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Finite-Dimensional System

Linear finite-dimensional continuous-time-invariant systems are typically modeled by

ẋ(t) = Ax(t) + Bu(t), t ≥ 0, x(0) = x0,

y(t) = Cx(t) + Du(t), t ≥ 0.
(1)

Here A, B, C, D, are operators (bounded for the moment),
u(t) ∈ U = the input space,
x(t) ∈ X = the state space,
y(t) ∈ Y = the output space (all Hilbert spaces).

A is the main operator,
B is the control operator,
C is the observation operator,
D is the feedthrough operator.

By a trajectory of this system we mean a triple of functions (x, u, y) satisfying (1) .

ECC-CDC 2005, Dec 14, 2005 2



Scattering H-Passive System

The system (1) is scattering H-passive (or simply scattering passive if H = 1X ) if
all trajectories satisfy the condition

d
dt

EH(x(t)) ≤ j(u(t), y(t)) a.e. on (s,∞), (2)

where EH is a positive storage function (Lyapunov function)

EH(x) = 〈Hx, x〉X , H > 0,

and j is the quadratic scattering supply rate

j(u, y) = ‖u‖2U − ‖y‖2Y =
〈
[ u

y ] ,
[

1U 0
0 −1Y

]
[ u
y ]

〉
U⊕Y

.
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The Kalman–Yakubovich–Popov Inequality

Condition (2) is equivalent to

2<〈Ax + Bu,Hx〉+ ‖Cx + Du‖2 ≤ ‖u‖2, x ∈ X , u ∈ U , (3)

which is usually rewritten in the form

[
HA + A∗H + C∗C HB + C∗D

B∗H + D∗C D∗D − 1U

]
≤ 0. (4)

This inequality is named after Kalman [Kal63], Yakubovich [Yak62], and Popov
[Pop61] (here in continuous time with scattering supply rate).

Problem: Find conditions on the coefficients A, B, C, D under which the KYP
inequality has at least one solution H > 0 .
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The Transfer Function and the Schur Class

We define the transfer function of the system (1) by

D̂(z) = D + C(z −A)−1B, z ∈ ρ(A).

We also introduce the Schur class S(U ,Y;C+) of holomorphic contractive functions

D̂ defined on C+ with values in B(U, Y ).

Here C+ = {z ∈ C | <z > 0} .
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Controllability and Observability

A finite-dimensional system is minimal if the dimension of the state space is the
smallest one among all systems with the same transfer function D.

The (finite-dimensional) system (1) is controllable if, given any z0 ∈ X and T > 0,
there exists some continuous function u on [0, T ] such that the solution of (1) with
x(0) = 0 satisfies x(T ) = z0.

The system (1) is observable if it has the following property: if both the input
function u and the output function y vanish on some interval [0, T ] with T > 0, then
necessarily the initial state x0 is zero.

Theorem 1 (Kalman). A finite-dimensional system is minimal if and only if it is
controllable and observable .
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The Finite-Dimensional KYP Theorem

Theorem 2 (Kalman–Yakubovich–Popov). Let Σ = ([ A B
C D ] ;X ,U ,Y) be a system

with dimX < ∞ and transfer function D̂.

(i) If the KYP inequality (4) has a solution H > 0 then C+ ⊂ ρ(A) and D̂|C+ ∈
S(U ,Y;C+). (Here D̂|C+ is the restriction of D̂ to C+.)

(ii) If Σ is minimal and D̂|C+ ∈ S(U ,Y;C+), then the KYP inequality (4) has a
solution H, i.e., Σ is scattering H-passive for some H > 0 .
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Infinite-Dimensional Setting
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Infinite-Dimensional Extensions

In the seventies the classical results on the KYP inequalities were extended to
systems with dimX = ∞ by Yakubovich and his students and collaborators (see
[Yak74, Yak75, LY76] and the references listed there). There is now also a rich
literature on this subject; see, e.g., the discussion in [Pan99] and the references cited
there.

However, as far as we know, in these and all later (continuous time) generalizations
it was assumed that either H itself is bounded or H−1 is bounded.

The infinite-dimensional discrete time KYP inequality with scattering supply rate
was studied by Arov, Kaashoek and Pik in [AKP05]. There both H and H−1 were
allowed to be unbounded.

Here we extend their result to continuous time .
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Why Unbounded H and H−1?

The operator H is very sensitive to the choice of the original norm in the state space,
and the boundedness of H and H−1 depends entirely on the choice of the original
norm in X .

By allowing both H and H−1 to be unbounded we can use an analogue of the
standard finite-dimensional procedure to determine whether a given transfer function
θ is a Schur function or not, namely to choose an arbitrary minimal realization of θ,
and then check whether the KYP inequality (4) has a positive (generalized) solution.
This procedure does not work if we insist on having H or H−1 bounded.

Thus, by allowing H and H−1 to be unbounded we enlarge the class of realizations
that can be used, and thereby simplify the modeling process .
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The Main Operator A

We shall use the continuous time setting of, e.g., [AN96], [Šmu86], [Sal89], [Sta05].

Postulate I. The main operator A is the generator of a C0-semigroup At, t ≥ 0, on
the Hilbert space X .

Denote
D(A) =: X1 ⊂ X ⊂ X−1 := [D(A∗)]∗.

The main operator A has a unique extension to a bounded linear operator X → X−1,
which we denote by Â.
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The Control Operator B

Postulate II. The control operator B satisfies B ∈ B(U ,X−1).

The first equation in (1) will be interpreted to take its values in X−1):

ẋ(t) = Âx(t) + Bu(t), t ≥ 0, x(0) = x0. (5)

This equation has the generalized solution (∀u ∈ C(R+;U))

x(t) = Âtx0 +
∫ t

0

Ât−sBu(s)ds . (6)
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The Main/Control Operator A&B

We define the combined main/control operator A&B by A&B =
[
Â B

]
|D(A&B),

where
[ x
u ] ∈ D(A&B) ⇔ Âx + Bu ∈ X .

If we choose smoother data, for example

u ∈ W 2
2,loc(R+;U) and

[ x0
u(0)

] ∈ D(A&B), (7)

then x is continuously differentiable in X ,
[

x(t)
u(t)

]
∈ D(A&B) for all t ∈ R+, and (5)

becomes
ẋ(t) = A&B

[
x(t)
u(t)

]
, t ≥ 0, x(0) = x0 . (8)
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The Observation/Feedthrough Operator C&D

We fix some operator C&D : [XU ] → Y, and define the output by

y(t) = C&D
[

x(t)
u(t)

]
.

Postulate III. C&D ∈ B(D(A&B),Y) (boundedness with respect to the graph norm
of A&B).

We can recover the observation operator C from C&D: We have [ x
0 ] ∈ D(A&B) if

and only if x ∈ X1, so we can define C ∈ B(X1,Y) by

Cx = C&D [ x
0 ] , x ∈ X1.

The system need not have a feed-through operator .
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The Transfer Function D̂ and the System Node

It can be proved that [
(z − Â)−1Bu

u

]
∈ D(A&B)

for all z ∈ ρ(A) and u ∈ U . We can therefore define the transfer function D̂ of the
system (9) by

D̂(z) = C&D
[

(z− bA)−1B
1U

]
, z ∈ ρ(A).

When Postulates I–III hold we call

Σ :=
(
[ A&B
C&D ] ;X ,U ,Y)

a system node. Here S := [ A&B
C&D ] is the system operator, with D(S) = D(A&B) .
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The Dynamics of the System Node

Thus, the extension of (1) that we shall use here is

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
=

[
A&B
C&D

] [
x(t)
u(t)

]
, t ≥ 0. (9)

This equation has a unique solution x ∈ C1(R+,X ) (given by (6)) whenever
u ∈ W 2

2,loc(R+;U) and
[ x0

u(0)

] ∈ D(A&B), and the output y satisfies y ∈ C(R+,Y).

System Node Summary: A generates a C0 semigroup on X with generator A,
B ∈ B(U ,X−1),
D(A&B) =

{
[ x
u ] ∈ [XU ]

∣∣∣ Âx + Bu ∈ X
}

,

A&B =
[
Â B

]
|D(A&B),

C&D ∈ B(D(A&B),Y) (graph norm on D(A&B)) .
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H-Passivity
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H-Passivity: General Setup

We allow both the storage operator H > 0 and its inverse H−1 to be unbounded.

This means that one must be very careful about the domains on which the different
operators act.

We rewrite the storage function EH in the form

EH(x) = ‖
√

Hx‖2, x ∈ D(
√

H),

where
√

H > 0 is the self-adjoint square root of H. This is equivalent to replacing
the operator H > 0 by the corresponding (closed) quadratic form induced by H .
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H-Passive System Node Σ :=
(
[ A&B
C&D ] ;X ,U ,Y)

: Definition

(i) H = H∗ > 0. Denote Q :=
√

H.

(ii) (Invariance): If u ∈ W 2,2
loc ([0,∞);U) and

[ x0
u(0)

] ∈ D(A&B) with x0 ∈ D(Q) and

A&B
[ x0

u(0)

] ∈ D(Q), then the solution x of (9) satisfies x(t), ẋ(t) ∈ D(Q) for
all t ≥ 0, and both Qx and Qẋ are continuous in X on [0,∞).

(iii) (Energy Inequality): Each solution of the type described in (ii) satisfies

〈Qx(t), Qx(t)〉X +
∫ t

0

‖y(s)‖2Y ds ≤ 〈Qx(0), Qx(0)〉X +
∫ t

0

‖u(s)‖2U ds. (10)
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The KYP Inequality: General Setup

We rewrite the KYP inequality in the same way (H = H∗ > 0 and Q =
√

H):

2<〈Q[A&B] [ x
u ] , Qx〉+ ‖C&D [ x

u ]‖2 ≤ ‖u‖2. (11)

This inequality should hold for the following natural set of data:

x ∈ D(Q), [ x
u ] ∈ D(A&B), A&B [ x

u ] ∈ D(Q). (12)

Under Postulate I, the resolvent set ρ(A) of A contains the right half-plane C+
ω =

{z ∈ C | <z > ω}, where

ω = lim sup
t→∞

1
t
log‖At‖.

We let ρ+
∞(A) be the (connected) component of ρ(A) ∩ C+ which contains C+

ω .
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The Generalized KYP Inequality for Σ :=
(
[ A&B
C&D ] ;X ,U ,Y)

(i) H = H∗ > 0. Denote Q :=
√

H.

(ii) (λ−A)−1D(Q) ⊂ D(Q) for some λ ∈ ρ+
∞(A).

(iii) (λ− Â)−1BU ⊂ D(Q) for some λ ∈ ρ+
∞(A).

(iv) The operator QAQ−1 is closable.

(v) For all [ x0
u0 ] ∈ D(A&B) with x0 ∈ D(Q) and A&B [ x0

u0 ] ∈ D(Q) we have

2<〈Q[A&B] [ x0
u0 ] , Qx0〉X + ‖C&D [ x0

u0 ]‖2Y ≤ ‖u0‖2U .
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H-Passivity ⇔ KYP-Inequality

Theorem 3. Let Σ := (S;X ,U ,Y) be a system node, and let H = H∗ > 0. Then
the following two conditions are equivalent:

(i) Σ is H-passive.

(ii) H is a generalized solution of the KYP-inequality.

One direction of the proof is fairly simple (the one which says that H-passivity of Σ
implies that H is a solution of the generalized KYP-inequality).

The proof of the converse is more difficult, especially the proof of the invariance
condition .
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The Modified Generalized KYP Inequality for Σ

(i) H = H∗ > 0. Denote Q :=
√

H.

(ii’) AtD(Q) ⊂ D(Q) for all t ∈ R+, and the function t 7→ QAtx0 is continuous on
R+ (with values in X ) for all x0 ∈ D(Q).

(iii’) R(B) ⊂ D(Q), where B is the input map of Σ (the map from the control to the
state).

(v) For all [ x0
u0 ] ∈ D(A&B) with x0 ∈ D(Q) and A&B [ x0

u0 ] ∈ D(Q) we have

2<〈Q[A&B] [ x0
u0 ] , Qx0〉X + ‖C&D [ x0

u0 ]‖2Y ≤ ‖u0‖2U .

This is an exact analogue of the discrete time case .
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Controllability, Observability, Restricted Schur Class

Σ is controllable if XC
Σ = X , where XC

Σ =
∨

λ∈ρ+∞(A)R((λ−A)−1B).

Σ is observable if XU
Σ = 0, where XU

Σ =
⋂

λ∈ρ+∞(A)N (C(λ−A)−1).

Σ is minimal if Σ is both controllable and observable.

Let Ω be an open connected subset of C+. A function θ belongs to the restricted
Schur class S(U ,Y; Ω) if it is the restriction to Ω of a function in S(U ,Y,C+).
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Connection H-Passivity ↔ Transfer Function

Theorem 4. Let D̂ be the transfer function of Σ :=
(
[ A&B
C&D ] ;X ,U ,Y)

.

(i) If the KYP inequality (11) has a solution H = H∗ > 0, then D̂|ρ+∞(A) ∈
S(U ,Y; ρ+

∞(A)).

(ii) If Σ is minimal and D̂|ρ+∞(A) ∈ S(U ,Y; ρ+
∞(A)), then the KYP inequality (11)

has a solution H = H∗ > 0 such that ΣH = Σ with the norm ‖x‖XH
= ‖√Hx‖X

is minimal.

Note: The KYP inequality says that ΣH is scattering passive (with H = 1XH
) .
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Ordering of Solutions of KYP Inequality

We denote the set of all solution H = H∗ > 0 satisfying the additional minimality
condition in poart (ii) above by Lmin

Σ .

Theorem 5. Let Σ be a minimal continuous time-invariant system of the type (9)

that satisfies Postulates I–III and the additional condition D̂|ρ+∞(A) ∈ S(U ,Y; ρ+
∞(A)).

Then Lmin
Σ 6= ∅, and it contains a minimal element H◦ and a maximal element H•:

H◦ ¹ H ¹ H• ∀H ∈ Lmin
Σ .

H1 ¹ H2 ⇔ D(
√

H2) ⊂ D(
√

H1) and ‖√H1x‖ ≤ ‖√H2x‖ ∀x ∈ D(
√

H2).

EH◦(·) is the available storage, and EH•(·) is the required supply (Willems).

H◦ is the optimal and H• is the ∗-optimal solution of the KYP inequality (Arov) .
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H-stability

Let H = H∗ > 0. We define the notion of H-stability as stability with respect to
the norm

‖x‖H = ‖
√

Hx‖X
for the original system (1), and with respect to the norm

‖x‖H−1 = ‖
√

H−1x‖X

for the adjoint system. In the finite-dimensional case this is not important: all norms
in X are equivalent. However,

In the infinite-dimensional case the H-stability of the system depends strongly on H
(where H is a solution of the generalized KYP inequality).

For example, it may be exponentially H-stable for some H, and not even strongly
H-stable for some other H .
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An Example

Take an exponentially damped heat equation with damping coefficient α ≥ 1 on a
semi-infinite bar with Neumann control and Dirichlet observation.

The transfer function of this system is the Schur function

D̂(z) =
1√

z + α
, z ∈ C+.

The standard heat equation realization is self-adjoint and exponentially stable with
decay rate −α. This realization is a balanced passive realization in the sense of
[Sta05].

However, the system is not even strongly H•-stable (where H• is the maximal
solution of the generalized KYP inequality, corresponding to the required supply).
It is not adjoint strongly H◦-stable either (where H◦ is the minimal solution of the
generalized KYP inequality, corresponding to the available storage) .
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Further Extensions

Similar results are true in the impedance and transmission settings, as can be shown
by using the technique developed in [AS05a, AS05b, AS05c].

Instead of working with energy inequalities we can also work with energy balance
equations. In this case the system will be forward conservative or even conservative.

Analogous results also hold for the quadratic cost minimization problem and its dual.
The advantage with this approach is that we get rid of the finite cost condition. This
is current joint work with Mark Opmeer .
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15:639–668, 703, 1974. translation in Sib. Math. J. 15 (1974), 457–476
(1975).

ECC-CDC 2005, Dec 14, 2005 34



[Yak75] Vladimir A. Yakubovich. The frequency theorem for the case in which the
state space and the control space are Hilbert spaces, and its application
in certain problems in the synthesis of optimal control. II. Sibirsk. Mat.
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