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Many infinite-dimensional systems can be described by the
equations (1) on a triple of Banach spaces, namely, the input
spaceJ, the state space, and the output spacé We have

u(t) e U, x(t) € X andy(t) € Y. The operatoré, B, andC are
often unbounded where&sis bounded. However, it is not
We discuss different regularity notions fof-well-posed lin-  known if all well-posed linear systems can be written in this
ear systems with X p < e, namely (from the weakest to form, and it is therefore (and also for other reasons) often
the strongest) compatibility in the sense of Helton (1976),more convenient to use an “integral” representation of the
weak regulartiy in the sense of Weiss and Weiss (1997) okystem, which consists of the four operators from the initial

Staffans and Weiss (2000), strong regularity in the sense Oétatex, and the input functiom to the final state(t) and the
Weiss (1994a), and uniform regularity in the sense of Hel-gutput functiony:

ton (1976) and Ober and Wu (1996). We further investigate

how compatibility and regularity are preserved under various X(t) = Alxo + BHu, t>0,

transformations on the system, such as the duality transfor- y = EX0+Dou. ®3)

mation, feedback, flow-inversion, time-inversion, and time-

flow inversion. Compatibility is the minimal assumption un- Here 2! is the semigroup which maps the initial stagento

der which it is possible to describe the input-state-output bethe final statex(t), %5 is the map from the input (restricted

havior of a system with initial time zero, initial statg input to the interval0,t)) to the final state(t), ¢ is the map from

u, state trajectoryx and outpuy in the standard way the initial statexg to the outputy, and®g is the input-output
map fromu (restricted taR* = [0,)) to y.

Abstract

X (t) = AX(t) + Bu(t), We regardL) (R*;U) as a Fechet space, with the se-
y(t) = Cx(t) + Du(t), t>0, (1) quence of seminorm§u||ln = [[uf[ p(onuy- We regard
X(0) = %o - LE.(R*;U) as a subspace &f (R;U) and on the latter we

define the bilateral left shift by, denoted, by (ttu)(s) =

. . ) u(s+t), —o < t < oo,
HereA s the generator of a strongly continuous Semigroup 1 \yell-posednesassumption is that (3) behaves well
2, B is the (possibly unbounded) control operatGrjs a in an LP-setting, where K p < «, i.e., x(t) € X andy €

(possibly unbounded, possibly extended) observation operg-p (R*:Y) depend continuously omo € X and onu €

H C
tor, andD is a bounded feedthrough operator. Also the stan—LEC(R+;U)_ If this is the case, we call the operatcﬁl%%]
dard formula for the transfer function, awell-posed linear systerwhere

D(2) =C(z1-AB+D,  Oz>wy, ) Bu = lim BT 'y,
wherewy, is the growth bound dil, is based on compatibil-
ity. The operator$\ andB are always unique. The operators
C andD are unique in the different regular cases, but not ineach defined for thosec LE)C(R; U) for which the respective
the general compatible case. We give formulas for the operlimit exists. Itis possible to define a well-posed linear system
atorsA, B, C andD of the transformed systems listed above = = [2 2] without any reference to the system of equations

in many of the cases where compatibility is preserved. (1). See, for example (alphabetically) Arov and Nudelman

Du=lim t'Dgt 'y,
t—oo



(1996), Curtain and Weiss (1989), Salamon (1987, 1989), To get a time-domain representation for the outpof a

Staffans (1997, 1998a,c,b, 1999, 2000), Weiss (1989a,b,ayell-posed linear system similar to the second equation in

1991, 1994a,b), Weiss and Weiss (1997) (and the referencg4) we introduce the subspadeof X x U defined by
therein). Most of the available literature deals with Hilbert
spaces ang = 2.

Each well-posed linear system induces operadoB and
C corresponding to the operators in (1). Hérés the gener-
ator of the semigroupl. Before introducing the operatoBs
andC we need two auxiliary spaceg andX_1. Choose any
yin the resolvent set dk. We letX; be the domain o, with
the norm||x||x, = ||(y1 —A)X||x, andX_1 is the completion of
X with the norm[x|[x_, = [|(yl —A)~*x][x. The semigroul  proposition 1.2. Let> = [% 3] be a well-posed linear sys-
can be extended to a strongly continuous semigrou¥-Qn  tem on U, X and Y. Denote the growth bounclaby wsy.
which we denote by the same symbol. We denote the spacg/e define the operator&D € L (V;Y) by
of bounded linear operators frachto Y by L (U;Y), and let
L)(R*;U) represent the space of functiomsR* — U for
whicht — e~%uy(t) belongs td_P(R+;U).

V={[}] €XxU|Ax+BueX}. (4)

Also this space is a Banach space with the norm

1/2
I3l = { X% + uld + JAx+Bug} 2.

If X andU are Hilbert spaces, then sovs

(®)

C&D m =C[x— (al —A)"'BU] + D(a)y,

Proposition 1.1. LetZ = [%‘ %] be a well-posed linear sys- wherea € C with Ja > wy can be chosen in an arbitrary
temon U, X and Y. Denote the growth boun@dfy . way (i.e., the the result is independentoés long adla >

wy). We call & D the combined observation/feedthrough

() = = [¥Z] has a uniquecontrol operatorB € operatorof 3.
L(U;X 1), determined by the fact that the input term
Biu in (3) is given by the standard variation of con-

stants formula (the function inside the integral takes it

values in X 1, but the final result belongs to X)

(i) The output y= &xg + Dou of = defined in(3) is given
forallt > 0 by

Y(t)ZC&D[ﬁ(t)] :c&DPtxw%tou , (6)

(t) u(t)

for all xo € X and all ue WgP(R*;U) satisfying
[u)((%)] € V. In particular, [3(0] eV forallt > 0.

t
B! = / A-SBu(s)ds,
0

+ P
teR™, U€E Ly,

(R*;U).
(t)

(i) X has a uniquenbservation operatd® € L (X3;Y), de- . Lo~ .
termined by the fact that the output textwg in (3)is (i) The transfer functior® of 2 is given by
given by (for almost all £ R™) R Rt
H(2) = C&D {(Z' IA) B} . Oz>wa.  (7)

(€x0)(t) =CAXy, X0 € X1.

For the proof, see Arov and Nudelman (1996), Curtain

2 has a unique analytit. (U;Y)-valuedtransfer func-
tion ® defined (at least) onlz > wy, determined by the
fact that the Laplace transfortﬁ@ of the input-output
term®ou in (3) is given by

(iii)
or Weiss (1989a,b).

We callS= [£48]:V — X xU the system operatoof
the systenk, and we refer t&\, B, andC&D as thegenerat-
ing operatorsof Z. In Arov and Nudelman (1996;&D is
denoted byN.

Dou=D(20(2), Oz>wy, ueld,(RT;U),

whered is the Laplace transform of u. 2 Compatible Systems

The existence 0B andC is proved in Salamon (1989), s ysyallynot possibleo splitC&D directly into
Weiss (1989a), Weiss (1989b), and the existence of a trans-

and Weiss (1989), Salamon (1987, 1989), Staffans (2000),

fer function is proved in Curtain and Weiss (1989) and Weiss X

(1991). (See also Salamon (1989) and (Weiss, 1994a, Re- c&b [u] = Cx+Du, (8)
mark 2.4).) The control operat@ is said to beboundedf

the range oB lies in X, in which casd € L (U;X). The ob-  where

sgrvation operatdt is said to bdoggndedf it is continuous Cx=C&D m ’ X € X1,

with respect to the norm of, i.e., if it can be extended to an 0 ©)
operator inL (X;Y). The operato€ in (1) is an extension of 0

C, as will be explained in Section 2. Du=C&D M ’ ueyu,



because of the fact thgt0} x U is not contained in the
domain V of @D in general (this is true only wheB is
bounded). (The relationship betwe€randC&D expressed
in (9) is always valid.) Thus, to spli£&D in this way we
must firstextend @& D to a larger domain containin@} x U

OftenZ is a Hilbert space anH; is a closed subspace of
Z, and then it is clear from the above ttais compatible.
Sometimes the extension@fcomes naturally, as in the case
whereC is bounded and has a (unique) extension to an op-
erator inL (X;Y). We can then let this extension determine

as a subspace. The smallest possible extended domain fse values o€ onZ. On the other hand, in some cases (such

Z x U, whereZ is defined as follows. We choose apyn
the resolvent set d&, and let

Z={zeX|z=(y —A)(x+Bu)

(10)
for somexe X andue U }.

This is a Banach space with the norm

)1/2

4z = inf (x5 +ul3

(Y1=A)~1(x+Bu)=z

)

satisfyingX; C Z C X, and itis a Hilbert space if both and
U are Hilbert spaces. Itis easy to see Mat Z x U, but the
embedding/ C Z x U need not be dense.

Definition 2.1. The well-posed linear system= [% 3] is

as boundary control systems) it is possible to spebifyrbi-
trarily, i.e., to every bounded operatDrit may be possible
to find an extended operatGrsuch thaD is the feedthrough
operator corresponding © (see Staffans (2000)). One pos-
sible choice in these cases is to tdke= 0. (If the system is
a boundary control system with a bounded observation op-
erator, then the two methods described above produce, in
general, two different extensions.) A third method will be
described later: if the system is the result of some transfor-
mation performed on some other system, then we may want
to chooseC andD in such a way that the they can be com-
puted by a simple formula from the corresponding operators
for the original system.

In spite of the possible non-uniqueness of the extended
observation operatdC and the corresponding feedthrough

compatiblef its combined observation/feedthrough operator gperatoD, independently of how these operators are chosen,

C&D can be extended to an operat6&D € L(Z x U;Y).

it is still true that the output equation (6) simplifies into

We define the corresponding extended observation operator

C e L(z;Y) and feedthrough operator B L (U;Y) by

C:C&Dm, X€ez,
5 (11)
Du:C&DH, ueUu.

The extension o€&D to Z x U need not be unique, since

V may not be dense ifi x U. This means that andD need

y(t) =Cx(t) + Du(t), t>0, (14)
and we observed above that (7) simplifies into (13).

In the sequel, rather than writir@ all the time, we write
C instead ofC, but we still think ofC as the (non-unique)
extended observation operator In(Z;Y). Whenever both
C andD appear in the same formula we requiré¢o be the
feedthrough operator induced By For a compatible system,

we call a quadruple of operatof§ §] € L(ZxU;X_1xY)

not be unique either. However, there is a one-to-one Corregqnsirycted as described above a sajesferatorsor gener-
spondence betwedd& D, C andD, i.e., any one of these ating operatorsf this system.

three operators determines the other two uniquely. This can

be seen as follows. Clearly (11) defin€@sandD in terms
of C&D, and conversely, if we know both andD then we
knowC&D, since, by (11),

C&Dm:CHDu, xeZ, ueu. (12)

But there is also a one-to-one correspondence bet@eerl
D since, by (7),

~

D(2)=C(zI-A)~B+D, Dz>wy. (13)
This definesD as a function of® andC, and conversely,
it defines the values o on the range ofzl — A)~"1B as a

function of® andD (the values ofC on X; are determined

by the original control operatdz, so they are the same for

all extensions). Thus we have shown the following:

Proposition 2.2. The well-posed linear systei is com-

patible if and only if C can be extended to an operator

As Helton (1976) comments, most physically motivated
systems seem to be compatible. This applies, in particular,
to all systems wherB or C is bounded, to all boundary con-
trol systems, and to all systems with finite-dimensional input
spacdJ. All regular linear systems (see the next section) are
also compatible. The existence of a non-compatible well-
posed linear system in the Hilbert space context is still an
open problem. A reasonably complete theory for compatible
systems is presented in Staffans (2000).

3 Regular Systems

The non-unigueness of the extended observation opeZator
and the corresponding feedthrough oper&ton a compat-
ible system is slightly disturbing. It is possible to get rid of
this non-uniqueness by using a strongagularity assump-
tion on the system, and by using a specific extensio€ of
instead of an arbitrary extension.

CeL(z)Y), and (11) is a one-to-one correspondence be- Definition 3.1. The well-posed linear systeln= [% 3] is

tween the extende@ and the extenddd&D.

weakly, strongly, or uniformly regulaf its transfer function



@(z) has a weak, strong, or uniform limit invertible in L,‘E,C(R+;U). Under this assumption we get a

well-posedclosed-loop syster® whose input-state-output

D= Zﬂnjw@(z) (15)  relationship is given by
(where the limit is taken along the positive real axis). X(t) - (A" (%K)to X0
y ek D | |v

As shown by Weiss (1994a) and Staffans and Weiss —— | o 1! (19)
(2000), every weakly regular system is compatible and it is = {G @0] {—KQ | _KD ] [XO} .
possible to exten€ to the space in such a way that the 0 0 v
corresponding feedthrough operatoDs It is even possi-  The correspondinglosed-loop system operatisrgiven by
ble to extendC further so that the output formulgt) =

Cx(t) 4+ Du(t) becoms valid for almost atl > 0 under the [AK BE] _ {A B} M1 (20)
minimal assumptions thas € X andu € L (R*;U). (C&D) C&D ’
According to Staffans and Weiss (1998), evéfywell- where
posed system is weakly regular, hence compatible. | 0 0
M= {o J - K(C&D)]' (21)

4 Duality In particular,M maps the spac¥ onto the corresponding
closed-loop spaceX.

In this section we suppose that X andY are reflexive, and In the classical finite-dimensional case the above feedback

that 1< p < «. Then the (causal) dual of the well-posed system is well-posed (i.e. — K®q is invertible) if and only

systemz = [% 3] is given by if | — DK is invertible, or equivalently, if and only If- KD is
invertible. When this is the case we can write the closed-loop

sd _ { AT A ] (16)  generatorsin the form
AB* AD*A|’

{AK BK]: {(A+BEKC BE 22)

ck DK | -DK)"C DE|’

17)

A B]”
C&D

where A1 is the reflection operatordefined by (Au)(t) =
u(—t) for all't € R and for allu € L} (R). The system op- S _
erator of the dual is the adjoint of the system operator of thevhere E = (I —KD)~*. In the infinite-dimensional well-
original system: posed case the situation is more complicated, and the in-
vertibility of (I — DK) is neither necessary nor sufficient for
A4 Bd _ the closed-loop system to be well-posed. (For example, in
[C& Dd ] o a boundary control systefd can be chosen in an arbitrary
way, hencd — KD will be invertible for someD but not for
In particular A = A*, B =C* andC" = B*. The questionof  all D, independently of whether the closed-loop system is
whether or noD? = D* in the compatible case is more diffi- well-posed or not). Let us assume that the closed-loop sys-
cult. By Staffans and Weiss (2000) or Staffans (2000), weakiem is well-posed. Then left-invertiblity df— DK is sulffi-
and uniform regularity are preserved under the duality transcient to imply that the closed-loop system is compatible, and
formation and>® = D* in this case. By Staffans (2000)Xi  if | — DK is invertible (from both sides), then (20) holds, as
is dense irZ then compatibility is preserved under the duality shown by Mikkola (2000) and Staffans (2000). (In particular,
transformation and agaid® = D*. It is not known to what  in a boundary control system we can makeKD invertible
extent this is true whei; is not dense irZ. Accordingto by takingD = 0.) Uniform regularity is always preserved
Staffans and Weiss (200@}yong regularity is not preserved under feedback (ant— DK is invertible in the uniformly
under duality in general (but, of course, the dual of a stronglyregular case). It is not known if strong regularity is always

regular system is weakly regular, hence compatible). preserved (it is perservedlif- DK is invertible; see Weiss
(1994b)), but strong regularity implies that- DK is left-
5 Feedback invertible, hence the closed-loop system is compatible. Ac-

cording to Staffans and Weiss (2000), weak regularity is not
To get a standard static output feedback connection for th@reserved in general under feedback, even in the case where

system= we choose some operatére L (Y;U) and replace | — DK is invertible.

uin (3) byu=Ky+v, whereve L (R*;U) is the new input

function. Then it is easy to see that 6 Flow-Inversion
{ ' 0 ] {XO — [XO} ) (18)  The idea behind flow inversion is to keep the relationships
—K& 1-KDo] | u v between the stateand the signalsi andy in (1) intact, but

This equation defines, andu uniquely and continuously in  1© réinterprey as the input and as the output. By (3),

terms ofxy andv if and only if [ k¢ | o, ] is invertible in I 0] [x %o
X x LP (R*;U), or equivalently, if and only il —K®g is [@ @0} [u] = {y} : (23)

loc



This equation defineg andu uniquely and continuously in  of a well-posed linear syster = [%‘ g] is that 2l can
terms ofxg andy if and only if ['L i?o] is invertible as an  be extended to a group. As shown in Staffans and Weiss
operator fromX x L (R*;U) to X x LP (R*;Y), or equiv-  (2000), this condition is also sufficient, and (27) holds.

alently, if and only if®g is invertible as an operator from By (27), the combined observation/feedthrogh operator of

LP.(RT;U) to L. (RT;Y). We then get a well-posetbw-  the time-inverted system ithe sameas the original one,
inverted syster@*, whose input-state-output relationship is hence, in particular, compatibility is preserved under time-
given by inversion. Moreover, since the time-inverted transfer func-
y nt tion ®7 can be computed through (7) from the original ob-
[X t)] |:(Q[><) (B X)o] {XO} servation/feedthrogh operat6& D (defined in (5)), we get
u ¢ Do | LY (24) that for all—zin right half-plane (—2) > wys,
-1
_ At WY (10 Xo| R (21— A)IB
0 1 ]|€ Dof |y ©7(~2) =C&D [ | ] 28)
The correspondinfiow-inverted system operat _ C[(zl _ A)*l —(al— A)*l] B+ 35(0(),
-1
{ACX& DE;X = ['8‘ 'I‘D’] LI:& g} . (25) wherewys is the growth bound of the semigroup generated
by —Aanda > wy. Comparing this expression to (7), we

realize tha@ﬂ( 2) and@( z) are obtained fronthe same
formula, which in one case is valid fdilz > wy and in the
other case foflz < —wys. The function produced by this
formula is analytic in the resolvent set 8f Thus, if the
spectrum ofA does not separate the right half-plane> wy
from the left half-planéiz < —wys, then®(—z) and?(2)
are analytic continuations of each other.

It is shown in Staffans and Weiss (2000) with a scalar
counterexample that regularity need not be preserved under
time inversion. (In the single input single output case wealk,
strong, and uniform regularity are all equivalent, and hence
none of them is preserved.) Moreover, even if both the orig-
inal and the time-inverted system are regular, it is still pos-
Zible that the forward extended observation and feedthrough
operators differ from the backward extended observation and

. . ) o feedthrough operators, as can be seen from the simple exam-
ible, then flow-inversion preserves compatibility and strong ple
and uniform regularity. However, weak regularity is not pre- R o2

served under flow-inversion. For more details, see Staffans D(z) = =2
and Weiss (2000) and Staffans (2000).

In particular,[ %] maps the spacé onto the correspond-
ing flow-inverted spac¥ *.

In the classical finite-dimensional case flow-inversion is
possible if and only iD is invertible, and in that case
AX BX} B [A—Bch BD!

Cc* DX* _Dflc Dfl (26)

Actually, flow-inversion can be interpreted as a special case,
of feedback: if we (for simplicity and without loss of gen-
erality) suppose that =Y, then we get the flow-inverted
system by first replacing by y — u (meaning that we re-
placeD by D —I) and then using negative indentity feedback.
Thus, everything that we said in the feedback section applie
to flow-inversion if we replacé — KDg by Dg, (I — KD) by

D, (20) by (25), and (22) by (26). In particular[fis invert-

) ) 8 Time-Flow-Inversion
7 Time-lnversion

) S o ~ To get atime-flow inverted systemve perform the two op-
The idea behind time-inversion is to solve (1) backward inerations described in Sections 6 and 7 simultaneously. That
time, i.e., we let in (1) be negative. The set of equations s, we interprey as the input and as the output, and replace

(1) witht <0 cannot directly be interpeted as the equations; < g in (1) by—t > 0. If = = [2 2] if flow-invertible, and if
describing the evolution of a well-posed linear system, sincee flow-inverted system is time- invertible, then by combin-
such systems evolve in the forward and not in the backwardng (25) and (27) we get the expected formula for the system
time direction, but this can easily be taken care of by an extrayperator of theime-flow-inverted syste&t-, namely
reflection of the time axis. Thus, we replace 0 by —t > 0
in (1). This changes the sign of the derivative in the first A B- ~A — o]t
equation in (1), but it has no influence on the second equa- [(c& D)< = [ 0 I ] C& D] ) (29)
tion. Thus, if we are to obtain a well-posed time-inverted
system by arguing in this way, then the system operator ofvhich in the compatible case with an invertible operddor
thetime-inverted systef®” that we get must be given by should become

A7 BT A — AC  B“ -A+BDC -BD?

[(C&D)”] ~ | c&D ] ' 7) [C“ D“} - [ -b7ic D~ ] -0
By simply ignoring the inputi and the outpuy in (1), we In the finite-dimensional case a time-flow-invertible sys-
realize that a necessary condition for the time-invertibility tem is necessarily both time-invertible and flow-invertible




and (30) holds. In particular, the dimensionslbfandY Curtain, R. F. and G. Weiss (1989). “Well posedness of triples of
must be the same. This is not true in the infinite-dimensional operators (in the sense of linear systems theory),Cantrol
case, as will be shown below. and Optimization of Distributed Parameter SysteBiskhauser-

It is quite simple to find a necessary and sufficient con- Verlag, Basel, vol. 91 dihternational Series of Numerical Math-

dition for time-flow-invertibility. Lett > 0, and define ematics pp. 41-59.
(ThoyU)(8) = u(s) if S€ (O7t_) and(moy)u)(s) = 0 otherwise. Helton, J. W. (1976). “Systems with infinite-dimensional state
Then (3) can be rewritten in the form space: the Hilbert space approacRfoceedings of the IEEE
64, pp. 145-160.
X(t) = A'%(0) + BoTop U,
oy = ¢bxo+ DT o U t>0 (31) Mikkola, K. (2000). “Infinite-dimensionaH® and H2 regulator
1) 0 07(0n ™ =7 problems and their algebraic Riccati equations with applications

whereet — T[(o7t)¢ and@to _ T[(o,t)@T[(o,t)- Defining to the Wiener class,” Doctoral dissertation, Helsinki University

of Technology.
st A %to (32) Ober, R. and Y. Wu (1996). “Infinite-dimensional continuous-time
0~ ey DL linear systems: stability and structure analysgiAM J. Control

Optim, 34, pp. 757-812.
we can write this as
Salamon, D. (1987). “Infinite dimensional linear systems with
X(t) ] st { x(0) } (33) unbounded control and observation: a functional analytic ap-
y

Toy) 0 | mopu proach, Trans. Amer. Math. Sac300, pp. 383-431.
If the system is time-flow-invertible, then it must be possible Salamon, D. (1989). “Realization theory in Hilbert spaddth.
to expres(0) and oy U in terms ofx(t) andyqy)y, and Systems Theorg1, pp. 147-164.

TR t : : 2 .
this implies that, must be invertible fronX > L=((0,t);U) Staffans, O. J. (1997). “Quadratic optimal control of stable well-

Weiss (2000) that this necessary condition is also sufficient 3715,

for the existence of the time-flow-inverted system. Moreover,

if =4 is invertible for onet > 0, then it is invertible for all ~ Staffans, O. J. (1998a). “Coprime factorizations and well-posed lin-

t > 0, and the time-flow-inverted system operator is given by ~ €ar SystemsSIAM J. Control Optim.36, pp. 1268-1292.

(29). . L. . ) . Staffans, O. J. (1998b). “Quadratic optimal control of well-posed
As mentioned earlier, in the finite-dimensional case, a Sys- |inear systems,SIAM J. Control Optim.37, pp. 131-164.

tem cannot be time-flow-invertible unless the dimensions of

U andY are the same. This is not true in the infinite- Staffans, O. J. (1998c). “Feedback representations of critical con-

dimensional case as the following counterexample shows: trols for well-posed linear systemdyiternat. J. Robust Nonlin-

takeU = {0}, Y = C, let2 be the left-shift orX = L2(R™), ear Control 8, pp. 1189-1217.

and let¢ =1. TQ:S system is conservative, meaning that theStaﬁans, 0. J. (1999). “Admissible factorizations of Hankel oper-

operatorz = [Q‘B] is unitary fromX to X x L2(0,t) for all ators induce well-posed linear systemSystems Control Lett.
t > 0, hence invertible. The inverse of a unitary operator 37.
coincides with its adjoint, and it can be shown that the time-
flow-inverted system coincides with the dual system in this
case. Thus2~ =A% = A* is the right-shift onL?(R*),
(B)h = (€))", i.e.,BLy =Ty, and the generators of the ~ staffans, O. J. and G. Weiss (1998). “Well-posed linear systems in
time-flow inverted system as™ = A* andB* =C"*. L1 andL® are regular,” inMethods and Models in Automation
The system described above is time-flow-invertible but and Robotics, Proceedings of MMAR98, 25-29 August, Miedzyz-
neither time-invertible nor flow-invertible. Both the system  droje, Poland pp. 75-80.
itself and the time-flow-inverted system are regular. The
feedthrough operatdp is not invertible, and the right-hand
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