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FIN-20500 Åbo, Finland

http://users.abo.fi/staffans/

June 15, 2012

Abstract

There is an extensive literature on a class of linear time-invariant
dynamical systems called “well-posed scattering passive systems”. Such
a system is generated by an operator S which is called a scattering
passive system node. In the existing literature such a node is typically
introduced by first giving a list of assumptions which imply that S is a
system node, and then adding an inequality which forces this system
node to be scattering passive. Here we proceed in the opposite direc-
tion: we start by requiring that S satisfies the passivity inequality,
and then ask the question of what additional conditions are needed in
order for S to be a system node. The answer is surprisingly simple: A
necessary and sufficient condition for an operator S to be a scattering
passive system node is that S is closed and maximal within the class
of operators that satisfy the passivity inequality. In the absense of
external inputs and outputs this condition is identical to the standard
condition which characterizes the class of operators which generate
contraction semigroups on Hilbert spaces.
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1 Introduction

There is an extensive literature on a class of linear time-invariant dynami-
cal systems called “well-posed scattering passive systems”; see, e.g., [AN96,
MS06, MSW06, Sta01, Sta02a, Sta02b, Sta05, SW12, WST01]. Such a system
has an input space U , a state space X , and an output space Y , all of which
are Hilbert spaces, and it is generated by a closed operator S : [ XU ] →

[
X
Y
]

with dense domain. Classical trajectories of the system on the time interval
R+ := [0,∞) consists of triples of functions (u, x, y), where u ∈ C(R+;U),
x ∈ C1(R+;X ), and y ∈ C(R+;Y) satisfying[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R+. (1.1)

The operator S is usually supposed to be (at least) a system node, i.e., to
satisfy the following conditions:

Definition 1.1. By a system node on a triple of Hilbert spaces (X ,U ,Y)
we mean a linear operator S : [ XU ]→

[
X
Y
]

with the following properties. We
denote dom (A) =

{
x ∈ X

∣∣ [ x0 ] ∈ dom (S)
}

, define A : dom (A) → X by
Ax = PXS [ x0 ] (where PX is the projection of

[
X
Y
]

onto X ), and require the
following conditions to hold:

(i) S is closed as an operator from [ XU ] to
[
X
Y
]
.

(ii) PXS is closed as an operator from [ XU ] to X (with domain dom (S)).

(iii) A is the generator of a C0 semigoup.

(iv) For every u ∈ U there exists a x ∈ X such that [ xu ] ∈ dom (S).

(Definition 4.7.2 in [Sta05] is more complicated, but according to [Sta05,
Lemma 4.7.7] it is equivalent to Definition 1.1 above.)

The assumption that S is a system node implies, among others, that for
a sufficiently large set of initial states x0 ∈ X and input functions u there
exist unique functions x and y satisfying (1.1). A system node S is called
passive if all the classical trajectories of (1.1) satisfy

d

dt
‖x(t)‖2X + ‖y(t)‖2Y ≤ ‖u(t)‖2U , t ∈ R+. (1.2)

By integrating this inequality into

‖x(t)‖2X +

∫ t

0

‖y(s)‖2Y ds ≤ ‖x(0)‖2X +

∫ t

0

‖u(s)‖2U ds, t ∈ R+, (1.3)
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one gets still another equivalent way of characterizing scattering passivity.
This integrated version is valid even for generalized trajectories of (1.1). See
[Sta05, Chapter 11] for details.

It follows from (1.1) and (1.2) (toghether with Definition 1.1) that a
system node S is passive if and only if it satisfies the following condition:

for all [ xu ] ∈ dom (S), 2<〈ẋ, x〉+ ‖y‖2Y ≤ ‖u‖2U , where
[
ẋ
y

]
:= S [ xu ] . (1.4)

In the sequel we shall call operators satisfying condition (1.4) scattering dis-
sipative. Note that if U = Y = {0}, then condition (1.4) reduces to the
standard dissipativity condition on S, and if X = {0}, then the above con-
dition says that S is a (not necessarily everywhere defined) contraction.

Here we ask the following question: Suppose that S : [ XU ] →
[
X
Y
]

is a
linear operator which is scattering dissipative, i.e., it satisfies (1.4). What
additional conditions on S do we need in order to guarantee that S is a system
node? The answer to this question turns out to be surprisingly simple: An
operator S is a scattering passive system node if and only if S is closed
and maximal within the class of all scattering dissipative operators [ XU ] →[
X
Y
]
. This means that every closed maximal scattering dissipative operator

has all the properties of a scattering passive system node (see, for example,
[Sta05, Definition 4.7.2 and Lemma 4.7.3] for partial lists of these properties).
Also note that, in the absense of external inputs and outputs, the above
condition is identical to the standard condition which characterizes the class
of operators which generate contraction semigroups on Hilbert spaces.

2 Scattering Dissipative Operators

Throughout the rest of this article we fix three Hilbert spaces U , X , and
Y . We denote the direct orthogonal sum of X and U by [ XU ]. The identity
operator in X is denoted by 1X . The coordinate maps [ xu ]→ x and [ xu ]→ u
are denoted by

[
1X 0

]
and

[
0 1U

]
, respectively. The map from x ∈ X to

[ Ax
Cx ] ∈ [ XU ] is denoted by [ AC ].

Definition 2.1. Let S : [ XU ]→
[
X
Y
]

be a linear operator with domain D(S).

(i) S is called scattering dissipative if it satisfies (1.4).

(ii) S is called maximal scattering dissipative if, in addition, S has no proper
scattering dissipative extension.
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Lemma 2.2. Let S be scattering dissipative, and define E : [ XU ]→
[
X
Y
]

by

E =

[ 1√
2
1X 0

0 1U

]
−
[

1√
2

[
1X 0

]
S

0

]
, D(E) = D(S). (2.1)

Let [ xu ] ∈ D(S) = D(E), and denote
[
ẋ
y

]
= S [ xu ], x0 =

[
1X 0

]
E [ xu ]. Then

2‖x0‖2X + ‖u‖2U ≥ ‖x‖2X + ‖ẋ‖2X + ‖y‖2Y . (2.2)

Therefore E is injective, and E is closed if and only if R(E) is closed.

Proof. The inequality (2.2) follows from the fact that

2‖x0‖2 = ‖x− ẋ‖2X = ‖x‖2X + ‖ẋ‖2X − 2<〈ẋ, x〉X
≥ ‖x‖2X + ‖ẋ‖2X + ‖y‖2Y − ‖u‖2U ,

where we have used the scattering dissipativity of S. Clearly (2.2) implies
that E has a bounded inverse E−1 defined on R(E). In particular, E is
injective, and E is closed if and only if R(E) is closed.

Let S be scattering dissipative, define E as in (2.1), and define T : [ XU ]→[
X
Y
]

by

T =

[
−1X 0

0 0

]
+

([√
2 1X 0
0 0

]
+

[
0[

0 1Y
]
S

])
E−1, D(T) = R(E).

(2.3)
The easiest way to describe this transformation is to observe that if [ xu ] ∈
D(S) and S [ xu ] =

[
ẋ
y

]
, then

[
1√
2
(x−ẋ)
u

]
∈ D(T) and T

[
1√
2
(x−ẋ)
u

]
=
[

1√
2
(x+ẋ)
y

]
,

and conversely, if [ x0
u ] ∈ D(T) and T [ x0

u ] = [ x1
y ], then

[
1√
2
(x0+x1)
u

]
∈ D(S)

and T
[

1√
2
(x0+x1)
u

]
=
[

1√
2
(x0−x1)
y

]
. In particular, these formulas show that S

can be recovered from T by the formula

F =

[ 1√
2
1X 0

0 1U

]
+

[
1√
2

[
1X 0

]
T

0

]
, D(F ) = D(T),

S =

[
1X 0
0 0

]
+

([
−
√

2 1X 0
0 0

]
+

[
0[

0 1Y
]
T

])
F−1, D(S) = R(F ),

(2.4)
where F = E−1. As in [Sta05] and [SW12], we call T the internal Cayley
transform of S, and S the inverse internal Cayley transform of T. We remark
that if U = Y = {0}, then E = 1√

2
(1X − S), T = (1X + S)(1X − S)−1, and

S = (T − 1X )(T + 1X )−1, i.e., T is the standard Cayley transform of S. If
instead X = {0}, then E = 1U and T = S.

Some of the properties of the internal Cayley transform are listed in the
following theorem.
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Theorem 2.3.

(i) If S is scattering dissipative, then the internal Cayley transfrom T of
S is contractive (on its domain), and the operator 1X +

[
1X 0

]
T
[
1X
0

]
is injective.

(ii) Conversely, if T : [ XU ] →
[
X
Y
]

is contractive and the operator 1X +[
1X 0

]
T
[
1X
0

]
is injective, then the inverse internal Cayley transform

S of T is well-defined through formulas (2.4), S is scattering dissipa-
tive, and T is the internal Cayley transform of S.

(iii) An operator S1 is a proper scattering dissipative extension of S if and
only if the internal Cayley transform T1 is a proper contractive ex-
tension of the Cayley transfrom T of S with the property that 1X +[
1X 0

]
T1

[
1X
0

]
is injective.

(iv) If S and T are related as above and E is defined by (2.1), then the
following conditions are equivalent:

(a) S is closed;

(b) T is closed;

(c) D(T) is closed;

(d) E is closed;

(e) R(E) is closed.

Proof. Proof of (i). Let [ xu ] ∈ dom (S), and let [ x0
u0 ] = E [ xu ]. Then u0 = u,

and [ x0
u0 ] ∈ dom (T). Alternatively, we could have started with an arbitrary

vector [ x0
u0 ] ∈ dom (T) and defined [ xu ] = E−1 [ x0

u0 ], and the relationships
between the vectors x, u, x0, and u0 would still be the same. Let

[
ẋ
y

]
= S [ xu ]

and [ x1
y1 ] = T [ x0

u0 ]. Then

x0 = 1√
2
(x− ẋ), u0 = u, x0 = 1√

2
(x− ẋ), y1 = y,

and

‖x1‖2X + ‖y‖2Y = 1
2
‖x+ ẋ‖2X + ‖y‖2Y = 1

2
‖x− ẋ‖2X + 2<〈ẋ, x〉X + ‖y‖2Y

≤ 1
2
‖x− ẋ‖2X + ‖u‖2U = ‖x0‖2X + ‖u‖2U ,

where we have used the scattering dissipativity of S. Thus T is contractive
(on its domain).

To see that 1X +
[
1X 0

]
T
[
1X
0

]
is injective we take (still with the same

notations) u = 0 and x1+x0 = 0. Since x1+x0 = 1√
2
(x+ẋ)+ 1√

2
(x−ẋ) =

√
2x,

we get x = 0, and hence 1X +
[
1X 0

]
T
[
1X
0

]
is injective.
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Proof of (ii). It is easy to see that the operator F defined in (2.4) is
injective if and only if 1X +

[
1X 0

]
T
[
1X
0

]
is injective. Thus, the second

half of (2.4) defines an operator S on R(F ) whenever 1X +
[
1X 0

]
T
[
1X
0

]
.

A computation analogous to the one above shows that S is scattering dis-
sipative, and it is easy to check that the internal Cayley transform of S is
T.

Proof of (iii). This follows from (i) and (ii).
Proof of (iv). By Lemma 2.2, (d) ⇔ (e). Since T is a contraction and

D(T) = R(E), we have (c) ⇔ (e), and since T(α) is a contraction we have
(b)⇔ (c). Finally, (a)⇔ (b) since the graph of S is mapped onto the graph
of T by the boundedly invertible operator

1√
2
1X 0 − 1√

2
1X 0

0 1U 0 0
1√
2
1X 0 1√

2
1X 0

0 0 0 1Y

 .
Theorem 2.4. If S is maximal scattering dissipative, then the following
conditions are equivalent:

(i) S is closable;

(ii) S is closed.

(iii) The domain of internal Cayley transform T of S is equal to [ XU ].

(iv) D(S) ∩ [ X0 ] is dense in [ X0 ];

Proof. Proof of (i) ⇔ (ii). If S is closable, then it is easy to see that also
the closure of S is a scattering dissipative operator. Thus, (i) ⇔ (ii).

Proof of (ii) ⇔ (iii). Clearly, if (iii) holds, then T is closed, and by
Theorem 2.3, also S is closed. Conversely, suppose that S is closed. Then by
Theorem 2.3, D(T) = D(E) is closed. If D(T) 6= [ XU ], then we can extend T
to a contraction T1 defined on all of [ XU ] by taking T [ x0

u ] = 0 for all [ x0
u ] ∈

D(T)⊥. Since 1X +
[
1X 0

]
T
[
1X
0

]
is injective, also 1X +

[
1X 0

]
T1

[
1X
0

]
is

injective. By Theorem 2.3, the inverse internal Cayley transform S1 of T1

is then a proper scattering dissipative extension of S, and consequently, S
cannot be maximal scattering dissipative. Thus (ii) ⇔ (iii).

Proof of (iii) ⇒ (iv). Suppose that D(T) = [ XU ]. If D(S) ∩ [ X0 ] is not
dense in [ X0 ], then it follows from (2.4) that R(1X + A) is not dense in X,
where A =

[
1X 0

]
T
[
1X
0

]
. Equivalently, 1X + A∗ is not injective. Thus,
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there exists some nonzero x0 ∈ X such that x0 +A∗x0 = 0, i.e., A∗x0 = −x0.
Therefore

0 = ‖x0‖2X − ‖A∗x0‖2X = 〈x0, 1X −AA∗)x0〉X = ‖(1X −AA∗)1/2x0‖2X .

Thus (1X −AA∗)1/2x0 = 0, and hence also (1X −AA∗)x0 = 0, i.e., AA∗x0 =
x0. Here A∗x0 = x0, which gives Ax0 = −x0, i.e., x0 + Ax0 = 0. But this
contradicts the fact that, by Theorem 2.3, 1X + A is injective. This shows
that (iii) ⇒ (iv).

Proof of (iv) ⇒ (iii). If D(S) ∩ [ X0 ] is dense in [ X0 ], then it follows from
(2.4) that R(1X + A) is dense in X, where A =

[
1X 0

]
T
[
1X
0

]
. Since A

is a contraction this implies that 1X + A is injective, which can be seen as
follows (this argument is reproduced from [Phi59, p. 200]). Suppose that
x0 + Ax0 = 0, i.e., Ax0 = −x0, let x1 ∈ D(A), and set x2 = x1 + Ax1. Then
for all α ∈ C,

‖A(x1 − αx0)‖2X ≤ ‖x1 − αx0‖2X ,

which reduces to

α〈x0, x2〉X + α〈x2, x0〉X ≤ ‖x1‖2X − ‖Ax1‖2X .

Since α is arbitrary, it follows that 〈x0, x2〉X = 0 and by assumption this
must hold for a dense set of x2. Consequently, x0 = 0, and this proves that
1X + A is injective.

If T is not everywhere defined, then T can be properly extended to an
everywhere defined contraction T1. The main operator A1 = PXT1

[
1X
0

]
of

T is an extension of A, and hence R(1X + A1) is dense in X . By the same
argument that we gave above, 1X + A1 is injective. Let S1 be the inverse
internal Cayley transform of T1. Then S1 is a proper scattering dissipative
extension of S, which contradicts the assumption that S is maximal scat-
tering dissipative. Thus, the assumption that T is not everywhere defined
resulted in a contradiction, and we conclude that (iv) ⇒ (iii).

An example of a maximal dissipative operator (with U = Y = {0}) which
does not satisfy the equivalent conditions in Theorem 2.4 is given in [Phi59,
p. 201].

Theorem 2.5. A linear operator S : [ XU ] →
[
X
Y
]

is a scattering passive
system node if and only if it is closed and maximal scattering dissipative.

We remark that according to Theorem 2.4, this result remains true if we
replace the requirement that S is closed by the requirement that the domain
of the main operator A of S (see Definition 1.1) is dense in X .
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Proof of Theorem 2.5. If S is a scattering passive system node, then by
[Sta05, Theorem 11.1.5], S is closed and scattering dissipative, and the inter-
nal Cayley transform T of S is a contraction with domain D(T) = [ XU ]. Thus
T has no proper (operator) extension, and by Theorem 2.3, S does not have
any proper scattering dissipative extension. Thus, S is maximal scattering
dissipative.

Conversely, suppose that S is closed and maximal scattering dissipative.
Then by Theorem 2.4, the internal Cayley transform T of S is a contraction
with domain D(T) = [ XU ]. By [SW12, Proposition 4.3], S is a scattering
passive system node.

3 En Example

Theorem 2.5 can be used to give a very short proof of the following result
(which is essentially a particular case of the main result of [SW10]).

Proposition 3.1. Let U , X , and Y be Hilbert spaces, let S be a linear oper-
ator [ XU ]→

[
X
Y
]
, and let P a be positive self-adjoint and boundedly invertible

operator in X . Define

SP =

[
P 0
0 1Y

]
S

[
P 0
0 1U

]
, D

(
SP

)
=

[
P−1 0

0 1U

]
D(S).

Then S is a scattering passive system node if and only if SP is a scattering
passive system node.

Proof. Clearly, it suffices to prove this proposition in one direction, since the
other direction then follows if we interchange S and SP and also replace P
by P−1.

Suppose that S is scattering passive, i.e., that S is closed and maximal
scattering dissipative. Let [ xP

u ] ∈ dom (SP ), and denote
[
ẋP
y

]
:= SP [ xP

u ].
Let x = PxP and ẋ = P−1ẋP . Then [ xu ] ∈ dom (S), and

[
ẋ
y

]
= S [ xu ].

Consequently,

0 ≤ 2<〈ẋ, x〉+ ‖y‖2Y − ‖u‖2U = 2<〈P−1ẋP , PxP 〉+ ‖y‖2Y − ‖u‖2U
= 2<〈ẋP , xP 〉+ ‖y‖2Y − ‖u‖2U .

This shows that SP is scattering dissipative. It is also easy to see that SP

is closed (since S is closed) and maximal scattering dissipative (since S is
maximal scattering dissipative). Thus, by Theorem 2.5, SP is a scattering
passive system node.
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