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Abstract

We discuss the connection between Lax{Phillips scattering theory and the theory of well-
posed linear systems, and show that the latter theory is a natural extension of the former.
As a consequence of this, there is a close connection between the Lax{Phillips generator and
the generators of the corresponding well-posed linear system. All the essential information
about these two systems is contained in the system operator S = [A B

N ], where A is the
generator of the (central) semigroup, B is the control operator, and N is the combined
observation/feedthrough operator. If the system is compatible in the sense of Helton or
regular in the sense of Weiss, then this system operator can be written in the more familiar
form S = [A B

C D ], where C is the observation operator and D is the (generalized) feedthrough
operator. We show that S is closed and densely de�ned. In the reexive case the adjoint of
S is the system operator of the dual system. We give formulas for the Lax{Phillips generator
and resolvent in terms of the system operator. By applying the Hille{Yoshida theorem to the
Lax{Phillips semigroup we get necessary and su�cient conditions for the Lp-admissibility or
joint Lp-admissibility of a control operator B and an observation operator C.

1 Introduction

Many in�nite-dimensional systems can be described by the equations

x0(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t); t � 0;

x(0) = x0;

(1.1)

on a triple of Banach spaces, namely, the input space U , the state space X, and the output

space Y . We have u(t) 2 U , x(t) 2 X and y(t) 2 Y . The operators A, B, and C are usually

unbounded. It is often convenient to use the \integral" representation of the system, which

consists of the four operators from the initial state x0 and the input function u to the �nal state

x(t) and the output function y:

x(t) = Atx0 +B
t
0
u;

y = Cx0 +D0u:
(1.2)

Here, At is the semigroup generated by A (which maps the initial state x0 into the �nal state

x(t)), Bt
0
is the map from the input u (restricted to the interval (0; t)) to the �nal state x(t),
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C is the map from the initial state x0 to the output y, and D0 is the input-output map from u

(restricted to (0;1)) to y.

The well-posedness assumption is that (1.2) behaves well in an Lp-setting, 1 � p < 1, i.e.,

x(t) 2 X and y 2 L
p
loc
(R+;Y ) depend continuously on x0 2 X and on u 2 L

p
loc
(R+;U). If this

is the case, we call the operators
�
A B
C D

�
a well-posed linear system, where B = limt!1B

t
0
��t,

D = limt!1 � tD0�
�t, and (� tu)(s) = u(s+ t), �1 < s; t <1. See Section 2 for details.

The classical Lax{Phillips model was developed by Lax and Phillips (1967) (conservative

systems) and Lax and Phillips (1973) (nonconservative systems) to provide a mathematical

description of a scattering process where an incoming wave hits an obstacle and is scattered into

an outgoing wave. An extension to well-posed unstable system can be obtained through a simple

rescaling, as described by Helton (1976). In this extended formulation the Lax{Phillips model is

a semigroup with a particular structure: it acts as an exponentially weighted incoming shift on

the incoming subspace, as an exponentially weighted outgoing shift on the outgoing subspace,

and the central part of the semigroup describes \a generalized scattering process". As we shall

see in Section 3, this central part can be taken to be an arbitrary well-posed linear system. Thus

there is a one-to-one correspondence between the class of all well-posed linear systems and all

extended Lax{Phillips models. This note is devoted to a study of this correspondence.

We begin by presenting the most basic results about a Lp-well-posed linear system (Sec-

tion 2) and the corresponding Lax{Phillips model (Section 3). We proceed in Section 4 to show

that there is a close connection between the Lax{Phillips generator and the generators of the

corresponding well-posed linear system. All the essential information about these two systems

is contained in the system operator S =
�
A B
N

�
where A is the generator of the (central) semi-

group, B is the control operator, and N is the combined observation/feedthrough operator. If

the system is compatible in the sense of Helton (1976) or regular in the sense of Weiss (1994a),

then this system operator can be written in the more familiar form S =
�
A B
C D

�
, where C is the

observation operator and D is the (generalized) feedthrough operator. We show that S is closed

and densely de�ned from X � U to X � Y . In the reexive case the adjoint of S is the system

operator of the dual system. We give formulas for the Lax{Phillips generator and resolvent in

terms of the system operator. Finally, in the last section we apply the Hille{Yoshida theorem

to the Lax{Phillips semigroup and get necessary and su�cient conditions for the admissibility

or joint admissibility of a control operator B and an observation operator C.

2 Well-posed linear systems

As already outlined in Section 1, it is possible to de�ne a well-posed linear system 	 =
�
A B
C D

�
without any reference to the system of equations (1.1). For this, we have to introduce some

spaces and some simple operators. We denote R+ = [0;1), R� = (�1; 0),

(� tu)(s) = u(t+ s); �1 < s; t <1;

(�Ju)(s) =

(
u(s); s 2 J;

0; s =2 J;
for all J � R;

�+u = �R+ ; ��u = �R� ;

� t
+
= �+�

t; � t
�
= � t��:

The space L
p
c;loc(R;U) consists of all the functions u : R ! U that are locally in Lp and

whose support is bounded to the left. We interpret L
p
loc
(R+;U) as the subspace of functions

in L
p
c;loc(R;U) which vanish on R�. A sequence of functions un converges in L

p
c;loc(R;U) to a

1360

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



function u if the common support of all the functions un is bounded to the left and un converges

to u in the Lp sense on every bounded time interval. The continuity of B, C and D in the

following de�nition is with respect to this convergence.

2.1. De�nition. Let U , X, and Y be Banach spaces, and let 1 � p < 1. An Lp-well-posed

linear system 	 on (Y;X;U) is a quadruple 	 =
�
A B

C D

�
of continuous linear operators satisfying

the following conditions:

(i) t 7! A
t is a strongly continuous semigroup of operators on X;

(ii) B : L
p
c;loc(R;U)! X satis�es AtBu = B� t

�
u, for all u 2 L

p
c;loc(R;U) and all t 2 R+;

(iii) C : X ! L
p
c;loc(R;Y ) satis�es CAtx = � t

+
Cx, for all x 2 X and all t 2 R+;

(iv) D : L
p
c;loc(R;U) ! L

p
c;loc(R;Y ) satis�es � tDu = D� tu, ��D�+u = 0, and �+D��u =

CBu, for all u 2 L
p
c;loc(R;U) and all t 2 R.

The di�erent components of 	 are called as follows: U is the input space, X is the state space,

Y is the output space, A is the semigroup, B is the input map, C is the output map, and D is

the input-output map. The state x(t) 2 X at time t 2 R+ and the output y 2 L
p
loc
(R+;Y ) of

	 with initial time zero, initial state x0 2 X and input function u 2 L
p
loc
(R+;U) are given by

(1.2) with Bt
0
= B� t�(0;t)u and D0u = D�+u.

For more details, explanations and examples we refer the reader to Arov and Nudelman

(1996), Curtain and Weiss (1989), Salamon (1987, 1989), Sta�ans (1997, 1998a,c,b, 1999a,b),

Weiss (1989a,b,c, 1991, 1994a,b), Weiss and Weiss (1997) (and the references therein). Most of

the available literature deals with Hilbert spaces and p = 2.

Before introducing the operators B and C in (1.1), we need two auxiliary spaces X1 and

X�1. Choose any  in the resolvent set of the generator A of A. We let X1 be the domain

of A, with the norm kxkX1
= k(I � A)xkX , and X�1 is the completion of X with the norm

kxkX
�1

= k(I�A)�1xkX . The semigroupA can be extended to a strongly continuous semigroup

on X�1, which we denote by the same symbol. We denote the space of bounded linear operators

from U to Y by L(U ;Y ), and let L
p
!(R

+;U) represent the space of functions u : R+ ! U for

which t 7! e�!tu(t) belongs to Lp(R+;U).

2.2. Proposition. Let 	 =
�
A B
C D

�
be a Lp-well-posed linear system on (Y;X;U). Denote the

growth rate of A by !A.

(i) 	 =
�
A B
C D

�
has a unique control operator B 2 L(U ;X�1), determined by the fact that

the input term B
t
0
u in (1.2) is given by the standard variation of constants formula (the

function inside the integral takes it values in X�1, but the �nal result belongs to X)

B
t
0
= B� t�(0;t)u =

Z t

0

A
t�sBu(s) ds; 8t 2 R+; 8u 2 L

p
loc
(R+;U):

(ii) 	 has a unique observation operator C 2 L(X1;Y ), determined by the fact that the output

term Cx0 in (1.2) is given by (for almost all t 2 R+)

(Cx0)(t) = CAtx0; 8x0 2 X1:
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(iii) 	 has a unique analytic L(U ;Y )-valued transfer function bD de�ned on <z > !A, deter-

mined by the fact that the Laplace transform dD0u of the input-output term D0u in (1.2)

is given by dD0u = bD(z)û(z); 8<z > !A; 8u 2 Lp!A(R
+;U);

where û is the Laplace transform of u.

The existence of a control operator B is proved in Weiss (1989a), the existence of an obser-

vation operator is proved in Weiss (1989b), and the existence of a transfer function is proved

in Curtain and Weiss (1989) and Weiss (1991). (See also Salamon (1989) and (Weiss, 1994a,

Remark 2.4).) The control operator B is said to be bounded if the range of B lies in X, in which

case B 2 L(U ;X). The observation operator C is said to be bounded if it is continuous with

respect to the norm of X, i.e., if it can be extended to an operator in L(X;Y ).

To get a time-domain representation for the output y of an Lp-well-posed linear system

similar to the second equation in (1.1) we introduce the subspace V of X � U de�ne by

V =
�
[ xu ] 2 X � U

�� Ax+Bu 2 X
	
: (2.1)

Also this space is a Banach space with the norm

j[ xu ]jV =
�
jxj2X + juj2U + jAx+Buj2X

	
1=2
:

If X and U are Hilbert spaces, then so is V .

2.3. Proposition. Let 	 =
�
A B
C D

�
be a Lp-well-posed linear system on (Y;X;U). Denote the

growth rate of A by !A. For each [ xu ] 2 V we de�ne N 2 L(V ;Y ) by

N

�
x

u

�
= C(�I �A)�1

�
�x� (Ax+Bu)

�
+ bD(�)u

= C
�
x� (�I �A)�1Bu

�
+ bD(�)u; (2.2)

where � 2 C with <� > !A can be chosen in an arbitrary way (i.e., the the result is independent

of � as long as <� > !A). We call N the combined observation/feedthrough operator of 	.

(i) The output y = Cx0 +D0u of 	 de�ned in (1.2) is given by

y(t) = N

�
x(t)

u(t)

�
= N

�
A
tx0 +B

t
0
u

u(t)

�
; t � 0; (2.3)

for all x0 2 X and all u 2 W
1;p
loc

(R+;U) satisfying
� x0
u(0)

�
2 V . In particular,

h
x(t)

u(t)

i
2 V

for all t � 0.

(ii) The transfer function bD of 	 is given by

bD(z) = N

�
(zI �A)�1B

I

�
; <z > !A: (2.4)

See Arov and Nudelman (1996), Curtain and Weiss (1989), Salamon (1987, 1989), and Weiss

(1989a,b) (or Sta�ans (1999b)) for the proof.
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If either B or C is bounded then it is possible to split N into

N

�
x

u

�
= Cx+Du; (2.5)

where D = bD(�) � C(�I � A)�1B belongs to L(U ;Y ) (and does not depend on �). More

generally, this can be done whenever the system is compatible in the sense of Helton (1976).

To describe this property we introduce one more subspace Z of X. We choose any  in the

resolvent set of A, and de�ne

Z =
�
z 2 X

�� z = (I �A)�1(x+Bu) for some x 2 X and u 2 U
	
: (2.6)

Then Z is a Banach space with the norm

jzjZ = inf
(I�A)�1(x+Bu)=z

�
jxj2X + juj2U

�
1=2
;

satisfying X1 � Z � X, and it is a Hilbert space if both X and U are Hilbert spaces.

2.4. De�nition. The Lp-well-posed linear system 	 =
�
A B
C D

�
is compatible if its observation

operator can be extended to an operator in L(Z;Y ).

This extension need not be unique since X1 need not be dense in Z. This means that D need

not be unique either. As Helton (1976) comments, most physically motivated systems seem to

be compatible. For example all systems which are (weakly) regular in the sense of Weiss (1994a)

and Weiss and Weiss (1997) are compatible, and so are all systems with a �nite-dimensional

input space (Sta�ans, 1999b). A reasonably complete theory for compatible systems is presented

in Sta�ans (1999b).

3 The Lax{Phillips Scattering Model

Instead of using a Lp-well-posed linear system to formalize the idea of having an output and

state at time t > 0 which depend continuously on the input and the initial state we can proceed

in a di�erent way which leads to a generalized Lax{Phillips scattering model. This is a semigroup

TTT de�ned on Y�X�U = L
p
!(R

�;Y )�X�L
p
!(R

+;U) with certain additional properties. (Here

L
p
!(R

�;Y ) consists of all the functions y : R� ! Y for which t 7! e�!ty(t) belongs to Lp(R�;Y )

and similarly for L
p
!(R

+;U).) We call U the incoming subspace, X the central state space, and Y

the outgoing subspace. In the classical cases treated in Lax and Phillips (1967, 1973) ! is taken

to be zero and TTT is required to be unitary (the conservative case) or a contraction semigroup

(the nonconservative case).

We claim that there is a one-to-one correspondence between the class of all well-posed linear

systems and the class of all Lax{Phillips models. The parameter ! 2 R can be chosen in an

arbitrary way (the best choice depends on the particular application).

Let 	 =
�
A B
C D

�
be a given Lp-well-posed linear system. To each such system we construct a

Lax{Phillips model TTT on Y �X �U as follows. The initial data consists of the initial incoming

state u0 2 U representing the future values of the input, the initial central state x0 2 X is

identical to the initial state of 	, and the initial outgoing state y0 2 Y represents the past values

of the output. At time t � 0 the incoming state ut is the left-shifted input � t
+
u0 (the unused

part of the input). The central state xt at time t is equal to the state x(t) = Atx0 +B
t
0
u of 	

at time t with initial time zero, initial state x0, and input u0 (it depends only on x0 and on the
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discarded part �(0;t)u of u). The outgoing state yt at time t consists of two parts: it is the sum

of � t
�
y0 (the left-shifted original outgoing state) and � t�(0;t)(Cx0 +D0u0) (the restriction of the

output Cx0 + D0u0 of 	 to the interval (0; t) shifted to the left by � t so that the shifted and

truncated output is supported on (�t; 0)). Formalizing this idea we get the following theorem,

where we use the notations

B
t
0
= B� t�(0;t); C

t
0
= �(0;t)C; D

t
0
= �(0;t)D�(0;t):

3.1. Theorem. Let 	 =
�
A B
C D

�
be a Lp-well-posed linear system on (Y;X;U) with 1 � p <1.

Let ! 2 R, Y = L
p
!(R

�;Y ) and U = L
p
!(R

+;U). For each (y0; x0; u0) 2 Y �X � U and t � 0,

de�ne

TTT
t

2
4y0x0
u0

3
5 =

2
4� t� � tCt

0
� tDt

0

0 A
t

B
t
0

0 0 � t
+

3
5
2
4y0x0
u0

3
5 : (3.1)

Then TTT is a strongly continuous semigroup on Y �X � U .

Here the strong continuity of TTT is obvious, and so is the property TTT(0) = I. The proof of

the semigroup property TTT(s+ t) = TTT(s)TTT(t) for s, t � 0 is a short algebraic computation based

on De�nition 2.1 (see Sta�ans (1999b) for details).

The semigroup TTT in Theorem 3.1 has an additional `causality' property, which in the Hilbert

space case where p = 2 and U , X, and Y are Hilbert spaces can be described as follows: for all

t � 0, the images of the central and incoming states under TTTt are orthogonal to the image of

the outgoing state, and the null space of TTTt projected onto the central and outgoing spaces is

orthogonal to the null space of TTTt projected onto the incoming space. In the general case these

properties can easiest be characterized in the following way.

3.2. De�nition. A Lax{Phillips model of type L
p
! is a semigroup on Y�X�U = L

p
!(R

�;Y )�

X � L
p
!(R

+;U) with the structure

TTT
t =

2
4� t� CCC

t
DDD
t

0 AAA
t

BBB
t

0 0 � t
+

3
5 ; (3.2)

where AAA is strongly continuous and BBB
t, CCC t, and DDD

t satisfy the causality conditions

CCC
t = �(�t;0)CCC

t; DDD
t = �(�t;0)DDD

t;

DDD
t = DDD

t�(0;t); BBB
t = BBB

t�(0;t):
(3.3)

This set of conditions is a rewritten version of conditions (1.2) in Lax and Phillips (1973).

Helton (1976) uses the name inertness for this additional causality property.

3.3. Corollary. The semigroup TTT constructed in Theorem 3.1 is a Lax{Phillips model of type

L
p
!.

This is immediate from Theorem 3.1 and De�nition 3.2. We call the semigroup TTT in Theo-

rem 3.1 the Lax{Phillips model (of type L
p
!) induced by 	.

It is only slightly more di�cult to prove a converse to Corollary 3.3: To every Lax{Phillips

model there corresponds a well-posed linear system which induces this Lax{Phillips model:
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3.4. Theorem. Let TTT be a Lax{Phillips model of type L
p
!. With the notations of De�nition 3.2,

let

A = AAA ; B = lim
s!1

BBB
s��s;

C = lim
t!1

��tCCC t; D = lim
t!1
s!1

��sDDD s+t��t:
(3.4)

Then 	 =
�
A B
C D

�
is an Lp-well-posed linear system on (Y;X;U), and TTT is the Lax{Phillips model

induced by this system.

The proof of Theorem 3.4 is another algebraic computation given in Sta�ans (1999b).

3.5. Corollary. For each ! 2 R and 1 � p <1, there is a one-to-one correspondence between

the class of all Lp-well-posed linear systems and all Lax{Phillips models of type L
p
!: every Lp-

well-posed linear system 	 induces a unique Lax{Phillips model TTT of type L
p
!, and conversely,

every Lax{Phillips model TTT of type L
p
! induces a unique Lp-well-posed linear system 	.

This is a union of Corollary 3.3 and Theorem 3.4. Parts of this corollary (where either the

input operator or output operator vanishes) were proved by Grabowski and Callier (1996) and

Engel (1997). It is also (implicitly) contained in Arov and Nudelman (1996).

There are a number of important ingredients in the Lax{Phillips scattering theory, such as

the backward and forward wave operators, the scattering operator, and the scattering matrix.

All of these have natural analogies in the theory of well-posed linear systems. In the discussion

below we choose ! > !A, where !A is the growth rate of A.

The backward wave operator W� (denoted by W2 in (Lax and Phillips, 1973, Theorem 1.2))

is the limit of the last column of TTT��t as t ! 1. It maps L
p
!(R;U) into L

p
!(R

�;Y ) � X �

L
p
!(R

+;U), and it is given by (cf. Theorem 3.4)

W�u =

2
4��DB
�+

3
5u: (3.5)

Thus, it keeps the future input �+u intact, and maps the past input ��u into the past output

��Du and the present central state Bu.

The forward wave operator W+ (denoted by W1 in (Lax and Phillips, 1973, Theorem 1.2)) is

the limit of the �rst row of ��tTTT as t!1. It maps L
p
!(R

�;Y )�X�L
p
!(R

+;U) into L
p
!(R;Y ),

and it is given by (cf. Theorem 3.4)

W+

2
4 yx0
u

3
5 =

�
�� C D�+

� 24 yx0
u

3
5 : (3.6)

Thus, it keeps the past output ��y intact, and maps the present central state x0 and the future

input �+u into the future output Cx0 +D�+u.

The scattering operator in Lax{Phillips theory is the product W+W�, and it is given by

W+W� =
�
�� C D�+

� 24��DB
�+

3
5 = ��D+ CB+ �+D = D: (3.7)

Thus, the scattering operator is nothing but the (bilaterally shift-invariant) input-output map

D of the corresponding well-posed linear system.
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To get the scattering matrix of the Lax{Phillips system we apply the scattering operator D

to an input of the form u(t) = eztu0, where z 2 C has a su�ciently large real part and u0 2 U

is �xed; see (Lax and Phillips, 1973, pp. 187{188). Because of the shift-invariance of D, the

resulting output is of the type y(t) = ezty0 for some y0 2 Y . The scattering matrix (evaluated

at z) is de�ned to be the operator that maps u0 2 U into y0 2 Y . It follows from (Weiss, 1991,

p. 194) that the scattering matrix of a Lax{Phillips system is equal to the transfer function bD
of the corresponding well-posed linear system.

4 The System Operator

All the necessary information about a well-posed linear system 	 =
�
A B
C D

�
is contained in the

system operator S =
�
A B
N

�
which in the compatible case can be written in the form S =

�
A B
C D

�
:

This is an unbounded operator from X �U to X � Y , whose domain is the space V introduced

in Section 2. It has the following properties.

4.1. Proposition. The system operator S =
�
A B
N

�
: X � U � V ! X � Y is closed and

densely de�ned. In the reexive case where 1 < p < 1 and U , X, and Y are reexive Banach

spaces the system operator of the dual system is equal to the adjoint S� of S.

We refer the reader to Sta�ans (1999b) for the proof of this result. The de�nition of the

dual of a well-posed linear system can be found in, e.g., Sta�ans (1997, 1999b) and in Weiss and

Weiss (1997).

The generator of the Lax{Phillips model can be characterized as follows:

4.2. Theorem. Let 1 � p <1 and ! 2 R, let 	 =
�
A B
C D

�
be an Lp-well-posed linear system on

(Y;X;U) with semigroup generator A, control operator B, and combined observation/feedthrough

operator N , and let T be the generator of the corresponding Lax{Phillips model TTT of type L
p
!

de�ned in De�nition 3.2.

(i) The domain of T consists of all the vectors
h
y0
x0
u0

i
2W

1;p
! (R�;Y )�X�W

1;p
! (R+;U) which

satisfy Ax0 +Bu0(0) 2 X and y0(0) = N
� x0
u0(0)

�
, and on its domain T is given by

T

2
4y0x0
u0

3
5 =

2
4 y0

0

Ax0 +Bu0(0)

u0
0

3
5 :

Thus, the following two conditions are equivalent:

(a)
h
y0
x0
u0

i
2 D(T ) and

h
y
x
u

i
= T

h
y0
x0
u0

i
;

(b) y0 2W
1;p
! (R�;Y ), x0 2 X, x 2 X, u0 2W

1;p
! (R+;U), and�

x

y0(0)

�
=

�
A B

N

� �
x0

u0(0)

�
;

�
y

u

�
=

�
y0
0

u0
0

�
:

(ii) The spectrum of T contains the vertical line f<� = !g, and

�(T ) \ f<� > !g = �(A) \ f<� > !g:

For each � 2 �(T ) \ f<� > !g and
h
y
x
u

i
2 L

p
!(R

�;Y ) � X � L
p
!(R

+;U) the following

conditions are equivalent:
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(a)
h
y0
x0
u0

i
= (�I � T )�1

h
y
x
u

i
;

(b)

8>>>>>>><
>>>>>>>:

�
x0
y0(0)

�
=

�
(�I �A)�1 (�I �A)�1B

C(�I �A)�1 bD(�)
� �

x

û(�)

�
;

y0(t) = e�ty0(0) +

Z
0

t

e�(t�s)y(s) ds; t < 0;

u0(t) =

Z
1

t

e�(t�s)u(s) ds; t � 0:

Theorem 4.2 does not say anything about the part of the spectrum of T which lies in the

half plane f<� < !g. A result similar to the one above is true for this part of the spectrum if

	 is time-reversible. We shall return to this question elsewhere.

5 Admissibility

According to Corollary 3.5, there is a one-to-one correspondence between the class of all Lp-well-

posed linear systems and all Lax{Phillips scattering models of type Lp. This means that we can

reduce the study of the generators of a well-posed linear system to the study of the generators

the Lax{Phillips semigroup. This way we can obtain necessary and su�cient conditions for the

admissibility or joint admissibility of a control operator B and an observation operator C. These

notions are de�ned as follows.

As always we let U , X, and Y be Banach spaces and let 1 � p <1. We let A be a strongly

continuous semigroup on the Banach space X with generator A, and de�ne the spaces X1 and

X�1 as in Section 2. This time we specify, in addition, some ! 2 R, and suppose that A is

!-bounded, i.e., supt>0
e�!tkAtk <1.

An operator B 2 L(U ;X�1) is an Lp-admissible control operator for A if for some t > 0

(hence for all t > 0) the operator

B
t
0
u =

Z t

0

A
t�sBu(s) ds; u 2 Lp((0; t);U); (5.1)

maps Lp((0; t);U) into X (instead of X�1). (This operator is then bounded with values in X).

We call B !-bounded if the resulting input map

Bu = lim
v!�1

Z
0

v

A
�sBu(s) ds; u 2 Lp!(R

�;U) (5.2)

is !-bounded, i.e., it de�nes a bounded linear operator from L
p
!(R

�;U) to X.

The operator C 2 L(X1;Y ) is an L
p-admissible observation operator for A if the map

(Cx)(t) = CAtx; x 2 X1; t � 0; (5.3)

can be extended to a bounded linear operator X ! L
p
loc
(R+;Y ), and it is !-bounded if the

resulting output map C is !-bounded, i.e., it maps X into L
p
!(R

+;Y ).

The operators B 2 L(U ;X�1) and C 2 L(X1;Y ) are jointly Lp-admissible for A if B is an

Lp-admissible control operator for A, C is an Lp-admissible observation operator for A, and the

operator D : W
1;p
c;loc(R;U)! Cc(R;Y ) de�ned by

(Du)(t) = C
�
B� tu� (�I �A)�1Bu(t)

�
+D�u(t); t 2 R; (5.4)
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can be extended to a continuous operator L
p
c;loc(R;U) ! L

p
c;loc(R;Y ). Here � 2 �(A) and

D� 2 L(U ;Y ) can be chosen in an arbitrary way. By introducing the combined observa-

tion/feedthrough operator

N

�
x

u

�
= C

�
x� (�I �A)�1Bu

�
+D�u: (5.5)

we can simplify the formula for (Du)(t) into

(Du)(t) = N

�
B� tu

u(t)

�
; t 2 R: (5.6)

We call B and C jointly !-bounded if both B and C are !-bounded and, in addition, the operator

D can be extended to a bounded linear operator from L
p
!(R;U) to L

p
!(R;Y ). If (and only if)

B and C are jointly admissible, then the four operator A, B, C, and D can be combined into a

Lp-well-posed linear system
�
A B

C D

�
with system operator

�
A B
N

�
. (Here D is determined by A,

B, and C only modulo a constant static term.)

5.1. Theorem. Let ! 2 R, 1 � p < 1, and let A be the generator of an !-bounded C0

semigroup on X.

(i) B 2 L(U ;X�1) is an Lp-admissible !-bounded control operator for A if and only if there

is a constant M > 0 such that, for all u 2 L
p
!(R

+;U), � > !, and n = 0; 1; 2; : : : ,��� @n
@�n

(�I �A)�1Bû(�)
���
X
�

Mn!

(�� !)n+1
kukLp!(R+;U)

: (5.7)

(ii) C 2 L(X1;Y ) is an Lp-admissible !-bounded observation operator for A if and only if

there is a constant M > 0 such that, for all x0 2 X, � > !, and n = 0; 1; 2; : : : ,�Z
1

0

���� @n@�n
e�(��!)tC(�I �A)�1x0

����
p

Y

dt

�
1=p

�
Mn!

(�� !)n+1
jx0jX : (5.8)

(iii) The operators B 2 L(U ;X�1) and C 2 L(X1;U) are jointly Lp admissible and !-bounded

i� B is an Lp-admissible !-bounded control operator for A (cf. (i)), C is an admissible

!-bounded observation operator for A (cf. (ii)) and there is a constant M > 0 such that,

for all u 2 L
p
!(R

+;U), � > !, and n = 0; 1; 2; : : : ,�Z
1

0

���� @n@�n
e�(��!)t bD(�)û(�)����

p

Y

dt

�
1=p

�
Mn!

(�� !)n+1
kukLp!(R+;U)

; (5.9)

where

bD(�) = (�� �)C(�I �A)�1(�I �A)�1B +D�; (5.10)

here � with <� > ! and D� 2 L(U ;Y ) can be chosen in an arbitrary manner.

Part (ii) of this theorem was proved by Grabowski and Callier (1996) in the exponentially

stable Hilbert space case (i.e., A is exponentially stable, ! = 0, p = 2, and U , X, and Y are

Hilbert spaces), and the corresponding case of part (i) can be derived from (ii) by duality. The

general case of parts (i) and (ii) was proved by Engel (1997). Part (iii) appears to be new. A

proof of the full theorem is given in Sta�ans (1999b).

Condition (5.9) does not depend on the particular realization
�
A B

C D

�
of D, i.e., it does not

contain any direct references to A, B, and C, but only to bD which is completely determined by

D. This indicates that the following conjecture may be true:
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5.2. Conjecture. An analytic L(U ;Y )-valued function bD on <� > ! is the transfer function

of an !-bounded Lp-well-posed linear system if and only if there is a constant M > 0 such that

(5.9) holds for all u 2 L
p
!(R

+;U), � > !, and n = 0; 1; 2; : : : .

Clearly, by Theorem 5.1, condition (5.9) is necessary for bD to be a Lp-well-posed !-bounded

transfer function, and we conjecture that it is also su�cient. This would give us a necessary

and su�cient condition for an H1 function to be an Lp-multiplier.
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