Well-Posed State/Signal Systems in Continuous Time

Mikael Kurula Åbo Akademi University Department of Mathematics FIN-20500 Åbo, Finland http://web.abo.fi/~mkurula/

Abstract—We introduce the notion of a well-posed linear state/signal system in continuous time, thereby complementing the corresponding discrete time theory developed by Damir Arov and the second author. A linear state/signal system has a state space \mathcal{X} and a signal space \mathcal{W} , where the state space acts like an internal memory, and the signal space allows interactions with the surrounding world. A state/signal system resembles an input/state/output system apart from the fact that inputs and outputs are not separated from each other. This system is well-posed if it is possible to decompose the signal space W into a direct sum of an input space \mathcal{U} and an output space \mathcal{Y} so that this decomposition results in a well-posed input/state/output system. Such a decomposition of W is called an admissible input/output pair. We give different characterizations of well-posedness and input/output admissibility, in terms of either classic or generalized trajectories of the system. Finally we mention some work in progress.

A classical trajectory on a time interval [0,T] of a linear continuous time-invariant s/s (= state/signal) node $\Sigma = (V; \mathcal{X}, \mathcal{W})$ with a Banach state space \mathcal{X} and a Banach signal space \mathcal{W} consists of a continuously differentiable state component $x(t) \in \mathcal{X}$ and a continuous signal component $w(t) \in \mathcal{W}$. The evolution of these trajectories is determined by a condition of the type

$$\begin{bmatrix} \dot{x}(t)\\ x(t)\\ w(t) \end{bmatrix} \in V, \qquad t \in [0,T], \qquad x(0) = x_0, \qquad (1)$$

where x_0 is a given initial state at time zero and V is the so called *generating subspace* of Σ . We throughout require V to satisfy (at least) the following three conditions:

- (i) V is a closed subspace of $\mathcal{X} \times \mathcal{X} \times \mathcal{W}$;
- (ii) If $\begin{bmatrix} z \\ 0 \\ 0 \end{bmatrix} \in V$ then z = 0;
- (iii) There is a T > 0 such that for each $\begin{bmatrix} z_0 \\ w_0 \\ w_0 \end{bmatrix} \in V$ there exists at least one classical trajectory $\begin{bmatrix} x \\ w \end{bmatrix} \circ \Sigma$ on $\begin{bmatrix} 0, T \end{bmatrix}$ with $\begin{bmatrix} \dot{x}(0) \\ x(0) \\ w(0) \end{bmatrix} = \begin{bmatrix} z_0 \\ w_0 \\ w_0 \end{bmatrix}$.

Classical trajectories on the time interval $\left[0,\infty\right)$ are defined in the same way.

For the rest of this note we fix some $p \in [1, \infty)$. By a generalized trajectory of Σ on the time interval [0,T]we mean a pair of functions $x \in C([0,T]; \mathcal{X})$ and $w \in L^p([0,T]; \mathcal{W})$ which can be approximated by a sequence

This work was supported by grant number 201016 from the Academy of Finland.

Olof J. Staffans Åbo Akademi University Department of Mathematics FIN-20500 Åbo, Finland http://web.abo.fi/~staffans/

of classical trajectories $\begin{bmatrix} x_n \\ w_n \end{bmatrix}$ in the sense that $x_n \to x$ in $C([0,T]; \mathcal{X})$ and $w_n \to w \in L^p([0,T]; \mathcal{W})$ as $n \to \infty$. By a generalized trajectory of Σ on the time interval $[0,\infty)$ we mean a pair of functions $\begin{bmatrix} x \\ w \end{bmatrix}$ whose restriction to any finite interval [0,T] is a generalized trajectory on [0,T]. We denote the set of classical trajectories of Σ on [0,T] and $[0,\infty)$ by $\mathfrak{V}[0,T]$ and \mathfrak{V} , respectively, and the set of generalized trajectories of Σ on [0,T] and $[0,\infty)$ by $\mathfrak{V}[0,T]$ and \mathfrak{V} , respectively. Finally, $\mathfrak{V}_0[0,T] = \{\begin{bmatrix} x \\ w \end{bmatrix} \in \mathfrak{V}[0,T] \mid \begin{bmatrix} x^{(0)} \\ w^{(0)} \end{bmatrix} = 0 \}$ and $\mathfrak{W}_0[0,T] = \{\begin{bmatrix} x \\ w \end{bmatrix} \in \mathfrak{W}[0,T] \mid x(0) = 0 \}$.

In Definition 1 below we introduce the notion of a *well-posed* s/s node. We begin by decomposing the signal space \mathcal{W} of Σ into a direct sum $\mathcal{W} = \mathcal{U} + \mathcal{Y}$. Let $\mathcal{P}_{\mathcal{U}}^{\mathcal{Y}}$ be the projection in \mathcal{W} onto \mathcal{U} along \mathcal{Y} . For each $w \in L^p([0,T];\mathcal{W})$ we define $\mathcal{P}_{\mathcal{U}}^{\mathcal{Y}}w$ point-wise, i.e., $(\mathcal{P}_{\mathcal{U}}^{\mathcal{Y}}w)(t) = \mathcal{P}_{\mathcal{U}}^{\mathcal{Y}}w(t)$ almost everywhere.

Definition 1: The s/s node $\Sigma = (V; \mathcal{X}, \mathcal{W})$ is wellposed if there exists a T > 0 and a direct sum decomposition $\mathcal{W} = \mathcal{U} + \mathcal{Y}$ of \mathcal{W} such that the following three conditions hold:

- (iv) The set $\{x(0) \mid [x] \in \mathfrak{V}[0,T]\}$ is dense in \mathcal{X} ;
- (v) The set $\{\mathcal{P}_{\mathcal{U}}^{\mathcal{Y}}w \mid [x] \in \mathfrak{V}_{0}[0,T]\}$ is dense in $L^{p}([0,T];\mathcal{U});$
- (vi) there exists a finite constant K such that all $\begin{bmatrix} x \\ w \end{bmatrix} \in \mathfrak{V}([0,T])$ satisfy

$$|x(t)||_{\mathcal{X}} + ||w||_{L^{p}([0,t];\mathcal{W})} \leq K(||x(0)||_{\mathcal{X}} + ||\mathcal{P}_{\mathcal{U}}^{\mathcal{Y}}w||_{L^{p}([0,t];\mathcal{U})})$$
(2)

for all $t \in [0, T]$.

A decomposition $\mathcal{W} = \mathcal{U} \dotplus \mathcal{Y}$ of \mathcal{W} satisfying conditions (v) and (vi) above for some T > 0 is called an *admissible* i/o (input/output) pair for Σ .

In general a well-posed s/s node has more than one admissible i/o pair. The following result can be used to test when a given decomposition W = U + y is admissible for Σ .

Theorem 2: Let $\Sigma = (V; \mathcal{X}, \mathcal{W})$ be a well-posed s/s node, and let $\mathcal{W} = \mathcal{U} + \mathcal{Y}$ be a direct sum decomposition of \mathcal{W} . Then the following conditions are equivalent:

(i) (U, Y) is an admissible i/o pair for Σ, i.e., conditions
(v) and (vi) in Definition 1 hold for some T > 0;

- (ii) Conditions (v) and (vi) in Definition 1 hold for all T > 0;
- (iii) The map $\begin{bmatrix} x \\ w \end{bmatrix} \to \mathcal{P}_{\mathcal{U}}^{\mathcal{Y}} w$ is a bijection from $\mathfrak{W}_0[0,T]$ to $L^p([0,T];\mathcal{U})$ for some T > 0;
- (iv) The map $\begin{bmatrix} x \\ w \end{bmatrix} \to \mathcal{P}_{\mathcal{U}}^{\mathcal{Y}} w$ is a bijection from $\mathfrak{W}_0[0,T]$ to $L^p([0,T];\mathcal{U})$ for all T > 0.

It can be shown that if $\Sigma = (V; \mathcal{X}, \mathcal{W})$ is wellposed, then $\mathfrak{V}_0[0, T]$ is dense in $\mathfrak{W}_0[0, T]$ for all T > 0. A slightly weaker version of this condition is used in our following result, which characterizes well-posedness and admissibility in terms of generalized trajectories (as opposed to the set $\mathfrak{V}[0, T]$ of classical trajectories used in Definition 1).

Theorem 3: Let $\Sigma = (V; \mathcal{X}, \mathcal{W})$ be a s/s node, i.e., suppose that V satisfies conditions (i)–(iii) listed below (1). In addition suppose that $\mathfrak{V}_0[0,T]$ is dense in $\mathfrak{W}_0[0,T]$ for some T > 0. Let $\mathcal{W} = \mathcal{U} + \mathcal{Y}$ be a direct sum decomposition of \mathcal{W} . Then the following conditions are equivalent:

- (i) Σ is well-posed and (U, Y) is an admissible i/o pair for Σ;
- (ii) there exists some T > 0 such that the map $\begin{bmatrix} x \\ w \end{bmatrix} \to (x(0), \mathcal{P}_{\mathcal{U}}^{\mathcal{Y}} w)$ is a bijection from $\mathfrak{W}[0, T]$ to $\mathcal{X} \times L^p([0, T]; \mathcal{U}).$
- (iii) there exists some T > 0 such that
 - (a) for each $x_0 \in \mathcal{X}$ there exists at least one $\begin{bmatrix} x \\ w \end{bmatrix} \in \mathfrak{W}[0,T]$ such that $x(0) = x_0$;
 - (b) the map $\begin{bmatrix} x \\ w \end{bmatrix} \to \mathcal{P}_{\mathcal{U}}^{\mathcal{Y}} w$ is a bijection from $\mathfrak{W}_0[0,T]$ to $L^p([0,T];\mathcal{U})$.

Clearly the generating subspace V determines both the set of classical trajectories $\mathfrak{V}[0,T]$ and the set of generalized trajectories $\mathfrak{W}[0,T]$ of Σ on [0,T] uniquely. A partial converse is true: $\mathfrak{V}[0,T]$ determines V uniquely since it can be shown that $V = \left\{ \begin{bmatrix} \dot{x}(0) \\ w(0) \end{bmatrix} \middle| \begin{bmatrix} x \\ w \end{bmatrix} \in \mathfrak{V}[0,T] \right\}$. Apparently it need not be true that V is uniquely

determined by the set of generalized trajectories $\mathfrak{W}[0,T]$ or \mathfrak{W} on [0,T] or $[0,\infty)$. However, in many cases these families of generalized trajectories are more important than the corresponding families of classical trajectories. We therefore introduce the notion of a well-posed state signal system $\Sigma = (\mathfrak{W}; \mathcal{X}, \mathcal{W})$, by which we mean the family of generalized trajectories \mathfrak{W} on $[0,\infty)$ of some well-posed s/s node with state space \mathcal{X} and signal space \mathcal{W} . Thus, a well-posed linear system $\Sigma = (\mathfrak{W}; \mathcal{X}, \mathcal{W})$ may be generated by more than one well-posed s/s node $(V; \mathcal{X}, \mathcal{W})$. We prove that among these nodes there always exists a unique maximal one $(V'; \mathcal{X}, \mathcal{W})$. Here maximality means that if both $(V; \mathcal{X}, \mathcal{W})$ and $(V'; \mathcal{X}, \mathcal{W})$ generate the same system $(\mathfrak{W}; \mathcal{X}, \mathcal{W})$, then necessarily $V \subset V'$. We show that $(V; \mathcal{X}, \mathcal{W})$ is maximal if and only if it is true that every generalized trajectory $\begin{bmatrix} x \\ w \end{bmatrix}$ which has the smoothness of a classical trajectory is actually classical.

We next describe the relationship between well-posed s/s systems and the class of well-posed i/s/o (in-put/state/output) systems found in, e.g., [Sta05]. Let $\Sigma =$

 $(V; \mathcal{X}, \mathcal{W})$ be a well-posed s/s node, and let $(\mathcal{U}, \mathcal{Y})$ be an admissible i/o pair for Σ . Then the admissibility of the decomposition $\mathcal{W} = \mathcal{U} + \mathcal{Y}$ implies that for each $x_0 \in \mathcal{X}$ and each $u \in L^p_{loc}([0,\infty);\mathcal{U})$ there is a unique generalized trajectory $\begin{bmatrix} x \\ w \end{bmatrix}$ of Σ on $[0,\infty)$ such that $x(0) = x_0$ and $\mathcal{P}_{\mathcal{U}}^{\mathcal{Y}}w = u$. Moreover, the trajectory $\begin{bmatrix} x \\ w \end{bmatrix}$ depends continuously on x_0 and u, and the map $(x_0, u) \to (x, \mathcal{P}_{\mathcal{V}}^{\mathcal{U}} w)$ defines a well-posed i/s/o system $\Sigma_{i/s/o}$ in the sense of [Sta05], with \mathcal{U} as input space and \mathcal{Y} as output space. We call this $\sum_{i/s/o}$ the *i/s/o representation of* Σ corresponding to the i/o pair $(\mathcal{U}, \mathcal{Y})$. The converse is also true: To each well-posed i/s/o system $\Sigma_{i/s/o}$ with a Banach input space \mathcal{U} and a Banach output space \mathcal{Y} there corresponds a unique well-posed s/s node $\Sigma = (V; \mathcal{X}, \mathcal{U} \times \mathcal{Y})$ such that V is maximal and such that $\Sigma_{i/s/o}$ is the i/s/o representation of Σ corresponding to the i/o pair $(\mathcal{U}, \mathcal{Y})$. The maximal generating subspace V can be interpreted as the graph of the system node which generates $\Sigma_{i/s/o}$. (We refer the reader to [Sta05] for the definition of a system node.)

Above we have introduced the notion of an i/s/o representation of a well-posed s/s system. Two additional types of useful representations exist, namely *driving-variable representations* and *output-nulling representations*. A driving-variable representation is a well-posed i/s/o system in which an additional driving input variable is used to generate all the generalized trajectories of Σ (i.e., we get a trajectory of Σ by simply dropping the driving variable). An output-nulling representation is another well-posed i/s/o system which produces generalized trajectories of Σ whenever an additional output error variable vanishes. These representations can be used in the same way as the corresponding discrete time driving-variable and output-nulling representations were used in [AS05]–[AS07c].

Work in progress includes the study of interconnections of well-posed s/s systems and the theory of continuous time passive well-posed s/s systems in the spirit of [AS07a]– [AS07c].

REFERENCES

- [AS05] Damir Z. Arov and Olof J. Staffans, State/signal linear timeinvariant systems theory. Part I: Discrete time systems, The State Space Method, Generalizations and Applications (Basel Boston Berlin), Operator Theory: Advances and Applications, vol. 161, Birkhäuser-Verlag, 2005, pp. 115–177.
- [AS07a] _____, State/signal linear time-invariant systems theory. Passive discrete time systems, Internat. J. Robust Nonlinear Control 17 (2007), 497–548.
- [AS07b] _____, State/signal linear time-invariant systems theory. Part III: Transmission and impedance representations of discrete time systems, Operator Theory, Structured Matrices, and Dilations, Tiberiu Constantinescu Memorial Volume (Bucharest Romania), Theta Foundation, 2007, Available from American Mathematical Society, pp. 101–140.
- [AS07c] _____, State/signal linear time-invariant systems theory. Part IV: Affine representations of discrete time systems, Complex Anal. Oper. Theory 1 (2007), 457–521.
- [Sta05] Olof J. Staffans, Well-posed linear systems, Cambridge University Press, Cambridge and New York, 2005.
- [Sta06] _____, Passive linear discrete time-invariant systems, Proceedings of the International Congress of Mathematicians, Madrid, 2006, 2006, pp. 1367–1388.