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Abstracts

Scattering and Impedance Passive and Conservative Systems

Olof J. Staffans

(joint work with George Weiss)

In my talk I discussed systems which are either scattering or impedance passive
or conservative. There are several similarities between scattering and impedance
systems, but there are also significant differences.

In both cases we are talking about input/state/output systems, which have an
input u(t) in a Hilbert input space U , a state x(t) in a Hilbert state space X , and
an output y(t) in a Hilbert output space Y. The dynamics of the system is defined
by an equation of the type

(1)

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ 0,

where S is a closed densely defined operator from X ⊕ U to X ⊕ Y with domain
dom (S). We say that (x, u, y) is a classical trajectory of (1) if x is continuously
differentiable, u and y are continuous and, (1) holds.

In the case of a scattering passive system the classical trajectories satisfy the
power inequality

(2)
d

dt
‖x(t)‖2

X ≤ ‖u(t)‖2
U − ‖y(t)‖2

Y , t ≥ 0,

whereas the corresponding inequality for an impedance passive system is

(3)
d

dt
‖x(t)‖2

X ≤ (y(t), u(t))U , t ≥ 0;

in the impedance case we assume, in addition, that Y = U . In the case of conser-
vative systems the two inequalities above are replaced by equalities, and they are
required to hold both for the original systems, and for the dual systems that one
gets by replacing S by its adjoint S∗.

A scattering passive system is always well-posed, and in the case of a scattering
passive system the operator S is a so called system node. On the contrary, an
impedance passive system need not be well-posed, and it need not even be a
system node. However, impedance systems have a very simple characterization of
a different type. We can always split the operator S into two parts S =

[
A&B
C&D

]
,

where A&B maps dom (S) into the state space X and C&D maps dom (S) into

Y . Impedance passivity is characterized by the fact that the operator
[

A&B
−C&D

]
is

maximal dissipative.
There is a simple method that can be used to convert impedance passive systems

into scattering passive systems, which in the case of an impedance conservative
system results in a scattering conservative system. The idea is the following. If we
denote the impedance input by e (for ”effort”) and the impedance output by f (for
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”flow”), and if we map each trajectory (x(t), e(t), f(t)) of the impedance system[
ẋ(t)
f(t)

]
= Simp

[
x(t)
e(t)

]
into a new family of functions (x(t), u(t), y(t)) by taking

u(t) = 1√
2
[e(t) + f(t)],

y(t) = 1√
2
[e(t) − f(t)],

then this family is the set of classical trajectories of a scattering passive system[
ẋ(t)
y(t)

]
= Ssca

[
x(t)
u(t)

]
. The above mapping is called the external Cayley transform.

The above idea leads to the following theorem, which is proved in [WS10]:

Theorem 1. Let Simp =
[

[A&B]imp

[C&D]imp

]
be an operator mapping its domain dom (Simp) ⊂

X⊕U into X⊕U , such that T :=
[

[A&B]imp

−[C&D]imp

]
(with the same domain) is maximal

dissipative. Then the operator

(4) Eimp :=

[
I 0
0 I√

2

] ([
I 0
0 I

]
+

[
0 0

[C&D]imp

])

is injective on dom (Simp). We denote its range by dom (Ssca) and we define Ssca

(with domain dom (Ssca)) by

(5) Ssca =

[
[A&B]sca
[C&D]sca

]
:=

[
0 0
0 −I

]
+

([
0 0

0
√

2I

]
+

[
[A&B]imp

0 0

])
E−1

imp.

Then Ssca is a scattering passive system node and E−1
imp = Esca from (7).

We denote by Asca, Bsca and Csca the semigroup generator, the control operator

and the observation operator of Ssca, and we denote by D̂sca its transfer function.
Then, for all s ∈ C+,
(6)[

(sI − Asca)
−1 1√

2
(sI − Asca)

−1Bsca

1√
2
Csca(sI − Asca)

−1 1
2 (I + D̂sca(s))

]
=

([
sI 0
0 I

]
−

[
[A&B]imp

−[C&D]imp

])−1

.

The operator Simp can be recovered from Ssca via the formulas

(7) Esca :=

[
I 0
0 I√

2

]([
I 0
0 I

]
+

[
0 0

[C&D]sca

])
,

(8) Simp =

[
0 0
0 −I

]
+

([
0 0

0
√

2I

]
+

[
[A&B]sca
0 0

])
E−1

sca.

The system node Ssca is scattering conservative if and only if T is skew-adjoint.

The above theorem can be used to construct many interesting scattering passive
or conservative system nodes by applying the external Cayley transform to an
impedance passive or conservative system. The proofs of the result mentioned in
the abstract by George Weiss in this mini workshop are partially based on the
above theorem.

Generally speaking, many equations from mathematical physics come naturally
in an impedance formulation. For example, in an electrical system there is a
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natural division of signals into pairs of voltages and currents, the product of which
gives the power. The name ”impedance” is, in fact, taken from circuit theory,
where it is used for the transfer function from current inputs to voltage outputs. A
similar situation occurs in many partial differential equations, where the boundary
conditions naturally split into conditions of Dirichlet and Neumann types.

Often the impedance formulation is algebraically simpler to work with than the
scattering formulation, but on the other hand, the scattering version of a system
has better well-posedness properties.
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