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Abstract

We formulate a minimax game which is equivalent to the
Nehari problem in the sense that this minimax game is
well-posed if and only if the Hankel norm of a given oper-
ator is less than a prescribed constant . This game and
the dual game provide us with physical interpretations
of the Riccati operators that are commonly used in the
solution of the Nehari problem.

1 Introduction

Let D be a bounded linear causal time-invariant mapping
from L?(R;U) to L*(R;Y), where U and Y are Hilbert
spaces. The Nehari problem is connected to the Han-
kel norm of D, which is defined as (the notations are
explained in the next section)

(1)

lmsDr_|| = sup

||D7r,u||L2(R+;y) .

ueL?(R—;U)
The Nehari theorem says in the finite-dimensional case
(where the Laplace transform of D is a rational matrix-
valued function) that ||[74D7_|| < v if and only if it
is possible to find an anti-causal bounded linear time-
invariant operator &* from L?(R;U) to L*(R;Y’) such
that ||D — U*|| < v; here ||D — U*|| is the operator norm
of D —U*. We get the “suboptimal” version of the same
theorem by replacing “<” by “<”. In the sequel we
study only the simpler, suboptimal case, but we allow the
Laplace transform of D to be an arbitrary (non-rational)
H® function. We also allow U and Y to be infinite-
dimensional.

One standard proof of the (suboptimal) Nehari the-
orem is based on a J-spectral factorization, either di-
rectly in the frequency domain, or by use of a state space
method. This solution is very similar to the solution of
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the suboptimal full information H* problem. It is well-
known that the latter problem also has a game-theoretic
interpretation, but to the best of our knowledge, no such
interpretation has been available for the Nehari problem
up to now. Our game-theoretic interpretation makes it
possible to study the Nehari problem with a technique
that is almost identical to the technique used for the full
information H* problem in [14, 15].

2 The Minimax Game

We use a combination of frequency domain and state
space methods and start with a given realization of D
as the input/output map of a stable well-posed linear
system ¥ = [4 B] (such a realization always exists; see
[10, Theorem 4.3] or [12, Definition 2.10]).

We denote Rt = [0, 00), R™ = (—00,0),

u(s), s € J,
(ryu)(s) = {0’( ) oy for all J C R,
TLU = TR+, T—-U=TR-,

(T'u)(s) = u(t +5), —oo<t,s8< 0.
Definition 1 Let U, X, and Y be Hilbert spaces. A sta-
ble well-posed linear system ¥ on (U, X,Y) is a quadru-
ple ¥ = [é‘ B1 of continuous linear operators satisfying
the following conditions:

(i) t — A is a bounded strongly continuous semigroup
of operators on X ;

(ii) B: L>(R;U) — X satisfies A'Bu = Brtn_u, for all
u € L2(R;U) and all t € RY;

(i) C: X — L*(R;Y) satisfies CA'z = n .7'Cx, for all
z€X and allt € RT;

(iv) D: L>(R;U) — L?*(R;Y) satisfies 7'Du = Drlu,
m_Drnyu = 0, and 7 Dn_u = CBu, for all u €
L?>(R;U) and all t € R.



The different components of ¥ are called as follows: U
is the input space, X is the state space, Y is the output
space, A is the semigroup, B is the input map, BB* is the
controllability Gramian, C is the output map, C*C is the
observability Gramian, and D is the input-output map.

Here the condition 78D = D7t in (iv) says that D is
time-invariant, the condition 7_Dry = 0 says that D
is causal, and the condition 7. Dr_ = CB says that the
Hankel operator of D can be factored into the product CB.
We denote the set of all bounded linear time-invariant op-
erators from L?(R;U) into L*(R;Y) by TI(U;Y), and
TIC(U;Y) stands for operators that are, in addition,
causal. We abbreviate TIC(U;U) to TIC(U). It is
not difficult to show that the adjoint of an operator in
TIC(U;Y) is an anti-causal operator in TI(Y;U) (i.e.,
71 Drn_ = 0). For more details, explanations, and ex-
amples, we refer the reader to [9]-[10], [11]-][15], [16]-[19]
and the references therein.

Usually the state z and output y of a well-posed linear
system are defined so that they correspond to the solu-
tion to a Cauchy problem (nonhomogeneous initial value
problem) of the type

2'(t) = Az(t) + Bu(t),

y(t) = Cx(t) + Du(t), teR', (2)
z(0) = xo,
which means that = and y are given by
z(t) = Alzo + Brlriu, teRT, 3)

y= Cxo+ Dryu.

Here A? is the semigroup generated by A (it maps the
initial state g € H into the final state z(t) € H), Brin,
is the map from the input v € L?(R*;U) to the final
state z(t), C is the map from the initial state zo to the
output y € L2(R*;Y), and Dr, is the input-output map
from u to y.

In the two player game that we construct for the Nehari
problem, we add an extra term and use a different notion
of state and output. This has to do with the fact that
we are interested in the Hankel operator 7. Dm_ of D,
which maps u € L2(R™;U) into y € L2(RT;Y), i.e, we
are primarily interested in the values of © on R~ and the
values of y on Rt. The system that we use in the Nehari
problem can be described in differential form by

x'(t) = Ax(t) + Br_u(t),

y(t) =Cx(t) + m_v(t) + Dr_u(t), teR, (4)
z(04+) = 2(0—) + =0,
or in integral form by
z(t) = Brln_u, teR™,
z(t) = Alwg + Brin_u, teRT, )

m_y=7m_v+rm_Dr_u,

m+y = Cxo + 14 Dr_u.

These equations contain two inputs, namely the previous
u € L>(R7;U) and the additional v € L2(R™;Y). Both
of these inputs vanish on R*, whereas both = and y are
allowed to be nonzero on all of R. Clearly, by interpreting
Atz to be zero for t € R™, we can simplify the preceding
equations to

z(t) = Alzog + Brln_u, teR,
y=Cxro+m_v+Dr_u

(6)

(observe that by Definition 1(iii) the term Cxzo vanishes
on R7).

Fix some v > 0. For each 2o € H, v € L>(R™;Y) and
u € L2(R™;U) we define the cost

l/“mum%#—v{/mmmm%m

—00 —00

Q(l’o,’U,U)

(7)

00 0
/|mm@m—f/ lu®)|13 dt.

The related minimax problem is to first minimize

Q(zo,v,u) for each fixed zop € H and u € L*(R™;U)
with respect to v € L2(R™;Y) to get

min — : 8

Q ('T07u) UGLE(I%{I—;y)Q(IO’U’U)’ ( )

and then to maximize Q™" (2, u) for each fixed zo € H
with respect to u € L?(R™;U) to get

Qopt (370) — Qmin(mo, U,).

max
weL2(R—;U)

9)

The minimization step is actually trivial in the sense that
the obvious solution is to take

,Umin(

xo,u) = —m_Dr_u;

this will make 7_y™"(zq,u) = 0 and

Ju(®)I[ dt

[ee) 0
@mmumm:;A mum%m—v{/

- 10
= Cz0 + 7 Dl gy 1o

- 72||u||%2(R—;U)'

3 Equivalent Nehari Conditions

As the following theorem shows, there are a number of
conditions that are equivalent to the Nehari condition
|72 Dr—|| < v. (Below L(U;Y) stands for the set of all
bounded linear operators U — Y'.)

Theorem 1 Referring to the list of conditions given be-
low, we have (IV) = (V) = (VI) = (1) = (II) = (III).
If both U and Y are finite-dimensional and D is of the
form

(Du)(t) = Du(t) + [ B(t—syu(s)ds, (1)



where D € L(U;Y) and E € LY(R*; L(U;Y)) (i.e., the
system has an L' impulse response), then (III) = (IV).
Thus, conditions (I)-(VI) are equivalent if both U and Y
are finite-dimensional and D is of the form (11).

(I) The Hankel
[l D] <;

norm ||myDr_|| of D satisfies

(IT) The spectral radius of the product of the controllabil-
ity and observability Gramians is less than .

(IIT) For each ©o € H and u € L*(R7;U), the
function v — Q(zo,v,u) is uniformly convexr on
L?>(R™;Y), and, for each xy € H, the function
u = QMM (zg,u) = min, 2 g,y Q(To, v, u) is uni-
formly concave on L2(R™;U);

There exists an operator X = [21 22] eTIC(Y x

U) satisfying

I D[ o I D

0 I| [0 —21||0 T

| X A [T 0 (X
Xoo| 10 =T | Ao

| Ay
such that X has an inverse in TIC(Y x U) and X1
has an inverse in TIC(Y).

(1V)

Xio]”
Ao

(V) There exists a so called central anti-causal operator
U* € TI(U;Y) such that the operator norm of D —
U* € TI(U;Y) satisfies ||D —U*|| < v;

(VI) There exists an anti-causal operator U* € TI(U;Y)
such that the operator norm of D —U* € TI(U;Y)

satisfies ||D — U*|| < v;

?

In the finite-dimensional case Theorem 1 is, of course,
well known (except that we have not seen the minimax
condition (IIT) used in this connection before); see, e.g.,
[1] and the comments in [8, Section 10.7]. In the case
where both U and Y are finite-dimensional and D is of the
form (11) our infinite-dimensional version is essentially
the same as the one found in [2] (again with the exception
of (III)). See also [3, 4, 5, 6, 7].

The operator X in (IV) is called a Ji -co-spectral factor
of [LD1" J, [L D], where J; = [} %] and J, = [(I) _321].
The extra invertibility condition on X}; is not part of
the definition of a spectral factor; this condition is an
essential addition to (IV). The operator * in (V) and
(VI) is called a suboptimal Nehari extension of D. If we
denote the inverse of X' in (IV) by Y, then the central
suboptimal Nehari extension U* in (V) is given by U* =
(X)) X5 = =Y5(V3,)~t. The word “central” refers
to the fact that this compensator corresponds to the zero
value of the parameter V in the parameterization of all
possible compensators U* in (VI) given in Theorem 3
below.

4 A Realization of the Spectral Factor

In the finite-dimensional case (and and some infinite-
dimensional ones), one usually connects conditions (I)—
(VI) to the existence of the solutions of two Riccati equa-
tions. These Riccati equations play an important role in
the construction of state space realizations of the spectral
factor X and its inverse ). We are able to derive similar
realizations in the infinite-dimensional case directly from
the original system and from the spectral factor and its
inverse, without involving the Riccati equations. (By a
realization of X or ) we mean a well-posed linear sys-
tem with input and output space equal to Y x U whose
input-output map is X or ).)

Theorem 2 The spectral factor X in (IV) has the real-
1zation

A [H1 Ho] ]
[C ] {Xn X12} )
L[ Ko Xo1 Aoa| |

and its inverse ) has the realization

A [Ho B

|:IC1:| P’n y12:| ;
BLes Vo1 Vaz| |

where the input and output maps above are given by

Ho = —BD*m_, Ko = 1+ D*C,
Hi = BYfsm_, K1 =mpXC,
Ho = —BY3om_, Ko = —m1 X5C.

These input and output maps have been constructed
according to the recipes given in [13, Lemmas 4.10 and
4.12]. Observe, in particular, the occurrance of the origi-
nal output map C in the first realization, and the original
input map B in the second. We remark that it is possible
to get two alternative realizations of X' and ) by invert-
ing the two systems given above; these inverted systems
are similarity transformed versions of the realizations pre-
sented here.

5 Parameterization of all Suboptimal
Anti-Causal Nehari Extensions

The appropriate parameterization of all anti-causal sub-
optimal Nehari extensions obeys the familiar formula:

Theorem 3 Assuming (IV), we can parameterize all
anti-causal suboptimal Nehari extensions (i.e., all anti-
causal solutions to ||D —U*|| < v) as

U= (Xl*l - V*Xﬁ)il (X2*1 - V*X2*2)
= —EV V) VLV +Y5)

where ¥V € TIC(Y;U) satisfies ||V|| < 1 but is otherwise
arbitrary. By taking ||V|| < 1 instead of ||V|| < 1, we
get a parameterization of all Nehari extensions satisfying
1D = U] <.

(12)
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Figure 1: Parameterization of suboptimal Nehari exten-
sions U*: m_u > T_v

It is possible to get an anti-causal state space realiza-
tion of this parameterization that is very similar to the
corresponding causal realization of the parameterization
of the solution to the full information H problem. Com-
pare the anti-causal Figure 1 to the corresponding causal
Figure 13 in [15]. In this figure the suboptimal Nehari
extension U/* is the input-output map from 7_u to m_v.

6 The Riccati Equation

Our investigation of to what extent (I)—(VI) are equiva-
lent to the solvability of the two standard Nehari Riccati
equations, is still incomplete. However, it is easy to show
that the optimal cost Q°P*(zy) can be written in the form

Q" (o) = (o, o),
where the Riccati operator II is given by
I =C*(y*T — CBB*C*)~'C = C*C(v*I — BB*C*C)™!

(it follows from (II) that v21 —BB*C*C is invertible). The
same operator II appears in the finite-dimensional theory
as the solution to one of the two Riccati equations for
this problem. See, for example, [4], where this operator
is denoted by X . If we, instead, apply the same minimax
approach with D replaced by its adjoint D*, then we get
the operator (denoted by W in [4]) which is known to
be the solution of the second of the two Nehari Riccati
equations.
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