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Abstrat. Let U be a Hilbert spae. By a L(U)-valued positive analyti funtion

on the open right half-plane we mean an analyti funtion whih satis�es the ondition

b

D +

b

D

�

� 0. This funtion need not be proper, i.e., it need not be bounded on any

right half-plane. We give a omplete answer to the question under what onditions

suh a funtion an be realized as the transfer funtion of a impedane passive system.

By this we mean a ontinuous time state spae system whose ontrol and observation

operators are not more unbounded than the (main) semigroup generator of the system,

and in addition, there is a ertain energy inequality relating the absorbed energy and the

internal energy. The system is (impedane) energy preserving if this energy inequality is

an equality, and it is onservative if both the system and its dual are energy preserving. A

typial example of an impedane onservative system is a system of hyperboli type with

olloated sensors and atuators. We prove that a passive realization exists if and only if

a onservative realization exists, and that this is true if and only if lim

s!+1

1

s

b

D(s)u = 0

for every u 2 U . The physial interpretation of this ondition is that the input-output

response is not allowed to ontain a pure derivative ation. We furthermore show that

the so alled diagonal transform (whih is a partiular resaled feedbak/feedforward

transform) maps an impedane passive (or energy preserving or onservative) system

into a (well-posed) sattering passive (or energy preserving or onservative) system. This

implies that if we apply negative output feedbak to a impedane passive system, then

the resulting system is both well-posed and energy stable. Finally, we study lossless

sattering systems, i.e., sattering onservative systems whose transfer funtions are

inner.
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1. Introdution. Let U be a Hilbert spae. By a L(U)-valued pos-

itive analyti funtion on C

+

(= the open right half-plane) we mean an

analyti funtion whih satis�es the ondition

b

D+

b

D

�

� 0 (many other al-

ternative names are also used for this lass of funtions, suh as (impedane)

passive funtions, Caratheodory-Nevanlinna funtions, Weyl funtions, or

Tithmarsh-Weyl funtions ; see, e.g., [1℄ and [3℄ for more detailed disus-

sions of the history of this lass of funtions). This funtion need not be

proper, i.e., it need not be bounded on any right half-plane. For example,

the salar funtions

b

D(s) = 1=s and

b

D(s) = 1 are proper (the former is

even stritly proper sine

b

D(1) = 0), whereas

b

D(s) = s is not proper

1
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(all of these are positive analyti). In this artile we introdue a lass of

ontinuous time impedane passive systems whose transfer funtions are

(not neessarily proper) positive analyti. Our lass of systems ontains

all earlier state spae realizations of positive analyti funtions that we

know of, and it is almost omplete in the sense that we within this lass

an realize all positive analyti funtions that do not ontain a part whih

orresponds to a pure di�erentiating input/output ation (one of the exep-

tions being the funtion

b

D(s) = s mentioned above). For example, systems

with olloated sensors and atuators belong to the lass studied here.

As is well-known, every L(U)-valued funtion

b

D whih is analyti and

bounded on some right half-plane (i.e., every proper transfer funtion) has

a well-posed realization. By this we mean a well-posed linear system �

whose transfer funtion is equal to the given funtion

b

D. This system �

has a state spae (a Hilbert spae) X , an input signal u 2 L

2

lo

(R

+

;U),

a state trajetory x 2 C(R

+

;X), and an output signal y 2 L

2

lo

(R

+

;U)

(here R

+

= [0;1)). In the absene of an input signal (i.e., for u = 0), the

evolution of the state x is desribed by a strongly ontinuous semigroup.

That the transfer funtion of � is

b

Dmeans that if the initial state is zero and

if the input u is Laplae transformable, then the output y is also Laplae

transformable and, on some right half-plane, the Laplae transform ŷ of y

is given by ŷ =

b

Dû; here û is the Laplae transform of u. In Setion 2 we

give the formal de�nition of a well-posed linear system, and there we also

desribe the basi properties of suh systems.

Not every positive analyti funtion is proper, so to develop a more

general theory we need a lass of systems whih are not neessarily well-

posed. The lass of systems that we introdue in Setion 2 is maybe not the

most general one, but it has some nie properties whih makes it possible to

develop a meaningful theory for this lass. We allow both the ontrol and

the observation operator to be as unbounded as the generator of the semi-

group desribing the autonomous behavior of the system. This is roughly

twie as muh unboundedness as may be present in a well-posed system.

The physial interpretation of a positive analyti funtion is that it is

energy absorbing (in an impedane setting). This lass of transfer funtions

appears in ertain situations where the input u and the output y are related

to eah other in a spei� way. For example, we ould have a pair of wires

onneted to an eletrial iruit, and let u be the voltage between the wires

and y the urrent arried by the wires (or the other way around). In this

and many other similar situations, the energy absorbed by the system in

the time period [0; t℄ is proportional to the integral 2

R

t

0

<hu(s); y(s)i ds. It

is well-known that if the initial state is zero (so that the Laplae transforms

of the input and output satisfy ŷ =

b

Dû in some right-half-plane), then this

energy is nonnegative for all possible input signals u if and only if

b

D is a

positive analyti funtion.

Let us next explain what we mean by an impedane passive system.
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For simpliity we here stik to the well-posed ase. The transfer funtion

of an impedane passive system must be a positive analyti funtion, but

this is not enough. A well-posed system � is an impedane passive system

if for all initial states x

0

2 X , all input signals u 2 L

2

lo

(R

+

;U), and all

t � 0, the state x(t) at time t and the output signal y satisfy

jx(t)j

2

� jx

0

j

2

+ 2

Z

t

0

<hu(s); y(s)i ds: (1.1)

Here jx(t)j

2

represents the energy stored in the state at time t � 0. An

impedane passive system has the property that if at some time the state

x(t) is zero, then at this time moment the system an only absorb en-

ergy and not emit any energy (the time derivative of the absorbed energy

funtion is positive). If a system � is impedane passive, then so is the

dual system �

d

(this system is de�ned in Setion 2; its transfer funtion

is

b

D

d

(z) =

b

D(z)

�

). A system � is impedane energy preserving if the

preeding inequality holds in the form of an equality:

jx(t)j

2

= jx

0

j

2

+ 2

Z

t

0

<hu(s); y(s)i ds; (1.2)

and it is impedane onservative if both the original system � and the dual

system �

d

are impedane energy preserving. In some sense an impedane

onservative realization desribes a given positive analyti funtion in an

`optimal' way: all the energy absorbed or emitted by the system is stored

in the state or withdrawn from the state, and the same statement is true

also for the dual system. There is no guarantee that all of the state energy

an ever be withdrawn, as some of it may be trapped in the state forever. A

onservative system is lossless if all the energy transferred into the system

an eventually be withdrawn.

We begin in Setion 2 with a presentation of the lass of systems that

we use to realize positive analyti funtions. In the same setion we de�ne

what we mean by a well-posed system. We ontinue in Setion 3 by reall-

ing the notions of sattering passive, energy preserving, and onservative

systems, as presented in, e.g., [15℄, [29℄, and [40℄. (The same lasses of

systems appear in [2℄ in a di�erent notation.) These lasses of systems are

losely related to the orresponding lasses of impedane systems intro-

dued above. The only di�erene is that the expression for the absorbed

energy is replaed by

R

t

0

ju(s)j

2

ds�

R

t

0

jy(s)j

2

ds, so that (1.1) beomes

jx(t)j

2

+

Z

t

0

jy(s)j

2

ds � jx

0

j

2

+

Z

t

0

ju(s)j

2

ds; (1.3)

and (1.2) beomes

jx(t)j

2

+

Z

t

0

jy(s)j

2

ds = jx

0

j

2

+

Z

t

0

ju(s)j

2

ds: (1.4)
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These systems are always well-posed, and they play an important role in our

study of impedane passive, energy preserving, and onservative systems.

In Setion 4 we are �nally ready to give formal de�nitions of impedane

passive, energy preserving, and onservative systems. We also give a num-

ber of equivalent onditions for a system to have one of these properties.

For example, if the system is desribed by a (possibly in�nite-dimensional)

system of di�erential equations

x

0

(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t); t � 0;

x(0) = x

0

;

(1.5)

where A 2 L(X), B 2 L(U ;X), C 2 L(X ;U), and D 2 L(U), then one

of our onditions (see formula (4.4)) says that this system is impedane

passive if and only if

�

A+A

�

B

B

�

0

�

�

�

0 C

�

C D +D

�

�

: (1.6)

It is impedane energy preserving if and only if this inequality holds as an

equality, and it is impedane onservative if furthermore the orresponding

dual identity holds. In this setion we also point out that an impedane

passive system is well-posed if and only if it is proper.

We then ontinue to disuss disrete time systems in Setions 5{7.

The dynamis of a disrete time system on the three Hilbert spaes U (the

input spae), X (the state spae), and Y (the output spae) is desribed

by

x

k+1

= Ax

k

+Bu

k

;

y

k

= Cx

k

+Du

k

; k = 0; 1; 2; : : : ;

x

0

= given;

(1.7)

where �

�

� = [

A B

C D

℄ 2 L([

X

U

℄ ; [

X

Y

℄). We are, in partiular, interested in

disrete time systems that are passive, energy preserving or onservative in

a sattering or impedane setting, meaning that they satisfy identities like

(1.1){(1.4) with the integrals replaed by �nite sums. These systems are

interesting in their own right, and they play an important role in or study of

ontinuous time systems, too, sine many statements about ontinuous time

systems an be redued to the orresponding statements about disrete

time systems by means of the Cayley transform.

There is a simple transform, sometimes alled the diagonal transform,

whih maps an impedane passive (or energy preserving or onservative)

system into a sattering passive (or energy preserving or onservative) sys-

tem. This transform is well-known in the �nite-dimensional state spae

ase, and also in a very general input/output setting (see [45, Setion
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8.15℄) (it maps a positive analyti funtion into a ontrative analyti fun-

tion). In Setion 6 we show that the same transform works in the disrete

time in�nite-dimensional state spae setting as well if we apply it to an

impedane passive system. The range of this transform is not the lass all

sattering passive systems. Instead it onsists of those sattering passive

systems whih satisfy an additional algebrai ondition, namely that �1

should not be in the spetrum of the transfer funtion, at any point in the

outside the unit dis.

Setion 7 desribes the Cayley transform in more detail. In this se-

tion we also prove what we onsider to be our main result: a ontinuous

time positive analyti funtion

b

D has a simple impedane onservative re-

alization if and only if lim

s!+1

1

s

b

D(s)u = 0 for every u 2 U . The physial

interpretation of this ondition is that the input-output response is not

allowed to ontain a pure derivative ation. The proof of this result uses

[31, Theorem 3.1, p. 255℄, whih gives the existene of a simple sattering

onservative realization of a disrete time ontrative analyti funtion,

together with the inverse diagonal and Cayley transforms. From this we

may further onlude that the same ondition is neessary and suÆient

for the existene of a minimal impedane passive realization, whih is usu-

ally not unique. In the exponentially stable �nite-dimensional ase the

last statement is a onsequene of the impedane version of the Kalman-

Yakubovih-Popov lemma, also known as the positive (real) lemma. A-

ording to that lemma, a matrix-valued proper rational transfer funtion

b

D with an exponentially stable minimal realization of the type (1.5) (with

�nite-dimensional X and U) is positive if and only if there exist matries

P > 0, Q, and W suh that

�

PA+A

�

P PB

B

�

P 0

�

=

�

0 C

�

C D +D

�

�

�

�

Q

�

W

�

�

�

Q W

�

; (1.8)

see, e.g., [46, Theorems 13.25 and 13.26℄. This identity has a simple energy

interpretation: if we add another output z(t) = Qx(t) + Wu(t) to the

system in (1.5), then the solution x of (1.5) satis�es the energy balane

equation

hx(t); Px(t)i +

Z

t

0

jz(s)j

2

ds = hx

0

; Px

0

i+ 2

Z

t

0

<hu(s); y(s)i ds: (1.9)

If we replae the norm in the state spae by the new norm jxj

P

=

p

hx; Pxi,

then the above identity beomes

jx(t)j

2

P

+

Z

t

0

jz(s)j

2

ds = jx

0

j

2

P

+ 2

Z

t

0

<hu(s); y(s)i ds; (1.10)

and this shows that, with this norm and with the added output z, the

system (1.5) an be regarded as an mixed impedane/sattering energy
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preserving system. (The operator P disappears from (1.8) when we om-

pute the adjoints with respet to the inner produt [x

1

; x

2

℄ = hx

1

; Px

2

i

indued by the new norm.) Dropping the extra output z we get a minimal

impedane passive realization of

b

D. See [44, Setions 5{7℄ for more details.

As a onsequene of our proof of the main result we derive the following

interesting onlusion: the diagonal transform an always be applied to a

ontinuous time impedane passive system, and it produes a sattering

passive system. This result has a very simple feedbak interpretation: if we

apply negative feedbak to an impedane passive system, then the resulting

losed-loop system is both well-posed and stable. This is a generalization

of a reent result due to Guo and Luo [10℄ and Weiss and Tusnak [41℄

(independently of eah other).

In the last setion we briey disuss lossless sattering systems, i.e.,

sattering onservative systems with the property that all the energy trans-

ferred into the system an eventually be withdrawn.

The title of this paper ends with the words \from a personal point of

view". This is intended to be a dislaimer: I make no laims whatsoever on

the ompleteness of the theory, and I also make no laims on the historial

orretness of the presentation. I have gradually beome aware of the

existene of a well-developed theory in this �eld, and I have tried to �t it

into my personal view of how the universe is built. In this proess I have

(re)disovered many beautiful results, and I do not always know to whom

these results should be ontributed. I am also aware of the fat that there

are many more results still waiting to be (re)disovered. In partiular, I

have not found Theorem 7.4 in the literature, but it must be related to the

existing results on realizations based on non-uniform transmission lines. I

was hoping to be able to larify this relationship before the deadline of this

artile, but run out of time.

2. In�nite-Dimensional Linear Systems. Many in�nite-dimensional

linear time-invariant ontinuous-time systems an be desribed by the equa-

tions (1.5) on a triple of Hilbert spaes, namely, the input spae U , the

state spae X , and the output spae Y . We have u(t) 2 U , x(t) 2 X and

y(t) 2 Y . The operator A is supposed to be the generator of a strongly

ontinuous semigroup t 7! A

t

. The generating operators A, B and C are

usually unbounded, but D is bounded.

By modifying this set of equations slightly we get the lass of systems

whih will be used in this work. In the sequel, we think about the blok

matrix S = [

A B

C D

℄ as one single (unbounded) operator from [

X

U

℄ to [

X

Y

℄, and

write (1.5) in the form

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

; t � 0; x(0) = x

0

: (2.1)

The operator S ompletely determines the system. Thus, we may identify

the system with suh an operator, whih we all the node of the system.
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There are ertain onditions that we need to impose on S in order to

get a meaningful theory. First of all, S must be losed and densely de�ned

as an operator from [

X

U

℄ into [

X

Y

℄. Let us denote the domain of S by D(S).

Then S an be split into S =

�

S

1

S

2

�

, where S

1

maps D(S) into X and S

2

maps D(S) into Y . By analogy to the �nite-dimensional ase, let us denote

A&B := S

1

and C&D := S

2

, so that S =

�

A&B

C&D

�

(the reader who �nds

this notation onfusing may throughout replae A&B by S

1

and C&D by

S

2

). It is not true, in general, that A&B and C&D (de�ned on D(S))

an be deomposed into A&B =

�

A B

�

and C&D =

�

C D

�

; this is

possible only in the ase where D(S) an be written as the produt of one

subspae of X times another subspae of U . However, we shall require that

an extended version of A&B an be deomposed as indiated above, so that

A&B is the restrition to D(S) of

�

A B

�

for suitably de�ned operators

A and B.

The deomposition of A&B is based on the familiar `rigged Hilbert

spae struture' (sometimes referred to as a `Gelfand triple').

1

Let A be a

losed (unbounded) densely de�ned operator on the Hilbert spae X with

a nonempty resolvent set. We denote its domain D(A) by X

1

. This is

a Hilbert spae with the norm jxj

X

1

:= j(� � A)xj

X

, where � is an arbi-

trary number in � 2 �(A) (di�erent numbers � give di�erent but equivalent

norms). We also onstrut a larger Hilbert spae X

�1

, whih is the omple-

tion of X under the norm jxj

X

�1

:= j(��A)

�1

xj

X

. Then X

1

� X � X

�1

with ontinuous and dense injetions. The operator A has a unique ex-

tension to an operator in L(X ;X

�1

) whih we denote by A

jX

(thereby

indiating that the domain of this operator is all of X). The operators

A and A

jX

are similar to eah other and they have the same spetrum.

Thus, for all � 2 �(A), the operator ��A

jX

maps X one-to-one onto X

�1

.

Its inverse (� � A

jX

)

�1

is the unique extension to X

�1

of the operator

(��A)

�1

.

We shall also need the dual versions of the spaesX

1

andX

�1

. If we re-

peat the onstrution desribed above with A replaed by the (unbounded)

adjoint A

�

of A, then we get two more spaes, that we denote by X

d

1

(the

analogue of X

1

) and X

d

�1

(the analogue of X

�1

). Then X

d

1

� X � X

d

�1

with ontinuous and dense injetions. If we identify the dual of X with

X itself, then X

d

1

beomes the dual of X

�1

and X

d

�1

beomes the dual of

X

1

.

2

We denote the extension of A

�

to an operator in L(X ;X

d

�1

) by A

�

jX

.

This operator an be interpreted as the (bounded) adjoint of the operator

A, regarded as an operator in L(X

1

;X).

Definition 2.1. We all S a system node on the three Hilbert spaes

(U;X; Y ) if it satis�es ondition (S) below:

3

1

See, e.g., [15℄ or [28℄ or almost any other of the papers listed in the referene list

for details.

2

Often X

�1

is de�ned to be the dual of X

d

1

when we identify the dual of X with X

itself.

3

This de�nition is equivalent to the orresponding de�nition used by Smuljan in [21℄
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(S) S :=

�

A&B

C&D

�

: [

X

U

℄ � D(S) ! [

X

Y

℄ is a losed linear operator.

Here A&B is the restrition to D(S) of

�

A

jX

B

�

, where A is the

generator of a C

0

semigroup on X (the notations A

jX

2 L(X ;X

�1

)

and X

�1

were introdued in the text above). The operator B is an

arbitrary operator in L(U ;X

�1

), and C&D is an arbitrary linear

operator from D(S) to Y . In addition, we require that

D(S) =

�

[

x

u

℄ 2 [

X

U

℄

�

�

A

jX

x+Bu 2 X

	

:

It follows from the above de�nition that A&B : [

X

U

℄ � D(A&B) !

[

X

Y

℄, with D(A&B) = D(S), is a losed operator. Thus, D(S) beomes a

Hilbert spae with the graph norm of the operator A&B. Furthermore, it

is not diÆult to show that the assumption that S is losed is equivalent to

the assumption that C&D is ontinuous from D(S) (with the graph norm

of A&B) to Y .

We shall use the following names of the di�erent parts of the system

node S =

�

A&B

C&D

�

. The operator A is the main operator or the semi-

group generator, B is the ontrol operator, C&D is the ombined observa-

tion/feedthrough operator, and the operator C de�ned by

Cx := C&D

�

x

0

�

; x 2 X

1

;

is the observation operator of S.

An easy algebrai omputation (see, e.g., [28, Setion 4.7℄ for details)

shows that for eah � 2 �(A) = �(A

jX

), the operator

h

1 (��A

jX

)

�1

B

0 1

i

is

an boundedly invertible mapping between [

X

U

℄ ! [

X

U

℄ and

�

X

1

U

�

! D(S).

Sine

�

X

1

U

�

is dense in [

X

U

℄, this implies that D(S) is dense in [

X

U

℄. Fur-

thermore, sine the seond olumn

h

(��A

jX

)

�1

B

1

i

of this operator maps U

into D(S), we an de�ne the transfer funtion of S by

b

D(s) := C&D

�

(s�A

jX

)

�1

B

1

�

; s 2 �(A); (2.2)

whih is a L(U ;Y )-valued analyti funtion on �(A). By the resolvent

formula, for any two �, � 2 �(A),

b

D(�) �

b

D(�) = C

�

(� �A

jX

)

�1

� (� �A

jX

)

�1

�

B

= (� � �)C(� �A)

�1

(� �A

jX

)

�1

B:

(2.3)

in 1986. Unfortunately, that paper (written in Russian) has not been properly known

and reognized in the English literature, and many of its results have been (indepen-

dently) redisovered, among others by this author. The main part of [21℄ is devoted to

system nodes whih are well-posed (see our De�nition 2.3). System nodes appear also

in the work by Salamon [19, 20℄ in a less impliit way, again primarily in the well-posed

ase. Our notation C&D [

x

u

℄ orresponds to Smuljan's notation Nhx; ui and Salamon's

notation

�

x� (�� A)

�1

Bu

�

+

b

D(�)u. Compare this to formula (2.4) below.
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It is possible to alternatively de�ne a system node by speifying the

main operator A, the ontrol operator B, the observation operator C, and

the transfer funtion

b

D evaluated at some point � 2 �(A).

Lemma 2.1. Let A be the generator of a C

0

semigroup on a Hilbert

spae X, and let X

1

, X

�1

and A

jX

be the spaes and the operator indued by

A, as explained in the text preeding De�nition 2.1. Let B 2 L(U ;X

�1

), let

C 2 L(X

1

;Y ), and let D 2 L(U ;Y ), where U and Y are two more Hilbert

spaes. Let A&B be the restrition of

�

A

jX

B

�

to D(A&B) =

�

[

x

u

℄ 2

[

X

U

℄

�

�

A

jX

x+Bu 2 X

	

. Finally, let � 2 �(A), and de�ne

C&D

�

x

u

�

= C

�

x� (��A

jX

)

�1

Bu

�

+Du;

�

x

u

�

2 D(A&B):

Then S :=

�

A&B

C&D

�

: D(S) := D(A&B)! [

X

Y

℄ is a system node on (U;X; Y ).

The ontrol operator of this system node is B, the observation operator is

C, and the transfer funtion satis�es

b

D(�) = D.

See [26℄ for the (easy) proof.

Thus, if we replae D by

b

D(�) above, then we have written C&D in

terms of A, B, C, and

b

D(�):

C&D

�

x

u

�

=

�

x� (��A

jX

)

�1

Bu

�

+

b

D(�)u: (2.4)

In partiular, the right-hand side does not depend on how we hoose � 2

�(A).

As shown in [21, Theorem 1.2℄ (and also in [2℄ and [15℄), if S is a system

node on (U;X; Y ), then the (unbounded) adjoint S

�

of S is a system node

on (Y;X;U). We shall refer to this system node as the dual system node,

and we sometimes denote it by S

d

. If we let A be the main operator of S,

and let B 2 L(U ;X

�1

) and C 2 L(X

1

;Y ) be the ontrol and observation

operators of S, then the main operator of S

d

is A

d

= A

�

(by this we

mean the unbounded adjoint of A; see the paragraph before De�nition 2.1),

the ontrol operator of S

�

is B

d

= C

�

2 L(Y ;X

d

�1

), and the observation

operator is C

d

= B

�

2 L(X

d

1

;U). Furthermore, if

b

D is the transfer funtion

of S, then the transfer funtion

b

D

d

of S

d

is given by

b

D

d

(s) =

b

D(s)

�

for

s 2 �(A

�

).

Every system node indues a `dynamial system' of a ertain type:

Lemma 2.2. Let S be a system node on (U;X; Y ). Then, for eah

x

0

2 X and u 2W

2;1

lo

(R

+

;U) with

�

x

0

u(0)

�

2 D(S), the equation

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

; t � 0; x(0) = x

0

; (2.5)

has a unique solution (x; y) satisfying

h

x(t)

u(t)

i

2 D(S) for all t � 0, x 2

C

1

(R

+

;X), and y 2 C(R

+

;Y ).
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This lemma is proved in [15℄ (and also in [28℄).

4

By taking Laplae transforms in (2.5) we �nd that if u is Laplae trans-

formable with transform û, then the output y is also Laplae transformable

with transform

x̂(s) = (s�A)

�1

x

0

+ (s�A

jX

)

�1

Bû(s);

ŷ(s) = C(s�A)

�1

x

0

+

b

D(s)û(s);

(2.6)

for <s large enough. Thus, our de�nition of the transfer funtion is equiv-

alent to the standard de�nition in the lassial ase.

Definition 2.2. By the linear system � generated by a system node

S we understand the family � of maps de�ned by

�

t

0

�

x

0

�

[0;t℄

u

�

:=

�

x(t)

�

[0;t℄

y

�

;

parametrized by t � 0, where x

0

, x(t), u, and y are as in Lemma 2.2 and

�

[0;t℄

u and �

[0;t℄

y are the restritions of u and y to [0; t℄. We all x the

state trajetory and y the output funtion of � with initial state x

0

and

input funtion u.

By the reahable subspae of S we mean the losure in X of the set of

all possible values of x(t) in Lemma 2.2 if we take x

0

= 0 (and let u and

t vary). Its orthogonal omplement is the unreahable subspae. By the

unobservable subspae of S we mean the losure of the set of all x

0

2 X

1

for whih the output y in Lemma 2.2 with initial state x

0

and zero input

funtion u is identially zero. Its orthogonal omplement is the observable

subspae. It is well-known that the orthogonal omplement of the reahable

subspae of S is the unobservable subspae of the dual system node S

�

(and

the same statement is true if we interhange S and S

�

). A system is simple

if the intersetion of the unreahable and unobservable subspaes is f0g.

We all a system node S (and the orresponding system �) on (U;X; Y )

(approximately) ontrollable if the reahable subspae is all of X and (ap-

proximately) observable if the observable subspae is all of X . A system

whih is both ontrollable and observable is minimal.

So far we have de�ned �

t

0

only for the lass of smooth data given in

Lemma 2.2. It is possible to extend this de�nition by allowing the state to

take values in the larger spae X

�1

instead of in X , and by allowing y to

be a distribution.

Let us �rst take a look at the state, whih is supposed to be a solution

of the equation _x(t) = A

jX

x(t) +Bu(t) for t � 0, with initial value x(0) =

x

0

. However, sine B 2 L(U ;X

�1

), if x

0

2 X and if u 2 L

1

lo

(R

+

;U), then

this equation has a unique strong solution x 2 W

1;1

lo

(R

+

;X

�1

) (see, e.g.,

4

Well-posed versions of this lemma (see De�nition 2.3) are (impliitly) found in [19℄

and [21℄ (and also in [29℄). In the well-posed ase we need less smoothness of u: it

suÆes to take u 2W

1;2

lo

(R

+

;U). In addition y will be smoother: y 2W

1;2

lo

(R

+

;Y ).
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[28, Setion 3.8℄; the operator A

jX

is the generator of the C

0

semigroup

that we get by extending the semigroup generated by A to X

�1

). Thus,

the notion of the state trajetory auses no problem if we are willing to

aept a trajetory with values in X

�1

.

To get a generalized de�nition of the output y under the same premises

we an do as follows (see [28, Setion 4.7℄ for details). Let x

0

2 X ,

u 2 L

1

lo

(R

+

;U), and let x 2 W

1;1

lo

(R

+

;X

�1

) be the orresponding state

trajetory. De�ne [

x

2

u

2

℄ by

h

x

2

(t)

u

2

(t)

i

=

Z

t

0

(t� s)

h

x(s)

u(s)

i

ds; t � 0

(this is the seond order integral of [

x

u

℄). Then

h

x

2

(t)

u

2

(t)

i

2 D(S) for all t � 0,

and we may de�ne the output y by

y(t) =

�

C&D

h

x

2

(s)

u

2

(s)

i�

00

; t � 0; (2.7)

where we interpret the seond order derivative in the distribution sense.

5

The following lemma gives a suÆient set of onditions under whih

the output y is a a funtion (as opposed to a distribution):

Lemma 2.3. Let S =

�

A&B

C&D

�

be a system node on (U;X; Y ). Let

x

0

2 X, and u 2 L

1

lo

(R

+

;U), and let x and y be the state trajetory and

output of S with initial state x

0

, and input funtion u. If x 2 W

1;1

lo

(R

+

;X),

then [

x

u

℄ 2 L

1

lo

(R

+

;D(S)), y 2 L

1

lo

(R

+

;Y ), and [

x

y

℄ is the unique solution

with the above properties of the equation

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

for almost all t � 0; x(0) = x

0

: (2.8)

If u 2 C(R

+

;U) and x 2 C

1

(R

+

;X), then [

x

u

℄ 2 C(R

+

;D(S)), y 2

C(R

+

;Y ), and the equation (2.8) holds for all t � 0.

See [28, Setion 4.7℄ for the proof.

Another possibility to extend �

t

0

to a larger lass of data is based on

an additional well-posedness assumption.

Definition 2.3. A system node S is well-posed if, for some t > 0,

there is a �nite onstant K(t) suh that the solution (x; y) in Lemma 2.2

satis�es

jx(t)j

2

+ kyk

2

L

2

(0;t)

� K(t)

�

jx

0

j

2

+ kuk

2

L

2

(0;t)

�

: (WP)

It is energy stable if there is some K < 1 so that, for all t 2 R

+

, the

solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

+ kyk

2

L

2

(0;t)

� K

�

jx

0

j

2

+ kuk

2

L

2

(0;t)

�

: (ES)

5

In the well-posed ase, if u 2 L

2

lo

(R

+

;U), then it suÆes to integrate [

x

u

℄ one,

then apply C&D, and �nally di�erentiate one in the distribution sense.
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It is not diÆult to show that if (WP) holds for one t > 0, then it

holds for all t � 0.

If a system node S is well-posed, then the orresponding system � an

be extended by ontinuity to a family of operators

�

t

0

:=

h

A

t

B

t

0

C

t

0

D

t

0

i

from

h

X

L

2

([0;t℄;U)

i

to

h

X

L

2

([0;t℄;Y )

i

. (We still denote the extended family by

�.)

For more details, explanations and examples we refer the reader to

[1℄, [2℄, [6℄, [8, 9℄ [11℄, [17℄, [19, 20℄, [21℄, [22, 23, 24, 25, 28℄, [29, 30℄, [33℄,

[35, 36, 37, 38, 39℄, [40℄, [41℄, and [42℄ (and the referenes therein).

3. Sattering Passive and Conservative Systems. The following

de�nition is a slightly modi�ed version of the de�nitions in the two lassial

papers [43, 44℄ by Willems (although we use a slightly di�erent terminology:

our passive is the same as Willems' dissipative).

6

Definition 3.1. Let J be a bounded self-adjoint operator on [

Y

U

℄. A

system node S on (U;X; Y ) is J-passive if, for all t > 0, the solution (x; y)

in Lemma 2.2 satis�es

jx(t)j

2

� jx

0

j

2

�

Z

t

0

Dh

y(s)

u(s)

i

; J

h

y(s)

u(s)

iE

ds: (JP)

It is J-energy preserving if the above inequality holds in the form of an

equality: for all t > 0, the solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

� jx

0

j

2

=

Z

t

0

Dh

y(s)

u(s)

i

; J

h

y(s)

u(s)

iE

ds: (JE)

Physially, passivity means that there are no internal energy soures.

An energy preserving system has neither any internal energy soures nor

any sinks.

Di�erent hoies of J give di�erent passivity notions. The ase J =

�

�1 0

0 1

�

is known as sattering. The ase where U = Y = [

V

V

℄ and J = [

0 1

1 0

℄

is known as impedane (admittane, resistane, ondutane). The ase

where U = Y = [

V

W

℄, and J =

"

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 �1

#

is known as transmission

6

Another di�erene is that we have replaed Willems' more general storage funtion

S(x) by the quadrati funtion jxj

2

X

. Our setting beomes the sattering version of the

setting whih Willems uses in the seond part [44℄ if we simply take the norm in the state

spae to be jxj

2

=

p

S(x) (this is possible whenever the storage funtion is quadrati

and stritly positive). See also [32℄ and [34℄.
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(hain sattering). In this artile we fous on the sattering (J =

�

�1 0

0 1

�

)

and impedane (J = [

0 1

1 0

℄) settings.

Definition 3.2. A system node S is sattering passive

7

if, for all

t > 0, the solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

� jx

0

j

2

� kuk

2

L

2

(0;t)

� kyk

2

L

2

(0;t)

: (SP)

It is sattering energy preserving if the above inequality holds in the form

of an equality: for all t > 0, the solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

� jx

0

j

2

= kuk

2

L

2

(0;t)

� kyk

2

L

2

(0;t)

: (SE)

Finally, it is sattering onservative if both S and S

�

are sattering energy

preserving.

Thus, every sattering passive system is well-posed : the passivity in-

equality (SP) implies the well-posedness inequality (WP).

A sattering passive system an be haraterized in several di�erent

ways:

Theorem 3.1. Let S =

�

A&B

C&D

�

be a system node on (U;X; Y ). Then

the following onditions are equivalent:

(i) S is sattering passive.

(ii) For all t > 0, the solution (x; y) in Lemma 2.2 satis�es

d

dt

jx(t)j

2

X

� ju(t)j

2

U

� jy(t)j

2

Y

: (3.1)

(iii) For all [

x

0

u

0

℄ 2 D(S),

2<




A&B [

x

0

u

0

℄ ; x

0

�

X

� ju

0

j

2

U

�

�

�

C&D [

x

0

u

0

℄

�

�

2

Y

: (3.2)

(iv) For some � 2 �(A) \ C

+

(or equivalently, for all � 2 C

+

), the

operator

�

A(�) B(�)

C(�)

b

D(�)

�

=

�

(� +A)(��A)

�1

p

2<� (��A)

�1

B

p

2<�C(��A)

�1

b

D(�)

�

(3.3)

is a ontration. (Here C

+

is the open right half-plane.)

This is (a part of) [29, Theorem 7.4℄, and it is also found in [2℄ (see,

in partiular, De�nition 4.1, Proposition 4.1, Subsetion 4.5, and Theorem

5.2 of [2℄).

A similar result is valid for sattering energy preserving systems:

Theorem 3.2. Let S =

�

A&B

C&D

�

be a system node on (U;X; Y ). Then

the following onditions are equivalent:

(i) S is sattering energy preserving.

7

In [15, 16℄, [29, 30℄, [33℄, [40℄, [41℄, et., these systems are alled dissipative.
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(ii) For all t > 0, the solution (x; y) in Lemma 2.2 satis�es

d

dt

jx(t)j

2

X

= ju(t)j

2

U

� jy(t)j

2

Y

: (3.4)

(iii) For all [

x

0

u

0

℄ 2 D(S),

2<




A&B [

x

0

u

0

℄ ; x

0

�

X

= ju

0

j

2

U

�

�

�

C&D [

x

0

u

0

℄

�

�

2

Y

: (3.5)

(iv) For some � 2 �(A) \ C

+

(or equivalently, for all � 2 C

+

), the

operator

h

A(�) B(�)

C(�)

b

D(�)

i

de�ned in (3.3) is isometri.

This theorem is proved in [15℄. Most of this theorem is also found in

[2℄.

By applying Theorem 3.2 both to the original system node S and to the

dual system node S

�

we get a set of systems whih haraterize sattering

onservative system nodes. Some equivalent but simpler onditions are

given in [15℄.

A �nite-dimensional system is sattering onservative if and only if

it is energy preserving and the input and output spaes have the same di-

mension. Some related (but more ompliated) results are true also in

in�nite-dimensions. See [2℄, [15℄, and [29, 30℄ for details.

4. Impedane Passive and Conservative Systems. As we men-

tioned above, we get into the impedane setting by taking J = [

0 1

1 0

℄ in

De�nition 3.1.

Definition 4.1. A system node S on (U;X;U) (note that Y = U)

is impedane passive if, for all t > 0, the solution (x; y) in Lemma 2.2

satis�es

jx(t)j

2

X

� jx

0

j

2

X

� 2

Z

t

0

<hy(t); u(t)i

U

dt: (IP)

It is impedane energy preserving if the above inequality holds in the form

of an equality: for all t > 0, the solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

X

� jx

0

j

2

X

= 2

Z

t

0

<hy(t); u(t)i

U

dt: (IE)

Finally, S is impedane onservative if both S and the dual system node

S

�

are impedane energy preserving.

Note that in this ase well-posedness is neither guaranteed, nor rele-

vant.

The property of being passive is onserved under the passage from a

system node S to its dual:

Lemma 4.1. A system node S is impedane passive if and only if the

dual system node S

�

is impedane passive.
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This is proved in [26, Corollary 4.5℄. That proof is based on property

(v) in the following theorem, whih lists a number of equivalent onditions

for a system node to be impedane passive.

Theorem 4.1. Let S =

�

A&B

C&D

�

be a system node on (U;X;U). Then

the following onditions are equivalent:

(i) S is impedane passive.

(ii) For all t > 0, the solution (x; y) in Lemma 2.2 satis�es

d

dt

jx(t)j

2

X

� 2<hy(t); u(t)i

U

: (4.1)

(iii) For all [

x

0

u

0

℄ 2 D(S),

<




A&B [

x

0

u

0

℄ ; x

0

�

X

� <hC&D [

x

0

u

0

℄ ; u

0

i

U

: (4.2)

(iv) For some � 2 �(A) \ C

+

(or equivalently, for all � 2 C

+

), the

operator

h

A(�) B(�)

C(�)

b

D(�)

i

de�ned in (3.3) satis�es

�

A(�)

�

A(�) A(�)

�

B(�)

B(�)

�

A(�) B(�)

�

B(�)

�

�

�

1 C(�)

�

C(�)

b

D(�) +

b

D(�)

�

�

: (4.3)

(v) The system node

�

A&B

�C&D

�

is a maximal dissipative operator in [

X

U

℄,

i.e., ��

�

A&B

�C&D

�

is invertible for every � 2 C

+

, and for all [

x

0

u

0

℄ 2

D(S),

<

��

x

0

u

0

�

;

�

A&B

�C&D

� �

x

0

u

0

��

[

X

U

℄

� 0: (4.4)

(vi) For some � 2 �(A) \ C

+

(or equivalently, for all � 2 C

+

), the

operator ��

�

A&B

�C&D

�

is invertible, and

�

A

�

(�) B

�

(�)

C

�

(�) D

�

(�)

�

=

�

�+

�

A&B

�C&D

���

��

�

A&B

�C&D

��

�1

(4.5)

is a ontration.

This is a slightly abbreviated version of [26, Theorem 4.2 and Corollary

4.4℄. The energy preserving ase is similar.

Theorem 4.2. Let S =

�

A&B

C&D

�

be a system node on (U;X;U). Then

the following onditions are equivalent:

(i) S is impedane energy preserving.

(ii) For all t > 0, the solution (x; y) in Lemma 2.2 satis�es

d

dt

jx(t)j

2

X

= 2<hy(t); u(t)i

U

: (4.6)

(iii) For all [

x

0

u

0

℄ 2 D(S),

<

��

x

0

u

0

�

;

�

A&B

�C&D

� �

x

0

u

0

��

[

X

U

℄

= 0: (4.7)
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(iv) For some � 2 �(A) \ C

+

(or equivalently, for all � 2 C

+

), the

operator

h

A(�) B(�)

C(�)

b

D(�)

i

de�ned in (3.3) satis�es

�

A(�)

�

A(�) A(�)

�

B(�)

B(�)

�

A(�) B(�)

�

B(�)

�

=

�

1 C(�)

�

C(�)

b

D(�) +

b

D(�)

�

�

: (4.8)

(v) The system node

�

A&B

�C&D

�

is skew-symmetri, i.e., D(S) = D(

�

A&B

�C&D

�

) �

D(

�

A&B

�C&D

�

�

), and

�

A&B

�C&D

�

�

�

x

0

u

0

�

= �

�

A&B

�C&D

��

x

0

u

0

�

;

�

x

0

u

0

�

2 D(S): (4.9)

(vi) For some � 2 �(A) \ C

+

(or equivalently, for all � 2 C

+

), the

operator ��

�

A&B

�C&D

�

is invertible, and the operator

h

A

�

(�) B

�

(�)

C

�

(�) D

�

(�)

i

de�ned in (4.5) is an isometry.

This is a slightly abbreviated version of [26, Theorem 4.6℄. An analo-

gous but even simpler result is true for impedane onservative systems:

Theorem 4.3. Let S =

�

A&B

C&D

�

be a system node on (U;X;U). Then

the following onditions are equivalent:

(i) S is impedane onservative.

(ii) For all t > 0, the solution (x; y) in Lemma 2.2 satis�es

d

dt

jx(t)j

2

X

= 2<hy(t); u(t)i

U

; (4.10)

and the same identity is true for the adjoint system.

(iii) The system node

�

A&B

�C&D

�

is skew-adjoint, i.e.,

�

A&B

�C&D

�

�

= �

�

A&B

�C&D

�

: (4.11)

(iv) A

�

= �A, B

�

= C, and

b

D(�) +

b

D(��)

�

= 0 for some (or equiva-

lently, for all) � 2 �(A) (in partiular, this identity is true for all

� with <� 6= 0).

(v) For some � 2 �(A) \ C

+

(or equivalently, for all � 2 C

+

), the

operator ��

�

A&B

�C&D

�

is invertible, and the operator

h

A

�

(�) B

�

(�)

C

�

(�) D

�

(�)

i

de�ned in (4.5) is unitary.

This is [26, Theorem 4.7℄.

Many impedane passive systems are well-posed. There is a simple

way of haraterizing suh systems:

Theorem 4.4. An impedane passive system node is well-posed if

and only if its transfer funtion

b

D is bounded on some (or equivalently, on

every) vertial line in C

+

. When this is the ase, the growth bound of the

system is zero, and, in partiular,

b

D is bounded on every right half-plane

C

+

�

= fs 2 C j <s > �g with � > 0.
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This is [26, Theorem 5.1℄. It an be used to show that many systems

with olloated atuators and sensors are well-posed.

Example 1. Let A be the generator of a ontration semigroup on

X. De�ne S =

h

A

jX

A

jX

�A

jX

�A

jX

i

with D(S) =

�

[

x

u

℄ 2 [

X

X

℄

�

�

x + u 2 D(A)

	

.

Then S is an impedane passive system node on (X;X;X) (use part (v)

of Theorem 4.1 and note that [

A A

A A

℄ = [

1

1

℄A

�

1 1

�

an be interpreted as

the dissipative operator A surrounded by another operator and its adjoint).

The transfer funtion of this node is easily omputed, and it turns out

to be

b

D(s) = �sA(s � A)

�1

, s 2 C

+

. This example is impedane energy

preserving if and only if A generates an isometri semigroup (i.e, A is skew-

symmetri), and it is impedane onservative if and only if A generates a

unitary group (i.e, A is skew-adjoint).

Example 2. Let A be a normal operator on X whih generates a on-

tration semigroup (i.e., A is dissipative, or equivalently, the spetrum of A

lies in the losed left half-plane). We an then use the polar deomposition

of A to write A in the form A = V jAj = jAjV , where jAj is the positive

square root of A

�

A = AA

�

and V is unitary. Let

1

2

� p � 1, and let us

onsider the system node

8

S =

�

A jAj

p

V

�jAj

p

V �jAj

2p�1

V

�

on (X;X;X), with D(S) =

�

[

x

u

℄ 2 [

X

X

℄

�

�

Ax+jAj

p

V u 2 X

	

. Formulated in

this way it is not obvious that the observation/feedthrough operator is on-

tinuous. However, we may (formally) ompute the orresponding transfer

funtion, whih turns out to be given by

b

D(s) = �sjAj

2p�1

(s�A)

�1

V; s 2 C

+

:

We know from Lemma 2.1 that there is a system node S whose semigroup

generator is A, whose ontrol operator is jAj

p

V , whose observation operator

is �jAj

p

V , and whose transfer funtion satis�es

b

D(1) = jAj

2p�1

(1�A)

�1

V .

If we ompute the observation/feedthrough operator of this node as desribed

in Lemma 2.1, then we get for all [

x

u

℄ 2 D(S), (reall that V , A, and all

positive powers of jAj ommute)

C&D [

x

u

℄ = �jAj

p

V

�

x� (1�A)

�1

jAj

p

V u

�

� jAj

2p�1

(1�A)

�1

V u

= �jAj

p

V x� jAj

2p�1

V (1� jAjV )(1�A)

�1

u

= �jAj

p

V x� jAj

2p�1

V u:

This shows that the original formula that we gave for the system node S

indeed de�nes a system node S on (X;X;X), with D(S) =

�

[

x

u

℄ 2 [

X

X

℄

�

�

jAjx+ jAj

p

u 2 X

	

.

8

The operators A and the powers of jAj that appear in this example an be extended

so that they map all of X into an appropriate larger spae. We still denote the extended

operators by the same letters.
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We laim that this system node is impedane passive. To prove this it

suÆes to show that the operator

�

A&B

�C&D

�

=

�

A jAj

p

V

jAj

p

V jAj

2p�1

V

�

is dissipative. However, this follows from the fat that we an fator this

operator in the form

�

A jAj

p

V

jAj

p

V jAj

2p�1

V

�

=

�

jAj

1�p

1

�

jAj

p�1=2

V jAj

p�1=2

�

jAj

1�p

1

�

;

and this operator is dissipative sine V is dissipative (here V is surrounded

by another operator and its adjoint). From the same omputation we an

onlude that S is impedane onservative whenever A generates a unitary

group, i.e., whenever A is skew-adjoint. (The impedane energy preserving

version of this example is irrelevant, beause if A is normal and generates

an isometri semigroup, then this semigroup is unitary.)

5. Disrete Time Systems. There is a lose onnetion between

the passive ontinuous time systems that we have onsidered so far and

the orresponding disrete time systems. In these systems the input u =

fu

k

g

1

k=0

, the state x = fx

k

g

1

k=0

, and the output y = fy

k

g

1

k=0

are sequenes

with values in the Hilbert spaes U , X , respetively Y , and the dynamis

is desribed by

x

k+1

= Ax

k

+Bu

k

;

y

k

= Cx

k

+Du

k

; k = 0; 1; 2; : : : ;

x

0

= given;

(5.1)

where �

�

� = [

A B

C D

℄ 2 L([

X

U

℄ ; [

X

Y

℄). We still all A the main operator, B

the ontrol operator, C the observation operator, and D the feedthrough

operator. We de�ne the transfer funtion

b

D of �

�

� in the same way as in

the ontinuous time (with C&D replaed by

�

C D

�

), namely

b

D(z) = C(z �A)

�1

B+D; z 2 �(A):

Obviously, the transfer funtion

b

D

d

of the dual system �

�

�

d

= [

A B

C D

℄

�

=

�

A

�

C

�

B

�

D

�

�

is

b

D

d

(z) = B

�

(z �A

�

)

�1

C

�

+D

�

=

b

D(z)

�

; z 2 �(A

�

):

Observability, ontrollability, simpliity, and minimality of a disrete time

system is de�ned in exatly the same way as in ontinuous time, with

ontinuous time trajetories replaed by disrete time trajetories.
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The system (5.1) is sattering passive if it is true for all x

0

2 X , all

input sequenes u

k

2 U , and all m = 0; 1; 2; : : : that

jx

m+1

j

2

X

� jx

0

j

2

X

�

m

X

k=0

ju

k

j

2

U

�

m

X

k=0

jy

k

j

2

Y

:

It an easily be seen that this ondition holds for all m = 0; 1; 2; : : : if

and only if it holds for m = 0, and this is true if and only if [

A B

C D

℄ is a

ontration from [

X

U

℄ to [

X

Y

℄ with the natural norms:

�

�

[

x

u

℄

�

�

2

[

X

U

℄

= jxj

2

X

+ juj

2

U

;

�

�

[

x

u

℄

�

�

2

[

X

U

℄

= jxj

2

X

+ juj

2

U

:

The system is sattering energy preserving if we have equality above, and

it is sattering onservative if both the original system and the dual sys-

tem are energy preserving. The main operator A of every disrete time

sattering passive system is a ontration, so

b

D is de�ned and analyti (at

least) on D

+

= fz 2 C j jzj > 1g [ f1g. It is well-known that

b

D(z) is

a ontrative analyti funtion on D

+

(a Shur funtion), i.e.,

b

D(z) is a

ontration for every z 2 D

+

.

Disrete time impedane passive systems are de�ned in an analogous

way. The system (5.1) is impedane passive if it is true for all x

0

2 X , all

input sequenes u

k

2 U , and all m = 0; 1; 2; : : : that

jx

m+1

j

2

X

� jx

0

j

2

X

�

m

X

k=0

2<hu

k

; y

k

i

U

:

Again, this ondition holds for all m = 0; 1; 2; : : : if an only if it holds for

m = 0, and this is true if and only if [

A B

C D

℄ satis�es the operator inequality

�

A

�

B

�

�

�

A B

�

�

�

1 C

�

C D+D

�

�

:

The system is impedane energy preserving if we have equality above, and

it is impedane onservative if both the original system and the dual system

are energy preserving. The main operator A of every impedane passive

system is a ontration, so

b

D is de�ned (at least) on D

+

. It is well-known

that (5.1) is passive if and only if the dual system is passive, and that

b

D(z)

is a positive analyti funtion on D

+

.

6. The Disrete Time Diagonal Transform. There is a simple

transform whih maps a (disrete time) impedane passive system into a

sattering passive system. Following [14℄, we shall refer to this transform

as the diagonal transform. Usually the parameter � below is taken to be

one, or possibly to be a positive number, but we shall allow � to be any

number in C

+

.
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Let � 2 C

+

, and suppose that � + D is invertible. Then we an

replae the original input u

k

in (5.1) by a new independent input u

�

k

=

1

p

2<�

(�u

k

+ y

k

), and at the same time replae the original output y

k

in

(5.1) by a new output y

�

k

=

1

p

2<�

(�u

k

� y

k

) to get the new disrete time

system

x

�

k+1

= A

�

x

�

k

+B

�

u

�

k

;

y

�

k

= C

�

x

�

k

+D

�

u

�

k

; k = 0; 1; 2; : : : ;

x

�

0

= given;

(6.1)

where

�

�

�

�

=

�

A

�

B

�

C

�

D

�

�

=

�

A�B(� +D)

�1

C

p

2<�B(� +D)

�1

�

p

2<� (� +D)

�1

C (� �D)(� +D)

�1

�

=

�

1 0

0 1=

p

2<�

� �

A B

�C � �D

� �

1 0

C � +D

�

�1

�

1 0

0

p

2<�

�

:

(6.2)

Equivalently,

�

A

�

B

�

C

�

1 +D

�

�

=

�

1 0

0

p

2<�

� �

A B

0 1

� �

1 0

C � +D

�

�1

�

1 0

0

p

2<�

�

:

(6.3)

It is not diÆult to show that the transfer funtion of the new system �

�

�

�

is

b

D

�

(z) = (� �

b

D(z))(� +

b

D(z))

�1

. We shall refer to the transform from

�

�

� to �

�

�

�

as the (disrete time) diagonal transform with parameter � 2 C

+

.

The inverse diagonal transform with the same parameter � is the mapping

from �

�

�

�

to �

�

�, and it is expliitly given by

�

�

� =

�

A B

C D

�

=

�

A

�

�B

�

(1 +D

�

)

�1

C

�

p

2<�B

�

(1 +D

�

)

�1

�

p

2<� (1 +D

�

)

�1

C

�

(� � �D

�

)(1 +D

�

)

�1

�

=

�

1 0

0 1=

p

2<�

��

A

�

B

�

��C

�

� � �D

�

��

1 0

C

�

1 +D

�

�

�1

�

1 0

0

p

2<�

�

:

(6.4)

Equivalently,

�

A B

C � +D

�

=

�

1 0

0

p

2<�

� �

A

�

B

�

0 1

� �

1 0

C

�

1 +D

�

�

�1

�

1 0

0

p

2<�

�

:

(6.5)

This orresponds to a hange of input and output variables from

h

u

�

y

�

i

in (6.1) to [

u

y

℄ in (5.1) aording to the rule u

k

=

1

p

2<�

(u

�

k

+ y

�

k

) and

y

k

=

p

2

p

<�

(u

�

k

�y

�

k

). Observe that the inverse diagonal transform oinides

with the diret diagonal transform if (and only if) � = 1 (and this explains

why the hoie � = 1 is the most ommon one).
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p

2

�

1

p

2

6

x

0

-

x

-

u

�

-

+

d -r

u

-

y

r

�

d- -

y

�

6

�

?

+

Fig. 1. The diagonal transform with � = 1

Clearly, the diagonal transform desribed above is well-de�ned (i.e., it

produes a new disrete time system with bounded operatorsA

�

, B

�

, C

�

,

and D

�

) if and only if �� =2 �(D), i.e., if and only if � +D is invertible.

Furthermore, it is also lear (by onstrution) that the state trajetory

fx

�

k

g

1

k=0

of (6.1) oinides with the state trajetory fx

k

g

1

k=0

of (5.1) if

x

�

0

= x

0

and u

�

k

=

1

p

2<�

(�u

k

+ y

k

) for k � 0. Moreover, in this ase

the two outputs are related by y

�

k

=

1

p

2<�

(�u

k

� y

k

) for k � 0. These

relationships have spei�ally been hosen in suh a way that

ju

�

k

j

2

U

� ju

�

k

j

2

U

= 2<hy

k

; u

k

i:

This immediately implies the following lemma.

Lemma 6.1.

(i) A disrete time system �

�

� = [

A B

C D

℄ is impedane passive (or energy

preserving or onservative) if and only if the diagonal transform is

well-de�ned for some � 2 C

+

(or equivalently, for all � 2 C

+

) and

the diagonally transformed system �

�

�

�

=

h

A

�

B

�

C

�

D

�

i

is sattering

passive (or energy preserving or onservative).

(ii) A disrete time sattering passive system �

�

�

�

=

h

A

�

B

�

C

�

D

�

i

is the

diagonal transform for some � 2 C

+

(or equivalently, for all � 2

C

+

) of a impedane passive system �

�

� = [

A B

C D

℄ if and only if �1 =2

�(D

�

).

(iii) The two systems have idential ontrollability properties: if one of

the two systems �

�

� and �

�

�

�

is ontrollable (or observable, or simple,

or minimal) then so is the other, and their reahable, unreahable,

observable, and unobservable subspaes oinide.

Thus, a disrete time sattering passive system an be regarded as a

slightly more general objet than a disrete time impedane passive system,

sine the diagonal transform maps the latter lass into a sublass of the

former.

Let us now look at the realization problem: whih ontrative or pos-

itive analyti funtions on D

+

an be interpreted as the transfer funtions
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of a sattering or impedane onservative system? The answer to the �rst

question is given in the following theorem.

Theorem 6.1 ([31, Setion VI.3, pp. 248{259℄). Every ontrative

analyti funtion on D

+

has a simple disrete time sattering onservative

realization, whih is unique modulo a unitary similarity transform in the

state spae.

9

This is a slightly reformulated version of the results presented in [31,

Setion VI.3, pp. 248{259℄. From this result, ombined with Lemma 6.1 we

an derive the following analogous realization result for positive analyti

funtions.

Theorem 6.2. Every positive analyti funtion on D

+

has a simple

disrete time impedane onservative realization, whih is unique modulo a

unitary similarity transform in the state spae.

10

Proof. Let

b

D be a disrete time positive analyti funtion. Then

z 7!

b

D

�

(z) = (1�

b

D(z))(1+

b

D(z))

�1

is a ontrative analyti funtion, so,

by Theorem 6.1 it has a (essentially unique) simple sattering onservative

realization, whih we hoose to denote by �

�

�

�

. The feedthrough operator

D

�

of this realization is given by

D

�

=

b

D(1)

�

= (1�

b

D(1))(1 +

b

D(1))

�1

= (1�D)(1 +D)

�1

;

so 1+D

�

= 2(1+D)

�1

is invertible. We an therefore apply the (inverse)

diagonal transform to the system �

�

to get a simple impedane onser-

vative realization of

b

D, whih is still unique modulo a unitary similarity

transform in the state spae.

7. The Cayley Transform. Above we have shown how to pass from

an impedane passive (or energy preserving or onservative) system to a

sattering passive (or energy preserving or onservative) system by using

the diagonal transform. There is another very similar transform that is in

widespread use to pass from a ontinuous time system to a disrete time

system, namely the Cayley transform. If S =

�

A&B

C&D

�

is a system node on

(U;X; Y ) with main operator A, ontrol operator B, observation operator

C, and transfer funtion

b

D, and if, in addition, � =2 �(A), � 2 C

+

, then we

de�ne the Cayley transform with parameter � of S to be the disrete time

9

To get this result from [31℄ it suÆes to ombine [31, Theorem 3.1, p. 255℄ with the

deomposition of a ontrative funtion into a unitary part and a stritly ontrative

part desribed in [31, Proposition 2.1, p. 188℄. The same theorem is proved by a di�erent

method in [4, Theorem 5.1℄, and there it is redited to [5℄.

10

We do not know whom this theorem should be redited.
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system

�

�

� =

�

A B

C D

�

=

�

(�+A)(� �A)

�1

p

2<� (��A

jX

)

�1

B

p

2<�C(��A)

�1

b

D(�)

�

=

�

1=

p

2<� 0

0 1

���

� 0

0 0

�

+

�

A&B

C&D

��

�

��

� 0

0 1

�

�

�

A&B

0 0

��

�1

�
p

2<� 0

0 1

�

:

(7.1)

Equivalently,

�

A+ 1 B

C D

�

=

�p

2<� 0

0 1

��

1 0

C&D

�

�

��

� 0

0 1

�

�

�

A&B

0 0

��

�1

�
p

2<� 0

0 1

�

:

(7.2)

The (disrete time) transfer funtion of this system is given by

b

D(z) =

b

D(

�z��

z+1

). Note the similarity to (6.2), whih beomes even more striking

if we replae A&B by

�

A B

�

and C&D by

�

C D

�

(whih is permitted

when, e.g., A is bounded). If, for example, S is ontinuous time satter-

ing or impedane passive, then A is a maximal dissipative operator, so in

this ase the Cayley transform is well-de�ned for all parameters � 2 C

+

.

Observe that

A+ 1 = 2<�(��A)

�1

;

�

1=

p

2<� 0

0 1

� �

A+ 1 B

0 1

��

1=

p

2<� 0

0 1

�

=

��

� 0

0 1

�

�

�

A&B

0 0

��

�1

so both the operators above are one-to-one, the former maps X onto X

1

,

and the latter maps [

X

U

℄ onto D(S). This makes it possible to invert the

Cayley transform in the form

S =

�

A&B

C&D

�

=

�

1=

p

2<� 0

0 1

��

�A� � �B

C D

�

�

�

A+ 1 B

0 1

�

�1

�p

2<� 0

0 1

�

:

(7.3)

Equivalently,

�

A&B

C&D

�

�

�

� 0

0 0

�

=

�p

2<� 0

0 1

��

�1 0

C D

� �

A+ 1 B

0 1

�

�1

�p

2<� 0

0 1

�

:

(7.4)
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More spei�ally, the di�erent operators needed in Lemma 2.1 to onstrut

the node S are given by

A = (�A � �)(A+ 1)

�1

; B =

1

p

2<�

(��A

jX

)B;

C =

p

2<�C(A+ 1)

�1

;

b

D(s) =

b

D

�

�+ s

�� s

�

:

(7.5)

These onsiderations lead us to the following onlusion:

Lemma 7.1. A disrete time system �

�

� = [

A B

C D

℄ on (U;X; Y ) is the

Cayley transform with parameter � 2 C

+

of a ontinuous time system node

S on (U;X; Y ) if and only if �1 is not an eigenvalue of A and the operator

A = (�A� �)(A+ 1)

�1

is the generator of a C

0

-semigroup on X.

The same result (with � = 1) is found in [2, Proposition 5.2℄, where it

is used as a entral tool whih permits a number of results that have earlier

been proved for disrete time systems to be transferred to ontinuous time.

Speializing this result to the ase where the original node is sattering

or impedane passive we get the following result.

Theorem 7.1.

(i) A ontinuous time system node S =

�

A&B

C&D

�

is sattering or impedane

passive (or energy preserving or onservative) if and only if the

Cayley transform of this system is well-de�ned for some param-

eter � 2 C

+

(or equivalently, for all � 2 C

+

) and the Cayley

transformed system �

�

� = [

A B

C D

℄ is a disrete time sattering or

impedane passive (or energy preserving or onservative) system.

(ii) A disrete time sattering or impedane passive system �

�

� = [

A B

C D

℄

is the Cayley transform for some parameter � 2 C

+

(or equiva-

lently, for all � 2 C

+

) of a ontinuous time sattering or impedane

passive system node S =

�

A&B

C&D

�

if and only if �1 is not an eigen-

value of A.

(iii) The two systems have idential ontrollability properties: if one of

S and �

�

� is ontrollable (or observable, or simple, or minimal) then

so is the other, and their reahable, unreahable, observable, and

unobservable subspaes oinide.

The sattering version of this theorem (with � = 1) is found in [2,

Theorem 5.2℄.

Proof. (i) The neessity of the given onditions on �

�

� follows from

Theorems 3.1 and 4.1 and Lemma 7.1.

(ii) The suÆieny of the same onditions follows from the same results

if we are able to show that in all ases A = (�A � �)(A + 1)

�1

is the

generator of a C

0

-semigroup. In all ases A is a ontration, and this

implies that the operator A given above is dissipative (for all � 2 C

+

).

Sine ��A = 2<�(1 +A)

�1

, we �nd that ��A has the bounded inverse

1=

p

2<� (1 +A)

�1

. Thus, � 2 �(A), so A is maximal dissipative, and A

generates a C

0

(ontration) semigroup.
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(iii) This follows from the fat that there is a one-to-one orrespon-

dene between the trajetories and outputs of the disrete time system (6.1)

and the ontinuous time system (2.1): we take the disrete time values of

input, state, and output to be the Fourier oeÆients of the ontinuous

times input, state, and output with respet to a Laguerre basis (saled by

the parameter �). See [28, Setion 11.4℄ for details.

In [2℄ the above result was used to prove the following realization result:

Theorem 7.2 ([2, Theorem 6.4℄). Every ontrative analyti fun-

tion on C

+

an be realized as the transfer funtion of a simple ontinuous

time sattering onservative system node, whih is unique modulo a unitary

similarity transform in the state spae.

Let us now ombine the two transforms. Starting from a ontinuous

time impedane passive system node S =

�

A&B

C&D

�

, we may �rst use the

Cayley transform with parameter � 2 C

+

to get a disrete time impedane

passive system �

�

� = [

A B

C D

℄, and then we may use the diagonal transform

with parameter � 2 C

+

to get the disrete time sattering passive system

�

�

�

�

=

h

A

�

B

�

C

�

D

�

i

. The lass of all disrete time sattering passive system

that an be obtained in this way is desribed in the following lemma.

Theorem 7.3. A disrete time system �

�

�

�

=

h

A

�

B

�

C

�

D

�

i

on (U;X;U)

is the diagonal transform with parameter � 2 C

+

of the Cayley transform

with the parameter � 2 C

+

of a ontinuous time impedane passive system

node S =

�

A&B

C&D

�

if and only �

�

�

�

is a (disrete time) sattering passive

system, �1 is not an eigenvalue of

h

A

�

B

�

C

�

D

�

i

, and �1 =2 �(D

�

). In this

ase

�

A

�

B

�

C

�

D

�

�

+

�

1 0

0 1

�

=

�
p

2<� 0

0

p

2<�

���

� 0

0 �

�

�

�

A&B

�C&D

��

�1

�
p

2<� 0

0

p

2<�

�

;

(7.6)

and �

�

�

�

is also the Cayley transform (with the same parameter �) of a

ontinuous time sattering passive system node S

�

.

Proof. We �x the two parameters �, � 2 C

+

one and for all. Suppose

that �

�

�

�

=

h

A

�

B

�

C

�

D

�

i

is the diagonal transform (with parameter �) of the

Cayley transform �

�

� = [

A B

C D

℄ (with parameter �) of a ontinuous time

impedane passive system node S =

�

A&B

C&D

�

. Then �

�

�

�

is a disrete time

sattering passive system, and �1 =2 �(D

�

) sine 1+D

�

= 2<�(�+D)

�1

has a bounded inverse. A short algebrai omputation based on (6.3) and

(7.2) then gives (7.6). Clearly (7.6) implies that �

�

�

�

+ 1 is one-to-one, i.e.,

�1 is not an eigenvalue of �

�

�

�

. Sine �

�

�

�

=

h

A

�

B

�

C

�

D

�

i

is a ontration, this

implies that �1 is not an eigenvalue of A

�

either, and by Theorem 7.1,

this implies that �

�

�

�

is the Cayley transform of a ontinuous time sattering

passive system node S

�

.
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Conversely, suppose that �

�

�

�

is a disrete time sattering passive sys-

tem suh that �1 is not an eigenvalue of �

�

�

�

and �1 =2 �(D

�

). Then the in-

verse diagonal transform (with parameter �) an be applied to �

�

�

�

, and this

transform gives us a disrete time impedane passive system �

�

� = [

A B

C D

℄.

Clearly, formula (6.3) an be rewritten in the form

�

A

�

+ 1 B

�

C

�

1 +D

�

�

=

�

1

1

p

2<�

B

0 1

��

A+ 1 0

0 2<� (� +D)

�1

��

1 0

�

1

p

2<�

C 1

�

and this shows that A+1 must be one-to-one sine �

�

�

�

+1 is one to one. By

Theorem 7.1, �

�

� is the Cayley transform (with parameter �) of a ontinuous

time impedane passive system node.

Theorem 7.4. A neessary and suÆient ondition for a L(U)-valued

positive analyti funtion

b

D on C

+

to have a simple impedane onservative

realization is that

lim

s!+1

s

�1

b

D(s)u = 0 (7.7)

for all u 2 U . This realization is unique modulo a unitary similarity trans-

form in the state spae.

Thus, the only positive analyti funtions that annot be realized in

this way are those that ontain a pure derivative ation.

Proof. Let us begin by proving the neessity of ondition (7.7). Let

S =

�

A&B

C&D

�

be a system node whose transfer funtion is

b

D. Then

b

D(s)�

b

D(1)

s� 1

= �C(s�A)

�1

(1�A

jX

)

�1

B:

Here the right-hand side tends strongly to zero as s ! +1 (sine B 2

L(U ;X

�1

) and C 2 L(X

1

;U)), and this implies (7.7).

Conversely, suppose that

b

D is a positive analyti funtion satisfying

(7.7). By applying the same formula whih is used in the Cayley transform

(with � = 1) to

b

D we get the disrete time positive analyti funtion

b

D(z) =

b

D

�

z � 1

z + 1

�

:

By Theorem 6.2, this funtion has a simple impedane onservative real-

ization �

�

� = [

A B

C D

℄ whih is unique modulo a unitary similarity transform

in the state spae. If we an show that �1 is not an eigenvalue of A,

then we an use the inverse Cayley transform to get a simple impedane

onservative system node S whose transfer funtion is the given funtion

b

D. Thus, to omplete the proof we still need to show that �1 is not an

eigenvalue of A.
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Reall the onservativity (in the disrete time impedane setting) of

�

�

� means that

�

A

�

A A

�

B

B

�

A B

�

B

�

=

�

1 C

�

C D+D

�

�

;

�

AA

�

AC

�

CA

�

CC

�

�

=

�

1 B

B

�

D+D

�

�

:

In partiular,A is unitary, B = AC

�

, andC = B

�

A. The transfer funtion

of this node is given by

b

D(z) = C(z �A)

�1

B +D =

b

D((z � 1)=(z + 1)).

After a short algebrai omputation we get the alternative formulas

b

D(z) = B

�

A(z �A)

�1

B+D = C(z �A)

�1

AC

�

+D

= zB

�

(z �A)

�1

B+D

�

= zC(z �A)

�1

C

�

+D

�

:

(7.8)

Let X

0

be the eigenspae of A orresponding to the eigenvalue �1

(whih we want to prove to be f0g). Let X

?

0

be its orthogonal omplement.

Then both X

0

and X

?

0

are invariant under A (sine A is unitary), and we

an deompose the disrete time system �

�

� into

�

�

� =

�

A B

C D

�

=

2

6

4

�1 0 B

0

0 A

1

B

1

C

0

C

1

D

3

7

5

;

in aordane with the deomposition of X into X =

h

X

0

X

?

0

i

. The orre-

sponding deomposition of the transfer funtion

b

D is

b

D(z) = D

�

+ z

�

B

�

0

B

�

1

�

�

z + 1 0

0 z �A

1

�

�1

�

B

0

B

1

�

= D

�

+

z

z + 1

B

�

0

B

0

+ zB

�

1

(z �A

1

)

�1

B

1

:

Sine A

1

is unitary (hene normal), it has a spetral representation: there

is a (self-adjoint projetion-valued) resolution of the identity E suh that

for all x 2 X and all z 2 �(A

1

),

hAx; xi =

Z

j�j=1

�hx;E( d�)xi;

h(z �A)

�1

x; xi =

Z

j�j=1

1

z � �

hx;E( d�)xi:

Thus, the transfer funtion

b

D has the representation (for all u 2 U and all

z 2 �(A

1

))

h

b

D(z)u; ui = hD

�

u; ui+

z

z + 1

kB

0

uk

2

+

Z

j�j=1

z

z � �

hB

1

u;E( d�)B

1

ui:

(7.9)
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The spetral representation of A

1

does not have a point mass at �1 (suh

a point mass would be the orthogonal projetion onto X

0

), and therefore,

the �nite positive measure � 7! hB

1

u;E( d�)B

1

ui does not have a point

mass at �1 either. By the Lebesgue dominated onvergene theorem, for

all u 2 U ,

lim

z"�1

(z + 1)hu;

b

D(z)ui

= �kB

0

uk

2

+ lim

z"�1

Z

j�j=1

z(z � 1)

z � �

hB

1

u;E( d�)B

1

ui

= �kB

0

uk

2

:

After a hange of variable z = (1 + s)=(1� s) this beomes

lim

s!+1

1

s� 1

h

b

D(s)u; ui =

1

2

kB

0

uk

2

:

If (7.7) holds, then the limit on the left-hand side is zero for all u 2 U .

ThereforeB

0

= 0. Deomposing the identityB = AC

�

into its omponents

we �nd that

B =

�

B

0

B

1

�

=

�

�1 0

0 A

1

� �

C

�

0

C

�

1

�

=

�

�C

�

0

A

1

C

�

1

�

;

hene also C

�

0

= 0. This implies that the realization �

�

� = [

A B

C D

℄ annot be

simple unless X

0

= f0g, sine X

0

is both unreahable and unobservable.

But by onstrution, the system �

�

� is simple, and therefore X

0

= f0g.

As a byprodut of the proof of this theorem we get the Herglotz-

Nevanlinna integral representation formula for a positive analyti funtion

on C

+

(see, e.g., [45℄).

11

The realizations desribed in Theorems 6.1, 6.2, 7.2 and 7.4 will not

be minimal in general. However, from these realization we an derive min-

imal realizations, e.g., as follows (see [2, Setion 7℄ or [28, Setion 9.1℄ for

details). We proeed in two steps. Let R be the reahable subspae of

�. By `restriting � to R' we get a ontrollable system �

1

on (U;R; Y )

whose main operator is A

1

= A

jR

, ontrol operator is B

1

= B, observation

operator is C

1

= C

jR

, and transfer funtion

b

D is the same as the original

transfer funtion. It is not diÆult to show that if the original system is

onservative (sattering or impedane), then the new system is a energy

preserving (sattering or impedane), and it is unique among all ontrol-

lable energy preserving (sattering or impedane) realizations of

b

D modulo

a unitary similarity transform in the state spae. This implies the following

result:

Corollary 7.1. Theorems 6.1, 6.2, 7.2, and 7.4 remain true in the

ontrollable energy preserving setting: every disrete or ontinuous time

11

Use the Cayley transform to map (7.9) into ontinuous time.
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impedane or sattering passive transfer funtion has a ontrollable en-

ergy preserving realization, whih is unique modulo a unitary similarity

transform in the state spae (in the ontinuous time impedane setting we

still have to impose the extra neessary and suÆient additional ondi-

tion (7.7)).

Here, by an `impedane passive transfer funtion' we mean a positive

analyti funtion, and by a `sattering passive transfer funtion' we mean

a ontrative analyti funtion.

If the system �

1

that we onstruted above is observable, then we

have obtained a minimal passive realization. If not, then we let O

1

be the

observable subspae of �

1

, denote the orthogonal projetion of R onto O

1

by �, and `projet �

1

onto O

1

' to get the minimal system �

2

on (U;O

1

; Y )

whose main operator is A

2

= �A

1

= �A

jR

, ontrol operator is B

1

= �B

1

=

�B, observation operator is C

2

= C

1

jR

= C

jR

, and transfer funtion

b

D is

still the same as the original transfer funtion. This system is passive

(sattering or impedane) whenever �

1

is passive. Thus, we arrive at the

following result:

Corollary 7.2. Every disrete or ontinuous time impedane or

sattering passive funtion has a minimal passive realization (in the on-

tinuous time impedane setting we still have to impose the extra neessary

and suÆient additional ondition (7.7)).

The above realizations are not unique in general.

12

For example, we

ould, instead �rst have projeted the system onto the observable subspae

to get a system whose adjoint is energy preserving, and then restrited the

new system to the reahable subspae. It is possible to make them unique

by requiring them to be `optimal' in a ertain sense.

13

See [2, Setion 7℄

and [44, Setion 4℄ for details.

8. The Continuous Time Diagonal Transform. In Setion 6 we

de�ned the disrete time diagonal transform. The same transform an also

be arried out in ontinuous time. One way to do this is to �rst perform a

Cayley transform, then a disrete time diagonal transform, and �nally an

inverse Cayley transform to get a new ontinuous time system, whih we

all the diagonal transform of the original ontinuous time system.

Definition 8.1. The system node S =

�

A&B

C&D

�

on (U;X; Y ) is diag-

onally transformable with parameter � 2 C

+

if it is true for some � 2 C

+

that the operator

��

� 0

0 �

�

�

�

A&B

�C&D

��

maps D(S) one-to-one onto [

X

Y

℄, and

if, in addition, the operator A

�

de�ned in (7.6) is the Cayley transform

12

One exeptional ase is desribed in Corollary 10.2. A omplete disussion of the

uniqueness of a minimal sattering passive realization modulo a unitary similarity trans-

form in the state spae is given in [1, Theorem 12℄.

13

The above onstrution produes Arov's optimal realization. This is the minimal

realization whih uses the norm in the state spae indued by Willems' available storage.

If we instead �rst projet onto the observable subspae and then restrit to the reahable

subspae, then we get Arov's �-optimal realization. This is the realization whih uses

the norm indued by Willems' required supply funtion.



30 Olof J. Sta�ans

with parameter � of the generator A

�

of a C

0

semigroup. In this ase

we refer to the system node S

�

=

h

[A&B℄

�

[C&D℄

�

i

that we get by applying the

inverse Cayley transform with parameter � to the disrete time system

�

�

�

�

=

h

A

�

B

�

C

�

D

�

i

de�ned in (7.6) by the name diagonal transform of S

(with parameter �).

An important fat is that the diagonal transform S

�

of S that we get

in this way does not depend on the parameter � (although it depends on

�). To see this it suÆes to write out the expliit formulas for the two

suessive transforms to verify the following relationship between S

�

and

S (see [26℄ for the well-posed ase of this identity with � = 1), valid for all

� 2 �(A) \ �(A

�

):

"

(��A

�

)

�1

(��A

�

jX

�

�1

)

�1

B

�

C

�

(��A

�

)

�1

1 +

b

D

�

(�)

#

=

�

1 0

0

p

2<�

���

� 0

0 �

�

�

�

A&B

�C&D

��

�1

�

1 0

0

p

2<�

�

=

�

(��A)

�1

0

0 0

�

+

�

(��A

jX

)

�1

B

p

2<�

�

(� +

b

D(�))

�1

�

�C(��A)

�1

p

2<�

�

:

(8.1)

It is possible to alternatively introdue the ontinuous time diagonal

transform without use of the Cayley transform in the same way as was done

in [26, Setion 5℄ in the well-posed ase. This alternative approah uses a

generalized version of ow-inversion for non-well-posed systems desribed

in [28, Setion 6.3℄. Arguing in this way we �nd that S is diagonally

transferable (with parameter � 2 C ) if and only if �� =2 �(

b

D(�)) for some

� 2 �(A), the operator

R(�;A

�

) =

�

1� (��A

jX

)

�1

B(� +

b

D(�))

�1

C

�

(��A)

�1

is one-to-one, and the operator

A

�

= �� (R(�;A

�

))

�1

is the generator of a C

0

semigroup.

The following result is a diret onsequene of Theorem 7.3 ombined

with De�nition 8.1.

Theorem 8.1.

(i) A system node S =

�

A&B

C&D

�

on (U;X;U) is impedane passive

(or energy preserving or onservative) if and only if it is diago-

nally transformable for some parameter � 2 C

+

(or equivalently,

for all � 2 C

+

), and the diagonally transformed system node
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S

�

=

h

[A&B℄

�

[C&D℄

�

i

is sattering passive (or energy preserving, or

onservative) (in partiular, it is well-posed).

(ii) A sattering passive system node S

�

=

h

[A&B℄

�

[C&D℄

�

i

with transfer

funtion

b

D

�

on (U;X;U) is the diagonal transform for some � 2

C

+

(or equivalently, for all � 2 C

+

) of an impedane passive sys-

tem node S =

�

A&B

C&D

�

on (U;X;U) if and only if it is true for some

� 2 C

+

(or equivalently, for all � 2 C

+

) that �1 =2 �(

b

D

�

(�)) and

that �1 is not an eigenvalue of the Cayley transformed disrete

time system

h

A

�

B

�

C

�

D

�

i

whih is de�ned as in (7.1) with S replaed

by S

�

.

(iii) The two nodes have idential ontrollability properties: if one of

the two nodes S and S

�

is ontrollable (or observable, or simple,

or minimal) then so is the other, and their reahable, unreahable,

observable, and unobservable subspaes oinide.

Proof. Parts (i) and (ii) follow diretly from Theorem 7.3 and De�ni-

tion 8.1. To get part (iii) we need, in addition, Lemma 6.1 and Theorem 7.1.

Theorem 8.1 an be regarded as a generalization of the main result of

[41℄ by Weiss and Tusnak (the same result was proved independently by

Guo and Luo in [10℄). In these papers a spei� ompatible system node

is onsidered. It represents a seond order partial di�erential equation of

hyperboli type with olloated sensors and atuators. Mathematially,

the node S in that paper is of the following type (here we ignore a number

of additional properties S that are irrelevant for the present disussion; see

[27℄ for details). The operator A is the generator of a unitary group on a

Hilbert spae X . We let <� > 0, de�ne the frational power (��A)

1=2

in

the standard way (see, e.g., [28, Setion 3.9℄), and let X

1=2

be the domain

of (��A)

1=2

. The node S is supposed to be ompatible over X

1=2

, with a

representation of the type

�

A C

�

C 0

�

, where C 2 L(X

1=2

;U). By Theorem 4.3,

this is an impedane onservative system node, and by Theorem 8.1, the

transformed node S

�

is sattering onservative (hene well-posed). The

latter statement implies the main result of [41℄. The node S itself does

not appear expliitly in [41℄, but it does appear in the paper [39℄ by Weiss.

There the diagonal transform is used to give a simple state feedbak solution

of a partiular optimal ontrol problem. See [27℄ for details.

Example 3. We return to Example 1. The diagonal transform with

� = 1 gives the following transformed system:

�

A

�

B

�

C

�

D

�

�

=

�

A

p

2A

p

2A 1 +A

�

(1�A)

�1

:

Note that all the operators above are bounded on X. The diagonally trans-

formed system is always sattering passive, it is sattering energy preserv-

ing if and only if the original system is impedane energy preserving, and
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it is sattering onservative if and only if the original system is impedane

onservative.

Example 4. We return to Example 2. The orresponding diagonally

transformed system S

�

an be omputed from (8.1), and it turns out to be

(in ompatibility form)

S

�

=

�

A

�

B

�

C

�

D

�

�

=

�

A

p

2 jAj

p

V

p

2 jAj

p

V 1 + jAj

2p�1

V

�

(1� jAj

2p�1

V )

�1

:

This agrees with Example 3 in the ase where p = 1.

The preeding example has some interesting properties. Comparing

the unboundedness of the di�erent operators appearing in S and S

�

to

the unboundedness of the original operator A we �nd the following. The

ontrol and observation operators of the original node S are both as un-

bounded as the operator jAj

p

, where p 2 [

1

2

; 1℄. The semigroup generator

A

�

of the sattering passive system is only as unbounded as the operator

jAj

2(1�p)

where 2(1�p) < 1 as soon as p >

1

2

. The ontrol and observation

operators of S

�

are as unbounded as jAj

1�p

, so they have only half as

muh unboundedness as A

�

. In partiular, for p =

1

2

the systems S and

S

�

have `the same amount of unboundedness', but for p >

1

2

`the more

unbounded the system S is, the less unbounded is S

�

'. Intuitively, the

more unbounded B and C are, the stronger is the feedbak, hene more

regularizing.

9. A Feedbak Interpretation. The diagonal transform in De�ni-

tion 8.1 has a natural output feedbak interpretation. Let us, for simpliity,

take � = 1 as in Figure 1. Then the input-output interpretation of the di-

agonal transform is that we introdue a new input signal u

�

, hoose the

input of the original system � to be u =

p

2u

�

� y, and regard the new

output signal to be y

�

=

1

p

2

(u � y) (this interpretation is valid both in

ontinuous and in disrete time). If we ignore the trivial saling fators

p

2 and 1=

p

2, then the replaement of u by the new input u

�

is a typi-

al negative identity state feedbak, whereas the replaement of y by y

�

just amounts to the addition of an extra feedthrough term to the resulting

losed loop system (see Figure 1). Reall that if S is a system node on

(U;X; Y ), then K 2 L(Y ;U) is alled an admissible feedbak operator for

S if the replaement of the input signal u by u = u

K

+Ky results in a new

system node whose input signal is u

K

. In the speial ase where U = Y

onsidered above we may use negative identity output feedbak, i.e., we let

K = �1. Thus, Theorem 8.1 implies the following result:

Corollary 9.1. Let S =

�

A&B

C&D

�

be an impedane passive system

node on (U;X;U). Then �1 is an admissible feedbak operator for S, and

the losed loop system orresponding to this feedbak operator is (well-posed

and) energy stable (in the sense of De�nition 2.3).

10. Lossless Sattering Systems. In an energy preserving system

no energy is lost, but it may be �rst transferred from the input to the state,
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and then `trapped' in the state spae forever, so that it an no longer be

retrieved from the outside. Thus, from the point of view of an external

observer, a onservative system may be `lossy'. To spei�ally exlude this

ase we need another notion, that we shall refer to as losslessness. This

notion an be studied both in the sattering and in the impedane setting,

but for simpliity we here restrit ourselves to the (simpler) sattering

ase (we shall return to the slightly more ompliated impedane setting

elsewhere). The theory is essentially the same in disrete and ontinuous

time, so let us here restrit ourselves to the ontinuous time setting.

Definition 10.1. A system node S =

�

A&B

C&D

�

on (U;X; Y ) is sat-

tering semi-lossless if the solution (x; y) in Lemma 2.2 satis�es

Z

1

0

jy(s)j

2

Y

ds =

Z

1

0

ju(s)j

2

U

ds

whenever x

0

= 0 and u 2 L

2

(R

+

;U) (in partiular, this implies that y 2

L

2

(R

+

;Y )). It is sattering lossless if both S and the dual system node S

�

are semi-lossless.

Thus, semi-losslessness is the input/output version of energy preser-

vation, and losslessness is the input/output version of onservativity.

As is well known, semi-losslessness an be interpreted as a property of

the transfer funtion:

Proposition 10.1. A system node S is sattering semi-lossless if and

only if its transfer funtion

b

D is left-inner in the following sense:

b

D has

an extension to a ontrative analyti funtion in C

+

, the restrition of

b

D

to every separable subspae of U has a strong limit from the right a.e. at

the imaginary axis, and this limit is isometri a.e.

This proposition follows, e.g., from [28, Theorem 10.4.5℄ (the original

referene is [7℄) and [31, Proposition 2.2, p. 190℄. (We may always, without

loss of generality, assume that U is separable, sine the values of u lie in a

separable subspae of U .)

If S is passive, or more generally, if the growth bound of S is zero,

then

b

D is de�ned (at least) on C

+

, so in this ase no extension is needed.

Furthermore, at every point � 2 �(A) \ iR,

b

D(�) will be isometri if S is

semi-lossless and unitary if S is lossless.

Theorem 10.1. A ontrollable semi-lossless sattering passive system

node S =

�

A&B

C&D

�

on (U;X; Y ) is neessarily sattering energy preserving

and observable (hene minimal). Furthermore, in this ase the system node

S is uniquely determined by its transfer funtion

b

D within the lass of all

ontrollable sattering passive realizations of

b

D, modulo a unitary similarity

transform in the state spae.

Proof. We begin by showing that if x

0

= 0, then the solution (x; y) in

Lemma 2.2 satis�es

jx(t)j

2

X

+

Z

t

0

jy(s)j

2

Y

ds =

Z

t

0

ju(s)j

2

U

ds; t � 0: (10.1)
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Beause of the passivity, we know that

jx(t)j

2

X

+

Z

t

0

jy(s)j

2

Y

ds �

Z

t

0

ju(s)j

2

U

ds; t � 0: (10.2)

By the well-posedness, we may further let u be an arbitrary funtion in

L

2

(R

+

;U). Fix v > 0, and let u(s) = 0 for s � v. Then

jx(t)j

2

X

+

Z

t

0

jy(s)j

2

Y

ds �

Z

v

0

ju(s)j

2

U

ds; t � v:

By the lossless property,

R

1

0

jy(s)j

2

Y

ds =

R

v

0

ju(s)j

2

U

ds, so by letting t!1

we onlude that x(t) ! 0 as t ! 1. Furthermore, by passivity and the

fat that (x; y) is the state and output of S on the time interval [v;1) with

initial state x(v) and input funtion 0, and by (10.2),

0 � jx(v)j

2

X

�

Z

1

v

jy(s)j

2

Y

ds

�

Z

v

0

ju(s)j

2

U

ds�

Z

v

0

jy(s)j

2

Y

ds�

Z

1

v

jy(s)j

2

Y

ds = 0:

Thus, both the inequalities in this hain must be equalities, and this implies

(10.1).

Let us next suppose that x

0

= x(v) where (x; y) is a solution of the

type desribed in Lemma 2.2 with x(0) = 0 for some input funtion u and

some v � 0. Then, by (10.1), jx(t)j

2

X

=

R

t

0

ju(s)j

2

U

ds �

R

t

0

jy(s)j

2

Y

ds for all

t � 0, and by subtrating two opies of this identity from eah other, with

t replaed by v in one of them, we get (reall that x

0

= x(v))

jx(t)j

2

X

+

Z

t

v

jy(s)j

2

Y

ds = jx

0

j

2

X

+

Z

t

v

ju(s)j

2

U

ds; t � v:

Denote u

1

(t) = u(t � v), x

1

(t) = x(t � v), and y

1

(t) = y(t � v) for t � 0.

Then the above identity beomes the energy balane equation (SE) with u,

x, and y replaed by u

1

, x

1

and y

1

. Sine S is assumed to be ontrollable,

the set of data (x

0

; u

1

) onsidered above is a dense subset of the full set of

initial states and input funtions allowed in De�nition 3.2, so the system

must be energy preserving.

The proof of the uniqueness of the S (modulo a unitary similarity

transform in the state spae) was a part of the argument leading to Corol-

lary 7.2.

As we observed above, if u = 0 (or more generally, if u vanishes on

some interval [t;1)), then x(t) ! 0 as t ! 1. This, ombined with the

fat that S is energy-preserving implies that jx

0

j

2

X

=

R

1

0

jy(s)j

2

Y

ds. Thus,

S is observable.

There are a number of fairly transparent onditions whih an be used

to determine if a given ontrollable sattering energy preserving system is
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semi-lossless. One of them is exat observability in in�nite time, whih

means the following. A system node S is exatly observable in time T > 0

if there is a onstant � > 0 suh that the output y in Lemma 2.2 with zero

input funtion u and initial state x

0

2 X

1

satis�es `the reverse inequality'

Z

T

0

jy(t)j

2

Y

� �jx

0

j

2

X

:

It is exatly observable in in�nite time if this ondition is true with T =1

(the left-hand side of the above inequality may be +1 if the system is not

energy stable). The system node S is exatly ontrollable in time T > 0 if,

for every x

0

2 X , there is an input funtion u 2 L

2

(0; T ;U) suh that the

generalized solution x of the equation _x(t) = A

jX

x(t) + Bu(t) (as de�ned

in Setion 2) satis�es x(T ) = x

0

. Equivalently, S is exatly ontrollable

in time T > 0 if and only if S

�

is exatly observable in time T . A diret

de�nition of exat ontrollability in in�nite time is more diÆult to state,

so we de�ne a system node S to be exatly ontrollable in in�nite time if

S

�

is exatly observable in in�nite time.

Theorem 10.2. Let S =

�

A&B

C&D

�

be a sattering energy preserving

system node (Y;X;U). Then the following onditions are equivalent:

(i) the system semigroup of S is strongly stable, i.e., the state x(t) in

Lemma 2.2 tends to zero as t!1 whenever u = 0;

(ii) the observability gramian of S is the identity operator, i.e., the

output y in Lemma 2.2 with zero input funtion u and initial state

x

0

2 X

1

satis�es

R

1

0

jy(t)j

2

Y

= jx

0

j

2

Y

;

(iii) S is exatly observable in in�nite time.

If these onditions hold, then

(iv) S is semi-lossless.

If S is ontrollable, then (iv) is equivalent to (i){(iii).

14

Proof. The impliation (i) ) (ii) follows diretly from (SE) with

u = 0. The impliation (ii)) (iii) is trivial. Thus, to prove the equivalene

of (i){(iii) only the impliation (iii) ) (i) remains to be established.

Suppose that S is exatly observable in in�nite time. Then it follows

from (SE) that there exists a onstant � 2 (0; 1) suh that, for all x

0

2 X

1

,

there exists some t

1

> 0 that the solution x in Lemma 2.2 with x(0) = x

0

and u = 0 satis�es jx(t

1

)j

X

� �jx

0

j

X

. We repeat the same argument

with x

0

replaed by x(t

1

): there is some t

2

> t

1

suh that the solution

x

1

in Lemma 2.2 with x

1

(0) = x(t

1

) and u = 0 satis�es jx

1

(t

2

� t

1

)j

X

�

�jx(t

1

)j

X

� �

2

jx

0

j

X

. However, by the uniqueness of the solution x in

Lemma 2.2, we must have x

1

(t) = x(t + t

1

) for all t � 0, so jx(t

2

)j

X

=

jx

1

(t

2

� t

1

)j

X

� �

2

jx

0

j. Continuing in the same way, for eah integer k > 0,

we an �nd some t

k

suh that jx(t

k

)j

X

� �

k

jx

0

j

X

. In partiular, x(t

k

)! 0

as k ! 1. This ombined with the fat that jx(t)j

X

is a non-dereasing

14

The disrete time version of this result (without ondition (iii)) is essentially on-

tained in [31, Theorem 2.3, p. 248℄.
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funtion of t implies that x(t)! 0 as t!1, and we have shown that (iii)

) (i).

In order to prove that (i) ) (iv), suppose that (i) holds. If u in

Lemma 2.2 vanishes on some interval [t

1

;1), then x(t) ! 0 as t ! 1

(beause x(t � t

1

) is the solution obtained from Lemma 2.2 with ini-

tial state x(t

1

) and zero input funtion). It the follows from (SE) that

R

1

0

jy(s)j

2

Y

ds =

R

1

0

ju(s)j

2

U

ds in this ase. The set of funtions u with

bounded support is dense in L

2

(R

+

;U), so the same identity must be true

for all u 2 L

2

(R

+

;U). Thus S is lossless, and we have proved that (i) )

(iv).

The onverse diretion (iv) ) (i) in the ontrollable ase was estab-

lished as a part of the proof of Theorem 10.1.

There is also an exponentially stable version of Theorem 10.2.

Theorem 10.3. Let S =

�

A&B

C&D

�

be a sattering energy preserving

system node (Y;X;U). Then the following onditions are equivalent:

(i) iR 2 �(A) and sup

!2R

k(i! �A)

�1

k is �nite;

(ii) the system semigroup A of S is exponentially stable, i.e., kA

t

k �

Me

��t

for some � > 0;

(iii) S is exatly observable in some �nite time T .

If these onditions hold, then S is semi-lossless and

b

D(�) is isometri for

all � 2 iR.

Proof. That (i) and (ii) are equivalent follows from Pr�uss theorem [18,

Proposition 2℄. As is well known, A is exponentially stable if and only if

kA

T

k < 1 for some T > 0. Equivalently, there is some � > 0 suh that the

solution x in Lemma 2.2 with u = 0 satis�es

jx(T )j

2

X

� (1� �)jx

0

j

2

X

:

Sine S is energy preserving, this identity is equivalent to the identity

Z

T

0

jy(t)j

2

Y

� �jx

0

j

2

X

;

i.e., S is exatly observable in time T .

The �nal laim follows from Proposition 10.1 and Theorem 10.2.

By applying the preeding results both to the original node S and the

dual node S

�

we an derive some further onlusions.

Corollary 10.1. A minimal lossless sattering passive system node

S is onservative, and it has the following additional properties:

(i) Both the system semigroup A and its adjoint A

�

are strongly stable;

(ii) S is exatly observable in in�nite time;

(iii) S is exatly ontrollable in in�nite time;

(iv) The observability gramian of S is the identity operator (see ondi-

tion (ii) in Theorem 10.2);

(v) The ontrollability gramian of S is the identity operator (this is

equivalent to the statement that the observability gramian of S

�

is

the identity operator);
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(vi) The transfer funtion

b

D of S is bi-inner (i.e., both

b

D and the dual

transfer funtion

b

D

d

are left-inner).

(vii) The system node S is uniquely determined by its transfer funtion

b

D, modulo a unitary similarity transform in the state spae.

This follows immediately from Proposition 10.1 and Theorems 10.1

and 10.2. The systems studied in [13℄ are of this type.

There also exist other onservative versions of Theorem 10.2, for ex-

ample, those found in [15, 16℄, [40, Proposition 6.1℄, and [33, Proposition

3.4℄. Instead of stating those results here, let us observe that the following

result is true as well.

Theorem 10.4 ([33, Proposition 3.3℄). Let S =

�

A&B

C&D

�

be a satter-

ing onservative system node (Y;X;U). Then the following onditions are

equivalent:

(i) iR 2 �(A) and sup

!2R

k(i! �A)

�1

k is �nite;

(ii) the system semigroup A of S is exponentially stable, i.e., kA

t

k �

Me

��t

for some � > 0;

(iii) S is exatly observable in some �nite time T ;

(iv) S is exatly ontrollable in some �nite time T ;

If these onditions hold, then S is lossless and

b

D(�) is unitary for all

� 2 iR.

This follows diretly from Theorem 10.3. Some further equivalent

onditions are given in [33, Proposition 3.3℄. See also [12℄.

Let us �nish this setion by pointing out that systems of the type

desribed in Theorem 10.1 and Corollary 10.1 do exist.

Corollary 10.2.

(i) Every left-inner analyti funtion on C

+

an be realized as the

transfer funtion of a minimal (semi-lossless) sattering energy

preserving system node, whih is is unique (within the lass of

all ontrollable sattering passive system nodes) modulo a unitary

similarity transform in the state spae.

(ii) Every bi-inner analyti funtion on C

+

an be realized as the trans-

fer funtion of a minimal (lossless) sattering onservative system

node, whih is is unique (within the lass of all sattering passive

system nodes whih are ontrollable or observable, and also within

the lass of all simple sattering onservative system nodes) modulo

a unitary similarity transform in the state spae.

This follows from Corollaries 7.2 and 10.1, and Theorem 10.1. For

further related results, see [1, Setion 4℄.
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