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Abstract

We formulate a minimax game which is equivalent to the

Nehari problem in the sense that this minimax game is

well-posed if and only if the Hankel norm of a given oper-

ator is less than a prescribed constant . This game and

the dual game provide us with physical interpretations

of the Riccati operators that are commonly used in the

solution of the Nehari problem.

1 Introduction

Let D be a bounded linear causal time-invariant mapping

from L

2

(R;U) to L

2

(R;Y ), where U and Y are Hilbert

spaces. The Nehari problem is connected to the Han-

kel norm of D, which is de�ned as (the notations are

explained in the next section)

k�

+

D�

�

k = sup

u2L

2

(R

�

;U)

kD�

�

uk

L

2

(R

+

;Y )

: (1)

The Nehari theorem says in the �nite-dimensional case

(where the Laplace transform of D is a rational matrix-

valued function) that k�

+

D�

�

k �  if and only if it

is possible to �nd an anti-causal bounded linear time-

invariant operator U

�

from L

2

(R;U) to L

2

(R;Y ) such

that kD � U

�

k � ; here kD � U

�

k is the operator norm

of D�U

�

. We get the \suboptimal" version of the same

theorem by replacing \�" by \<". In the sequel we

study only the simpler, suboptimal case, but we allow the

Laplace transform of D to be an arbitrary (non-rational)

H

1

function. We also allow U and Y to be in�nite-

dimensional.

One standard proof of the (suboptimal) Nehari the-

orem is based on a J-spectral factorization, either di-

rectly in the frequency domain, or by use of a state space

method. This solution is very similar to the solution of

the suboptimal full information H

1

problem. It is well-

known that the latter problem also has a game-theoretic

interpretation, but to the best of our knowledge, no such

interpretation has been available for the Nehari problem

up to now. Our game-theoretic interpretation makes it

possible to study the Nehari problem with a technique

that is almost identical to the technique used for the full

information H

1

problem in [14, 15].

2 The Minimax Game

We use a combination of frequency domain and state

space methods and start with a given realization of D

as the input/output map of a stable well-posed linear

system 	 = [

A B

C D

] (such a realization always exists; see

[10, Theorem 4.3] or [12, De�nition 2.10]).

We denote R

+

= [0;1), R

�

= (�1; 0),

(�

J

u)(s) =

(

u(s); s 2 J;

0; s =2 J;

for all J � R;

�

+

u = �

R

+
; �

�

u = �

R

�
;

(�

t

u)(s) = u(t+ s); �1 < t; s <1:

De�nition 1 Let U , X, and Y be Hilbert spaces. A sta-

ble well-posed linear system 	 on (U;X; Y ) is a quadru-

ple 	 = [

A B

C D

] of continuous linear operators satisfying

the following conditions:

(i) t 7! A

t

is a bounded strongly continuous semigroup

of operators on X;

(ii) B : L

2

(R;U) ! X satis�es A

t

Bu = B�

t

�

�

u, for all

u 2 L

2

(R;U) and all t 2 R

+

;

(iii) C : X ! L

2

(R;Y ) satis�es CA

t

x = �

+

�

t

Cx, for all

x 2 X and all t 2 R

+

;

(iv) D : L

2

(R;U) ! L

2

(R;Y ) satis�es �

t

Du = D�

t

u,

�

�

D�

+

u = 0, and �

+

D�

�

u = CBu, for all u 2

L

2

(R;U) and all t 2 R.



The di�erent components of 	 are called as follows: U

is the input space, X is the state space, Y is the output

space, A is the semigroup, B is the input map, BB

�

is the

controllability Gramian, C is the output map, C

�

C is the

observability Gramian, and D is the input-output map.

Here the condition �

t

D = D�

t

in (iv) says that D is

time-invariant, the condition �

�

D�

+

= 0 says that D

is causal, and the condition �

+

D�

�

= CB says that the

Hankel operator ofD can be factored into the product CB.

We denote the set of all bounded linear time-invariant op-

erators from L

2

(R;U) into L

2

(R;Y ) by TI(U ;Y ), and

TIC(U ;Y ) stands for operators that are, in addition,

causal. We abbreviate TIC(U ;U) to TIC(U). It is

not di�cult to show that the adjoint of an operator in

TIC(U ;Y ) is an anti-causal operator in TI(Y ;U) (i.e.,

�

+

D�

�

= 0). For more details, explanations, and ex-

amples, we refer the reader to [9]{[10], [11]{[15], [16]{[19]

and the references therein.

Usually the state x and output y of a well-posed linear

system are de�ned so that they correspond to the solu-

tion to a Cauchy problem (nonhomogeneous initial value

problem) of the type

x

0

(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t); t 2 R

+

;

x(0) = x

0

;

(2)

which means that x and y are given by

x(t) = A

t

x

0

+ B�

t

�

+

u; t 2 R

+

;

y = C x

0

+D�

+

u:

(3)

Here A

t

is the semigroup generated by A (it maps the

initial state x

0

2 H into the �nal state x(t) 2 H), B�

t

�

+

is the map from the input u 2 L

2

(R

+

;U) to the �nal

state x(t), C is the map from the initial state x

0

to the

output y 2 L

2

(R

+

;Y ), and D�

+

is the input-output map

from u to y.

In the two player game that we construct for the Nehari

problem, we add an extra term and use a di�erent notion

of state and output. This has to do with the fact that

we are interested in the Hankel operator �

+

D�

�

of D,

which maps u 2 L

2

(R

�

;U) into y 2 L

2

(R

+

;Y ), i.e, we

are primarily interested in the values of u on R

�

and the

values of y on R

+

. The system that we use in the Nehari

problem can be described in di�erential form by

x

0

(t) = Ax(t) +B�

�

u(t);

y(t) = Cx(t) + �

�

v(t) +D�

�

u(t); t 2 R;

x(0+) = x(0�) + x

0

;

(4)

or in integral form by

x(t) = B�

t

�

�

u; t 2 R

�

;

x(t) = A

t

x

0

+ B�

t

�

�

u; t 2 R

+

;

�

�

y = �

�

v + �

�

D�

�

u;

�

+

y = Cx

0

+ �

+

D�

�

u:

(5)

These equations contain two inputs, namely the previous

u 2 L

2

(R

�

;U) and the additional v 2 L

2

(R

�

;Y ). Both

of these inputs vanish on R

+

, whereas both x and y are

allowed to be nonzero on all ofR. Clearly, by interpreting

A

t

x

0

to be zero for t 2 R

�

, we can simplify the preceding

equations to

x(t) = A

t

x

0

+ B�

t

�

�

u; t 2 R;

y = Cx

0

+ �

�

v +D�

�

u

(6)

(observe that by De�nition 1(iii) the term Cx

0

vanishes

on R

�

).

Fix some  > 0. For each x

0

2 H , v 2 L

2

(R

�

;Y ) and

u 2 L

2

(R

�

;U) we de�ne the cost

Q(x

0

; v; u) =

Z

1

�1

ky(t)k

2

Y

dt� 

2

Z

1

�1

ku(t)k

2

U

dt

=

Z

1

�1

ky(t)k

2

Y

dt� 

2

Z

0

�1

ku(t)k

2

U

dt:

(7)

The related minimax problem is to �rst minimize

Q(x

0

; v; u) for each �xed x

0

2 H and u 2 L

2

(R

�

;U)

with respect to v 2 L

2

(R

�

;Y ) to get

Q

min

(x

0

; u) = min

v2L

2

(R

�

;Y )

Q(x

0

; v; u); (8)

and then to maximize Q

min

(x

0

; u) for each �xed x

0

2 H

with respect to u 2 L

2

(R

�

;U) to get

Q

opt

(x

0

) = max

u2L

2

(R

�

;U)

Q

min

(x

0

; u): (9)

The minimization step is actually trivial in the sense that

the obvious solution is to take

v

min

(x

0

; u) = ��

�

D�

�

u;

this will make �

�

y

min

(x

0

; u) = 0 and

Q

min

(x

0

; u) =

Z

1

0

ky(t)k

2

Y

dt� 

2

Z

0

�1

ku(t)k

2

U

dt

= kCx

0

+ �

+

D�

�

uk

2

L

2

(R

+

;Y )

� 

2

kuk

2

L

2

(R

�

;U)

:

(10)

3 Equivalent Nehari Conditions

As the following theorem shows, there are a number of

conditions that are equivalent to the Nehari condition

k�

+

D�

�

k < . (Below L(U ;Y ) stands for the set of all

bounded linear operators U ! Y .)

Theorem 1 Referring to the list of conditions given be-

low, we have (IV) ) (V) ) (VI) ) (I) ) (II) ) (III).

If both U and Y are �nite-dimensional and D is of the

form

(Du)(t) = Du(t) +

Z

t

�1

E(t� s)u(s) ds; (11)



where D 2 L(U ;Y ) and E 2 L

1

(R

+

;L(U ;Y )) (i.e., the

system has an L

1

impulse response), then (III) ) (IV).

Thus, conditions (I){(VI) are equivalent if both U and Y

are �nite-dimensional and D is of the form (11).

(I) The Hankel norm k�

+

D�

�

k of D satis�es

k�

+

D�

�

k < ;

(II) The spectral radius of the product of the controllabil-

ity and observability Gramians is less than 

2

.

(III) For each x

0

2 H and u 2 L

2

(R

�

;U), the

function v 7! Q(x

0

; v; u) is uniformly convex on

L

2

(R

�

;Y ), and, for each x

0

2 H, the function

u 7! Q

min

(x

0

; u) = min

v2L

2

(R

�

;Y )

Q(x

0

; v; u) is uni-

formly concave on L

2

(R

�

;U);

(IV) There exists an operator X =

�

X

11

X

12

X

21

X

22

�

2 TIC(Y �

U) satisfying

�

I D

0 I

�

�

�

I 0

0 �

2

I

� �

I D

0 I

�

=

�

X

11

X

12

X

21

X

22

��

I 0

0 �I

��

X

11

X

12

X

21

X

22

�

�

;

such that X has an inverse in TIC(Y �U) and X

11

has an inverse in TIC(Y ).

(V) There exists a so called central anti-causal operator

U

�

2 TI(U ;Y ) such that the operator norm of D �

U

�

2 TI(U ;Y ) satis�es kD � U

�

k < ;

(VI) There exists an anti-causal operator U

�

2 TI(U ;Y )

such that the operator norm of D � U

�

2 TI(U ;Y )

satis�es kD � U

�

k < ;

In the �nite-dimensional case Theorem 1 is, of course,

well known (except that we have not seen the minimax

condition (III) used in this connection before); see, e.g.,

[1] and the comments in [8, Section 10.7]. In the case

where both U and Y are �nite-dimensional andD is of the

form (11) our in�nite-dimensional version is essentially

the same as the one found in [2] (again with the exception

of (III)). See also [3, 4, 5, 6, 7].

The operator X in (IV) is called a J

1

-co-spectral factor

of [

I D

0 I

]

�

J



[

I D

0 I

], where J

1

=

�

I 0

0 �I

�

and J



=

h

I 0

0 �

2

I

i

.

The extra invertibility condition on X

11

is not part of

the de�nition of a spectral factor; this condition is an

essential addition to (IV). The operator U

�

in (V) and

(VI) is called a suboptimal Nehari extension of D. If we

denote the inverse of X in (IV) by Y , then the central

suboptimal Nehari extension U

�

in (V) is given by U

�

=

(X

�

11

)

�1

X

�

21

= �Y

�

21

(Y

�

22

)

�1

. The word \central" refers

to the fact that this compensator corresponds to the zero

value of the parameter V in the parameterization of all

possible compensators U

�

in (VI) given in Theorem 3

below.

4 A Realization of the Spectral Factor

In the �nite-dimensional case (and and some in�nite-

dimensional ones), one usually connects conditions (I){

(VI) to the existence of the solutions of two Riccati equa-

tions. These Riccati equations play an important role in

the construction of state space realizations of the spectral

factor X and its inverse Y . We are able to derive similar

realizations in the in�nite-dimensional case directly from

the original system and from the spectral factor and its

inverse, without involving the Riccati equations. (By a

realization of X or Y we mean a well-posed linear sys-

tem with input and output space equal to Y � U whose

input-output map is X or Y .)

Theorem 2 The spectral factor X in (IV) has the real-

ization

2

4

A

�

H

1

H

2

�

�

C

K

0

� �

X

11

X

12

X

21

X

22

�

3

5

;

and its inverse Y has the realization

2

4

A

�

H

0

B

�

�

K

1

K

2

� �

Y

11

Y

12

Y

21

Y

22

�

3

5

;

where the input and output maps above are given by

H

0

= �BD

�

�

�

; K

0

= �

+

D

�

C;

H

1

= BY

�

12

�

�

; K

1

= �

+

X

�

11

C;

H

2

= �BY

�

22

�

�

; K

2

= ��

+

X

�

12

C:

These input and output maps have been constructed

according to the recipes given in [13, Lemmas 4.10 and

4.12]. Observe, in particular, the occurrance of the origi-

nal output map C in the �rst realization, and the original

input map B in the second. We remark that it is possible

to get two alternative realizations of X and Y by invert-

ing the two systems given above; these inverted systems

are similarity transformed versions of the realizations pre-

sented here.

5 Parameterization of all Suboptimal

Anti-Causal Nehari Extensions

The appropriate parameterization of all anti-causal sub-

optimal Nehari extensions obeys the familiar formula:

Theorem 3 Assuming (IV), we can parameterize all

anti-causal suboptimal Nehari extensions (i.e., all anti-

causal solutions to kD � U

�

k < ) as

U

�

= (X

�

11

� V

�

X

�

12

)

�1

(X

�

21

� V

�

X

�

22

)

= � (Y

�

11

V

�

+ Y

�

21

) (Y

�

12

V

�

+ Y

�

22

)

�1

;

(12)

where V 2 TIC(Y ;U) satis�es kVk < 1 but is otherwise

arbitrary. By taking kVk � 1 instead of kVk < 1, we

get a parameterization of all Nehari extensions satisfying

kD � U

�

k � .
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0

�

+

�
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�

K

�

1

K

�

2
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�

0

Y

�

11

� I Y

�
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�
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�

12

Y

�

22

� I

x

V

�

�

�

v

�

�

u

�

Figure 1: Parameterization of suboptimal Nehari exten-

sions U

�

: �

�

u 7! �

�

v

It is possible to get an anti-causal state space realiza-

tion of this parameterization that is very similar to the

corresponding causal realization of the parameterization

of the solution to the full informationH

1

problem. Com-

pare the anti-causal Figure 1 to the corresponding causal

Figure 13 in [15]. In this �gure the suboptimal Nehari

extension U

�

is the input-output map from �

�

u to �

�

v.

6 The Riccati Equation

Our investigation of to what extent (I){(VI) are equiva-

lent to the solvability of the two standard Nehari Riccati

equations, is still incomplete. However, it is easy to show

that the optimal cost Q

opt

(x

0

) can be written in the form

Q

opt

(x

0

) = hx

0

;�x

0

i;

where the Riccati operator � is given by

� = C

�

(

2

I � CBB

�

C

�

)

�1

C = C

�

C(

2

I � BB

�

C

�

C)

�1

(it follows from (II) that 

2

I�BB

�

C

�

C is invertible). The

same operator � appears in the �nite-dimensional theory

as the solution to one of the two Riccati equations for

this problem. See, for example, [4], where this operator

is denoted by X . If we, instead, apply the same minimax

approach with D replaced by its adjoint D

�

, then we get

the operator (denoted by W in [4]) which is known to

be the solution of the second of the two Nehari Riccati

equations.
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