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Abstract

We discuss different regularity notions forLp-well-posed lin-
ear systems with 1� p < ∞, namely (from the weakest to
the strongest) compatibility in the sense of Helton (1976),
weak regulartiy in the sense of Weiss and Weiss (1997) or
Staffans and Weiss (2000), strong regularity in the sense of
Weiss (1994a), and uniform regularity in the sense of Hel-
ton (1976) and Ober and Wu (1996). We further investigate
how compatibility and regularity are preserved under various
transformations on the system, such as the duality transfor-
mation, feedback, flow-inversion, time-inversion, and time-
flow inversion. Compatibility is the minimal assumption un-
der which it is possible to describe the input-state-output be-
havior of a system with initial time zero, initial statex0, input
u, state trajectoryx and outputy in the standard way

x0(t) = Ax(t)+Bu(t);

y(t) =Cx(t)+Du(t); t � 0;

x(0) = x0:

(1)

HereA is the generator of a strongly continuous semigroup
A, B is the (possibly unbounded) control operator,C is a
(possibly unbounded, possibly extended) observation opera-
tor, andD is a bounded feedthrough operator. Also the stan-
dard formula for the transfer function,

bD(z) =C(zI�A)�1B+D; ℜz> ωA; (2)

whereωA is the growth bound ofA, is based on compatibil-
ity. The operatorsA andB are always unique. The operators
C andD are unique in the different regular cases, but not in
the general compatible case. We give formulas for the oper-
atorsA, B, C andD of the transformed systems listed above
in many of the cases where compatibility is preserved.

1 Well-Posed Linear Systems

Many infinite-dimensional systems can be described by the
equations (1) on a triple of Banach spaces, namely, the input
spaceU , the state spaceX, and the output spaceY. We have
u(t)2U , x(t)2X andy(t)2Y. The operatorsA, B, andC are
often unbounded whereasD is bounded. However, it is not
known if all well-posed linear systems can be written in this
form, and it is therefore (and also for other reasons) often
more convenient to use an “integral” representation of the
system, which consists of the four operators from the initial
statex0 and the input functionu to the final statex(t) and the
output functiony:

x(t) =Atx0+B
t
0u; t � 0;

y= Cx0+D0u:
(3)

Here,At is the semigroup which maps the initial statex0 into
the final statex(t),Bt

0 is the map from the inputu (restricted
to the interval(0; t)) to the final statex(t), C is the map from
the initial statex0 to the outputy, andD0 is the input-output
map fromu (restricted toR+ = [0;∞)) to y.

We regardLp
loc(R

+;U) as a Fréchet space, with the se-
quence of seminormskukn = kukLp([0;n];U). We regard
Lp

loc(R
+;U) as a subspace ofLp

loc(R;U) and on the latter we
define the bilateral left shift byt, denotedτt , by (τt u)(s) =
u(s+ t),�∞ < s; t < ∞.

The well-posednessassumption is that (3) behaves well
in an Lp-setting, where 1� p < ∞, i.e., x(t) 2 X and y 2
Lp

loc(R
+;Y) depend continuously onx0 2 X and on u 2

Lp
loc(R

+;U). If this is the case, we call the operators
�
A B

C D

�
a well-posed linear system, where

Bu= lim
t!∞

B
t
0τ�tu;

Du= lim
t!∞

τt
D0τ�tu;

each defined for thoseu2 Lp
loc(R;U) for which the respective

limit exists. It is possible to define a well-posed linear system
Σ =

�
A B

C D

�
without any reference to the system of equations

(1). See, for example (alphabetically) Arov and Nudelman
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(1996), Curtain and Weiss (1989), Salamon (1987, 1989),
Staffans (1997, 1998a,c,b, 1999, 2000), Weiss (1989a,b,c,
1991, 1994a,b), Weiss and Weiss (1997) (and the references
therein). Most of the available literature deals with Hilbert
spaces andp= 2.

Each well-posed linear system induces operatorsA, B, and
C corresponding to the operators in (1). HereA is the gener-
ator of the semigroupA. Before introducing the operatorsB
andC we need two auxiliary spacesX1 andX�1. Choose any
γ in the resolvent set ofA. We letX1 be the domain ofA, with
the normkxkX1 = k(γI�A)xkX, andX�1 is the completion of
X with the normkxkX

�1 = k(γI�A)�1xkX . The semigroupA
can be extended to a strongly continuous semigroup onX�1,
which we denote by the same symbol. We denote the space
of bounded linear operators fromU to Y by L(U ;Y), and let
Lp

ω(R+;U) represent the space of functionsu: R+ !U for
which t 7! e�ωtu(t) belongs toLp(R+;U).

Proposition 1.1. Let Σ =
�
A B

C D

�
be a well-posed linear sys-

tem on U, X and Y. Denote the growth bound ofA byωA.

(i) Σ =
�
A B
C D

�
has a unique control operator B 2

L(U ;X�1), determined by the fact that the input term
Bt

0u in (3) is given by the standard variation of con-
stants formula (the function inside the integral takes it
values in X�1, but the final result belongs to X)

B
t
0 =

Z t

0
A

t�sBu(s)ds;

t 2 R+
; u2 Lp

loc(R
+;U):

(ii) Σ has a uniqueobservation operatorC 2 L(X1;Y), de-
termined by the fact that the output termCx0 in (3) is
given by (for almost all t2 R+)

(Cx0)(t) =CAt x0; x0 2 X1:

(iii) Σ has a unique analyticL(U ;Y)-valuedtransfer func-
tion bD defined (at least) onℜz>ωA, determined by the
fact that the Laplace transformdD0u of the input-output
termD0u in (3) is given by

dD0u= bD(z)û(z); ℜz> ωA; u2 Lp
ωA(R

+;U);

whereû is the Laplace transform of u.

The existence ofB andC is proved in Salamon (1989),
Weiss (1989a), Weiss (1989b), and the existence of a trans-
fer function is proved in Curtain and Weiss (1989) and Weiss
(1991). (See also Salamon (1989) and (Weiss, 1994a, Re-
mark 2.4).) The control operatorB is said to beboundedif
the range ofB lies inX, in which caseB2 L(U ;X). The ob-
servation operatorC is said to beboundedif it is continuous
with respect to the norm ofX, i.e., if it can be extended to an
operator inL(X;Y). The operatorC in (1) is an extension of
C, as will be explained in Section 2.

To get a time-domain representation for the outputy of a
well-posed linear system similar to the second equation in
(1) we introduce the subspaceV of X�U defined by

V =
�
[ x
u] 2 X�U

�� Ax+Bu2 X
	
: (4)

Also this space is a Banach space with the norm

j[ x
u]jV =

�
jxj2X + juj2U + jAx+Buj2X

	1=2
:

If X andU are Hilbert spaces, then so isV.

Proposition 1.2. Let Σ =
�
A B
C D

�
be a well-posed linear sys-

tem on U, X and Y. Denote the growth bound ofA by ωA.
We define the operator C&D 2 L(V;Y) by

C&D

�
x
u

�
=C

�
x� (αI �A)�1Bu

�
+ bD(α)u; (5)

whereα 2 C with ℜα > ωA can be chosen in an arbitrary
way (i.e., the the result is independent ofα as long asℜα >

ωA). We call C&D the combined observation/feedthrough
operatorof Σ.

(i) The output y= Cx0 +D0u of Σ defined in(3) is given
for all t � 0 by

y(t) =C&D

�
x(t)
u(t)

�
=C&D

�
At x0+B

t
0u

u(t)

�
; (6)

for all x0 2 X and all u2 W1;p
loc (R

+;U) satisfyingh
x0

u(0)

i
2V. In particular,

h
x(t)
u(t)

i
2V for all t � 0.

(ii) The transfer functionbD of Σ is given by

bD(z) =C&D

�
(zI�A)�1B

I

�
; ℜz> ωA: (7)

For the proof, see Arov and Nudelman (1996), Curtain
and Weiss (1989), Salamon (1987, 1989), Staffans (2000),
or Weiss (1989a,b).

We call S=
�

A B
C&D

�
: V ! X�U the system operatorof

the systemΣ, and we refer toA, B, andC&D as thegenerat-
ing operatorsof Σ. In Arov and Nudelman (1996),C&D is
denoted byN.

2 Compatible Systems

It is usuallynot possibleto splitC&D directly into

C&D

�
x
u

�
=Cx+Du; (8)

where

Cx=C&D

�
x
0

�
; x2 X1;

Du=C&D

�
0
u

�
; u2U;

(9)



because of the fact thatf0g �U is not contained in the
domain V of C&D in general (this is true only whenB is
bounded). (The relationship betweenC andC&D expressed
in (9) is always valid.) Thus, to splitC&D in this way we
must firstextend C&D to a larger domain containingf0g�U
as a subspace. The smallest possible extended domain is
Z�U , whereZ is defined as follows. We choose anyγ in
the resolvent set ofA, and let

Z =
�

z2 X
�� z= (γI �A)�1(x+Bu)

for somex2 X andu2U
	
:

(10)

This is a Banach space with the norm

jzjZ = inf
(γI�A)�1(x+Bu)=z

�
jxj2X + juj2U

�1=2
;

satisfyingX1� Z� X, and it is a Hilbert space if bothX and
U are Hilbert spaces. It is easy to see thatV � Z�U , but the
embeddingV � Z�U need not be dense.

Definition 2.1. The well-posed linear systemΣ =
�
A B

C D

�
is

compatibleif its combined observation/feedthrough operator
C&D can be extended to an operatorC&D 2 L(Z�U ;Y).
We define the corresponding extended observation operator
C2 L(Z;Y) and feedthrough operator D2 L(U ;Y) by

C=C&D

�
x
0

�
; x2 Z;

Du=C&D

�
0
u

�
; u2U:

(11)

The extension ofC&D to Z�U need not be unique, since
V may not be dense inZ�U . This means thatC andD need
not be unique either. However, there is a one-to-one corre-
spondence betweenC&D, C and D, i.e., any one of these
three operators determines the other two uniquely. This can
be seen as follows. Clearly (11) definesC andD in terms
of C&D, and conversely, if we know bothC andD then we
knowC&D, since, by (11),

C&D

�
x
u

�
=Cx+Du; x2 Z; u2U: (12)

But there is also a one-to-one correspondence betweenC and
D since, by (7),

bD(z) =C(zI�A)�1B+D; ℜz> ωA: (13)

This definesD as a function ofbD andC, and conversely,
it defines the values ofC on the range of(zI�A)�1B as a
function of bD andD (the values ofC on X1 are determined
by the original control operatorC, so they are the same for
all extensions). Thus we have shown the following:

Proposition 2.2. The well-posed linear systemΣ is com-
patible if and only if C can be extended to an operator
C 2 L(Z;Y), and (11) is a one-to-one correspondence be-
tween the extendedC and the extendedC&D.

OftenZ is a Hilbert space andX1 is a closed subspace of
Z, and then it is clear from the above thatΣ is compatible.
Sometimes the extension ofC comes naturally, as in the case
whereC is bounded and has a (unique) extension to an op-
erator inL(X;Y). We can then let this extension determine
the values ofC onZ. On the other hand, in some cases (such
as boundary control systems) it is possible to specifyD arbi-
trarily, i.e., to every bounded operatorD it may be possible
to find an extended operatorC such thatD is the feedthrough
operator corresponding toC (see Staffans (2000)). One pos-
sible choice in these cases is to takeD = 0. (If the system is
a boundary control system with a bounded observation op-
erator, then the two methods described above produce, in
general, two different extensions.) A third method will be
described later: if the system is the result of some transfor-
mation performed on some other system, then we may want
to chooseC andD in such a way that the they can be com-
puted by a simple formula from the corresponding operators
for the original system.

In spite of the possible non-uniqueness of the extended
observation operatorC and the corresponding feedthrough
operatorD, independently of how these operators are chosen,
it is still true that the output equation (6) simplifies into

y(t) =Cx(t)+Du(t); t � 0; (14)

and we observed above that (7) simplifies into (13).
In the sequel, rather than writingC all the time, we write

C instead ofC, but we still think ofC as the (non-unique)
extended observation operator inL(Z;Y). Whenever both
C andD appear in the same formula we requireD to be the
feedthrough operator induced byC. For a compatible system,
we call a quadruple of operators

�
A B
C D

�
2 L(Z�U ;X�1�Y)

constructed as described above a set ofgeneratorsor gener-
ating operatorsof this system.

As Helton (1976) comments, most physically motivated
systems seem to be compatible. This applies, in particular,
to all systems whereB or C is bounded, to all boundary con-
trol systems, and to all systems with finite-dimensional input
spaceU . All regular linear systems (see the next section) are
also compatible. The existence of a non-compatible well-
posed linear system in the Hilbert space context is still an
open problem. A reasonably complete theory for compatible
systems is presented in Staffans (2000).

3 Regular Systems

The non-uniqueness of the extended observation operatorC
and the corresponding feedthrough operatorD in a compat-
ible system is slightly disturbing. It is possible to get rid of
this non-uniqueness by using a strongerregularity assump-
tion on the system, and by using a specific extension ofC
instead of an arbitrary extension.

Definition 3.1. The well-posed linear systemΣ =
�
A B

C D

�
is

weakly, strongly, or uniformly regularif its transfer function



bD(z) has a weak, strong, or uniform limit

D = lim
z!+∞

bD(z) (15)

(where the limit is taken along the positive real axis).

As shown by Weiss (1994a) and Staffans and Weiss
(2000), every weakly regular system is compatible and it is
possible to extendC to the spaceZ in such a way that the
corresponding feedthrough operator isD. It is even possi-
ble to extendC further so that the output formulay(t) =
Cx(t) +Du(t) becoms valid for almost allt � 0 under the
minimal assumptions thatx0 2 X andu2 Lp

loc(R
+;U).

According to Staffans and Weiss (1998), everyL1-well-
posed system is weakly regular, hence compatible.

4 Duality

In this section we suppose thatU , X andY are reflexive, and
that 1< p < ∞. Then the (causal) dual of the well-posed
systemΣ =

�
A B

C D

�
is given by

Σd =

�
A� C� R
RB� RD� R

�
; (16)

where Ris the reflection operatordefined by( Ru)(t) =
u(�t) for all t 2 R and for allu2 Lp

loc(R). The system op-
erator of the dual is the adjoint of the system operator of the
original system: �

Ad Bd

C&Dd

�
=

�
A B
C&D

�
�

: (17)

In particular,Ad =A�, Bd =C� andCd =B�. The question of
whether or notDd = D� in the compatible case is more diffi-
cult. By Staffans and Weiss (2000) or Staffans (2000), weak
and uniform regularity are preserved under the duality trans-
formation andDd =D� in this case. By Staffans (2000), ifX1

is dense inZ then compatibility is preserved under the duality
transformation and againDd = D�. It is not known to what
extent this is true whenX1 is not dense inZ. According to
Staffans and Weiss (2000),strong regularity is not preserved
under duality in general (but, of course, the dual of a strongly
regular system is weakly regular, hence compatible).

5 Feedback

To get a standard static output feedback connection for the
systemΣ we choose some operatorK 2 L(Y;U) and replace
u in (3) byu=Ky+v, wherev2 Lp

loc(R
+;U) is the new input

function. Then it is easy to see that�
I 0

�KC I �KD0

��
x0

u

�
=

�
x0

v

�
: (18)

This equation definesx0 andu uniquely and continuously in
terms ofx0 andv if and only if

�
I 0
�KC I�KD0

�
is invertible in

X� Lp
loc(R

+;U), or equivalently, if and only ifI �KD0 is

invertible in Lp
loc(R

+;U). Under this assumption we get a
well-posedclosed-loop systemΣK whose input-state-output
relationship is given by�

x(t)
y

�
=

�
(AK)t (BK)t0
CK DK

0

��
x0

v

�

=

�
At Bt

0
C D0

��
I 0

�KC I �KD0

�
�1�

x0

v

�
:

(19)

The correspondingclosed-loop system operatoris given by�
AK BK

(C&D)K

�
=

�
A B
C&D

�
M�1

; (20)

where

M =

�
I 0
0 I

�
�

�
0

K(C&D)

�
: (21)

In particular,M maps the spaceV onto the corresponding
closed-loop spaceVK .

In the classical finite-dimensional case the above feedback
system is well-posed (i.e.,I �KD0 is invertible) if and only
if I�DK is invertible, or equivalently, if and only ifI�KD is
invertible. When this is the case we can write the closed-loop
generators in the form�

AK BK

CK DK

�
=

�
A+BEKC BE

(I �DK)�1C DE

�
; (22)

whereE = (I �KD)�1. In the infinite-dimensional well-
posed case the situation is more complicated, and the in-
vertibility of (I �DK) is neither necessary nor sufficient for
the closed-loop system to be well-posed. (For example, in
a boundary control systemD can be chosen in an arbitrary
way, henceI �KD will be invertible for someD but not for
all D, independently of whether the closed-loop system is
well-posed or not). Let us assume that the closed-loop sys-
tem is well-posed. Then left-invertiblity ofI �DK is suffi-
cient to imply that the closed-loop system is compatible, and
if I �DK is invertible (from both sides), then (20) holds, as
shown by Mikkola (2000) and Staffans (2000). (In particular,
in a boundary control system we can makeI �KD invertible
by taking D = 0.) Uniform regularity is always preserved
under feedback (andI �DK is invertible in the uniformly
regular case). It is not known if strong regularity is always
preserved (it is perserved ifI �DK is invertible; see Weiss
(1994b)), but strong regularity implies thatI �DK is left-
invertible, hence the closed-loop system is compatible. Ac-
cording to Staffans and Weiss (2000), weak regularity is not
preserved in general under feedback, even in the case where
I �DK is invertible.

6 Flow-Inversion

The idea behind flow inversion is to keep the relationships
between the statex and the signalsu andy in (1) intact, but
to reinterprety as the input andu as the output. By (3),�

I 0
C D0

��
x0

u

�
=

�
x0

y

�
: (23)



This equation definesx0 andu uniquely and continuously in
terms ofx0 and y if and only if

�
I 0
C D0

�
is invertible as an

operator fromX�Lp
loc(R

+;U) to X�Lp
loc(R

+;Y), or equiv-
alently, if and only ifD0 is invertible as an operator from
Lp

loc(R
+;U) to Lp

loc(R
+;Y). We then get a well-posedflow-

inverted systemΣ�, whose input-state-output relationship is
given by �

x(t)
u

�
=

�
(A�)t (B�)t0
C
�

D
�

0

��
x0

y

�

=

�
At Bt

0
0 I

��
I 0
C D0

�
�1�

x0

y

�
:

(24)

The correspondingflow-inverted system operatoris�
A� B�

C&D�

�
=

�
A B
0 I

��
I 0
C&D

�
�1

: (25)

In particular,
�

I 0
C&D

�
maps the spaceV onto the correspond-

ing flow-inverted spaceV�.
In the classical finite-dimensional case flow-inversion is

possible if and only ifD is invertible, and in that case�
A� B�

C� D�

�
=

�
A�BD�1C BD�1

�D�1C D�1

�
: (26)

Actually, flow-inversion can be interpreted as a special case
of feedback: if we (for simplicity and without loss of gen-
erality) suppose thatU = Y, then we get the flow-inverted
system by first replacingy by y� u (meaning that we re-
placeD by D� I ) and then using negative indentity feedback.
Thus, everything that we said in the feedback section applies
to flow-inversion if we replaceI �KD0 byD0, (I �KD) by
D, (20) by (25), and (22) by (26). In particular, ifD is invert-
ible, then flow-inversion preserves compatibility and strong
and uniform regularity. However, weak regularity is not pre-
served under flow-inversion. For more details, see Staffans
and Weiss (2000) and Staffans (2000).

7 Time-Inversion

The idea behind time-inversion is to solve (1) backward in
time, i.e., we lett in (1) be negative. The set of equations
(1) with t � 0 cannot directly be interpeted as the equations
describing the evolution of a well-posed linear system, since
such systems evolve in the forward and not in the backward
time direction, but this can easily be taken care of by an extra
reflection of the time axis. Thus, we replacet � 0 by�t � 0
in (1). This changes the sign of the derivative in the first
equation in (1), but it has no influence on the second equa-
tion. Thus, if we are to obtain a well-posed time-inverted
system by arguing in this way, then the system operator of
thetime-inverted systemΣ Rthat we get must be given by�

A R B R

(C&D) R

�
=

�
�A �B

C&D

�
: (27)

By simply ignoring the inputu and the outputy in (1), we
realize that a necessary condition for the time-invertibility

of a well-posed linear systemΣ =
�
A B

C D

�
is that A can

be extended to a group. As shown in Staffans and Weiss
(2000), this condition is also sufficient, and (27) holds.
By (27), the combined observation/feedthrogh operator of
the time-inverted system isthe sameas the original one,
hence, in particular, compatibility is preserved under time-
inversion. Moreover, since the time-inverted transfer func-
tion bD Rcan be computed through (7) from the original ob-
servation/feedthrogh operatorC&D (defined in (5)), we get
that for all�z in right half-planeℜ(�z)> ω

A R,

bD R(�z) =C&D

�
(zI�A)�1B

I

�
=C

�
(zI�A)�1

� (αI �A)�1�B+ bD(α);
(28)

whereω
A Ris the growth bound of the semigroup generated

by �A andα > ωA. Comparing this expression to (7), we
realize thatbD R(�z) and bD(z) are obtained fromthe same
formula, which in one case is valid forℜz> ωA and in the
other case forℜz< �ω

A R. The function produced by this
formula is analytic in the resolvent set ofA. Thus, if the
spectrum ofA does not separate the right half-planeℜz>ωA
from the left half-planeℜz<�ω

A R, thenbD R(�z) andbD(z)
are analytic continuations of each other.

It is shown in Staffans and Weiss (2000) with a scalar
counterexample that regularity need not be preserved under
time inversion. (In the single input single output case weak,
strong, and uniform regularity are all equivalent, and hence
none of them is preserved.) Moreover, even if both the orig-
inal and the time-inverted system are regular, it is still pos-
sible that the forward extended observation and feedthrough
operators differ from the backward extended observation and
feedthrough operators, as can be seen from the simple exam-
ple bD(z) =

e�z

1�e�z:

8 Time-Flow-Inversion

To get atime-flow inverted system, we perform the two op-
erations described in Sections 6 and 7 simultaneously. That
is, we interprety as the input andu as the output, and replace
t < 0 in (1) by�t > 0. If Σ =

�
A B

C D

�
if flow-invertible, and if

the flow-inverted system is time-invertible, then by combin-
ing (25) and (27) we get the expected formula for the system
operator of thetime-flow-inverted systemΣ , namely�

A B 

(C&D) 

�
=

�
�A �B
0 I

��
I 0
C&D

�
�1

; (29)

which in the compatible case with an invertible operatorD
should become�

A B 

C D 

�
=

�
�A+BD�1C �BD�1

�D�1C D�1

�
: (30)

In the finite-dimensional case a time-flow-invertible sys-
tem is necessarily both time-invertible and flow-invertible



and (30) holds. In particular, the dimensions ofU andY
must be the same. This is not true in the infinite-dimensional
case, as will be shown below.

It is quite simple to find a necessary and sufficient con-
dition for time-flow-invertibility. Let t > 0, and define
(π(0;t)u)(s) = u(s) if s2 (0; t) and(π(0;t)u)(s) = 0 otherwise.
Then (3) can be rewritten in the form

x(t) =At x(0)+Bt
0π(0;t)u;

π(0;t)y= C
t
0x0+D

t
0π(0;t)u; t � 0;

(31)

whereCt
0 = π(0;t)C andDt

0 = π(0;t)Dπ(0;t). Defining

Σt
0 =

�
At Bt

0
Ct

0 Dt
0

�
; (32)

we can write this as�
x(t)

π(0;t)y

�
= Σt

0

�
x(0)

π(0;t)u

�
: (33)

If the system is time-flow-invertible, then it must be possible
to expressx(0) andπ(0;t)u in terms ofx(t) andπ(0;t)y, and
this implies thatΣt

0 must be invertible fromX�L2((0; t);U)
to X�L2((0; t);Y), for all t > 0. It is shown in Staffans and
Weiss (2000) that this necessary condition is also sufficient
for the existence of the time-flow-inverted system. Moreover,
if Σt

0 is invertible for onet > 0, then it is invertible for all
t > 0, and the time-flow-inverted system operator is given by
(29).

As mentioned earlier, in the finite-dimensional case, a sys-
tem cannot be time-flow-invertible unless the dimensions of
U and Y are the same. This is not true in the infinite-
dimensional case as the following counterexample shows:
takeU = f0g, Y = C, letA be the left-shift onX = L2(R+),
and letC= I . This system is conservative, meaning that the

operatorΣt
0 =

h
A

t

C
t
0

i
is unitary fromX to X�L2(0; t) for all

t � 0, hence invertible. The inverse of a unitary operator
coincides with its adjoint, and it can be shown that the time-
flow-inverted system coincides with the dual system in this
case. Thus,A = Ad = A

� is the right-shift onL2(R+),
(B )t0 = (CT

0 )
�, i.e.,Bt

0y= π(0;t)y, and the generators of the
time-flow inverted system areA = A� andB =C�.

The system described above is time-flow-invertible but
neither time-invertible nor flow-invertible. Both the system
itself and the time-flow-inverted system are regular. The
feedthrough operatorD is not invertible, and the right-hand
side of (30) is not even well-defined (but of course, (29) is
still true).

The question whether compatibility or regularity are pre-
served under time-flow-inversion is still wide open.
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Parameter Systems, Birkhäuser-Verlag, Basel, vol. 91 ofInter-
national Series of Numerical Mathematics, pp. 401–416.



Weiss, G. (1991). “Representations of shift-invariant operators on
L2 by H∞ transfer functions: an elementary proof, a generaliza-
tion toLp, and a counterexample forL∞,” Math. Control Signals
Systems, 4, pp. 193–203.

Weiss, G. (1994a). “Transfer functions of regular linear systems.
Part I: characterizations of regularity,”Trans. Amer. Math. Soc.,
342, pp. 827–854.

Weiss, G. (1994b). “Regular linear systems with feedback,”Math.
Control Signals Systems, 7, pp. 23–57.

Weiss, M. and G. Weiss (1997). “Optimal control of stable weakly
regular linear systems,”Math. Control Signals Systems, 10,
pp. 287–330.


