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Discrete Time-Invariant |/S/0O Systems

A linear discrete-time-invariant i/s/o (input/state/output) system is of the form
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A, B, C, D, are bounded linear operators and Z™ = {0,1,2,...}.

the input u(n) € U = the input space,
the state x(n) € X = the state space,
the output y(n) € ) = the output space (all Hilbert spaces).

A trajectory = a triple of sequences (u, x,y) satisfying ([I).



Forward .J-Conservative 1/S/O System

>ii/s/o 1s forward J-conservative if all trajectories satisfy

z(n+1)||5 = |lz(n) |3 _|_<|:y(n):|,<]|:y<n):|> , nmeZ.
lz(n + D% = [lz(n)[% + (| un) wm) |/ yeu

Here
J(u,y) = (4] I 10D yau -

is the supply rate induced by the signature operator J = J* = J 1.



Adjoint 1/S/O System
The (causal) adjoint system is given by

*k

{ z.(n+1)=A"z.(n) + C*y(n), n €7z, z.(0) = 4o,
i/s/o

ux(n) = B x.(n) + D*y.(n), necZt.

The adjoint system is forward .J,-conservative if all the trajectories satisfy
Jz.(n+ DIF = ol + 50 | 2 |50 )y €2

Here J, = {1(; _é“} J {1?/{ _33’} defines the adjoint supply rate.

(2)



Simple J-conservative System
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J.-conservative.

The reachable subspace R of J;/,/, is the closed linear span of all the values
x(n), n >0, as (u,x,y) varies over all trajectories of ¥, ;o with ¢ = 0.

The unobservable subspace i of ¥,/ /, is the set of all initial states x(0) of all
“unobservable” trajectories (0,x,0) of ¥;/5/, (i.e., both u and y are identically
Zero).

Yii/s/o 18 simple if the closed linear span of R and U is all of X.



Simple J-conservative System

*

Yii/s/o 1S J-conservative if X,/ /, is forward J-conservative and ZZ/S/O is forward
J.-conservative.

The reachable subspace R of J;/,/, is the closed linear span of all the values
x(n), n >0, as (u,x,y) varies over all trajectories of ¥, ;o with ¢ = 0.

The unobservable subspace i of ¥,/ /, is the set of all initial states x(0) of all
“unobservable” trajectories (0,x,0) of ¥;/5/, (i.e., both u and y are identically
Zero).

Yii/s/o 18 simple if the closed linear span of R and U is all of X.

Theorem 1. An simple J-conservative i/s/o system X, ,/, is uniquely deter-
mined, up to a unitary similarity transformation in its state space, by its transfer
function (defined in some neighborhood of the origin)

D(z) :=2C(1 —zA)"'B+ D.

1The same statement is true true for the balanced minimal realization.
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Externally Reciprocal Impedance Systems

By an impedance supply rate we mean the following: There is a unitary operator
U: U — Y (= a "unit resistance”) such that the supply rate (power product) is
given by jimp(u,y) = 2R(y, Pu). The signature operator is Jimp = | o« § |, and

the dual signature operator is J, = [&’, ‘16*}

The impedance (= transfer) function © is always a W-Nevanlinna (= positive
real) function in the unit disk, i.e., "D (z) + D(z)*W¥ > 0 for all z € D.
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Externally Reciprocal Impedance Systems

By an impedance supply rate we mean the following: There is a unitary operator
U: U — Y (= a "unit resistance”) such that the supply rate (power product) is
given by jim,(u,y) = 2R(y, Pu). The signature operator is Jimp = | o« § |, and

T* 0
the dual signature operator is J, = [&’, %*}H

The impedance (= transfer) function © is always a W-Nevanlinna (= positive
real) function in the unit disk, i.e., "D (z) + D(z)*W¥ > 0 for all z € D.

If © satisfies, in addition,
p(z) =Vp"(2)¥, 2€D,

where W: U/ — ) is unitary, then we call ¢ is W-reciprocal, and say that >;/,/,
is externally reciprocal.

A*A
B*A ¥

* *
22@/3/0 is impedance conservative <> [ g g} _ { 1x C™v



Internally Reciprocal Impedance Systems

(External) reciprocity is a very common property:

o If dimif =dim)Y =1, and ¢ is real on the real axis, then ¢ is reciprocal.

e The impedance function (transfer function from current to voltage) of every
passive electrical circuit which does not contain any gyrators is reciprocal.
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Internally Reciprocal Impedance Systems

(External) reciprocity is a very common property:

o If dimif =dim)Y =1, and ¢ is real on the real axis, then ¢ is reciprocal.

e The impedance function (transfer function from current to voltage) of every
passive electrical circuit which does not contain any gyrators is reciprocal.

Theorem 2. A pure (= strictly positive real) Nevanlinna function © is W-
reciprocal if and only if the (essentially unique) simple conservative realization
Yi/s/o of © is internally reciprocal (= signature similar to its adjoint) in the
sense that there exists a signature operator Z = 7% = 7~ ! such that

Ao o [s SR Y eamran

Thus, external reciprocity of a pure impedance function < internal reciprocity of
the simple conservative realization.ﬁ

3The same statement is true true for the balanced minimal realization.



Other Supply Rates

Analogous results are true for other supply rates as well (such as scattering and
transmission).

Reciprocal i/s/o systems setting are discussed, e.g., in a finite-dimensional setting
In

[Wil72], [0J185], [ABGRAQ], and [LR95],
and in an infinite-dimensional setting in

[Fuh75], [Obe96], [GO99], and [AADRO2].



Other Supply Rates

Analogous results are true for other supply rates as well (such as scattering and
transmission).

Reciprocal i/s/o systems setting are discussed, e.g., in a finite-dimensional setting
In

[Wil72], [0J185], [ABGRAQ], and [LR95],
and in an infinite-dimensional setting in

[Fuh75], [Obe96], [GO99], and [AADRO2].

Claim: The simplest way to treat a genaral supply rate is to replace the
input/state/output system X, /, by a state/signal signal (s/s) system.
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Conservative State/Signal Systems



Signal Space and Energy Balance

We start by combining the input space i/ and the output space ) into one signal
space W = [?ﬂ This signal space has a natural Krein space inner product
obtained from the signature operator J in the supply rate 7, namely

{1 Wt

The forward .J-energy balance equation becomes (with w(n) = {Z%Z% })

|lz(n+ D% = lz(0) 3% + [w(n), w(n)lw,  neZf,
or equivalently,

—(@(n+1),z(n+1)x + (z(n),z(n))x + [w(n), wn)w =0, neZ’.



Graph Representation of 1/S/0 System

The basic i/s/o relation

. { z(n+1) = Ax(n) + Bu(n), n €7z, z(0) = zo,
i/s/o

can be written in graph form

Yis/st | x(n) | €V, ne7z", z(0) = xo.
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can be written in graph formf]




State/Signal System: Summary

The dynamics of a discrete time state/signal system X is defined by

| z(n) | €V, n ez, z(0) = xo, (40)

where V' is the generating subspace of the node space R := [%\/} .

By a trajectory of > we mean a pair of sequences (x,w) satisfying (4)).
We call x the state component and w the signal component of the trajectory.

Y. is well-posed if (@) defines a “reasonable dynamics” B

>For every g € X there is a trajectory with z(0) = x(, and this trajectory depends continuously on x( and
the signal part w(-).



Forward Conservativity of State/Signal Node

The forward energy balance
—(x(n+1),z(n+1)x + (z(n),z(n))x + [wn),wn)w =0 neZ", (5

tells us to use the following natural (indefinite) Krein space inner product in K:
HZ@H ) [Z@%HK = —(21,22)x + (T1,22) & + (w1, w2|w. (6)

It is easy to see that (B) holds for all trajectories of X if and only if

LE] [Ella=0 V]

In other words, (B)) holds if and only if V' is a neutral subspace of & with the
inner product (6).

g8w

leV



Conservativity of State/Signal Node

Y.s/s Is forward conservative < V' C VI
The “adjoint system” is forward conservative < VI c V.
Define: X/, is conservative if V' = VI

If 3.,/ is conservative, then it is automatically well-posed.



Conservativity of State/Signal Node

Y.s/s Is forward conservative < V' C VI

The “adjoint system” is forward conservative < VI c V.
Define: X/, is conservative if V' = VI

If 3.,/ is conservative, then it is automatically well-posed.

The reachable subspace R and the unobservable subspace 4 are defined in the
same way as for i/s/o systems.

Yii/s/o 18 simple if the closed linear span of R and - is all of X



The Behavior of a State/Signal Systems

In s/s theory the transfer function of an i/s/o system is replaced by the (frequency
domain) behavior of the s/s system.

behavior of s/s system ~ graph of the transfer function of a i/s/o system.

More precisely, the behavior is the subspace of all H?-functions w(-) on D which
satisfy

2 (2)

2z) | €V, z € D, (7)

w(2)
for some analytic function Z(z).
Interpretation: 2(z) is the Z-transform of the state part and w(z) is the Z-

transform of the signal part of a trajectory (z,w) of X, ,; with x(0) = 0 and
w(-) € C2(ZT;W).



The Behavior of a State/Signal Systems

In s/s theory the transfer function of an i/s/o system is replaced by the (frequency
domain) behavior of the s/s system.

behavior of s/s system ~ graph of the transfer function of a i/s/o system.

More precisely, the behavior is the subspace of all H?-functions w(-) on D which
satisfy

2 (2) ] eV, z €D, (7)

w(z)

for some analytic function Z(z).

[%oﬁ(z)

Interpretation: 2(z) is the Z-transform of the state part and w(z) is the Z-
transform of the signal part of a trajectory (z,w) of X, ,; with x(0) = 0 and
w(-) € C2(ZT;W).

Denote: 20 = behavior of X/ and 20(2) := {w(2) | w(-) € W}, z € D.



Passive Behaviors

It turns out that

e the behavior 20 of a conservative s/s system is a maximal nonnegative
shift-invariant subspace of H?(ID; W)

with respect to the indefinite inner product inherited from the Krein space W
(shift-invariance means that it is invariant under multiplication with z).



Passive Behaviors

It turns out that

e the behavior 20 of a conservative s/s system is a maximal nonnegative
shift-invariant subspace of H?(ID; W)

with respect to the indefinite inner product inherited from the Krein space W
(shift-invariance means that it is invariant under multiplication with z).

e Passive behavior = a maximal nonnegative shift-invariant subspace of
H?*(D; W).

e Strictly passive behavior = a maximal strictly positive shift-invariant subspace
of H?(ID; W).
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External and Internal Reciprocity

The state/signal analogue of external reciprocity, i.e., reciprocity of the transfer
function, is the following:

A passive behavior 20 is J-reciprocal if J = —J* = J ! is a skew-adjoint
involution in the signal space W and 20(z) = JW(Z), 2 € D. (In the

impedance i/s/o case we may take J = [_33’ 1?/{ )

A conservative s/s system X, is externally reciprocal if the behavior 20 of ¥/,
is J-reciprocal for some skew-adjoint involution 7.



External and Internal Reciprocity

The state/signal analogue of external reciprocity, i.e., reciprocity of the transfer
function, is the following:

A passive behavior 20 is J-reciprocal if J = —J* = J ! is a skew-adjoint

involution in the signal space W and 20(z) = JW(Z), 2 € D. (In the

impedance i/s/o case we may take J = [_33’ 1?/{ )

A conservative s/s system X, is externally reciprocal if the behavior 20 of ¥/,
is J-reciprocal for some skew-adjoint involution 7.

A conservative s/s system X/ is internally reciprocal if it is internally signature
similar to its adjoint, i.e., there exists a signature operator Z = 7" = Z7 1 in the
state space X and a boundedly invertible operator 7 € B()V) such that

v=[458]via
00J



Connection Between External and Internal Reciprocity

Theorem 3. Let 2 be a passive behavior on the signal space V.

(i) If 20 is J-reciprocal for some skew-adjoint involution 7 in W, then the
(essentially unique) simple conservative realization ¥ = (V:;X; W) of 20
satisfies

V:[%
0
o 17IL]

g 8} 7 (8)
0J
for some signature operator Z. (Here V=) =V since X is conservative.H)
(ii)) If X = (V;X; W) is a conservative realization of 2 satisfying () for some
signature operator Z and some skew-adjoint involution 7, then 2U is [J-
reciprocal.

®The same claim is true for minimal passive balanced systems (in which case V] # V).
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e There is a one-to-one correspondence between the set of all skew-adjoint
involutions 7 in VW and all Lagrangian decompositions WW = F + £ of W.
In particular, a necessary condition for reciprocity is that dim, VWV = dim_ W
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Further Questions

Both 7 and J are determined uniquely by V. Exactly to what extent is J
determined uniquely by 207

J defines a continuous non-degenerate anti-symmetric bilinear form in WV
(which corresponds to the reactive power in classical circuit theory).

There is a one-to-one correspondence between the set of all skew-adjoint
involutions 7 in VW and all Lagrangian decompositions WW = F + £ of W.
In particular, a necessary condition for reciprocity is that dim, VWV = dim_ W
(the input and output dimensions must be the same).

This leads to a connection to the theory of port-Hamiltonian systems!
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