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�I use the word passive in the same meaning as dissipative
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Background

My present interest in impedance passive systems is roughly

1–2 years old. It begun in 2000 when I met Prof. Ruth Cur-

tain , first at IWOTA2000 and then at the PDPS workshop

in the summer of 2001, and she kept bombarding me with

questions about positive real functions and their realiza-

tions .

At that time I was trying to learn what a conservative sys-

tem is, working in what many people refer to as the scatter-

ing setting , inspired primarily by the talk by Prof. Damir Z.

Arov given at MTNS98 in Padova (see Arov [1979, 1999]),

and discussions with Prof. George Weiss and Dr. Jarmo

Malinen .

An important additional source of inspiration was the ‘thin

air’ paper by Weiss and Tucsnak [2001] .
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Disclaimer

Today I shall present

My personal view on impedance passive systems .

It has been strongly colored by my background, and my

knowledge of the history of this problem is very limited. This

means that

my citations to the earlier literature are very incomplete .

I simply do not in all instances know which results should

be credited to whom . Many of these results have been

discovered and then rediscovered , maybe even several

times.

Comments are welcome!
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Details

For more details see

Weiss et al. [2001],

Staffans and Weiss [2002a,b],

Malinen et al. [2002], and

Staffans [2002a,b].

Some parts of the general theory are also found in my book

manuscript

Staffans [2002c].

The exact references and most of the manuscripts are or

will be available (in postscript form) at

http://www.abo.fi/˜staffans/
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Abstract

U is a Hilbert space.

� By a L(U)-valued positive analytic function on C

+

(= the open right half-plane) we mean an analytic func-

tion which satisfies the condition b

D+

b

D

�

� 0. This

function need not be proper , i.e., it need not be bounded

on any right half-plane.

� We give a complete answer� to the question under what

conditions such a function can be realized as the trans-

fer function of an (impedance) passive state space

system of a certain type (not necessarily well-posed).

By this we mean a system which satisfies a certain en-

ergy inequality .

� The system is energy preserving if this energy in-

equality is an equality, and it is conservative if both

the system and its dual are (impedance) energy pre-

serving systems.

�The impulse response cannot contain a pure derivative .
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Abstract (continues)

� A typical example of an impedance conservative sys-

tem is a system of hyperbolic type with collocated sen-

sors and actuators .

� The diagonal transform maps an impedance passive

(energy preserving, conservative) system into a (well-

posed) scattering passive (energy preserving, conser-

vative) system.

� The Cayley transform maps a continuous time pas-

sive (energy preserving, conservative) system (impedance

or scattering) into a passive (energy preserving, con-

servative) discrete time system .

� If we apply negative output feedback to an impedance

passive system, then the resulting system is both well-

posed and energy stable .

� Finally, we study lossless scattering systems, i.e., scat-

tering conservative systems whose transfer functions

are inner.
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1. CONTINUOUS TIME SYSTEM NODES

Introduction

Many infinite-dimensional linear time-independent continuous-

time systems can be described by the equations

ẋ(t) = Ax(t)+Bu(t);

y(t) =Cx(t)+Du(t); t � 0;

x(0) = x0;

(1)

on a triple of Hilbert spaces, namely, the input space U , the

state space X , and the output space Y . We have u(t) 2

U , x(t) 2 X and y(t) 2 Y . The operator A is supposed to

be the generator of a strongly continuous semigroup. The

generating operators A, B and C are often unbounded ,

but D is bounded.

8



The System Node

By modifying this set of equations slightly we get the class

of systems which will be used in this work. In the sequel,

we think about the block matrix S =

�

A B
C D

�

as one single

(unbounded) operator from
�

X
U

�

to
�

X
Y

�

, and write (1) in

the form
�

ẋ(t)
y(t)

�

= S

�

x(t)
u(t)

�

; t � 0; x(0) = x0:

The operator S completely determines the system. Thus,

we may identify the system with such an operator, which we

call the node of the system.

We split S into it top and bottom rows: S =

�

A&B
C&D

�

, where

A&B : D(S)! X and C&D : D(S)! Y . Thus
�

ẋ(t)
y(t)

�

=

�

A&B
C&D

��

x(t)
u(t)

�

; t � 0; x(0) = x0:
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Notation: Rigged Hilbert Spaces

Let A be a closed (unbounded) densely defined operator on

the Hilbert space X with a nonempty resolvent set. Denote

D(A) =: X1� X � X
�1 := [D(A�)℄�;

where we identify X with its dual. The operator A has a

unique extension to a bounded linear operator X ! X
�1,

which we denote by A
jX (since its domain is X ).
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Definition 1 We call S a system node on the three Hilbert

spaces (U;X ;Y ) if it satisfies condition (S) below:

(S) S :=
�

A&B
C&D

�

:
�

X
U

�

� D(S)!
�

X
Y

�

is a closed linear

operator. Here A&B is the restriction toD(S) of
h

A
jX B

i

,

where A is the generator of a C0 semigroup on X .

The operator B is an arbitrary operator in L(U ;X
�1),

and C&D is an arbitrary linear operator from D(S) to

Y . In addition, we require that

D(S) =
�

[

x
u ℄ 2

�

X
U

�

�

� A
jXx+Bu 2 X

	

:

Note that D(S) depends only on A and B, and not on C&D.

The operator A&B :
�

X
U

�

�D(S)=D(A&B)!
�

X
Y

�

is closed,

and C&D : D(A&B)!Y is continuous (with respect to the

graph norm of A&B).

This definition goes back to Smuljan [1986] (who was pri-

marily concerned with the well-posed case, which will be

described later).
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Terminology

� A is the main operator (the semigroup generator ),

� B is the control operator ,

� C&D is the combined observation/feedthrough op-

erator ,

� The operator

Cx :=C&D

�

x
0

�

; x 2 X1;

is the observation operator .

� The transfer function is�

b

D(s) :=C&D

�

(s�A
jX)

�1B
1

�

; s 2 ρ(A):

It is defined and analytic on ρ(A) (it follows from Def-

inition 1 that the operator
h

(s�A
jX)

�1B
1

i

maps U into

D(S)).

The system node need not have a feedthrough operator !

�We denote the identity operator (on any Hilbert space) by 1.
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System Node, Alternative Definition

It is possible to alternatively define a system node by speci-

fying the main operator A, the control operator B, the ob-

servation operator C, and the transfer function b

D evalu-

ated at some point α 2 ρ(A).

� A can be an arbitrary generator of a C0 semigroup on

X ,

� B can be an arbitrary operator in L(U ;X
�1),

� C can be an arbitrary operator in L(X1;Y ),

� The value of the transfer function at a given point α2
ρ(A) can be an arbitrary operator D 2 L(U ;Y ).

This will lead to a system node of the type described in Def-

inition 1. The transfer function will be given by

b

D(s) = D+(α� s)C(s�A)�1
(α�A

jX)
�1B; s 2 ρ(A):

This is the version used by Salamon [1987] (who was pri-

marily concerned with the well-posed case, which will be

described later).
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State Trajectory and Output Function

Every system node induces a ‘dynamical system’ of a cer-
tain type:

Lemma 1 Let S be a system node on (U;X ;Y ). Then, for
each x02 X and u 2W 2;1

loc (R
+;U) with

h

x0
u(0)

i

2D(S), the
equation

�

ẋ(t)
y(t)

�

= S

�

x(t)
u(t)

�

; t � 0; x(0) = x0; (2)

has a unique solution (x;y) satisfying
h

x(t)
u(t)

i

2 D(S) for all

t � 0, x 2C1
(R

+;X), and y 2C(R

+;Y ).

We call x the state trajectory and y the output function of
S with initial time zero, initial state x0, and input function
u.

This result has been known for ages. (Who did it first?)

Taking Laplace transforms in (2) we find that

x̂(s) = (s�A)�1x0+(s�A
jX)

�1Bû(s);

ŷ(s) =C(s�A)�1x0+
b

D(s)û(s);

for ℜs large enough (as in the finite-dimensional case).
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Controllability and Observability

� The reachable subspace of S is the closure in X of the

set of all possible values of x(t) in Lemma 1 if we take

x0 = 0 (and let u and t vary). Its orthogonal comple-

ment is the unreachable subspace .

� The unobservable subspace of S is the closure of the

set of all x0 2 X1 for which the output y in Lemma 1

with initial state x0 and zero input function u is identi-

cally zero. Its orthogonal complement is the observ-

able subspace .

� S is (approximately) controllable if the reachable sub-

space is all of X and (approximately) observable if

the observable subspace is all of X .

� S is simple if the intersection of the unreachable and

unobservable subspaces is f0g.

� S is minimal if it is both controllable and observable

(the union of the unreachable and unobservable sub-

spaces is f0g).
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Well-Posed System Nodes

Definition 2 A system node S is well-posed if the following

additional condition holds:

(WP) For some t > 0 there is a finite constant K(t) such that

the solution (x;y) in Lemma 1 satisfies

jx(t)j2+kyk2
L2
(0;t) � K(t)

�

jx0j
2
+kuk2

L2
(0;t)

�

:

It is energy stable if there is some K < ∞ so that, for all

t 2 R

+,

jx(t)j2+kyk2
L2
(0;t) � K

�

jx0j
2
+kuk2

L2
(0;t)

�

:

It is not difficult to show that if (WP) holds for one t > 0, then

it holds for all t � 0.
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2. SCATTERING PASSIVE AND

CONSERVATIVE SYSTEMS.

The following definition is a special case of the definitions

in the two classical papers Willems [1972a,b] (although we

use a slightly different terminology; our passive is the same

as Willems’ dissipative ).�

�Another difference is that we have replaced Willems’ more general
storage function S(x) by the quadratic function jxj2. Our setting be-
comes the same as the setting used by Willems in the second part
Willems [1972b] if we simply take the norm in the state space to
be jxj2 =

p

S(x) (this is possible whenever the storage function is
quadratic and strictly positive).

17

J-Passive and Energy Preserving System Nodes

Definition 3 Let J be a bounded selfadjoint operator on
�

Y
U

�

. A system node S on (U;X ;Y ) is J-passive if the fol-

lowing condition holds:

(JP) For all t > 0, the solution (x;y) in Lemma 1 satisfies

jx(t)j2�jx0j
2
�

Z t

0

Dh

y(s)
u(s)

i

;J
h

y(s)
u(s)

iE

ds:

It is J-energy preserving if the above inequality holds in the

form of an equality:

(JE) For all t > 0, the solution (x;y) in Lemma 1 satisfies

jx(t)j2�jx0j
2
=

Z t

0

Dh

y(s)
u(s)

i

;J
h

y(s)
u(s)

iE

ds:
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Different choices of J give different passivity notions.

� J =

�

�1 0
0 1

�

is known as scattering ,

� U = Y =

�

V
V

�

and J =

�

0 1
1 0

�

is known as impedance

(admittance , immittance , resistance , conductance ),

� U =Y =

�

V
W

�

and J =

�1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 �1

�

is known as trans-

mission (chain scattering ).

Today I focus on the scattering (J =
�

�1 0
0 1

�

) and impedance

(J =

�

0 1
1 0

�

) settings.
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Definition 4 A system node S is scattering passive � if the

following condition holds:

(SP) For all t > 0, the solution (x;y) in Lemma 1 satisfies

jx(t)j2�jx0j
2
� kuk2

L2
(0;t)�kyk2

L2
(0;t):

It is scattering energy preserving if the above inequality

holds in the form of an equality:

(SE) For all t > 0, the solution (x;y) in Lemma 1 satisfies

jx(t)j2�jx0j
2
= kuk2

L2
(0;t)�kyk2

L2
(0;t):

Finally, S is scattering conservative if both S and the dual

system node† S� are (scattering) energy preserving.

Thus, every scattering passive system is well-posed :

the passivity inequality (SP) implies the well-posedness in-

equality (WP).

�In Malinen et al. [2002], Staffans and Weiss [2002a,b], Weiss et al.
[2001], Weiss and Tucsnak [2001], etc., these systems are called dis-
sipative .

†If S is a system node on (U;X ;Y ), then its adjoint S� is a system node
on (Y;X ;U).
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Theorem 1 Let S =

�

A&B
C&D

�

be a system node on (U;X ;Y ).

Then the following conditions are equivalent:

(i) S is scattering passive.

(ii) For all t > 0, the solution (x;y) in Lemma 1 satisfies

d
dt
jx(t)j2X � ju(t)j2U �jy(t)j

2
Y :

(iii) For all
� x0

u0

�

2D(S),

2ℜ



A&B
� x0

u0

�

;x0
�

X � ju0j
2
U �

�

�C&D
� x0

u0

�

�

�

2
Y :

(iv) For some α 2 ρ(A)\ C

+ (or equivalently, for all α 2

C

+), the operator

�

A(α) B(α)
C(α) b

D(α)

�

=

"

(α+A)(α�A)�1
p

2ℜα(α�A)�1B
p

2ℜαC(α�A)�1
b

D(α)

#

(3)

is a contraction. (Here C

+ is the open right half-plane.)

This is (a part of) [Staffans and Weiss, 2002a, Theorem 7.4],

and it is also found in Arov and Nudelman [1996] .
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Scattering conservative system nodes

The corresponding energy preserving version also holds:

simply replace “�” by “=”.

By applying the energy preserving version of Theorem 1

both to the original system node S and to the dual system

node S� we get a set of systems which characterize scat-

tering conservative system nodes .

Some equivalent but simpler conditions are given in Mali-

nen et al. [2002].
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3. IMPEDANCE PASSIVE AND

CONSERVATIVE SYSTEMS.

Definition 5 A system node S on (U;X ;U) (note that Y =

U ) is impedance passive if the following condition holds:

(IP) For all t > 0, the solution (x;y) in Lemma 1 satisfies

jx(t)j2X �jx0j
2
X � 2

Z t

0
ℜhy(t);u(t)iUdt:

It is impedance energy preserving if the above inequality

holds in the form of an equality:

(IE) For all t > 0, the solution (x;y) in Lemma 1 satisfies

jx(t)j2X �jx0j
2
X = 2

Z t

0
ℜhy(t);u(t)iUdt:

Finally, S is impedance conservative if both S and the dual

system node S� are impedance energy preserving.

Note that in this case well-posedness is neither guaran-

teed, nor relevant .
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Some Basic Properties

Lemma 2 A system node S is impedance passive if and

only if the dual system node S� is impedance passive.

This is proved in [Staffans, 2002a, Corollary 4.5].

Theorem 2 An impedance passive system node is well-

posed if and only if its transfer function b

D is bounded on

some (or equivalently, on every) vertical line in C

+. When

this is the case, the growth bound of the system is zero,

and, in particular, b

D is bounded on every right half-plane

C

+

ε = fs 2 C jℜs > εg with ε > 0.

This is [Staffans, 2002a, Theorem 5.1]. It can be used to

show that many systems with collocated actuators and

sensors are well-posed.
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Theorem 3 Let S =

�

A&B
C&D

�

be a system node on (U;X ;U).
Then the following conditions are equivalent:

(i) S is impedance passive.
(ii) For all t > 0, the solution (x;y) in Lemma 1 satisfies

d
dt
jx(t)j2X � 2ℜhy(t);u(t)iU :

(iii) The system node
h

A&B
�C&D

i

is a dissipative operator in
�

X
U

�

, i.e., for all
� x0

u0

�

2D(S),

ℜ
��

x0
u0

�

;

�

A&B
�C&D

��

x0
u0

��

h

X
U

i

� 0: (4)

(iv) For some α 2 ρ(A)\ C

+ (or equivalently, for all α 2

C

+), the operator α�
h

A&B
�C&D

i

is invertible, and

�

A�(α) B�(α)
C�(α) D�(α)

�

=

�

α+

�

A&B
�C&D

���

α�
�

A&B
�C&D

��

�1

(5)
is a contraction .

This is a part of [Staffans, 2002a, Theorem 4.2 and Corol-
lary 4.4]. The corresponding energy preserving version
also holds: simply replace “�” by “=”.
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Theorem 4 Let S be system node S on (U;X ;U). Then the

following conditions are equivalent:

(i) S is impedance conservative .

(ii) For all t > 0, the solution (x;y) in Lemma 1 satisfies

d
dt
jx(t)j2X = 2ℜhy(t);u(t)iU ; (6)

and the same identity is true for the adjoint system.

(iii) The system node
h

A&B
�C&D

i

is skew-adjoint , i.e.,

�

A&B
�C&D

�

�

=�

�

A&B
�C&D

�

: (7)

(iv) A� =�A, B� =C, and b

D(α)+ b

D(�α)� = 0 for some

(or equivalently, for all) α2ρ(A) (in particular, this iden-

tity is true for all α with ℜα 6= 0).

(v) For some α 2 ρ(A)\ C

+ (or equivalently, for all α 2

C

+), the operator α�
h

A&B
�C&D

i

is invertible, and the

operator
h

A�

(α) B�(α)
C�

(α) D�

(α)

i

defined in (5) is unitary .

This is [Staffans, 2002a, Theorem 4.7].
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4. DISCRETE TIME SYSTEMS.

There is a close connection between the passive continu-

ous time systems that we have considered so far and the

corresponding discrete time systems . We now have

an input sequence u = fukg
∞
k=0,

a state trajectory x = fxkg
∞
k=0,

an output sequence y = fykg
∞
k=0.

The dynamics is described by
�

xk+1
yk

�

=

�

A B
C D

��

xk
uk

�

; k = 0;1;2; : : : ;

x0 = given;

(8)

where ΣΣΣ =

�

A B
C D

�

2 L(
�

X
U

�

;
�

X
Y

�

).

A is the main operator ,

B is the control operator ,

C is the observation operator ,

D is the feedthrough operator , and

bD(z) = C(z�A)

�1B+D; z 2 ρ(A):

is the transfer function . Note that D =

bD(∞).
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Observability, controllability, simplicity, and minimality

of a discrete time system is defined in exactly the same way

as in continuous time, with continuous time trajectories re-

placed by discrete time trajectories.
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Scattering Passive Systems

The system ΣΣΣ is scattering passive if it is true for all x02X ,

all input sequences uk 2U , and all m = 0;1;2; : : : that

jxm+1j
2
X �jx0j

2
X �

m

∑
k=0

jukj
2
U �

m

∑
k=0

jykj
2
Y :

True for all m = 0;1;2; : : :, true for m = 0. Thus

ΣΣΣ is scattering passive ,

�

A B
C D

�

is a contraction from
�

X
U

�

to
�

X
Y

�

ΣΣΣ is scattering energy preserving if we have equality, i.e.,
�

A B
C D

�

is isometric , and

ΣΣΣ is scattering conservative if both the original system and

the dual system are energy preserving, i.e.,
�

A B
C D

�

is uni-
tary .

The main operator A of each discrete time scattering pas-

sive system is a contraction, so bD is defined and analytic (at

least) on D

+

= fz2C j jzj> 1g[f∞g. It is well-known that
bD(z) is a contractive analytic function on D

+ (a Schur
function ), i.e., bD(z) is a contraction for every z 2 D

+.
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Impedance Passive Systems

The system ΣΣΣ is impedance passive if it is true for all x0 2

X , all input sequences uk 2U , and all m = 0;1;2; : : : that

jxm+1j
2
X �jx0j

2
X �

m

∑
k=0

2ℜhuk;ykiU :

True for all m = 0;1;2; : : :, true for m = 0. Thus

ΣΣΣ is impedance passive ,

�

A�

B�

�

�

A B
�

�

�

1 C�

C D+D�

�

:

ΣΣΣ is impedance energy preserving if we have equality.

ΣΣΣ is impedance conservative if both the original system

and the dual system are energy preserving.

The main operator A of each discrete time impedance pas-

sive system is a contraction, so bD is defined and analytic (at

least) on D

+

= fz2C j jzj> 1g[f∞g. It is well-known that
bD(z) is a positive analytic function on D

+.
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5. THE DIAGONAL TRANSFORM

p

2 Σ 1
p

2

6x0

-

x

-

u�
-

+

h -u

u
-

y
u

�

h - -

y�

6

�

?

+

Suppose that 1+D is invertible. Then we can replace

uk ! u�k =

1
p

2
(uk + yk)

yk ! y�k =

1
p

2
(uk� yk)

to get the new discrete time system
�

xk+1
yk

�

=

�

A� B�

C� D�

��

xk
uk

�

; k = 0;1;2; : : : ;

x0 = given:

(9)
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A straightforward computation shows that

ΣΣΣ� =

�

A� B�

C� D�

�

=

�

A�B(1+D)

�1C
p

2B(1+D)

�1

�

p

2(1+D)

�1C (1�D)(1+D)

�1

�

:

The transfer function of ΣΣΣ� is bD�(z)= (1�bD(z))(1+bD(z))�1.

Following Livšic [1973], we call this the (discrete time) di-

agonal transform .

Applying the same transform once more we recover the orig-

inal system. Thus, the inverse diagonal transform = di-

rect diagonal transform .
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Comments

� The diagonal transform is well-defined if and only if

1+D is invertible.

� The inverse diagonal transform is well-defined if and

only if and only if 1+D� is invertible.

� The state trajectory fx�k g
∞
k=0 of (9) coincides with the

state trajectory fxkg
∞
k=0 of (8) if x�0 = x0 and

u�k =

1
p

2
(uk + yk); k � 0:

� The corresponding outputs satisfy

y�k =

1
p

2
(uk� yk); k � 0:

� These relationships have specifically been chosen in

such a way that

ju�k j
2
U �ju

�

k j
2
U = 2ℜhyk;uki:

This immediately implies the following lemma.
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Lemma 3 (i) A discrete time system ΣΣΣ =

�

A B
C D

�

is

impedance passive (energy preserving, conservative)

if and only if the diagonal transform is well-defined

and the diagonally transformed system ΣΣΣ�=

h

A� B�
C� D�

i

is scattering passive (energy preserving, conserva-

tive).

(ii) A discrete time scattering passive system ΣΣΣ�=

h

A� B�
C� D�

i

is the diagonal transform of an impedance passive

system ΣΣΣ =

�

A B
C D

�

if and only if 1+D� is invertible .

(iii) The two systems have identical controllability prop-

erties : if one of the two systems ΣΣΣ and ΣΣΣ� is control-

lable (observable, simple, minimal) then so is the other,

and their reachable, unreachable, observable, and un-

observable subspaces coincide.

Thus, a discrete time scattering passive system can be

regarded as a slightly more general object than a discrete

time impedance passive system , since the diagonal trans-

form maps the latter class into a subclass of the former (and

it may even have Y 6=U in the scattering case).
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Realization Theory

Theorem 5 Every contractive analytic function on D

+ has

a simple discrete time scattering conservative realization,

which is unique modulo a unitary similarity transform in the

state space.

This is a slightly reformulated version of the results pre-

sented in [Sz.-Nagy and Foiaş, 1970, Section VI.3, pp.

248–259].

Theorem 6 Every positive analytic function on D

+ has a

simple discrete time impedance conservative realization, which

is unique modulo a unitary similarity transform in the state

space.

Proof : Apply the inverse diagonal transform to Theorem 5.

(Who did this first?)
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6. THE CAYLEY TRANSFORM

The diagonal transform is active on the outside , i.e., in

the input/output space
�

U
U

�

. It represents a 45Æ rotation plus

a reflection in the right hand side of the scattering energy

balance equation

jxk+1j
2
�jxkj

2
= jukj

2
�jykj

2
; k � 0:

The Cayley transform does almost the same thing on the

inside , i.e., in the state space: It formally represents a 45Æ

rotation in the left hand side of the same identity.

However, it has a different interpretation:

it maps continuous time into discrete time !
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Let S =

�

A&B
C&D

�

be a continuous time system node, and

let 1 2 ρ(A). The Cayley transform of the node S is the

discrete time system

ΣΣΣ =

�

A B
C D

�

=

"

(1+A)(1�A)�1
p

2(1�A
jX)

�1B
p

2C(1�A)�1
b

D(1)

#

:

(10)

This is the same formula (3) which we saw in Theorems 1

and 3 (with α = 1). Thus, these theorems say something

about the Cayley transformed systems .
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The inverse Cayley transform is given by

A = (A�1)(A+1)�1
; B =

1
p

2
(1�A

jX)B;

C =

p

2C(A+1)�1
;

b

D(s) = bD
�1+ s

1� s

�

:

(11)

For the inverse Cayley transform to be well-defined the op-

erator A+1 must be one-to-one, so

A cannot have �1 as an eigenvalue .
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In the passive case we can say more:

Lemma 4 (i) A continuous time system node S=

�

A&B
C&D

�

is scattering or impedance passive (energy preserv-

ing, conservative) if and only if the Cayley transform

of this system is well-defined and the Cayley trans-

formed system ΣΣΣ =

�

A B
C D

�

is discrete time scattering

or impedance passive (energy preserving, conserva-

tive).

(ii) A discrete time scattering or impedance passive sys-

tem ΣΣΣ =

�

A B
C D

�

is the Cayley transform of a contin-

uous time scattering or impedance passive node S =

�

A&B
C&D

�

if and only if �1 is not an eigenvalue of A.

(iii) The two systems have identical controllability prop-

erties : if one of S and ΣΣΣ is controllable (observable,

simple, minimal) then so is the other, and their reach-

able, unreachable, observable, and unobservable sub-

spaces coincide.

This lemma is the main technical tool used in Arov and

Nudelman [1996] to transfer a number of discrete time the-

orems to continuous time (in the scattering setting).
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Theorem 7 Every contractive analytic function on C

+ can

be realized as the transfer function of a simple continuous

time scattering conservative system node, which is unique

modulo a unitary similarity transform in the state space.

Proof : Apply the inverse Cayley transform to Theorem 5.

This is [Arov and Nudelman, 1996, Theorem 6.4] .
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We now arrive at the main result of this section.

Theorem 8 A necessary and sufficient condition for aL(U)-

valued positive analytic function b

D on C

+ to have a simple

impedance conservative realization is that

lim
s!+∞

s�1
b

D(s)u = 0 (12)

for all u 2 U . This realization is unique modulo a unitary

similarity transform in the state space.

Thus, the only positive transfer functions that cannot be re-

alized in this way are those that contain a pure derivative

action.

To what extent is this known? �

�One version of this theorem with (12) replaced by b

D(s) = O(s�1
) as

s ! +∞ is found in Arov [1979]. There both B and C are required to
be bounded .
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Proof .

� Apply the formal Cayley transform to b

D only, to get the

discrete time positive transfer function
bD(z) = b

D

�

z�1
z+1

�

.

� Use Theorem 6 to get a simple impedance conserva-

tive realization of bD.

� Finally, apply the inverse Cayley transform to get a sim-

ple impedance conservative system node S whose trans-

fer function is b

D. (This is where (12) comes in.)

As a byproduct of this theorem we get the Herglotz-Nevanlinna

integral representation formula for a positive analytic func-

tion on C

+, found, e.g., in Zemanian [1972].
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Controllable Energy Preserving Realizations

From the conservative realizations it is easy to construct en-

ergy preserving realizations.

Corollary 1 Theorems 5, 6, 7, and 8 remain true in the con-

trollable energy preserving setting: every discrete or contin-

uous time impedance or scattering passive transfer func-

tion has a controllable energy preserving realization , which

is unique modulo a unitary similarity transform in the state

space (in the continuous time impedance setting we still

have the extra necessary and sufficient additional condi-

tion (12)).

Proof : Restrict the systems in Theorems 5, 6, 7, and 8 to

the reachable subspace.

Recall: for transfer functions

impedance passive = positive , and

scattering passive = contractive .
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Minimal Passive Realizations

From the energy preserving realizations it is easy to con-
struct passive realizations.

Corollary 2 Every discrete or continuous time impedance
or scattering passive function has a minimal passive real-
ization (in the continuous time impedance setting we still
have the extra necessary and sufficient additional condi-
tion (12)).

Proof : Project the systems in Corollary 1 to the observable
subspace.

Without any further conditions these realizations are not
unique . For example we could first have projected onto the
observable subspace, and then restricted to the controllable
subspaces to get another passive realizations.�

The realizations that we get as explained in the proof of
Corollary 2 are called optimal by Arov and Nudelman [1996] .
To get the same realizations in Willems [1972a,b] setting
we use the norm given by the available storage .
�This way we get realizations which Arov and Nudelman [1996] call �-
optimal . To get the same realizations in Willems [1972a,b] setting we
use the norm given by the required supply .
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7. A FEEDBACK INTERPRETATION

Corollary 3 Let S =

�

A&B
C&D

�

be an impedance passive sys-

tem node on (U;X ;U). Then �1 is an admissible feedback

operator for S, and the closed loop system corresponding to

this feedback operator is (well-posed and) energy stable (in

the sense of Definition 2).

This is a classic result in a new setting. It may be regarded

as a generalization of the recent ‘thin air’ result by Weiss

and Tucsnak [2001] . (That paper was an important source

of inspiration for me.)
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8. LOSSLESS SYSTEMS

In a energy preserving system no energy is lost , but it

may be first transferred from the input to the state, and then

trapped in the state space forever, so that it can no longer

be retrieved from the outside.

Lossless = no trapped energy.

For simplicity, let us here only look at the continuous time

scattering setting (the discrete time is very similar; the

impedance setting is slightly more complicated).

Definition 6 A system node S=

�

A&B
C&D

�

on (U;X ;Y ) is semi-

lossless if the solution (x;y) in Lemma 1 satisfies
Z ∞

0
jy(s)j2Y ds =

Z ∞

0
ju(s)j2U ds

whenever x0 = 0 and u 2 L2
(R

+;Y ). It is lossless if both S

and the dual node S� are semi-lossless.

Thus, semi-losslessness is the input/output version of en-

ergy preservation , and losslessness is the input/output ver-

sion of conservativity .
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As is well known, semi-losslessness can be interpreted as

a property of the transfer function:

Proposition 1 A system node S is semi-lossless if and

only if its transfer function b

D is left-inner in the following

sense: bD has an extension to a contractive analytic function

in C

+, the restriction of bD to every separable subspace of

U has a strong limit from the right a.e. at the imaginary axis,

and this limit is isometric a.e.

This proposition follows from Fourès and Segal [1955] and

[Sz.-Nagy and Foiaş, 1970, Proposition 2.2, p. 190].
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It turns out the the losslessness property puts some severe

restrictions on the system node S:

Theorem 9 A controllable semi-lossless scattering pas-

sive system node S =

�

A&B
C&D

�

on (U;X ;Y ) is necessarily

scattering energy preserving and observable . Further-

more, in this case the system node S is uniquely deter-

mined by its transfer function b

D within the class of all con-

trollable scattering passive realizations of bD, modulo a uni-

tary similarity transform in the state space.

This is proved in Staffans [2002b].
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Theorem 10 Let S =

�

A&B
C&D

�

be a scattering energy pre-
serving system node (Y;X ;U). Then the following condi-
tions are equivalent:

(i) the system semigroup of S is strongly stable , i.e., the
state x(t) in Lemma 1 tends to zero as t !∞ whenever
u = 0;

(ii) the observability gramian of S is the identity opera-
tor , i.e., the output y in Lemma 1 with zero input func-
tion u and initial state x0 2 X1 satisfies
R ∞
0 jy(t)j

2
Y = jx0j

2
Y ;

(iii) S is exactly observable in infinite time , i.e., the out-
put y in Lemma 1 with zero input function u and ini-
tial state x0 2 X1 satisfies

R ∞
0 jy(t)j

2
Y � εjx0j

2
Y for some

ε > 0;

If these conditions hold, then

(iv) S is semi-lossless .

If S is controllable , then (iv) is equivalent to (i)–(iii).

Also this result is proved in Staffans [2002b]. The discrete
time version of this result (without condition (iii)) is essen-
tially contained in [Sz.-Nagy and Foiaş, 1970, Theorem 2.3,
p. 248].
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By applying this result both to the original node S and to

the dual node S� we get a characterization of the (essen-

tially unique) simple scattering conservative realizations

of lossless scattering functions (inner from both sides).

It is both exactly controllable and exactly observable in

infinite time . This is basically the class of systems studied

in Lax and Phillips [1967].
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SUMMARY

� By a L(U)-valued positive analytic function on the

open right half-plane we mean an analytic function which

satisfies the condition b

D+

b

D

�

� 0. This function need

not be proper , i.e., it need not be bounded on any right

half-plane.

� We have given a complete answer to the question un-

der what conditions such a function can be realized as

the transfer function of an impedance passive state

space system : The impulse response must not con-

tain a pure derivative . Passivity means that a certain

energy inequality holds.

� The system is energy preserving if this energy in-

equality is an equality, and it is conservative if both

the system and its dual are (impedance) energy pre-

serving systems.
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SUMMARY (continues)

� A typical example of an impedance conservative sys-

tem is a system of hyperbolic type with collocated sen-

sors and actuators .

� The diagonal transform maps an impedance passive

(energy preserving, conservative) system into a (well-

posed) scattering passive (energy preserving, conser-

vative) system.

� If we apply negative output feedback to an impedance

passive system, then the resulting system is both well-

posed and energy stable .

� Finally, we have studied lossless scattering systems,

i.e., scattering conservative systems whose transfer func-

tions are inner.
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