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The Infinite-Dimensional Continuous Time
Kalman–Yakubovich–Popov Inequality
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Abstract. We study the set MΣ of all generalized positive self-adjoint so-
lutions (that may be unbounded and have an unbounded inverse) of the
KYP (Kalman–Yakubovich–Popov) inequality for a infinite-dimensional lin-
ear time-invariant system Σ in continuous time with scattering supply rate.
It is shown that if MΣ is nonempty, then the transfer function of Σ coincides
with a Schur class function in some right half-plane. For a minimal system Σ
the converse is also true. In this case the set of all H ∈ MΣ with the property
that the system is still minimal when the original norm in the state space
is replaced by the norm induced by H is shown to have a minimal and a
maximal solution, which correspond to the available storage and the required
supply, respectively. The notions of strong H-stability, H-∗-stability and H-
bistability are introduced and discussed. We show by an example that the
various versions of H-stability depend crucially on the particular choice of
H ∈ MΣ. In this example, depending on the choice of the original realization,
some or all H ∈ MΣ will be unbounded and/or have an unbounded inverse.
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1. Introduction

Linear finite-dimensional time-invariant systems in continuous time are typically
modeled by the equations

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t), t ≥ s,

x(s) = xs,

(1)

on a triple of finite-dimensional vector spaces, namely, the input space U , the state
space X , and the output space Y. We have u(t) ∈ U , x(t) ∈ X and y(t) ∈ Y. We
are interested in the case where, in addition to the dynamics described by (1), the
components of the system satisfy an energy inequality. In this paper we shall use
the scattering supply rate

j(u, y) = ‖u‖2 − ‖y‖2 =
〈
[ uy ] ,

[
1U 0
0 −1Y

]
[ uy ]

〉
(2)

and the storage (or Lyapunov) function

EH(x) = 〈x,Hx〉, (3)

where H > 0 (i.e., EH(x) > 0 for x 6= 0). A system is scattering H-passive (or
simply scattering passive if H = 1X ) if for any admissible data (x0, u(·)) the
solution of the system (1) satisfies the condition

d
dt
EH(x(t)) ≤ j(u(t), y(t)) a.e. on (s,∞). (4)

This inequality is often written in integrated form

EH(x(t))− EH(x(s)) ≤
∫ t

s

j(u(v), y(v)) dv, s ≤ t. (5)

It is not difficult to see that the inequality (4) with supply rate (2) is equivalent
to the inequality

2<〈Ax+Bu,Hx〉+ ‖Cx+Du‖2 ≤ ‖u‖2, x ∈ X , u ∈ U , (6)

which is usually rewritten in the form[
HA+A∗H + C∗C HB + C∗D

B∗H +D∗C D∗D − 1U

]
≤ 0. (7)

This is the standard KYP (Kalman–Yakubovich–Popov) inequality for continuous
time and scattering supply rate. If R := 1U −D∗D > 0, then (7) is equivalent to
the Riccati inequality

HA+A∗H + C∗C + (B∗H +D∗C)∗R−1(B∗H +D∗C) ≤ 0. (8)

This inequality is often called the bounded real Riccati inequality when all the
matrices are real. There is a rich literature on the finite-dimensional version of this
inequality and the corresponding equality; see, e.g., [PAJ91], [IW93], and [LR95],
and the references mentioned there. This inequality is named after Kalman [Kal63],
Popov [Pop61], and Yakubovich [Yak62].
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In the development of the theory of absolute stability (or hyperstability)
of systems which involve nonlinear feedback those linear systems which are H-
passive with respect to scattering supply rate are of special interest, especially in
H∞-control. One of the main problems is to find conditions on the coefficients A,
B, C, and D under which the KYP inequality has at least one solution H > 0.

To formulate a classical result about the solution of this problem we introduce
the main frequency characteristic of the system (1), namely its transfer function
defined by

D(λ) = D + C(λ−A)−1B, λ ∈ ρ(A). (9)

We also introduce the Schur class S(U ,Y; C+) of holomorphic contractive func-
tions D defined on C+ := {λ ∈ C | <λ > 0} with values in B(U ,Y). If X , U , and Y
are finite-dimensional, then the transfer function is rational and dimX ≥ deg D,
where deg D is the MacMillan degree of D. A finite-dimensional system is minimal
if dimX = deg D. The state space of a minimal system has the smallest dimension
among all systems with the same transfer function D.

The (finite-dimensional) system (1) is controllable if, given any z0 ∈ X and
T > 0, there exists some continuous function u on [0, T ] such that the solution
of (1) with x(0) = 0 satisfies x(T ) = z0. It is observable if it has the following
property: if both the input function u and the output function y vanish on some
interval [0, T ] with T > 0, then necessarily the initial state x0 is zero.

Theorem 1.1 (Kalman). A finite-dimensional system is minimal if and only if it
is controllable and observable.

Theorem 1.2 (Kalman–Yakubovich–Popov). Let Σ = ([A B
C D ] ;X ,U ,Y) be a finite-

dimensional system with transfer function D.

(i) If the KYP inequality (7) has a solution H > 0, i.e., if Σ is scattering H-
passive for some H > 0, then C+ ⊂ ρ(A) and D|C+ ∈ S(U ,Y; C+).

(ii) If Σ is minimal and D|C+ ∈ S(U ,Y; C+), then the KYP inequality (7) has a
solution H, i.e., Σ is scattering H-passive for some H > 0.

Here D|Ω is the restriction of D to Ω ⊂ ρ(A). In the engineering literate this
theorem is known under the name bounded real lemma (in the case where all the
matrices are real).

It is can be shown that H > 0 is a solution of (7) if and only if H̃ = H−1 is
a solution of the the dual KYP inequality[

H̃A∗ +AH̃ +BB∗ H̃C∗ +BD∗

CH̃ +DB∗ DD∗ − 1Y

]
≤ 0. (10)

The discrete time scattering KYP inequality is given by[
A∗HA+ C∗C −H A∗HB + C∗D
B∗HA+D∗C D∗D +B∗HB − 1U

]
≤ 0. (11)
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The corresponding Kalman–Yakubovich–Popov theorem is still valid with C+ re-
placed by D+ = {z ∈ C | |z| > 1} and with the transfer function defined by the
same formula (9).1

In the seventies the classical results on the KYP inequalities were extended to
systems with dimX = ∞ by V. A. Yakubovich and his students and collaborators
(see [Yak74, Yak75, LY76] and the references listed there). There is now also a rich
literature on this subject; see, e.g., the discussion in [Pan99] and the references
cited there. However, as far as we know, in these and all later generalizations it
was assumed (until [AKP05]) that either H itself is bounded or H−1 is bounded.2

This is not always a realistic assumption. The operator H is very sensitive to the
choice of the state space X and its norm, and the boundedness of H and H−1

depend entirely on this choice. By allowing both H and H−1 to be unbounded
we can use an analogue of the standard finite-dimensional procedure to determine
whether a given transfer function θ is a Schur function or not, namely to choose an
arbitrary minimal realization of θ, and then check whether the KYP inequality (7)
has a positive (generalized) solution. This procedure would not work if we require
H or H−1 to be bounded, because Theorem 5.4 below is not true in that setting.
We shall discuss this further in Section 7 by means of an example.

A generalized solution of the discrete time KYP inequality (11) that permits
both H and H−1 to be unbounded was developed by Arov, Kaashoek and Pik in
[AKP05]. There it was required that

AD(
√
H) ⊂ D(

√
H) and R (B) ⊂ D(

√
H), (12)

and (11) was rewritten using the corresponding quadratic form defined onD(
√
H)⊕

U . Here we extend this approach to continuous time.
In this paper we only study the scattering case. Similar results are true in

the impedance and transmission settings, as can be shown by using the technique
developed in [AS05c, AS05d]. We shall return to this question elsewhere. We shall
also return elsewhere with a discussion of the connection between the generalized
KYP inequality and solutions of the algebraic Riccati inequality and equality, and
a with an infinite-dimensional version of the strict bounded real lemma.

A summary of our results have been presented in [AS05b].
Acknowledgment. We gratefully acknowledge useful discussions with M. A.

Kaashoek on the discrete time version of the generalized KYP inequality.
Notation. The space of bounded linear operators from the Hilbert space X to

the Hilbert space Y is denoted by B(X ;Y), and we abbreviate B(X ;X ) to B(X ).
The domain of a linear operator A is denoted by D(A), the range by R (A), the
kernel by N (A), and the resolvent set by ρ(A). The restriction of a linear operator
A to some subspace Z ⊂ D(A) is denoted by A|Z . Analogously, we denote the
restriction of a function φ to a subset Ω of its original domain by φ|Ω. The identity

1This is the standard “engineering” version of the transfer function. In the mathematical litera-
ture one usually replace λ by 1/z and D+ by the unit disk D = {z ∈ C | |z| < 1}.
2Results where H−1 is bounded are typically proved by replacing the primal KYP inequality by

the dual KYP inequality (10).
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operator on X is denoted by 1X . We denote the orthogonal projection onto a closed
subspace Y of a space X by PY .

The orthogonal cross product of the two Hilbert spaces X and Y is denoted by[X
Y

]
, and we identify a vector [ x0 ] ∈ [X0 ] with x ∈ X and a vector

[
0
y

]
∈

[
0
Y

]
with

y ∈ Y. The closed linear span or linear span of a sequence of subsets Rn ⊂ X where
n runs over some index set Λ is denoted by ∨n∈ΛRn and spann∈ΛRn, respectively.

By a component of an open set Ω ⊂ C we mean a connected component of Ω.
We denote R = (−∞,∞), R+ = [0,∞), and R− = (−∞, 0]. The complex

plane is denoted by C, and C+ = {λ ∈ C | <λ > 0}.

2. Continuous Time System Nodes

In discrete time one always assumes that A, B, C, and D are bounded operators.
In continuous time this assumption is not reasonable. Below we will use a natural
continuous time setting, earlier used in, e.g., [AN96], [MSW05], [Sal89], [Šmu86],
and [Sta05] (in slightly different forms).

In the sequel, we think about the block matrix S = [A B
C D ] as one single closed

(possibly unbounded) linear operator from [XU ] (the cross product of X and U) to[X
Y

]
with dense domain D(S) ⊂ [XU ], and write (1) in the form[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ s, x(s) = xs. (13)

In the infinite-dimensional case such an operator S need not have a four block
decomposition corresponding to the decompositions [XU ] and

[X
Y

]
of the domain

and range spaces. However, we shall throughout assume that the operator
Ax := PXS [ x0 ] ,

x ∈ D(A) := {x ∈ X | [ x0 ] ∈ D(S)},
(14)

is closed and densely defined in X (here PX is the orthogonal projection onto X ).
We define X 1 := D(A) with the graph norm of A, X 1

∗ := D(A∗) with the graph
norm of A∗, and let X−1 to be the dual of X 1

∗ when we identify the dual of X
with itself. Then X 1 ⊂ X ⊂ X−1 with continuous and dense embeddings, and the
operator A has a unique extension to an operator Â = (A∗)∗ ∈ B(X ;X−1) (with
the same spectrum as A), where we interpret A∗ as an operator in B(X 1

∗ ;X ).3

Additional assumptions on A will be added in Definition 2.1 below.
The remaining blocks of S will be only partially defined. The ‘block’ B will

be an operator in B(U ;X−1). In particular, it may happen that R (B)∩X = {0}.
The ‘block’ C will be an operator in B(X 1;Y). We shall make no attempt to define
the ‘block’ D in general since this can be done only under additional assumptions
(see, e.g., [Sta05, Chapter 5] or [Wei94a, Wei94b]). Nevertheless, we still use a
modified block notation S =

[
A&B
C&D

]
, where A&B = PXS and C&D = PYS.

3This construction is found in most of the papers listed in the bibliography (in slightly different

but equivalent forms), including [AN96], [MSW05], and [Sal87]–[WT03].
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Definition 2.1. By a system node we mean a colligation Σ := (S;X ,U ,Y), where
X , U and Y are Hilbert spaces and the system operator S =

[
A&B
C&D

]
is a (possibly

unbounded) linear operator from [XU ] to
[X
Y

]
with the following properties:

(i) S is closed.
(ii) The operator A defined in (14) is the generator of a C0 semigroup t 7→ At,

t ≥ 0, on X .
(iii) A&B has an extension

[
Â B

]
∈ B([XU ] ;X−1) (where B ∈ B(U ;X−1)).

(iv) D(S) =
{
[ xu ] ∈ [XU ]

∣∣ Âx+Bu ∈ X
}
, and A&B =

[
Â B

]
|D(S);

As we will show below, (ii)–(iv) imply that the domain of S is dense in [XU ]. It
is also true that if (ii)–(iv) holds, then (i) is equivalent to the following condition:

(v) C&D ∈ B(D(S);Y), where we use the graph norm∥∥[ xu ]
∥∥2

D(A&B)
=

∥∥A&B [ xu ]
∥∥2

X + ‖x‖2X + ‖u‖2U (15)

of A&B on D(S).

It is not difficult to see that the graph norm of A&B on D(S) is equivalent to the
full graph norm∥∥[ xu ]

∥∥2

D(S)
=

∥∥A&B [ xu ]
∥∥2

X +
∥∥C&D [ xu ]

∥∥2

X + ‖x‖2X + ‖u‖2U (16)

of S.
We call A ∈ B(X 1;X ) the main operator of Σ, t 7→ At, t ≥ 0, is the evolution

semigroup, B ∈ B(U ;X−1) is the control operator, and C&D ∈ B(V ;Y) is the
combined observation/feedthrough operator. From the last operator we can extract
C ∈ B(X 1;Y), the observation operator of Σ, defined by

Cx := C&D
[
x
0

]
, x ∈ X 1. (17)

A short computation shows that for each α ∈ ρ(A), the operator

Eα :=
[
1X (α− Â)−1B
0 1U

]
(18)

is a bounded bijection from [XU ] onto itself and also from
[
X 1

U
]

onto D(S). In
particular, for each u ∈ U there is some x ∈ X such that [ xu ] ∈ D(S). Since

[
X 1

U
]

is dense in [XU ], this implies that also D(S) is dense in [XU ]. Since the second column
of Eα maps U into D(S), we can define the transfer function of S by

D̂(λ) := C&D
[
(λ− Â)−1B

1U

]
, λ ∈ ρ(A), (19)

which is an B(U ;Y)-valued analytic function. If B ∈ B(U ;X ), then D(S) =
[X1
U

]
,

and we can define the operator D ∈ B(U ;Y) by D = PYS|[ 0
U ], after which formula
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(19) can be rewritten in the form (9). By the resolvent identity, for any two α,
β ∈ ρ(A),

D̂(α)− D̂(β) = C[(α− Â)−1 − (β − Â)−1]B

= (β − α)C(α−A)−1(β − Â)−1B.
(20)

Let

Fα : =
([
α 0
0 1U

]
−

[
A&B
0 0

])−1

=
[
(α−A)−1 (α− Â)−1B

0 1U

]
, α ∈ ρ(A).

(21)

Then, for all α ∈ ρ(A), Fα is a bounded bijection from [XU ] onto D(S), and[
A&B
C&D

]
Fα =

[
A(α−A)−1 α(α− Â)−1B
C(α−A)−1 D̂(α)

]
, α ∈ ρ(A). (22)

One way to construct a system operator S =
[
A&B
C&D

]
is to give a generator A

of a C0 semigroup on X , a control operator B ∈ B(U ;X−1), and an observation
operator C ∈ B(X1;Y), to fix some α ∈ ρ(A) and an operator Dα ∈ B(U ;Y), to
define D(S) and A&B by (iv), and to finally define C&D [ xu ] for all [ xu ] ∈ D(S)
by

C&D
[
x
u

]
:= C(x− (α− Â)−1Bu) +Dαu. (23)

The transfer function D of this system node satisfies D(α) = Dα (see [Sta05,
Lemma 4.7.6]).

Lemma 2.2. Let Σ := (S;X ,U ,Y) be a system node with main operator A, control
operator B, observation operator C, transfer function D, and evolution semigroup
t 7→ At, t ≥ 0. Then Σ∗ := (S∗;X ,U ,Y) is another system node, which we call the
adjoint of Σ. The main operator of Σ∗ is A∗, the control operator of Σ∗ is C∗, the
observation operator of Σ∗ is B∗, the transfer function of Σ∗ is D̂(α)∗, α ∈ ρ(A∗),
and the evolution semigroup of Σ∗ is t 7→ (At)∗, t ≥ 0.

For a proof (and for more details), see, e.g., [AN96, Section 3], [MSW05,
Proposition 2.3], or [Sta05, Lemma 6.2.14].

If Σ := (S;X ,U ,Y) is a system node, then (13) has (smooth) trajectories of
the following type. Note that we can use the operators A&B and C&D to split
(13) into

ẋ(t) = A&B
[
x(t)
u(t)

]
, t ≥ s, x(s) = xs,

y(t) = C&D
[
x(t)
u(t)

]
, t ≥ s.

(24)

Below we use the following notation: W 1,2
loc ([s,∞);U) is the set of U-valued

functions on [s,∞) which are locally absolutely continuous and have a derivative in
L2

loc([s,∞);U). An equivalent formulation is to say that u ∈W 1,2
loc ([s,∞);U) if u ∈

L2
loc([s,∞);U) and the distribution derivative of the function u consists of a point
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mass of size u(s) at s plus a function in L2
loc([s,∞);U) (first extend u by zero to

(−∞, s) before taking the distribution derivative). The space W 2,2
loc ([s,∞);U) con-

sists of those u ∈W 1,2
loc ([s,∞);U) which are locally absolutely continuous and have

u′ ∈W 1,2
loc ([s,∞);U), too.

Lemma 2.3. Let Σ := (S;X ,U ,Y) be a system node. Then for each s ∈ R, xs ∈ X
and u ∈ W 2,2

loc ([s,∞);U) such that
[ xs

u(s)

]
∈ D(S), there is a unique function

x ∈ C1([s,∞);X ) (called a state trajectory) satisfying x(s) = xs,
[
x(t)
u(t)

]
∈ D(S),

t ≥ s, and ẋ(t) = A&B
[
x(t)
u(t)

]
, t ≥ s. If we define the output by y(t) = C&D

[
x(t)
u(t)

]
,

t ≥ s, then y ∈ C([s,∞);Y), and the three functions u, x, and y satisfy (13).

This lemma is contained in [Sta05, Lemmas 4.7.7–4.7.8], which are actually
slightly stronger: it suffices to have u ∈ W 2,1

loc ([s,∞);U) (the second derivative is
locally in L1 instead of locally in L2). (Equivalently, both u and u′ are locally
absolutely continuous.)

In addition to the classical solutions of (13) presented in Lemma 2.3 we
shall also need generalized solutions. A generalized solution of (13) exists for
all initial times s ∈ R, all initial states xs ∈ X and all input functions u ∈
W 1,2

loc ([s,∞);U). The state trajectory x(t) is continuous in X , and the output y
belongs W−1,2

loc ([s,∞);Y). This is the space of all distribution derivatives of func-
tions in L2

loc([s,∞);Y) (first extended the functions to all of R by zero on (−∞, s)).
This space can also be interpreted as the space of all distributions in W−1,2

loc (R;Y)
which are supported on [s,∞). It is the dual of the space W 1,2

c ([s,∞);Y), where
the subindex c means that the functions in this space have compact support.4

The construction of generalized solutions of (13) is carried out as follows.
It suffices to consider two separate cases where either xs or u is zero, since we
get the general case by adding the two special solutions. We begin with the case
where u = 0. For each xs ∈ X we define the corresponding state trajectory x by
x(t) = At−sxs, where At, t ≥ 0, is the semigroup generated by the main operator
A. The corresponding output y ∈ W−1,2

loc ([s,∞);Y) is defined as follows. First we
observe that the function

∫ t
s
x(v) dv =

∫ t
s

Av−sxs dv is a continuous function on
[s,∞) with values in X 1 vanishing at s, hence C

∫ t
s

Av−sxs dv is continuous with
values in Y. We can therefore define the output y to be given by the following
distribution derivative:

y =
d
dt

(
t 7→ C

∫ t

s

Av−sxs dv
)
;

here d
dt stands for a distribution derivative. In particular, y ∈ W−1,2

loc ([s,∞);Y)
and the map from xs to y is continuous from X to W−1,2

loc ([s,∞);Y). Of course, if

4Note that W−1,2
loc ([s,∞);Y) is not the same space as W−1,2

loc ((s,∞);Y), which is the dual of the

space of all functions in W 1,2
c ([s,∞);Y) which vanish at s. The space W−1,2

loc ((s,∞);Y) is the

quotient of W−1,2
loc ([s,∞);Y) over all point evaluation functionals at s.
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xs ∈ X 1, then y(t) = CAt−sxs for all t ≥ s. For more details, see [Sta05, Lemma
4.7.9].)

Next suppose that xs = 0 and that u ∈ W 1,2
loc ([s,∞);U). We then define the

state trajectory x and the output distribution y as follows. We first replace u by
u1(t) =

∫ t
s
u(v) dv, let x1 and y1 be the state and output given by Lemma 2.3 with

xs = 0 and u replaced by u1 (note that u1(s) = 0), and then define

x = x′1, y =
d
dt
y1,

where the differentiation is interpreted in the distribution sense. Again we find
that x ∈ C([s,∞);X ) and that y ∈W−1,2

loc ([s,∞);Y).
Given x0 ∈ X and u ∈ W 1,2

loc ([s,∞);U) we shall refer to the functions
x ∈ C([s,∞);X ) and y ∈ W−1,2

loc ([s,∞);Y) constructed above as the generalized
solution and output of (24), respectively. A generalized trajectory of (24) consists
of the triple (x, u, y) described above. A trajectory is smooth if it is of the type
described in Lemma 2.3.

By the system induced by a system node Σ := (S;X ,U ,Y) we mean the node
itself together with all its generalized trajectories. We use the same notation Σ for
the system as for the node.

Above we already introduced the notation At, t ≥ 0, for the semigroup gen-
erated by the main operator A. The output map C maps X into W−1,2

loc (R+;Y),
and it is the mapping from x0 to y (i.e., take both the initial time s = 0 and the
input function u = 0). Thus,

Cx0 =
d
dt

(
t 7→ C

∫ t

0

Avx0 dv
)
,

and if x0 ∈ X 1, then Cx0 = t 7→ CAtx0, t ≥ 0. This map is continuous from X
into W−1,2

loc (R+;Y) and from X 1 into C[R+;Y).
The input map B is defined for all u ∈ W 1,2

c (R−;U), i.e., functions u ∈
W 1,2(R−;U) whose support is bounded to the left. It is the map from u to x(0)
(take the initial time to be s < 0 and the initial state to be zero). To get an explicit
formula for this map we argue as follows. By Definition 2.1, we can rewrite the
first equation in (24) in the form

ẋ(t) = Âx(t) +Bu(t), t ≥ s, x(s) = xs, (25)

where we now allow the equation to take its values in X−1. The operator Â gen-
erates a C0 semigroup in X−1, which we denote by Ât, t ≥ 0, and B ∈ B(U ;X−1).
We can therefore use the variation of constants formula to solve for Bu = x(0)
(take xs = 0 and define u(v) to be zero for v < s)

Bu =
∫ 0

−∞
Â−vBu(v) dv. (26)
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Here the integral is computed in X−1, but the final result belongs to X , and B is
continuous from W 1,2

c (R−;U) to X . (It is also possible to use (26) to extend B to
a continuous map from L2

c(R−;U) to X−1 as is done in [Sta05].)
Finally, the input/output map D is defined for all u ∈ W 1,2

loc (R;U) whose
support is bounded to the left, and it is the map from u to y (take the initial time
to the left of the support of u, and the initial state to be zero). It maps this set of
functions continuously into the set of distributions in W−1,2

loc (R;Y) whose support
is bounded to the left.

Our following lemma describes the connection between the input/output map
D and the transfer function D̂.

Lemma 2.4. Let Σi := (Si;Xi,U ,Y), i = 1, 2, be two system nodes with main
operators Ai, input/output maps Di, and transfer functions D̂i. Let Ω∞ be the
component of ρ(A1) ∩ ρ(A2) which contains some right half-plane.

(i) If D1 = D2, then D̂1(λ) = D̂2(λ) for all λ ∈ Ω∞.
(ii) Conversely, if the set {λ ∈ Ω∞ | D̂1(λ) = D̂2(λ)} has an interior cluster

point, then D1 = D2.

Proof. Fix some real α > β, where β is the maximum of the growth bounds
of the two semigroups Ati, t ≥ 0, i = 1, 2, and suppose that (t 7→ e−αtu(t)) ∈
W 2,1

0 (R+;U) := {u ∈ W 2,1(R+;U) | u(0) = u′(0) = 0}. Define y1 = D1y and
y2 = D2u. Then, by [Sta05, Lemma 4.7.12], the functions t 7→ e−αtyi(t), with
i = 1, 2, are bounded, and the Laplace transforms of these functions satisfy ŷi(λ) =
D̂i(λ)û(λ) in the half plane <λ > α.

If D1 = D2, then y1 = y2, and hence we conclude that D̂1(λ)û(λ) =
D̂2(λ)û(λ) for all u of the type described above and for all <λ ≥ α. This im-
plies that D̂1(λ) = D̂2(λ) for all <λ > α, and by analytic continuation, for all
λ ∈ Ω∞.

Conversely, if set {λ ∈ Ω∞ | D̂1(λ) = D̂2(λ)} has an interior cluster point,
then by analytic extension theory, D̂1(λ) = D̂2(λ) for all λ ∈ Ω∞. Thus, ŷ1(λ) =
ŷ2(λ) for all <λ > α. Since the Laplace transform is injective, this implies that
y1 = y2. Hence, D1u = D2u for all u of the type described above. By using the
bilateral shift-invariance of D1 and D2 we find that the same identity is true for
all u ∈ W 2,1

loc (R;U) whose support it bounded to the left. This set is dense in the
common domain of D1 and D2, and so we must have D1 = D2. �

Remark 2.5. The system operator S is determined uniquely by the semigroup At,
t ≥ 0, the input map B, the output map C, and the input/output map D of the
system Σ, or alternatively, by At, t ≥ 0, B, C and the transfer function D̂. The
corresponding operators for the adjoint system node Σ∗ are closely related to those
of Σ. The semigroup of Σ∗ is (At)∗, t ≥ 0, the input map of Σ∗ is RC∗, the output
map of Σ∗ is B∗ R, and the input/output map of Σ∗ is RD∗ R, where Ris the
time reflection operator: ( Ru)(t) = u(−t), t ∈ R. As we already remarked earlier,
the transfer function of Σ∗ is D̂(α)∗, α ∈ ρ(A∗).
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We call Σ (approximately) controllable if the range of its input map B is dense
in X and (approximately) observable if its output map C is injective. Finally, Σ is
minimal if it is both controllable and observable.5

Lemma 2.6. The system node Σ is controllable or observable if and only if Σ∗ is
observable or controllable, respectively. In particular, Σ is minimal if and only if
Σ∗ is minimal.

Proof. This is true because the duality between the input and output maps of Σ
and Σ∗ (see Remark 2.5). �

Lemma 2.7. Let Σ := (S;X ,U ,Y) be a system node with main operator A, control
operator B, and observation operator C. Let ρ∞(A) be the component of ρ(A)
which contains some right half-plane.

(i) Σ is observable if and only if

∩λ∈ρ∞(A)N
(
C(λ−A)−1

)
= {0}.

(ii) Σ is controllable if and only if

∨λ∈ρ∞(A)R
(
(λ− Â)−1B

)
= X ,

where ∨ stands for the closed linear span.

Proof. Proof of (i): We have x0 ∈ N (C) if and only if d
dtC

∫ t
0

Avx0 dv vanishes
identically, or equivalently, if and only if C

∫ t
0

Avx0 dv vanishes identically, or
equivalently, the Laplace transform of this function vanishes identically to the
right of the growth-bound of this function. This Laplace transform is given by
λ−1C(λ−A)−1x0, and it vanishes to the right of the growth bound of At, t ≥ 0, if
and only if it vanishes on ρ∞(A), or equivalently, C(λ−A)−1x0 vanishes identically
on ρ∞(A).

Proof of (ii): That (ii) holds follows from (i) by duality (see Lemma 2.6). �

3. The Cayley Transform

The proofs of some of the results of this paper are based on a reduction by means
of the Cayley transform of the continuous time case to the corresponding discrete
time case studied in [AKP05]. In a linear time-independent discrete time system
the input u = {un}∞n=0, the state x = {xn}∞n=0, and the output y = {yn}∞n=0 are
sequences with values in the Hilbert spaces U , X , and Y, respectively. The discrete
time system Σ is a colligation Σ :=

(
[ A B
C D ] ,X ,U ,Y)

)
, where the system operator

[ A B
C D ] ∈ B([XU ] ; [XU ]). The dynamics of this system is described by

xn+1 = Axn + Bun,

yn = Cxn + Dun, n = 0, 1, 2, . . . ,
x0 = given.

(27)

5There is another equivalent and more natural definition of minimality of a system: it should not
be a nontrivial dilation of some other system (see [AN96, Section 7]).
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We still call A the main operator, B the control operator, C the observation
operator, and D the feedthrough operator. We define the transfer function D̂ of
ΣΣΣ in the same way as in (9), namely by6

D̂(z) = C(z −A)−1B + D, z ∈ ρ(A).

Observability, controllability, and minimality of a discrete time system is de-
fined in exactly the same way as in continuous time, with continuous time trajecto-
ries replaced by discrete time trajectories. Thus, Σ is (approximately) controllable
if the subspace of all states xn reachable from the zero state in finite time (by a
suitable choice of input sequence) is dense in X , and it is (approximately) observ-
able if it has the following property: if both the input sequence and the output
sequence are zero, then necessarily x0 = 0. Finally, it is minimal if it is both
controllable and observable. The following discrete time version of Lemma 2.7 is
well-known: if we denote the unbounded component of the resolvent set of A by
ρ∞(A), then Σ is observable if and only if

∩z∈ρ∞(A)N
(
C(z −A)−1

)
= {0},

and that Σ is controllable if and only if

∨z∈ρ∞(A)R
(
(z −A)−1B

)
= X .

Given a system node Σ := (S;X ,U ,Y) with main operator A, for each
α ∈ ρ(A) ∩ C+ it is possible to define the (internal) Cayley transform of Σ with
parameter α. This is the discrete time system Σ(α) :=

([
A(α) B(α)
C(α) D(α)

]
;X ,U ,Y

)
whose coefficients are given by

A(α) = (α+A)(α−A)−1, B(α) =
√

2<α (α− Â)−1B,

C(α) =
√

2<αC(α−A)−1, D(α) = D̂(α).
(28)

Note that A(α) + 1 = 2<α(α−A)−1, so that A(α) + 1 is injective and has dense
range. The transfer function D̂ of Σ(α) satisfies

D̂(z) = D̂(λ), z =
α+ λ

α− λ
, λ =

αz − α

z + 1
, λ ∈ ρ(A), z ∈ ρ(A(α)). (29)

An equivalent way to write the Cayley transform is[
A(α) + 1 B(α)

C(α) D(α)

]
=

[√
2<α 0
0 1

] [
1 0
C&D

]
Fα

[√
2<α 0
0 1

]
, (30)

where Fα is the operator defined in (21).
The (internal) inverse Cayley transform with parameter α ∈ C+ of a discrete

time system ([ A B
C D ] ;X ,U ,Y) is defined whenever A+ 1 is injective and has dense

range. It is designed to reproduce the original system node Σ when applied to

6This is the standard “engineering” version of the transfer function. In the mathematical litera-
ture one usually replace z by 1/z.
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its Cayley transform
([

A(α) B(α)
C(α) D(α)

]
;X ,U ,Y

)
. The system operator S =

[
A&B
C&D

]
of

this node is given by[
A&B
C&D

]
−

[
α 0
0 0

]
=

[√
2<α 0
0 1

] [
−1 0
C D

] [
A + 1 B

0 1

]−1 [√
2<α 0
0 1

]
. (31)

More specifically, the different operators which are part the node Σ are given by

A = (αA− α)(A + 1)−1, B =
1√
2<α

(α− Â)B,

C =
1√
2<α

C(α−A), D̂(α) = D.
(32)

If A is the generator of a C0-semigroup (and only in this case) the operator S
defined in this way is the system operator of a system node Σ = (S;X ,U ,Y).7

Lemma 3.1. Let Σ := (S;X ,U ,Y) be a system node with main operator A, and
let α ∈ ρ∞(A) ∩C+, where ρ∞(A) is the component of ρ(A) which contains some
right half-plane. Let Σ(α) :=

([
A(α) B(α)
C(α) D(α)

]
;X ,U ,Y

)
be the Cayley transform of

Σ with parameter α. Then Σ(α) is controllable if and only if Σ is controllable,
Σ(α) is observable if and only if Σ is observable, and Σ(α) is minimal if and only
if Σ is minimal.

This follows from Lemma 2.7. (The linear fractional transformation from the
continuous time frequency variable λ to the discrete time frequency variable z in
(29) maps ρ∞(A) one-to-one onto ρ∞(A(α)).)

For more details on Cayley transforms we refer the reader to [AN96, Section
5], [Sta02, Section 7], or [Sta05, Section 12.3].

4. Pseudo-Similar Systems and System Nodes

A linear operator Q acting from the Hilbert space X to the Hilbert space Y is
called a pseudo-similarity if it is closed and injective, its domain D(Q) is dense in
X , and its range R (Q) is dense in Y.

Definition 4.1. We say that two systems Σi, i = 1, 2, with state spaces Xi, semi-
groups Ati, t ≥ 0, input maps Bi, output maps Ci, and input/output maps Di, are
pseudo-similar if there is a pseudo-similarity Q : X1 ⊃ D(Q) → R (Q) ⊂ X2 with
the following properties:

(i) D(Q) is invariant under At1, t ≥ 0, and R (Q) is invariant under At2, t ≥ 0;
(ii) R (B1) ⊂ D(Q) and R (B2) ⊂ R (Q);

7Otherwise it will be an operator node in the sense of [Sta05, Definition 4.7.2].
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(iii) The following intertwining conditions hold:

At2Q = QAt1|D(Q), t ≥ 0,

C2Q = C1|D(Q),

B2 = QB1,

D2 = D1.

(33)

Theorem 4.2. Let Σi := (Si;Xi,U ,Y), i = 1, 2, be two systems with main operators
Ai, control operators Bi, observation operators Ci, semigroups Ati, t ≥ 0, and
transfer functions D̂i. Let Q : X1 ⊃ D(Q) → R (Q) ⊂ X2 be pseudo-similarity,
with the graph

G(Q) :=
{
[Qxx ]

∣∣ x ∈ D(Q)
}
.

Let Ω∞ be the component of ρ(A1) ∩ ρ(A2) which contains some right half-plane.
Then the following conditions are equivalent:

(i) The systems Σ1 and Σ2 are pseudo-similar with pseudo-similarity operator
Q.

(ii) The following inclusion holds for some λ ∈ Ω∞: (λ−A2)−1 0 (λ− Â2)−1B2

0 (λ−A1)−1 (λ− Â1)−1B1

C2(λ−A2)−1 −C1(λ−A1)−1 D̂2(λ)− D̂1(λ)

[
G(Q)
U

]
⊂

[
G(Q)

0

]
. (34)

(iii) The inclusion (34) holds for all λ ∈ Ω∞.

Remark 4.3. It is easy to see that condition (34) is equivalent to the following set
of conditions:

(λ−A1)−1D(Q) ⊂ D(Q), (λ− Â1)−1B1U ⊂ D(Q), (35)

and
(λ−A2)−1Q = Q(λ−A1)−1|D(Q),

C2(λ−A2)−1Q = C1(λ−A1)−1|D(Q),

(λ− Â2)−1B2 = Q(λ− Â1)−1B1,

D̂2(λ) = D̂1(λ).

(36)

Proof of Theorem 4.2. Proof of (i) ⇒ (ii): Fix an arbitrary λ ∈ C with <λ > β,
where β is the maximum of the growth bounds of the two semigroups Ati, t ≥ 0,
i = 1, 2.

We begin by showing that
[

(λ−A2)
−1x2

(λ−A1)
−1x1

]
∈ G(Q) whenever [ x2

x1 ] ∈ G(Q). Take
[ x2
x1 ] ∈ G(Q), i.e., x1 ∈ D(Q) and x2 = Qx1. The first intertwining condition in (33)

gives e−λtAt2x2 = Qe−λtAt1x1. Integrating this identity over R+ and use the fact
thatQ is closed we get (λ−A2)−1x2 = Q(λ−A1)−1x1. Thus,

[
(λ−A2)

−1x2

(λ−A1)
−1x1

]
∈ G(Q).

We next show that C2(λ−A2)−1x2 = C1(λ−A1)−1x1 whenever [ x2
x1 ] ∈ G(Q).

We first fix some real α > β, and considering the case where x1 is replaced by
x1,α = α(α − A1)−1x1 for some x1 ∈ D(Q) and x2 is replace by x2,α = Qx1,α.
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Then, by what we have proved so far, x1,α ∈ X 1
1 ∩ D(Q) and x2,α ∈ X 1

2 . This
implies that for all t ≥ 0,

C2A
t
2x2,α = (C2x2,α)(t) = (C1x1,α)(t) = C1A

t
1x1,α.

Multiply this by e−λt and integrate over R+ to get

C2(λ−A2)−1x2,α = C1(λ−A1)−1x1,α.

Let α → +∞ along the real axis. Then x1,α = α(α − A1)−1x1 → x1 in X1 and
x2,α = Qα(α − A2)−1x1 = α(α − A2)−1Qx1 → Qx1 in X2. This implies that
C2(λ−A2)−1Qx1 = C1(λ−A1)−1x1 for all x1 ∈ D(Q).

Next we show that
[

(λ− bA2)
−1B2u0

(λ− bA1)
−1B1u0

]
∈ G(Q) for all u0 ∈ U . By the third

intertwining condition in (33), for all α > β, all t ∈ R+, and all u0 ∈ U ,[
e−λt

∫ 0

−t Â
−v
2 (eλ(t+v) − eα(t+v))B2u0 dv

e−λt
∫ 0

−t Â
−v
2 (eλ(t+v) − eα(t+v))B1u0 dv

]
∈ G(Q).

Here, with i = 1, 2,

e−λt
∫ 0

−t
Â−vi (eλ(t+v) − eα(t+v))Biu0 dv

= (1Xi
− e−λtAti)(λ− Âi)−1Biu0

− e(α−λ)t(1Xi
− e−αtAti)(α− Âi)−1Biu0.

Choose α and λ so that β < α < <λ, and let t → ∞. Then the above ex-
pression tends to (λ − Âi)−1Biu0 in X , and the closedness of G(Q) implies that[

(λ− bA2)
−1B2u0

(λ− bA1)
−1B1u0

]
∈ G(Q).

Finally, since D1 = D2, by Lemma 2.4 we also have D̂2(λ) = D̂1(λ).
Proof of (ii) ⇒ (iii): Fix some λ0 ∈ Ω∞ for which (34) holds. Equivalently,

(λ0 −A1)−1D(Q) ⊂ D(Q), and

(λ0 −A2)−1Q = Q(λ0 −A1)−1|D(Q).

By iterating this equation, using the fact that (λ0 −A1)−1D(Q) ⊂ D(Q), we find
that,

(λ0 −A2)−kQ = Q(λ0 −A1)−k|D(Q), k = 1, 2, . . . . (37)

Fix [ x2
x1 ]G(Q). The function λ 7→

[
(λ−A2)

−1x2

(λ−A1)
−1x1

]
is a holomorphic

[X1
X2

]
-valued

function on Ω∞, and it follows from (37) that this function itself together with all
its derivatives belong to G(Q) at λ0. Therefore this function must belong to G(Q)
for all λ ∈ Ω∞: the inner product of this function with any vector in G(Q)⊥ is
an analytic function which vanishes together with all its derivatives at λ0; hence
it must vanish everywhere on Ω∞. This means that the first inclusion in (35) and
the first identity in (36) hold for all λ ∈ Ω∞.

The proofs of the facts that also the second inclusion in (35) and the second
and third identities in (36) hold for all λ ∈ Ω∞ are similar to the one above, and
we leave them to the reader.
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It remains to show that D̂2(λ) = D̂1(λ) for all λ ∈ Ω∞. But this follows from
(20) and the other intertwining conditions in (36), which give

D̂2(λ) = D̂2(λ0) + (λ0 − λ)C2(λ0 −A2)−1(λ− Â2)−1B2

= D̂2(λ0) + (λ0 − λ)C2(λ0 −A2)−1Q(λ− Â1)−1B1

= D̂2(λ0) + (λ0 − λ)C2Q(λ0 −A1)−1(λ− Â1)−1B1

= D̂1(λ0) + (λ0 − λ)C1(λ0 −A1)−1(λ− Â1)−1B1

= D̂1(λ).

Proof of (iii) ⇒ (i): Fix some real Λ > 0 so that [Λ,∞) ∈ Ω∞.
We begin by showing thatQ intertwines the two semigroups. Take x1 ∈ D(Q).

Then, for λ ≥ Λ, (λ−A2)−1Qx1 = Q(λ−A1)−1x1. Iterating this identity we get
(λ − A2)−nQx1 = Q(λ − A1)−nx1 for all n ∈ Z+. In particular, for all t > 0 and
all sufficiently large n,(

1− t

n
A2

)−n
Qx1 = Q

(
1− t

n
A1

)−n
x1.

Let n→∞ to find that At1x1 ∈ D(Q), At1Qx1 ∈ R (Q), and that At2Qx1 = QAt1x1

for all t ≥ 0.
Next we look at the second intertwining condition in (33). We know that, for

all x1 ∈ D(Q),

C2(λ−A2)−1Qx1 = C1(λ−A1)−1x1

for λ ≥ Λ. Let α ∈ Ω∞, and replace x1 by x1,α = α(α − A1)−1x1 where x1 ∈
D(Q). Then (as we saw in the corresponding part of the proof of the implication
(i) ⇒ (ii)), the above identity is the Laplace transformed version of the identity
C2Qx1,α = C1x1,α, which must then also hold. Let α → ∞. Then x1,α → x1 in
X1 and Qx1,α → Qx1 in X2 (see the proof of the implication (i) ⇒ (ii)). By the
continuity of C1 and C2, C2Qx1 = C1x1, x1 ∈ D(Q).

The third intertwining condition in (33) requires us to show that R (B1) ⊂
D(Q) and that B2 = QB1. Actually, it suffices to show this for functions u which
vanish on some interval (−∞,−t) and are given by u(v) = (eλ(t+v) − eα(t+v))u0

on [−t, 0] for some real λ ≥ α ≥ Λ, because the span of functions of this type is
dense in W 1,2

c (R−;U), B1 and B2 are continuous from W 1,2
c (R−;U) to X1 and

X2, respectively, and Q is closed. However, for i = 1, 2, applying Bi to the above
function we get

Biu = eλt(1Xi
− e−λtAti)(λ− Âi)−1Biu0

− eαt(1Xi − e−αtAti)(α− Âi)−1Biu0.

This, together with the first condition in (33), condition (35), and the third con-
dition in (36) implies that B1u ∈ D(Q) and that B2 = QB1.

Finally, that D1 = D2 follows from Lemma 2.4. �
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In the sequel it shall be important how the operator Fα defined in (21)
interacts with the pseudo-similarity operatorQ, and, in particular, with its domain.
Our following two lemmas address this issue.

Lemma 4.4. Let Σ := (S;X ,U ,Y) be an system node with system operator S =[
A&B
C&D

]
, main operator A, and control operator B, and let Z be a subspace of X .

Let α ∈ ρ(A) and define Fα as in (21).
(i) [ZU ] is invariant under Fα if and only if

(α−A)−1Z ⊂ Z, (α− Â)−1BU ⊂ Z. (38)

(ii) If (38) holds, then [ xu ] belongs to the range of Fα|[ZU ] if and only if

[ xu ] ∈ D(S), x ∈ Z, A&B [ xu ] ∈ Z. (39)

In particular, the range of Fα|[ZU ] does not depend on the particular α ∈ ρ(A), as

long as [ZU ] is invariant under Fα.

Proof. That (i) holds follows directly from (21), so it suffices to prove (ii).
Suppose first that [ xu ] = Fα [ zu ] for some z ∈ Z ⊂ X and u ∈ U . Then

[ xu ] ∈ D(S) (since Fα maps [XU ] into D(S)) and x ∈ Z (by the assumed invari-
ance condition). Furthermore, by (21),

([
α 0
0 1U

]
− [A&B

0 0 ]
)
[ xu ] = [ zu ] . In particular,

A&B [ xu ] = αx − z ∈ Z. Thus, [ xu ] ∈ D(S), x ∈ Z, and A&B [ xu ] ∈ Z whenever
[ xu ] belongs to the range of Fα|[ZU ].

Conversely, suppose that [ xu ] ∈ D(S), x ∈ Z, and A&B [ xu ] ∈ Z. Define z by
z = αx− A&B [ xu ]. Then z ∈ Z and [ xu ] = Fα [ zu ], so [ xu ] belongs to the range of
Fα|[ZU ]. �

Lemma 4.5. Let Σi := (Si;Xi,U ,Y), i = 1, 2, be two pseudo-similar system nodes
with main operators Ai, control operators Bi, and pseudo-similarity operator Q.
Let Ω∞ be the component of ρ(A1) ∩ ρ(A2) which contains some right half-plane.
For each λ ∈ Ω∞, define Fi,λ, i = 1, 2, by

Fi,λ =
[
(λ−Ai)−1 (λ− Âi)−1Bi

0 1U

]
. (40)

Then, for each λ ∈ Ω∞, F1,λ maps
[D(Q)

U

]
into itself, F2,λ maps

[R(Q)
U

]
into itself,

and

F2,λ

[
Q 0
0 1U

]
=

[
Q 0
0 1U

]
F1,λ|hD(Q)

U

i. (41)

In particular,
[
Q 0
0 1U

]
maps the range of F1,λ|hD(Q)

U

i one-to-one onto the range of

F2,λ|hR(Q)
U

i.
Proof. That F1,λ maps

[D(Q)
U

]
into itself follows from the two inclusions (λ −

A1)−1D(Q) ⊂ D(Q) and (λ− Â1)−1B1U ⊂ D(Q) (see Remark 4.3). Analogously,
that F2,λ maps

[R(Q)
U

]
into itself follows from the two inclusions (λ−A2)−1R (Q) ⊂
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R (Q), (λ − Â2)−1B2U ⊂ R (Q). Finally, (41) follows from (40) and the first and
third identities in (36). �

Our next theorem gives a characterization of pseudo-similarity which is given
directly in terms of the system operators involved.

Theorem 4.6. Let Σi := (Si;Xi,U ,Y), i = 1, 2, be two systems with system oper-
ators Si =

[
[A&B]i
[C&D]i

]
, main operators Ai, and control operators Bi. Let Q : X1 ⊃

D(Q) → R (Q) ⊂ X2 be a pseudo-similarity, and let Ω∞ be the component of
ρ(A1)∩ρ(A2) which contains some right half-plane. Then the following conditions
are equivalent:

(i) Σ1 and Σ2 are pseudo-similar with pseudo-similarity operator Q.
(ii) The following two conditions hold:

(a) (35) holds for some λ ∈ Ω∞.
(b) For all [ x1

u ] ∈ D(S1) such that x1 ∈ D(Q) and [A&B]1 [ x1
u ] ∈ D(Q) we

have

S2

[
Q 0
0 1U

] [
x1

u

]
=

[
Q 0
0 1Y

]
S1

[
x1

u

]
. (42)

Proof. Proof of (i) ⇒ (ii). Assume (i). By Theorem 4.2 and Remark 4.3, (35)
holds for all λ ∈ Ω∞. By Lemma 4.4, F1,λ

[D(Q)
U

]
⊂

[D(Q)
U

]
, and the condition

imposed on [ x1
u ] in (b) is equivalent to the requirement that [ x1

u ] belongs to the
range of F1,λ|hD(Q)

U

i. If we replace [ x1
u ] in (42) by F1,λ [ x1

u ] with x1 ∈ D(Q), then a

straightforward computation based on (22) shows that the right-hand side becomes[
Q 0
0 1Y

]
S1F1,λ

[
x1

u

]
=

[
QA1(α−A1)−1 Qα(α− Â1)−1B1

C1(α−A1)−1 D̂1(α)

] [
x1

u

]
. (43)

A similar computation which also uses (41) shows that

S2

[
Q 0
0 1U

]
F1,λ

[
x1

u

]
=

[
A2(α−A2)−1Q α(α− Â2)−1B2

C2(α−A2)−1Q D̂2(α)

] [
x1

u

]
. (44)

By (36), the right-hand sides of (43) and (44) are equal, and this implies (42).
Proof of (ii) ⇒ (i): Assume (ii). Then it follows from (42) with [ x1

u ] replaced
by F1,λ [ x1

u ] that for all x1 ∈ D(Q) and all u ∈ U (recall (21))

F−1
2,λ

[
Q 0
0 1U

]
F1,λ

[
x1

u

]
=

[
Q 0
0 1U

]
F−1

1,λF1,λ

[
x1

u

]
.

Multiplying this by F2,λ to the left we get (41). It follows from (42) that the left-
hand sides of (43) and (44) are equal, and by using (41) we conclude that also the
right-hand sides of (43) and (44) are equal. This implies (36). By Theorem 4.2,
Σ1 and Σ2 are pseudo-similar with pseudo-similarity operator Q. �

Definition 4.7. Two system nodes Σi := (Si;Xi,U ,Y) with system operators Si =[
[A&B]i
[C&D]i

]
, i = 1, 2, are called pseudo-similar with pseudo-similarity operator Q if

conditions (ii)(a) and (ii)(b) in Theorem 4.6 hold.
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Thus, with this terminology, Theorem 4.6 says that two systems Σi, i = 1, 2,
are pseudo-similar if and only if the corresponding system nodes are pseudo-
similar, with the same pseudo-similarity operator. Two other equivalent charac-
terization of the pseudo-similarity of two system nodes are given by conditions (ii)
and (iii) in Theorem 4.2.

Theorem 4.6 can be used to recover S2 from S1 or S1 from S2 if we know the
pseudo-similarity operator Q.

Corollary 4.8. Let Σi := (Si;Xi,U ,Y), i = 1, 2 be two pseudo-similar system nodes
with system operators Si =

[
[A&B]i
[C&D]i

]
and pseudo-similarity operator Q. Then S1

and S2 can be reconstructed from each other in the following way:

(i) S1 is the closure of the restriction of
[
Q−1 0

0 1Y

]
S2

[
Q 0
0 1U

]
to the set of all

[ x1
u ] ∈

[D(Q)
U

]
such that [Qx1

u ] ∈ D(S2) and [A&B]2 [Qx1
u ] ∈ R (Q).

(ii) S2 is the closure of the restriction of
[
Q 0
0 1Y

]
S1

[
Q−1 0

0 1U

]
to the set of all

[ x2
u ] ∈

[R(Q)
U

]
such that

[
Q−1x2
u

]
∈ D(S1) and [A&B]1

[
Q−1x2
u

]
∈ D(Q).

Proof. Because of the symmetry of the two statements it suffices to prove, for
example, (i). As we observed in the proof of Theorem 4.6, the set of conditions
imposed on [ x1

u ] in condition (ii) in that theorem is equivalent to the requirement
that [ x1

u ] belongs to the range of F1,λ|hD(Q)
U

i. By Lemma 4.5, this is equivalent to

the requirement that [Qx1
u ] belongs to the range of F2,λ|hR(Q)

U

i, and by Lemma 4.4,

this is equivalent to the set of conditions on [ x1
u ] listed in (i). By Theorem 4.6, and

since S1 is closed, S1 is a closed extension of the restriction of
[
Q−1 0

0 1U

]
S2

[
Q 0
0 1U

]
to the range of F1,λ|hD(Q)

U

i. That this is the minimal closed extension follows from

the fact that the range of F1,λ|hD(Q)
U

i is dense in D(S1) with respect to the graph

norm (because D(Q) is dense in X1, and F1,λ is a bounded bijection of
[X1
U

]
onto

D(S1)). �

Theorem 4.9. Let Σi := (Si;Xi,U ,Y), i = 1, 2 be two pseudo-similar system
nodes with system operators Si =

[
[A&B]i
[C&D]i

]
and pseudo-similarity operator Q.

Let s ∈ R and u ∈ W 2,2
loc ([s,∞);U), and let

[
x1,s

u(s)

]
∈ D(S1) with x1,s ∈ D(Q) and

[A&B]1
[
x1,s

u(s)

]
∈ D(Q). Define x2,s := Qx1,s. Then the following conclusions hold.

(i)
[
x2,s

u(s)

]
∈ D(S2), so that we can let xi and yi, i = 1, 2, be the state trajectory

and the output of Si of described in Lemma 2.3 with initial state xi,s and
input function u.

(ii) For all t ≥ s, the solutions defined in (i) satisfy
[
x1(t)
u(t)

]
∈ D(S1),

[
x2(t)
u(t)

]
∈

D(S2), x1(t), ẋ1(t) ∈ D(Q), x2(t), ẋ2(t) ∈ R (Q), and

x2(t) = Qx1(t), ẋ2(t) = Qẋ1(t), y2(t) = y1(t), t ≥ s.
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Thus, in particular, [A&B]1
[
x1(t)
u(t)

]
⊂ D(Q) and [A&B]2

[
x2(t)
u(t)

]
⊂ R (Q) for all

t ≥ s.

Proof. That (i) holds follows from Lemmas 4.4 and 4.5. Thus, we can define the
solution as explained in (i). By Lemma 2.3,

[
xi(t)
u(t)

]
∈ D(Si) and xi is continuously

differentiable in Xi for i = 1, 2.
We claim that x1(t) ∈ D(Q) and x2(t) = Qx1(t) for all t ≥ 0. To prove this

we split each of the two solutions into three parts: one where xi,s 6= 0 and u = 0,
one where xi,s = 0 and the input function is eλ(t−s)u(s), and one where xi,s = 0
and the input function is u(t)− eλ(t−s)u(s); here λ ∈ Ω∞ and i = 1, 2. In the first
case we have xi(t) = At−si xi,s, and the first intertwining condition in (33) implies
that x1(t) ∈ D(Q) and x2(t) = Qx1(t) for t ≥ s. In the second case we have

xi(t) = eλ(t−s)(1Xi
− e−λ(t−s)At−si )(λ− Âi)−1Biu(s),

and again we have x1(t) ∈ D(Q) and x2(t) = Qx1(t) for t ≥ s because of the first
condition in (33) and the third condition in (36). In the third case we have

xi(t) =
∫ 0

s−t
Â−vi Bi[u(t+ v)− eλ(t−s+v)u(s)] dv.

This is Bi applied to a function in W−1,2
c (R−;U), and by the third condition in

(33), again x1(t) ∈ D(Q) and x2(t) = Qx1(t) for t ≥ s. Adding these three special
solutions we find that the original solutions x1 and x2 satisfy x1(t) ∈ D(Q) and
x2(t) = Qx1(t) for t ≥ s.

Since both x1 and x2 = Qx1 are continuously differentiable and Q is closed,
we must have ẋ1(t) ∈ D(Q) and ẋ2(t) = Qẋ1(t) for all t ≥ s. In particular,
ẋ1(t) = [A&B]1

[
x1(t)
u(t)

]
⊂ D(Q) and ẋ2(t) = [A&B]2

[
x2(t)
u(t)

]
⊂ R (Q) for all t ≥ s.

Finally, by (42), y2(t) = y1(t) for all t ≥ s. �

Let us end this section with a short discussion of the pseudo-similarity of
two discrete-times systems, based on [AKP05]. We say that two discrete-time
systems

([
A1 B1
C1 D1

]
;X1,U ,Y

)
and

([
A2 B2
C2 D2

]
;X2,U ,Y

)
are pseudo-similar if there

is a pseudo-similarity Q : X1 ⊃ D(Q) → R (Q) ⊂ X2 such that A1D(Q) ⊂ D(Q),
R (B1) ⊂ D(Q), and

A2Q = QA1|D(Q),

C2Q = C1|D(Q),

B2 = QB1,

D2 = D1.

(45)

Theorem 4.10. Let Σi := (Si;Xi,U ,Y), i = 1, 2, be two system nodes with main
operators Ai. Let Q : X1 ⊃ D(Q) → R (Q) ⊂ X2 be a pseudo-similarity. Let Ω∞
be the component of ρ(A1)∩ ρ(A2) which contains some right half-plane. Then the
following conditions are equivalent:8

8See also [AN96, Proposition 7.9].



The Infinite-Dimensional KYP Inequality 21

(i) Σ1 and Σ2 are pseudo-similar with pseudo-similarity operator Q.
(ii) For some α ∈ C+ ∩Ω∞, the Cayley transforms of Σ1 and Σ2 with parameter

α defined by (28) are pseudo-similar with pseudo-similarity operator Q.
(iii) For all α ∈ C+ ∩Ω∞, the Cayley transforms of Σ1 and Σ2 with parameter α

are pseudo-similar with pseudo-similarity operator Q.

Proof. This follows directly from Theorem 4.2. �

Theorem 4.11. Let Σi := (Si;Xi,U ,Y), i = 1, 2, be two minimal systems with
main operators Ai, input/output maps Di, and transfer functions D̂i. Let Ω∞ be
the component of ρ(A1) ∩ ρ(A2) which contains some right half-plane. Then the
following conditions are equivalent:

(i) Σ1 and Σ2 are pseudo-similar.
(ii) The set {λ ∈ Ω∞ | D̂1(λ) = D̂2(λ)} has an interior cluster point.
(iii) D̂1(λ) = D̂2(λ) for all λ ∈ Ω∞.
(iv) D1 = D2.

Proof. If Σ1 and Σ2 are pseudo-similar, then it follows directly from Definition
4.1 that (iv) holds. By Lemma 2.4, (ii), (iii) and (iv) are equivalent. Thus, it only
remains to show that (iii) ⇒ (i).

Assume (iii). By Lemma 3.1, the Cayley transforms of Σ1 and Σ2 with param-
eter λ ∈ C+∩Ω∞ are two minimal discrete-time systems, whose transfer functions
coincide in a neighborhood of ∞. According to [Aro79, Proposition 6], these two
discrete-time systems are pseudo-similar with some pseudo-similarity operator Q.
By Theorem 4.10, Σ1 and Σ2 are pseudo-similar with the same pseudo-similarity
operator Q. �

5. H-Passive Systems

The following definition is a closely related to the corresponding definition in the
two classical papers [Wil72a, Wil72b] (Willems allows the system to be nonlinear
and his storage functions are locally bounded).

By a nonnegative operator in a Hilbert space X we mean a (possibly un-
bounded) self-adjoint operator H satisfying 〈x,Hx〉X ≥ 0 for all x ∈ D(H). If, in
addition, 〈x,Hx〉X > 0 for all nonzero x ∈ D(H), then we call H positive. The
(unique) nonnegative self-adjoint square root of such a nonnegative operator H is
denoted by

√
H.

Definition 5.1. A system node (or system) Σ := (S;X ,U ,Y) with system operator
S =

[
A&B
C&D

]
is (scattering) H-passive (or simply passive if H = 1X ) if the following

conditions hold:
(i) H is a positive operator on X . Let Q =

√
H.

(ii) If u ∈W 2,2
loc ([s,∞);U) and

[ xs

u(s)

]
∈ D(S) with xs ∈ D(Q) and A&B

[ xs

u(s)

]
∈

D(Q), then the solution x in Lemma 2.3 satisfies x(t), ẋ(t) ∈ D(Q) for all
t ≥ s, and both Qx and its derivative are continuous in X on [s,∞).
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(iii) Each solution of the type described in (ii) satisfies for all s ≤ t,

〈Qx(t), Qx(t)〉X +
∫ t

s

‖y(v)‖2Y dv ≤ 〈Qx(s), Qx(s)〉X +
∫ t

s

‖u(v)‖2U dv. (46)

If (46) holds in the form of an equality for all s ≤ t, i.e.,

〈Qx(t), Qx(t)〉X +
∫ t

s

‖y(v)‖2Y dv = 〈Qx(s), Qx(s)〉X +
∫ t

s

‖u(v)‖2U dv, (47)

then Σ is (scattering) forward H-conservative,

We denote the set of all positive operators H for which Σ is H-passive by
MΣ.

As our following theorem shows, a system is H-passive (i.e., H ∈MΣ) if and
only if it is pseudo-similar to a passive system.

Theorem 5.2. Let Σ := (S;X ,U ,Y) be a system node.
(i) If Σ is pseudo-similar to a passive system node Σ1 := (S1;X1,U ,Y) with

pseudo-similarity operator Q, then Σ is H-passive with H := Q∗Q.
(ii) Conversely, if Σ is H-passive, and if Q : X → XQ is an arbitrary pseudo-

similarity satisfying Q∗Q = H (for example, we can take XQ = X and
Q =

√
H), then Σ is pseudo-similar to a unique passive system node ΣQ =

(SQ;XQ,U ,Y), with pseudo-similarity operator Q. The system operator SQ
is the closure of the restriction of

[
Q 0
0 1Y

]
S

[
Q−1 0

0 1U

]
to the set of all [ xu ] ∈[R(Q)

U

]
such that

[
Q−1x
u

]
∈ D(S) and A&B

[
Q−1x
u

]
∈ D(Q).

Proof. Proof of (i): Under the assumption of (i) it follows from Theorem 4.9 that
conditions (ii) and (iii) in Definition 5.1 hold for the given operator Q. Define
H := Q∗Q. ThenH is a positive operator on X , and Q has the polar decomposition
Q = U

√
H, where U is a unitary operator X → X1 and D(Q) = D(

√
H) (see, e.g.,

[Kat80, pp. 334–336] or [Sta05, Lemma A.2.5]). This implies conditions (i)–(iii) in
Definition 5.1.

Proof of (ii): Suppose that Σ is H-passive, and that Q : X → XQ is an
arbitrary pseudo-similarity satisfying Q∗Q = H. Denote the main operator of Σ
by A. By condition (ii) in Definition 5.1, for each x0 ∈ X 1∩D(Q) with Ax0 ∈ D(Q)
and t ∈ R+ we can define AtQx0 := Qx(t) and (CQx0)(t) := y(t), where x(·) is the
state trajectory and CQx0 is the output function of Σ with initial state Q−1x0 and
zero input function u. In other words,

AtQx0 = QAtQ−1x0, (CQx0)(t) = CAtQ−1x0, t ∈ R+.

By (47), for all t ∈ R+, AtQ is a contraction on its domain (with the norm of
X ) into X , and CQ is a contraction from its domain (with the norm of X ) into
L2(R+;Y). Moreover, it is easy to see that AtQ, t ≥ 0, is a C0 semigroup on its
domain. Therefore, this semigroup can be extended (being densely defined and
uniformly bounded) to a C0 semigroup on X , and likewise, CQ can be extended
to a contraction mapping from all of X into L2(R+;Y).
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We next let u ∈ W 2,2(R;U) have a support which is bounded to the left.
We take some initial time s < 0 to the left of the support of u, and let x be
the state trajectory and y the output of Σ with initial state xs = 0 and input
function u. It follows from Definition 5.1 that x(0) ∈ D(Q). This permits us to
define BQu− := Qx(0) where u− = u|R− and DQu = y. Thus,

BQu = QBu, DQu = Du.

By condition (iii) in Definition 5.1, these two operators are contractions on their
domains (with the norm of L2(R;U)) into their range spaces, so by density and
continuity we can extend them to contraction operators defined on all of L2(R−,U)
and L2(R,U), respectively.

It is easy to see that the quadruple
[

AQ BQ

CQ D

]
is an L2-well-posed linear system

in the sense of [Sta05, Definition 2.2.1], i.e., that t 7→ AtQ is a C0 semigroup, that
At, BQ and CQ satisfy the intertwining conditions

AtQBQ = BQτ
t
−, CQAtQ = τ t+CQ, t ≥ 0,

where τ t− is the left-shift on L2(R−;U) and τ t+ is the left-shift on L2(R+;Y), and
that CQBQ = π+Dπ− where π− is the orthogonal projection of L2(R;U) onto
L2(R−;U) and π+ is the orthogonal projection of L2(R;Y) onto L2(R+;U) (thus,
the Hankel operator induced by D is CQBQ). This well-posed linear system is
induced by some system node ΣQ := (SQ;X ,U ,Y) (see, e.g., [Sta05, Theorem
4.6.5]). The main operator AQ of this system node is the generator of t 7→ AtQ,
the observation operator CQ is given by CQx = (CQx)(0) for x ∈ D(AQ), the
control operator BQ is determined by the fact that (B∗Qx∗) = (B∗

Qx∗)(0) for
all x∗ ∈ D(A∗Q), and the transfer function coincides with the original transfer
function D̂ on some right half-plane. We can now apply (21) and (22) with A, B,
and C replaced by AQ, BQ, and CQ, and with α ∈ ρ(AQ) to recover the system
operator SQ. The semigroup, input map, output map, and input/output map of
ΣQ coincides with the maps given above. By construction, the conditions listed in
Definition 4.1 are satisfied, i.e., Σ is pseudo-similar to ΣQ with pseudo-similarity
operator Q. Finally, it follows from condition (iii) in Definition 5.1 that ΣQ is
passive.

The explicit formula for the system operator SQ given at the end of (ii) is
contained in Corollary 4.8. �

Remark 5.3. Instead of appealing to the theory of well-posed linear systems it
is possible to prove part (ii) of Theorem 5.2 by reducing it to the corresponding
result in discrete time via the Cayley transform. The proof of Theorem 5.7 that
we give below does not use part (ii) of Theorem 5.2. In that proof we use the
Cayley transform to show that Σ is pseudo-similar to a passive system Σ√H with
similarity operator

√
H. From this result we can get the general claim in part (ii)

of Theorem 5.2 by using the polar factorization of Q.
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We denote the set of all H ∈ MΣ for which the passive system node Σ√H
defined in part (ii) of Theorem 5.2 is minimal by Mmin

Σ .
It is not difficult to show (using Lemma 2.7) that this minimality condition

is equivalent to the following two conditions:∨
λ∈ρ+∞(A)

R
(√

H(λ− Â)−1B
)

= X ,

⋂
λ∈ρ+∞(A)

N
(
C(λ−A)−1|D(

√
H)

)
= 0.

(48)

For the formulation of our next theorem we recall the definition of the re-
stricted Schur class S(U ,Y; Ω), where Ω is an open connected subset of C+:
θ ∈ S(U ,Y; Ω) means that θ is the restriction to Ω of a function in the Schur
class S(U ,Y,C+).

Theorem 5.4. Let Σ := (S;X ,U ,Y) be a system node with main operator A and
transfer function D̂. Let ρ+

∞(A) be the component of ρ(A) ∩ C+ which contains
some right half-plane.

(i) If Σ is H-passive, i.e., if H ∈MΣ, then D̂|ρ+∞(A) ∈ S(U ,Y; ρ+
∞(A)).

(ii) Conversely, suppose that Σ is minimal and that D̂|ρ+∞(A) ∈ S(U ,Y; ρ+
∞(A)).

Then Σ is H-passive for some H ∈Mmin
Σ .

Proof. Proof of (i): Suppose generalized Σ is H-passive (see Theorem 5.7). By
Theorem 5.2, Σ is pseudo-similar to a passive system Σ√H , whose transfer function
θ is a Schur function (see [AN96, Proposition 4.4] or [Sta05, Theorem 10.3.5 and
Lemma 11.1.4]). By Theorem 4.11, the transfer functions of Σ and Σ√H coincide
on the connected component of ρ(A) ∩ C+. This proves (i).

Proof of (ii): Suppose that the transfer function coincides with some Schur
function in some right half-plane. This Schur function has a minimal passive re-
alization Σ1; see., e.g., [AN96, Proposition 7.6] or [Sta05, Theorem 11.8.14]. Since
the two transfer function coincides in some right-half plane, the input/output maps
of the two minimal systems are the same, and consequently, by Theorem 4.11, Σ
and Σ1 are pseudo-similar with some pseudo-similarity Q. By Theorem 5.2, this
implies that Σ is H-passive with H = Q∗Q. The system node Σ√H in part (ii)
of Theorem 5.2 is unitarily similar to the system node Σ1 with a similarity op-
erator U obtained from the polar decomposition Q = U

√
H of Q. Thus, Σ√H is

minimal. �

Corollary 5.5. If Σ is minimal, then Mmin
Σ is nonempty if and only if MΣ is

nonempty.

Proof. This follows directly from Theorem 5.4. �

In our next theorem we shall characterize the H-passivity of a system node
Σ in terms of a solution of the generalized (continuous time scattering) KYP in-
equality.
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Definition 5.6. Let Σ := (S;X ,U ,Y) be a system node with system operator
S =

[
A&B
C&D

]
, main operator A, and control operator B, and let ρ+

∞(A) be the
component of ρ(A) ∩ C+ which contains some right half-plane. By a solution of
the generalized (continuous time scattering) KYP inequality induced by Σ we mean
a linear operator H satisfying the following conditions.

(i) H is a positive operator on X . Let Q =
√
H.

(ii) (λ−A)−1D(Q) ⊂ D(Q) for some λ ∈ ρ+
∞(A).

(iii) (λ− Â)−1BU ⊂ D(Q) for some λ ∈ ρ+
∞(A).

(iv) The operator QAQ−1, defined on its natural domain consisting of those x ∈
R (Q) for which Q−1x ∈ D(A) and AQ−1x ∈ D(Q), is closable.

(v) For all [ x0
u0 ] ∈ D(S) with x0 ∈ D(Q) and A&B [ x0

u0 ] ∈ D(Q) we have

2<〈Q[A&B] [ x0
u0 ] , Qx0〉X + ‖C&D [ x0

u0 ]‖2Y ≤ ‖u0‖2U . (49)

If H is bounded with D(H) = X , then (ii) and (iii) are redundant, and if
furthermore H−1 is bounded, then also (iv) is redundant. Thus, in this case H
is a solution of the generalized KYP inequality if and only if (49) holds for all
[ x0
u0 ] ∈ D(S). If A&B =

[
A B

]
and C&D =

[
C D

]
, and if A, B, C, D, H and

H−1 are bounded, then conditions (ii)–(iv) are satisfied and (49) reduces to the
standard KYP inequality (7).

The significance of this definition is due to the following theorem.

Theorem 5.7. Let Σ := (S;X ,U ,Y) be a system node, and let H be a positive
operator on X . Then the following two conditions are equivalent:

(i) Σ is H-passive (i.e., H ∈MΣ),
(ii) H is a solution of the generalized KYP-inequality induced by Σ.

Moreover, Σ is forward H-conservative if and only if condition (v) in Definition
5.6 holds with the inequality (49) replaced by the equality

2<〈Q[A&B] [ x0
u0 ] , Qx0〉X + ‖C&D [ x0

u0 ]‖2Y = ‖u0‖2U . (50)

In particular, Σ is passive if and only if (49) holds with Q = 1X for all
[ x0
u0 ] ∈ D(S), and it is forward conservative if and only if (50) holds with Q = 1X

for all [ x0
u0 ] ∈ D(S).

As we shall see in a moment, one direction of the proof is fairly simple (the
one which says that H-passivity of Σ implies that H is a solution of the generalized
KYP-inequality). The proof of the converse is more difficult, especially the proof
of the the validity of condition (ii) in Definition 5.1. For that part of the proof
we shall need to study the H-passivity of the corresponding discrete time system
obtained via a Cayley transform.

Following [AKP05], we call a discrete time system Σ :=
(
[ A B
C D ] ;X ,U ,Y

)
H-passive (or simply passive if H = 1X ), where H is a positive operator on X , if,
with Q :=

√
H,

AD(Q) ⊂ D(Q), BU ⊂ D(Q), (51)
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and if, for all x0 ∈ D(Q) and u0 ∈ U ,

‖Q(Ax0 + Bu0)‖2X + ‖Cx0 + Du0‖2Y ≤ ‖Qx0‖2X + ‖u0‖2U . (52)

In this case we also refer to H as a solution of the discrete time (scattering)
generalized KYP-inequality induced by Σ. If H is bounded with D(H) = X , then
(51) is redundant, and (52) is equivalent to the discrete time scattering KYP
inequality (11). In particular, passivity of Σ is equivalent to the requirement that
[ A B
C D ] is a contraction from [XU ] to

[X
Y

]
.

Lemma 5.8. Let Σ := (S;X ,U ,Y) be a system node with main operator A, and let
Σ and H satisfy conditions (i)–(iii) in Definition 5.6, with the same λ ∈ ρ+

∞(A) in
conditions (ii) and (iii). Then condition (v) in Definition 5.6 holds if and only if the
Cayley transform Σ(λ) :=

([ A(λ) B(λ)
C(λ) D(λ)

]
;X ,U ,Y

)
of Σ (with the same parameter

λ as in (ii) and (iii)) is H-passive.

Proof. Clearly, by (28), (ii) and (iii) in Definition 5.6 imply (51). Thus, to prove
the lemma it suffices to show that (49) is equivalent to (52).

According to Lemma 4.4, we have [ xu ] ∈ D(S) with x ∈ D(Q) and A&B [ xu ] ∈
D(Q) if and only if [ xu ] = Fλ

[√
2<λ 0
0 1U

]
[ x0
u0 ] for some x0 ∈ D(Q) and some u ∈ U .

Replacing [ x0
u0 ] in (49) by Fλ

[√
2<λ 0
0 1U

]
[ x0
u0 ] and using (21) and (22) we find that

(49) is equivalent to the requirement that

2<
〈
Q

[
A(λ−A)−1

√
2<λx0 + λ(λ− Â)−1Bu0

]
, Q(λ−A)−1

√
2<λx0

〉
X

+ ‖C(λ−A)−1
√

2<λx0 + D̂(λ)u0‖2Y
≤ ‖u0‖2U

(53)

for all x0 ∈ D(Q) and u ∈ U . If we here replace A(λ− A)−1 by λ(λ− A)−1 − 1X
and expand the resulting expression we get a large number of simple terms. A
careful inspection shows that we get exactly the same terms by expanding (52)
after replacing A(λ) by 2<λ(λ−A)−1 − 1X and replacing B(λ), C(λ), and D(λ)
by the expressions given in (28). Thus, (49) and (52) are equivalent. �

Proof of Theorem 5.7. Suppose that Σ isH-passive. We must show that conditions
(i)–(v) in Definition 5.6 hold. Condition (i) is the same as condition (i) in Definition
5.1. By Theorem 5.2, Σ is pseudo-similar to a system node ΣQ = (SQ;X ,U ,Y),
and (ii) and (iii) follow from Theorem 4.2 (for all λ ∈ ρ+

∞(A); see (35)). By part
(i) of Theorem 5.2, the operator QAQ−1 is closable (its closure is equal to the
main operator of ΣQ). Thus (i)–(iv) hold. Divide (46) by t − s, let t − s ↓ 0, and
use part (iii) of Definition 5.1 (and the closedness of Q) to get

2<〈Qẋ(t), Qx(t)〉X + ‖y(t)‖Y ≤ ‖u(t)‖U , t ≥ 0. (54)

Here we substitute ẋ(t) = A&B
[
x(t)
u(t)

]
and y(t) = C&D

[
x(t)
u(t)

]
and take t = 0 to

get (49) with [ x0
u0 ] replaced by

[
x(0)
u(0)

]
. Thus also (v) holds.
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Conversely, suppose that H is a solution of the generalized KYP-inequality.
Let us for the moment focus on the main operator A of S, and ignore the other
parts of Σ. By Lemma 5.8, applied to a system node with main operator A but
no input or output, the conditions (i) and (ii) imply that the Cayley transform
A(λ) of A (with the same λ as in (ii)) satisfies A(λ)D(Q) ⊂ D(Q). In particular,
we can define AQ(λ) := QA(λ)Q−1 with D(AQ(λ)) = R (Q). It follows from (v)
that AQ(λ) is a contraction from its domain (with the norm of X ) into X . Thus,
by density and continuity, AQ(λ) can be extended to a contraction on X , which
we still denote by AQ(λ).

We claim that AQ(λ) does not have −1 as an eigenvalue. By the definition
of AQ(λ) as the closure of its restriction to R (Q), this is equivalent to the claim
that if xn ∈ R (Q), xn → x in X and yn := (1X +AQ(λ))xn → 0 in X , then x = 0.
Since 1X + AQ(λ) = 2<λQ(λ−A)−1)Q−1, we have

2<λxn = (λ−QAQ−1)yn.

By (iv), the operator λ−QAQ−1 is closable. Now yn → 0 in X and 2<λxn → 2<λx
in X , so we must have x = 0. This proves that AQ(λ) does not have −1 as an
eigenvalue.

Since AQ(λ) is a contraction which does not have −1 as an eigenvalue, it
is the Cayley transform of the generator AQ of a C0 contraction semigroup AtQ,
t ≥ 0; see, e.g., [AN96, Theorem 5.2], [SF70, Theorem 8.1, p. 142], or [Sta05,
Theorem 12.3.7]. By Theorem 4.10 (applied to the situation where there is no
input or output), At, t ≥ 0, is pseudo-similar to AtQ, t ≥ 0, with pseudo-similarity
operator Q. In particular, by Theorem 4.2, condition (ii) holds for all λ ∈ ρ+

∞(A).
Since (ii) holds for all λ ∈ ρ+

∞(A), we can use the same λ in (ii) as in (iii),
and take the Cayley transform of the whole system node Σ. By Lemma 5.8, the
Cayley transform Σ(λ) :=

([
A(λ) B(λ)
C(λ) D(λ)

]
;X ,U ,Y

)
is a discrete time scattering

H-passive system. Therefore, by [AKP05, Proposition 4.2], this system is pseudo-
similar to a passive system, with pseudo-similarity operator Q =

√
H. It is easy

to see that the system operator of this contractive system must be the closure
of

[
Q−1 0

0 1Y

] [
A(λ) B(λ)
C(λ) D(λ)

] [
Q 0
0 1U

]
(cf. Corollary 4.8). Let us denote this system by

ΣQ(λ) :=
([

AQ(λ) BQ(λ)
CQ(λ) DQ(λ)

]
;X ,U ,Y

)
. As we have shown above, A(λ) does not

have −1 as an eigenvalue. This implies that ΣQ(λ) is the Cayley transform with
parameter λ of a scattering passive system node ΣQ; see, e.g., [AN96, Theorem
5.2] or [Sta05, Theorem 12.3.7]. By Theorem 4.10, Σ and ΣQ are pseudo-similar
with pseudo-similarity operator Q. It then follows from Theorem 4.9 that condi-
tion (ii) in Definition 5.1 holds. Moreover,

[
x(t)
u(t)

]
∈ D(S) with x(t) ∈ D(Q) and

A&B
[
x(t)
u(t)

]
∈ D(Q) for all t ≥ 0. Therefore, by (49), (54) holds for all t ≥ 0.

Integrating this inequality over the interval [s, t] we get (46). �

It is possible to replace conditions (ii) and (iv) in Definition 5.6 by another
equivalent condition, which can be formulated as follows.
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Proposition 5.9. The positive operator H is a solution of the generalized KYP-
inequality if and only if, in addition to conditions (i), (iii), and (v) in Definition
5.6, the following condition holds:
(ii′) AtD(Q) ⊂ D(Q) for all t ∈ R+, and the function t 7→ QAtx0 is continuous

on R+ (with values in X ) for all x0 ∈ D(Q),
where At, t ≥ 0, is the semigroup on Σ.

Proof. The necessity of (ii′) follows from Theorem 5.7 and condition (ii) in Def-
inition 5.1 (the trajectory x is given by x(t) = Atx0 when u = 0). Conversely,
if (ii′) holds, then we obtain a C0 semigroup AtQ, t ≥ 0, in the same way as we
did in the proof of the part (ii) of Theorem 5.2. By repeating the final part of
the argument in the proof of the converse part of Theorem 5.7 we find that Σ
is H-passive, and by the direct part of the same theorem, H is a solution of the
generalized KYP-inequality. �

Corollary 5.10. Let Σ := (S;X ,U ,Y) be a system node, let H be a positive operator
on X , and let Q =

√
H. Then the following three conditions are equivalent:

(i) Σ is H-passive,
(ii) For some λ ∈ ρ+

∞(A), the Cayley transform
([ A(λ) B(λ)

C(λ) D(λ)

]
;X ,U ,Y

)
of Σ with

parameter λ is H-passive, and the closure of the operator Q−1A(λ)Q does
not have −1 as an eigenvalue.

(iii) For all λ ∈ ρ+
∞(A), the Cayley transform

([ A(λ) B(λ)
C(λ) D(λ)

]
;X ,U ,Y

)
of Σ with

parameter λ is H-passive, and the closure of the operator Q−1A(λ)Q does
not have −1 as an eigenvalue.

In particular, when these conditions hold, then conditions (ii) and (iii) in Defini-
tion 5.6 hold for all λ ∈ ρ+

∞(A).

Proof. As we saw in the first part of the proof of Theorem 5.7, if Σ is H-passive,
then conditions (ii) and (iii) in Definition 5.6 hold for all λ ∈ ρ+

∞(A). We also
observed in the proof of Theorem 5.7 that condition (iv) in Definition 5.6 holds
if and only if the closure of the operator Q−1A(λ)Q does not have −1 as an
eigenvalue. This, combined with Lemma 5.8, implies (iii). Trivially, (iii) ⇒ (ii).
That (ii) ⇒ (i) was established in the proof of the converse part of Theorem
5.7. �

In our next theorem we compare solutions H ∈Mmin
Σ to each other by using

the partial ordering of nonnegative self-adjoint operators on X : if H1 and H2 are
two nonnegative self-adjoint operators on the Hilbert space X , then we write H1 �
H2 whenever D(H1/2

2 ) ⊂ D(H1/2
1 ) and ‖H1/2

1 x‖ ≤ ‖H1/2
2 x‖ for all x ∈ D(H1/2

2 ).
For bounded nonnegative operators H1 and H2 with D(H2) = D(H1) = X this
ordering coincides with the standard ordering of bounded self-adjoint operators.

Theorem 5.11. Let Σ := (S;X ,U ,Y) be a minimal system node with transfer
function D satisfying the condition D|ρ+∞(A) ∈ S(U ,Y; ρ+

∞(A)). Then Mmin
Σ is
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nonempty, and it contains a minimal element H◦ and a maximal element H•, i.e.,

H◦ � H � H•, H ∈Mmin
Σ .

Proof. By Theorem 5.4, under the present assumption the set Mmin
Σ is nonempty.

We map both Σ and the pseudo-similar system Σ√H into discrete time via the
Cayley transform with some parameter λ ∈ ρ+

∞(A). By Proposition 5.10, H is a
solution of the corresponding discrete time generalized KYP inequality, and by
Lemma 3.1, the image Σ√

H of Σ√H under the Cayley transform is minimal. We
denote the discrete version of Mmin

Σ by Mmin
Σ . According to [AKP05, Theorem 5.11

and Proposition 5.15], the set Mmin
Σ has a minimal solution H◦ and a maximal

solution H•. The passivity and minimality of Σ√
H implies that the main operator

of Σ√
H cannot have any eigenvalues with absolute value one, and in particular,

it cannot have −1 as an eigenvalue. As we saw in the proof of Theorem 5.7, this
condition is equivalent to condition (iv) in Definition 5.6 with Q =

√
H. Thus, due

to the extra minimality condition on Σ√H , there is a one-to-one correspondence
between the solutions H of the continuous time generalized KYP-inequality and
the discrete time generalized KYP-inequality, and the conclusion of Theorem 5.11
follows from [AKP05, Theorem 5.11 and Proposition 5.15]. �

The two extremal storage functions EH◦ and EH• correspond to Willems’
[Wil72a, Wil72b] available storage and required supply, respectively. See [Sta05,
Remark 11.8.11] for details.

We remark that if Σ = (S;X ,U ,Y) is a minimal passive system, then Mmin
Σ

is nonempty and H◦ � 1X � H• (since 1X ∈ Mmin
Σ ). In particular, both H◦ and

H−1
• are bounded.

We end this section by studying how H-passivity of a system is related to
H̃-passivity of its adjoint.

Theorem 5.12. The system Σ = (S;X ,U ,Y) is H-passive if and only if the adjoint
system Σ∗ = (S∗;X ,Y,U) is H−1-passive.

Proof. It suffices to prove this in one direction since (Σ∗)∗ = Σ. Suppose that Σ
is H-passive. Choose some α ∈ ρ(A), where A is the main operator of Σ. Then,
by Proposition 5.10, the Cayley transform Σ(α) :=

([
A(α) B(α)
C(α) D(α)

]
;X ,U ,Y

)
of Σ

is H-passive, and −1 is not an eigenvalue of the closure AQ(λ) of Q−1A(λ)Q. By

[AKP05, Proposition 4.6], the adjoint system Σ(α)∗ :=
([

A(α)∗ C(α)∗

B(α)∗ D(α)∗

]
;X ,Y,U

)
of Σ is H−1-passive. The operator AQ(λ) is a contraction which does not have
−1 as an eigenvalue, and hence −1 is not an eigenvalue of AQ(λ)∗, which is the
closure of QA(λ)∗Q−1. The Cayley transform of Σ∗ with parameter α ∈ ρ(A∗) is
equal to Σ(α)∗, and by Proposition 5.10, Σ∗ is H−1-passive. �

Theorem 5.13. Let Σ = (S;X ,U ,Y) be a system node. Then
(i) H ∈MΣ if and only if H−1 ∈MΣ∗ ,
(ii) H ∈Mmin

Σ if and only if H−1 ∈Mmin
Σ∗ .
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Proof. Assertion (i) is a reformulation of Theorem 5.12. The second assertion
follows from the fact that the system Σ√H is minimal if and only if (Σ√H)∗ is
minimal (see Lemma 2.6), and (Σ√H)∗ = (Σ∗)√H−1 . �

Lemma 5.14. Let Σ = (S;X ,U ,Y) be a minimal system node which is self-adjoint
in the sense that Σ = Σ∗ = (S∗;X ,Y,U) (in particular, U = Y). If MΣ is
nonempty, then H◦ = H−1

• .

Proof. By Theorem 5.12 and the fact that Σ is self-adjoint, H ∈ Mmin
Σ if and

only if H−1 ∈ Mmin
Σ . The inequality H−1 � H• for all H ∈ Mmin

Σ implies that
H−1
• � H (see [AKP05, Proposition 5.4]). In particular H−1

• � H◦. But we also
have the converse inequality H◦ � H−1

• since H−1
• ∈ Hmin

Σ . Thus, H◦ = H−1
• . �

The identity H◦ = H−1
• implies, in particular, that H◦ � H−1

◦ . It is not
difficult to see that this implies that H◦ � 1X � H•. However, we can say even
more in this case.

Proposition 5.15. Let Σ = (S;X ,U ,Y) be a minimal system node for which MΣ is
nonempty and H◦ = H−1

• . Then Σ is passive, i.e., 1X ∈Mmin
Σ .

Proof. This follows from [Sta05, Theorem 11.8.14]. �

Definition 5.16. A minimal passive system Σ with the property that H◦ = H−1
• is

called a passive balanced system.9

This is equivalent to [Sta05, Definition 11.8.13]. According to [Sta05, Theorem
11.8.14], every Schur function θ has a passive balanced realization, and it is unique
up to unitary similarity.

We define H� ∈ Mmin
Σ to be a balanced solution of the generalized KYP

inequality (49) if the system Σ√
H�

constructed from H� is a passive balanced
system in the sense of Definition 5.16. Thus, if Σ is minimal and MΣ is nonempty,
then the generalized KYP inequality has a least one balanced solution H�, and all
the systems Σ√

H�
obtained from these balanced solutions are unitarily similar.

6. H-Stability

The possible unboundedness of H and H−1 where H is a solution of the general-
ized KYP inequality (49) has important consequences for the stability analysis of
Σ. Indeed, in the finite-dimensional setting it is sufficient to prove stability with
respect to the storage function EH defined in (3) in order to get stability with re-
spect to the original norm in the state space, since all norms in a finite-dimensional
space are equivalent. This is not true in the infinite-dimensional setting unless H

9We call this realization ‘passive balanced’ in order to distinguish it from other balanced real-
izations, such as Hankel balanced and LQG balanced realizations.
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and H−1 are bounded. Taking into account that H and H−1 may be unbounded
we replace the definition of EH given in (3) by

EH(x) = 〈
√
Hx,

√
Hx〉, x ∈ D(

√
H). (55)

In this more general setting stability with respect to one storage function EH1 is
not equivalent to stability with respect to another storage function EH2 . Moreover,
the natural norm to use for the adjoint system is the one obtained from EH−1

instead of EH , taking into account that H is a solution of the generalized KYP
inequality (49) if and only if H̃ = H−1 is a solution of the adjoint generalized
KYP inequality.

Definition 6.1. Let H be a positive operator in a Hilbert space X , and let t 7→ At,
t ≥ 0, be a C0 semigroup in X . Then t 7→ At, t ≥ 0, is called

(i) strongly H-stable, if AtD(H1/2) ⊂ D(H1/2) for all t ≥ 0 and

lim
t→∞

‖H1/2Atx‖ → 0 for all x ∈ D(H1/2),

(ii) strongly H-∗-stable, if (At)∗R
(
H1/2

)
⊂ R

(
H1/2

)
for all t ≥ 0 and

lim
t→∞

‖H−1/2(At)∗x∗‖ → 0 for all x∗ ∈ R
(
H1/2

)
,

(iii) strongly H-bistable if both (i) and (ii) above hold.

Theorem 6.2. Let Σ := (S;X ,U ,Y) be a minimal system node with transfer func-
tion D satisfying the condition D|ρ+∞(A) = θ|ρ+∞(A) for some θ ∈ S(U ,Y; C+). Let
H◦, H•, and H� be the minimal, the maximal, and a balanced solution in Mmin

Σ

of the generalized KYP inequality. Let t 7→ At, t ≥ 0, be the evolution semigroup
of Σ. Then the following claims are true:

(i) t 7→ At is strongly H◦-stable if and only if the factorization problem

ϕ(λ)∗ϕ(λ) = 1U − θ(λ)∗θ(λ) a.e. on iR (56)

has a solution ϕ ∈ S(U ,Yϕ; C+) for some Hilbert space Yϕ.
(ii) t 7→ At is strongly H•-∗-stable if and only if the factorization problem

ψ(λ)ψ(λ)∗ = 1Y − θ(λ)θ(λ)∗ a.e. on iR (57)

has a solution ψ ∈ S(Uψ,Y; C+) for some Hilbert space Uψ.
(iii) t 7→ At is strongly H�-bistable if and only if both the factorization problems

in (i) and (ii) are solvable.

In the case where H is the identity we simply call t 7→ At strongly stable,
strongly ∗-stable, of strongly bi-stable.

Proof of Theorem 6.2. The proofs of all these claims are very similar to each other,
so we only prove (i), and leave the analogous proofs of (ii) and (iii) to the reader.

We start by replacing the original system by the passive system Σ√H◦ . This
system is strongly stable if and only if Σ is strongly H◦-stable. We map Σ√H◦
into a discrete time system Σ by using the Cayley transform. It is easy to see
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that Σ is optimal in the sense of [AS05a] (i.e., it has the weakest norm among all
passive minimal realizations of the same transfer function). By [SF70, Corollary,
p. 149] or [Sta05, Theorem 12.3.10], the main operator A of Σ is strongly stable
(i.e., A ∈ C0• in the terminology of [SF70]) if and only if the evolution semigroup
of Σ√H◦ is strongly stable, i.e., t 7→ At is strongly H◦-stable. By [AS05a, Lemma
4.4], A is strongly stable if and only if the discrete time analogue of (56) where
C+ is replaced by the unit disk and θ is replaced by θ((α − αz)/(1 + z)) has
a solution (see (29)). But these two factorization problems are equivalent since
z 7→ (α − αz)/(1 + z)) is a conformal mapping of the unit disk onto the right
half-plane. This proves (i). �

7. An Example

In this section we present two examples based on the heat equation on a semi-
infinite bar. Both of these are minimal systems with the same transfer function
θ satisfying the conditions of Theorem 5.4 (so that the the KYP inequality has
a generalized solution). The first example is exponentially stable, but H• is un-
bounded and H◦ has an unbounded inverse. In the second example all H ∈Mmin

Σ

are unbounded.
We consider a damped heat equation on R+ with Neumann control and

Dirichlet observation, described by the system of equations

Tt(t, ξ) = Tξξ(t, ξ)− αT (t, ξ), t, ξ ≥ 0,

Tξ(t, 0) = −u(t), t ≥ 0,

T (t, 0) = y(t), t ≥ 0,

T (0, ξ) = x0(ξ), ξ ≥ 0.

(58)

Here we suppose that the damping coefficient α satisfies α ≥ 1. The state space
X of the standard realization Σ(S;X ,C,C) of this system is X = L2(R+). We
interpret T (t, ξ) as a function t 7→ x(t), where x(t) ∈ X is the function ξ 7→ T (t, ξ),
and define the system operator S =

[
A&B
C&D

]
as follows. We take the main operator

to be (Ax)(ξ) = x′′(ξ) − αx(ξ) for x ∈ D(A) := {x ∈ W 2,2(R+) | x′(0) = 0}. We
take the control operator to be (Bc) = δ0c, c ∈ C, where δ0 is the Dirac delta at
zero. We define D(S) to consist of those [ xc ] ∈ [XC ] for which x is of the form

x(ξ) = x(0) + cξ +
∫ ξ

0

∫ η

0

h(ν) dν dη

for some h ∈ L2(R+), and define [A&B] [ xc ] = h− αx and [C&D] [ xc ] = x(0).
This realization is unitarily similar to another one that we get by applying the

Fourier cosine transform to all the vectors in the state space. The Fourier cosine
transform is defined by x̃(ω) =

√
2/π

∫∞
0

cos(ωξ)x(ξ) dξ for x ∈ L1(R+)∩L2(R+),
and it can be extended to a unitary and self-adjoint map of L2(R+) onto itself (so
that it is its own inverse). Let us denote the Fourier cosine transform of T (t, ξ)
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and x0(ξ) with respect to the ξ-variable by T̃ (t, ω) and x̃0(ω), respectively. Then
T̃ (t, ω) satisfies the following set of equations:

T̃t(t, ω) = −(ω2 + α)T̃ (t, ω) +
√

2/π u(t), t, ω ≥ 0,

y(t) =
√

2/π
∫ ∞

0

T̃ (t, ω) dω, t ≥ 0,

T̃ (0, ω) = x̃0(ω), ω ≥ 0.

(59)

The system operator S0 =
[

[A&B]0
[C&D]0

]
of the similarity transformed system Σ0 =

(S0;X ,C,C) is the following. The state space is still X = L2(R+). The main
operator is (A0x̃)(ω) = −(ω2 + α)x̃(ω) for x̃ ∈ D(A0) := {x̃ ∈ X | A0x̃ ∈ X}, and
the control operator is (B0c)(ω) =

√
2/πc, ω ≥ 0, for c ∈ C. The domain D(S0)

consists of those [ x̃c ] ∈ [XC ] for which
(
ω 7→ −(ω2 + α)x̃(ω) +

√
2/π c

)
∈ X , and

[A&B]0 and [C&D]0 are defined by [A&B]0 [ x̃c ] (ω) = −(ω2 + α)x̃(ω) +
√

2/π c,
and [C&D]0 [ xc ] =

√
2/π

∫∞
0
x̃(ω) dω for [ x̃c ] ∈ D(S0). The evolution semigroup is

given by (At0x̃)(ξ) = e−(ω2+α)tx̃(ω), t, ξ ≥ 0, and consequently, it is exponentially
stable. From this representation it is easy to compute the transfer function: it is
given for all λ ∈ ρ(A0) = C \ (−∞,−α] by

D̂(λ) = [C&D]0

[
(λ− Â0)−1B0

1U

]
=

2
π

∫ ∞

0

dω

λ+ α+ ω2
=

1√
λ+ α

.

In particular, D̂ ∈ S(C+), since we assume that α ≥ 1. The corresponding impulse
response is b(t) = 1√

π
t−1/2e−αt, t ≥0. It is easy to see that Σ0 is minimal, hence so

is Σ. Moreover, Σ0 is exponentially stable, and it is self-adjoint in the sense that
Σ0 coincides with its adjoint Σ∗0. Therefore, by Lemma 5.14 and Definition 5.16,
Σ0 is passive balanced. In particular, it is passive.

It is possible to apply Theorem 6.2 with θ(λ) = 1/
√
λ+ α to this example. In

this case both factorization problems (i) and (ii) in that theorem coincide, and they
are solvable. Consequently, the evolution semigroup t 7→ At is strongly H◦-stable,
strongly H•-∗-stable, and strongly H�-bistable (and even exponentially H�-stable
in this case). Nevertheless, t 7→ At is not strongly H◦-∗-stable or strongly H•-
stable. This follows from the fact that θ does not have a meromorphic pseudo-
continuation into the left half-plane (see [AS05a] for details).

A closer look at the preceding argument shows that in this example H• =
H−1
◦ must be unbounded. This is equivalent to the claim that

√
H• and

√
H◦ are

not ordinary similarity transforms in X (since Σ0 is passive H◦ = H−1
• must

be bounded). Indeed, they can not be similarity transforms since the different
semigroups have different stability properties.

In our second example we use a different method to realize the same impulse
response b(t) = 1√

π
t−1/2e−αt, t ≥ 0, with transfer function θ(λ) = 1/

√
λ+ α,
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λ ∈ C+, namely an exponentially weighted version of one of the standard Hankel
realizations (we still take α ≥ 1 so that θ is a Schur function). We begin by
first replacing θ by the shifted function θ1(λ) := 1/

√
λ+ α+ 1, λ ∈ C+. The

corresponding impulse response is b1(t) = 1√
π
t−1/2e−(1+α)t, t ≥ 0. We realize

θ1 by means of the standard time domain output normalized shift realization
described in, e.g., [Sta05, Example 2.6.5(ii)], and we denote this realization by
Σ1 := (S1;X ,C,C). The state space of this realization is X = L2(R+) and the
system operator S1 =

[
[A&B]1
[C&D]1

]
is defined as follows. We take the main operator

to be (A1x)(ξ) = x′(ξ) for x ∈ D(A1) := W 2,1(R+). Then X−1 = W−1,2(R+), and
Â1x is the distribution derivative of x ∈ L2(R+). We take the control operator
to be (B1c)(ξ) = b1(ξ)c for c ∈ C. We define D(S1) to consist of those [ xc ] for
which x ∈ L2(R+) is of the form x(ξ) = x(0) +

∫ ξ
1
h(ν) dν − c

∫ ξ
1
b1(ν) dν for some

h ∈ L2(R+), and define [A&B]1 [ xc ] = h and [C&D]1 [ xc ] = x(0). This realization
is output normalized in the sense that the observability Gramian is the identity,
and it is minimal because the range of the Hankel operator induced by b1 is dense
in L2(R+) (see [Fuh81, Theorem 3-5, p. 254]). The evolution semigroup t 7→ At1 is
the left-shift semigroup on L2(R+), i.e., (At1x)(ξ) = x(t+ ξ) for t, ξ ≥ 0, and the
spectrum of A1 is the closed left half-plane {<λ ≤ 0}. From this realization we
get a minimal realization Σ2 := (S2;X ,C,C) of the original transfer function θ by
taking S1 = S1+

[
1X 0
0 0

]
. Clearly the spectrum of the main operator A2 := A1+1X

is the closed half-plane {<λ ≤ 1}, the evolution semigroup t 7→ At2, given by
(At2x)(ξ) = etx(t + ξ) for t, ξ ≥ 0, is unbounded, and the transfer function D2 is
the restriction of θ to the half-plane <λ > 1.

Since θ|C+ is a Schur function, it follows from Theorem 5.4 that the gener-
alized KYP inequality (49) has a solution H. Suppose that both H and H−1 are
bounded. Then our original realization becomes passive if we replace the original
norm by the norm induced by the storage function EH . In particular, with respect
to this norm the evolution semigroup is contractive. However, this is impossible
since we known that the semigroup is unbounded with respect to the original
norm, and the two norms are equivalent. This contradiction shows that H or H−1

is unbounded. In this particular case it follows from [Sta05, Theorems 9.4.7 and
9.5.2] that if H ∈Mmin

Σ , then H−1 is bounded, hence H itself must be unbounded.

From the above example we can get another one where both H and H−1

must be unbounded for every H ∈ Mmin
Σ as follows. We take two independent

copies of the transfer function θ considered above, i.e, we look at the matrix-
valued transfer function

[
θ(λ) 0

0 θ(λ)

]
. We realize this transfer function by taking two

independent realizations of the two blocks, so that we realize one of them with the
exponentially weighted output normalized shift realization described above, and
the other block with the adjoint of this realization. This will force both H and
H−1 to be unbounded for every H ∈MmineΣ , where Σ̃ is the combined system.
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FIN-20500 Åbo, Finland
e-mail: http://www.abo.fi/~staffans/


