite-dimensional setting
in

[Wil72], [OJ85], [ABGR90], and [LR95],

and in an infinite-dimensional setting in

[Fuh75], [Obe96], [GO99], and [AADR02].

Claim: The simplest way to treat a genaral supply rate is to replace the
input/state/output system Σi/s/o by a state/signal signal (s/s) system.
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Signal Space and Energy Balance

We start by combining the input space U and the output space Y into one signal
space W =

[
Y
U

]
. This signal space has a natural Krĕın space inner product

obtained from the signature operator J in the supply rate j, namely

[[
y

u

]
,

[
y′

u′

]]

W

=

〈[
y

u

]
, J

[
y′

u′

]〉

Y⊕U

.

The forward J-energy balance equation becomes (with w(n) =
[

y(n)
u(n)

]
)

‖x(n + 1)‖2
X = ‖x(n)‖2

X + [w(n), w(n)]W , n ∈ Z
+,

or equivalently,

−(x(n + 1), x(n + 1))X + (x(n), x(n))X + [w(n), w(n)]W = 0, n ∈ Z
+.
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Graph Representation of I/S/O System

The basic i/s/o relation

Σi/s/o :

{
x(n + 1) = Ax(n) + Bu(n), n ∈ Z

+, x(0) = x0,

y(n) = Cx(n) + Du(n), n ∈ Z
+.

(1)

can be written in graph form

Σs/s :




x(n + 1)

x(n)
w(n)



 ∈ V, n ∈ Z
+, x(0) = x0. (3)
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Graph Representation of I/S/O System

The basic i/s/o relation

Σi/s/o :

{
x(n + 1) = Ax(n) + Bu(n), n ∈ Z

+, x(0) = x0,

y(n) = Cx(n) + Du(n), n ∈ Z
+.

(1)

can be written in graph form4

Σs/s :




x(n + 1)

x(n)
w(n)



 ∈ V, n ∈ Z
+, x(0) = x0. (4)

4

V =

h
z
x
w

i
∈

h
X
X
W

i ˛̨
˛̨ z = Ax + Bu,

y = Cx + Du,
w = [ y

u ] , x ∈ X , u ∈ U

ff
.
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State/Signal System: Summary

The dynamics of a discrete time state/signal system Σ is defined by

Σ :




x(n + 1)

x(n)
w(n)



 ∈ V, n ∈ Z
+, x(0) = x0, (4)

where V is the generating subspace of the node space K :=
[

X
X
W

]
.

By a trajectory of Σ we mean a pair of sequences (x, w) satisfying (4).

We call x the state component and w the signal component of the trajectory.

Σ is well-posed if (4) defines a “reasonable dynamics”.5

5For every x0 ∈ X there is a trajectory with x(0) = x0, and this trajectory depends continuously on x0 and
the signal part w(·).
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Forward Conservativity of State/Signal Node

The forward energy balance

−(x(n + 1), x(n + 1))X + (x(n), x(n))X + [w(n), w(n)]W = 0, n ∈ Z
+, (5)

tells us to use the following natural (indefinite) Krĕın space inner product in K:

[[
z1
x1
w1

]
,
[

z2
x2
w2

]]

K

= −(z1, z2)X + (x1, x2)X + [w1, w2]W. (6)

It is easy to see that (5) holds for all trajectories of Σ if and only if

[[ z
x
w

]
,
[ z

x
w

]]
K

= 0 ∀
[ z

x
w

]
∈ V.

In other words, (5) holds if and only if V is a neutral subspace of K with the
inner product (6).

CDPS 2009 16



Conservativity of State/Signal Node

V [⊥] =

{[
z∗
x∗
w∗

]
∈ K

∣∣∣∣
[[

z∗
x∗
w∗

]
,
[ z

x
w

]]

K

= ∀
[ z

x
w

]
∈ V

}
.

Σs/s is forward conservative ⇔ V ⊂ V [⊥].

The “adjoint system” is forward conservative ⇔ V [⊥] ⊂ V .

Define: Σs/s is conservative if V = V [⊥].

If Σs/s is conservative, then it is automatically well-posed.
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Conservativity of State/Signal Node

V [⊥] =

{[
z∗
x∗
w∗

]
∈ K

∣∣∣∣
[[

z∗
x∗
w∗

]
,
[ z

x
w

]]

K

= ∀
[ z

x
w

]
∈ V

}
.

Σs/s is forward conservative ⇔ V ⊂ V [⊥].

The “adjoint system” is forward conservative ⇔ V [⊥] ⊂ V .

Define: Σs/s is conservative if V = V [⊥].

If Σs/s is conservative, then it is automatically well-posed.

The reachable subspace R and the unobservable subspace U are defined in the
same way as for i/s/o systems.

Σi/s/o is simple if the closed linear span of R and U
⊥ is all of X .
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The Behavior of a State/Signal Systems

In s/s theory the transfer function of an i/s/o system is replaced by the (frequency
domain) behavior of the s/s system.

behavior of s/s system ≃ graph of the transfer function of a i/s/o system.

More precisely, the behavior is the subspace of all H2-functions ŵ(·) on D which
satisfy [ 1

z x̂(z)

x̂(z)
bw(z)

]
∈ V, z ∈ D, (7)

for some analytic function x̂(z).

Interpretation: x̂(z) is the Z-transform of the state part and ŵ(z) is the Z-
transform of the signal part of a trajectory (x, w) of Σs/s with x(0) = 0 and
w(·) ∈ ℓ2(Z+;W).
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The Behavior of a State/Signal Systems

In s/s theory the transfer function of an i/s/o system is replaced by the (frequency
domain) behavior of the s/s system.

behavior of s/s system ≃ graph of the transfer function of a i/s/o system.

More precisely, the behavior is the subspace of all H2-functions ŵ(·) on D which
satisfy [ 1

z x̂(z)

x̂(z)
bw(z)

]
∈ V, z ∈ D, (7)

for some analytic function x̂(z).

Interpretation: x̂(z) is the Z-transform of the state part and ŵ(z) is the Z-
transform of the signal part of a trajectory (x, w) of Σs/s with x(0) = 0 and
w(·) ∈ ℓ2(Z+;W).

Denote: W = behavior of Σs/s and W(z) := {ŵ(z) | ŵ(·) ∈ W}, z ∈ D.
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Passive Behaviors

It turns out that

• the behavior W of a conservative s/s system is a maximal nonnegative
shift-invariant subspace of H2(D;W)

with respect to the indefinite inner product inherited from the Krĕın space W
(shift-invariance means that it is invariant under multiplication with z).
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Passive Behaviors

It turns out that

• the behavior W of a conservative s/s system is a maximal nonnegative
shift-invariant subspace of H2(D;W)

with respect to the indefinite inner product inherited from the Krĕın space W
(shift-invariance means that it is invariant under multiplication with z).

• Passive behavior = a maximal nonnegative shift-invariant subspace of
H2(D;W).

• Strictly passive behavior = a maximal strictly positive shift-invariant subspace
of H2(D;W).
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References

More details about state/signal systems can be found in [AS05, AS07a, AS07b,
AS07c, AS09a, AS09b] and [Sta06].

Continuous time state/signal systems have been studied in [KS09, Kur09].
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External and Internal Reciprocity

The state/signal analogue of external reciprocity, i.e., reciprocity of the transfer
function, is the following:

A passive behavior W is J-reciprocal if J = −J ∗ = J−1 is a skew-adjoint
involution in the signal space W and W(z) = JW(z)[⊥], z ∈ D. (In the

impedance i/s/o case we may take J =
[
−1Y 0

0 1U

]
.)

A conservative s/s system Σs/s is externally reciprocal if the behavior W of Σs/s

is J-reciprocal for some skew-adjoint involution J .
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External and Internal Reciprocity

The state/signal analogue of external reciprocity, i.e., reciprocity of the transfer
function, is the following:

A passive behavior W is J-reciprocal if J = −J ∗ = J−1 is a skew-adjoint
involution in the signal space W and W(z) = JW(z)[⊥], z ∈ D. (In the

impedance i/s/o case we may take J =
[
−1Y 0

0 1U

]
.)

A conservative s/s system Σs/s is externally reciprocal if the behavior W of Σs/s

is J-reciprocal for some skew-adjoint involution J .

A conservative s/s system Σs/s is internally reciprocal if it is internally signature
similar to its adjoint, i.e., there exists a signature operator I = I∗ = I−1 in the
state space X and a boundedly invertible operator J ∈ B(W) such that

V =
[

0 I 0
I 0 0
0 0 J

]
V [⊥].
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Connection Between External and Internal Reciprocity

Theorem 3. Let W be a passive behavior on the signal space W.

(i) If W is J -reciprocal for some skew-adjoint involution J in W, then the
(essentially unique) simple conservative realization Σ = (V ;X ;W) of W

satisfies
V =

[
0 I 0
I 0 0
0 0 J

]
V [⊥] (8)

for some signature operator I. (Here V [⊥] = V since Σ is conservative.6)

(ii) If Σ = (V ;X ;W) is a conservative realization of W satisfying (8) for some
signature operator I and some skew-adjoint involution J , then W is J -
reciprocal.

6The same claim is true for minimal passive balanced systems (in which case V [⊥] 6= V ).
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Further Questions
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• Both I and J are determined uniquely by V . Exactly to what extent is J
determined uniquely by W?
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In particular, a necessary condition for reciprocity is that dim+W = dim−W
(the input and output dimensions must be the same).
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Further Questions

• Both I and J are determined uniquely by V . Exactly to what extent is J
determined uniquely by W?

• J defines a continuous non-degenerate anti-symmetric bilinear form in W
(which corresponds to the reactive power in classical circuit theory).

• There is a one-to-one correspondence between the set of all skew-adjoint
involutions J in W and all Lagrangian decompositions W = F ∔ E of W.
In particular, a necessary condition for reciprocity is that dim+W = dim−W
(the input and output dimensions must be the same).

• This leads to a connection to the theory of port-Hamiltonian systems!
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