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The Infinite-Dimensional Continuous Time
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Abstract. We study the set Msx of all generalized positive self-adjoint so-
lutions (that may be unbounded and have an unbounded inverse) of the
KYP (Kalman—Yakubovich-Popov) inequality for a infinite-dimensional lin-
ear time-invariant system ¥ in continuous time with scattering supply rate.
It is shown that if My is nonempty, then the transfer function of 3 coincides
with a Schur class function in some right half-plane. For a minimal system
the converse is also true. In this case the set of all H € My with the property
that the system is still minimal when the original norm in the state space
is replaced by the norm induced by H is shown to have a minimal and a
maximal solution, which correspond to the available storage and the required
supply, respectively. The notions of strong H-stability, H-x-stability and H-
bistability are introduced and discussed. We show by an example that the
various versions of H-stability depend crucially on the particular choice of
H € Ms. In this example, depending on the choice of the original realization,
some or all H € Mx will be unbounded and/or have an unbounded inverse.
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1. Introduction

Linear finite-dimensional time-invariant systems in continuous time are typically
modeled by the equations

y(t) = Ca(t) + Dult), t>s, (1)

on a triple of finite-dimensional vector spaces, namely, the input space U, the state
space X, and the output space J. We have u(t) € U, z(t) € X and y(t) € V. We
are interested in the case where, in addition to the dynamics described by (1), the
components of the system satisfy an energy inequality. In this paper we shall use
the scattering supply rate

) = Nl = gl = (131, [ 9,7 151) (2)

and the storage (or Lyapunov) function
En() = (x, Ha), 3)
where H > 0 (i.e., Eg(x) > 0 for  # 0). A system is scattering H-passive (or

simply scattering passive if H = 1y) if for any admissible data (zg,u(:)) the
solution of the system (1) satisfies the condition

S Ba(a(t) < j(u(t),y(1)) ae. on (5,00). (1
This inequality is often written in integrated form
En(x(t)) — En(z(s)) < / i(u(v),y(v)) dv, s <t (5)

It is not difficult to see that the inequality (4) with supply rate (2) is equivalent
to the inequality

2R(Ax + Bu, Hz) + ||Cx + Dul|* < |Jul?, z € X,u €U, (6)
which is usually rewritten in the form

HA+A*H+C*C HB+C*D <0 (7)
B*H + D*C D*D—1y | —

This is the standard KYP (Kalman—Yakubovich-Popov) inequality for continuous
time and scattering supply rate. If R := 15y — D*D > 0, then (7) is equivalent to
the Riccati inequality

HA+ A*H +C*C + (B*H + D*C)*R™Y(B*H + D*C) < 0. (8)

This inequality is often called the bounded real Riccati inequality when all the
matrices are real. There is a rich literature on the finite-dimensional version of this
inequality and the corresponding equality; see, e.g., [PAJ91], [ITW93], and [LR95],
and the references mentioned there. This inequality is named after Kalman [Kal63],
Popov [Pop61], and Yakubovich [Yak62].
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In the development of the theory of absolute stability (or hyperstability)
of systems which involve nonlinear feedback those linear systems which are H-
passive with respect to scattering supply rate are of special interest, especially in
H*°-control. One of the main problems is to find conditions on the coefficients A,
B, C, and D under which the KYP inequality has at least one solution H > 0.

To formulate a classical result about the solution of this problem we introduce
the main frequency characteristic of the system (1), namely its transfer function
defined by

DN\ =D+C\—A)'B, A € p(A). (9)

We also introduce the Schur class S(U,Y;CT) of holomorphic contractive func-
tions © defined on C* := {\ € C| R\ > 0} with values in B(U,Y). If X, U, and Y
are finite-dimensional, then the transfer function is rational and dim X > deg®,
where deg ® is the MacMillan degree of ©. A finite-dimensional system is minimal
if dim X = deg®. The state space of a minimal system has the smallest dimension
among all systems with the same transfer function .

The (finite-dimensional) system (1) is controllable if, given any zy € X and
T > 0, there exists some continuous function w on [0,7] such that the solution
of (1) with x(0) = 0 satisfies z(T") = zo. It is observable if it has the following
property: if both the input function uw and the output function y vanish on some
interval [0,T] with T' > 0, then necessarily the initial state z is zero.

Theorem 1.1 (Kalman). A finite-dimensional system is minimal if and only if it
is controllable and observable.

Theorem 1.2 (Kalman—Yakubovich-Popov). Let ¥ = ([4 B]; X, U, ) be a finite-
dimensional system with transfer function ©.

(i) If the KYP inequality (7) has a solution H > 0, i.e., if ¥ is scattering H-
passive for some H > 0, then Ct C p(A) and D|c+ € SU,Y;CT).

(ii) If ¥ is minimal and D|c+ € SU,Y;CT), then the KYP inequality (7) has a
solution H, i.e., ¥ is scattering H-passive for some H > 0.

Here @|q, is the restriction of D to 2 C p(A). In the engineering literate this
theorem is known under the name bounded real lemma (in the case where all the
matrices are real).

It is can be shown that H > 0 is a solution of (7) if and only if H = H~' is
a solution of the the dual KYP inequality

HA*+ AH + BB* HC*+ BD <o (10)
CH + DB* DD* — 1y
The discrete time scattering KYP inequality is given by
A*HA+C*C-H A*HB+C*D <0 (11)
B*HA+ D*C D*D+B*HB — 1y| —
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The corresponding Kalman—Yakubovich-Popov theorem is still valid with CT re-
placed by DT = {z € C | |z| > 1} and with the transfer function defined by the
same formula (9).!

In the seventies the classical results on the KYP inequalities were extended to
systems with dim X = oo by V. A. Yakubovich and his students and collaborators
(see [Yak74, Yak75, LY76] and the references listed there). There is now also a rich
literature on this subject; see, e.g., the discussion in [Pan99] and the references
cited there. However, as far as we know, in these and all later generalizations it
was assumed (until [AKPO5]) that either H itself is bounded or H~! is bounded.’
This is not always a realistic assumption. The operator H is very sensitive to the
choice of the state space X and its norm, and the boundedness of H and H~*
depend entirely on this choice. By allowing both H and H~' to be unbounded
we can use an analogue of the standard finite-dimensional procedure to determine
whether a given transfer function 6 is a Schur function or not, namely to choose an
arbitrary minimal realization of 0, and then check whether the KYP inequality (7)
has a positive (generalized) solution. This procedure would not work if we require
H or H~! to be bounded, because Theorem 5.4 below is not true in that setting.
We shall discuss this further in Section 7 by means of an example.

A generalized solution of the discrete time KYP inequality (11) that permits
both H and H~! to be unbounded was developed by Arov, Kaashoek and Pik in
[AKPO5]. There it was required that

AD(VH) c D(VH) and R (B) ¢ D(VH), (12)

and (11) was rewritten using the corresponding quadratic form defined on D(v'H)®
U. Here we extend this approach to continuous time.

In this paper we only study the scattering case. Similar results are true in
the impedance and transmission settings, as can be shown by using the technique
developed in [AS05¢, AS05d]. We shall return to this question elsewhere. We shall
also return elsewhere with a discussion of the connection between the generalized
KYP inequality and solutions of the algebraic Riccati inequality and equality, and
a with an infinite-dimensional version of the strict bounded real lemma.

A summary of our results have been presented in [AS05b].

Acknowledgment. We gratefully acknowledge useful discussions with M. A.
Kaashoek on the discrete time version of the generalized KYP inequality.

Notation. The space of bounded linear operators from the Hilbert space X to
the Hilbert space ) is denoted by B(X;)), and we abbreviate B(X; X) to B(X).
The domain of a linear operator A is denoted by D(A), the range by R (A4), the
kernel by A/ (A), and the resolvent set by p(A). The restriction of a linear operator
A to some subspace Z C D(A) is denoted by A|z. Analogously, we denote the
restriction of a function ¢ to a subset 2 of its original domain by ¢|q. The identity

1This is the standard “engineering” version of the transfer function. In the mathematical litera-
ture one usually replace A by 1/z and DT by the unit disk D= {2z € C | |2| < 1}.

2Results where H 1 is bounded are typically proved by replacing the primal KYP inequality by
the dual KYP inequality (10).
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operator on X is denoted by 1. We denote the orthogonal projection onto a closed
subspace Y of a space X by Py.

The orthogonal cross product of the two Hilbert spaces X and ) is denoted by
[], and we identify a vector [§] € [¥] with z € X and a vector [§] € [$] with
y € Y. The closed linear span or linear span of a sequence of subsets R,, C X where
n runs over some index set A is denoted by V,eafR,, and span,,c Ry, respectively.

By a component of an open set 2 C C we mean a connected component of Q.

We denote R = (—o0,0), Rt = [0,00), and R~ = (—o0,0]. The complex
plane is denoted by C, and CT = {\ € C | R\ > 0}.

2. Continuous Time System Nodes

In discrete time one always assumes that A, B, C, and D are bounded operators.
In continuous time this assumption is not reasonable. Below we will use a natural
continuous time setting, earlier used in, e.g., [AN96], [MSWO05], [Sal89], [Smu86],
and [Sta05] (in slightly different forms).

In the sequel, we think about the block matrix S = [é 51 as one single closed
(possibly unbounded) linear operator from [¥] (the cross product of X and U) to
[5] with dense domain D(S) C [], and write (1) in the form

=5 [m(t)] , t>s, x(s) = as. (13)

[Jb(t)]

y(t) u(t)

In the infinite-dimensional case such an operator S need not have a four block
decomposition corresponding to the decompositions [5 | and [i,(] of the domain

and range spaces. However, we shall throughout assume that the operator
Ax = PXS [fﬂ 5
e D(A) = {a € X | [§] € D(S)},

is closed and densely defined in X (here Py is the orthogonal projection onto X).
We define X! := D(A) with the graph norm of A, X! := D(A*) with the graph
norm of A*, and let X! to be the dual of X! when we identify the dual of X
with itself. Then X' ¢ X C X~! with continuous and dense embeddings, and the
operator A has a unique extension to an operator A = (A*)* € B(X;X~!) (with
the same spectrum as A), where we interpret A* as an operator in B(X}; X).3
Additional assumptions on A will be added in Definition 2.1 below.

The remaining blocks of S will be only partially defined. The ‘block’ B will
be an operator in B(U; X~1). In particular, it may happen that R (B)N X = {0}.
The ‘block’ C will be an operator in B(X*;Y). We shall make no attempt to define
the ‘block’ D in general since this can be done only under additional assumptions
(see, e.g., [Sta05, Chapter 5] or [Wei94a, Wei94b]). Nevertheless, we still use a
modified block notation S = [A4¥5 ], where A&B = Py S and C&D = Py.

(14)

3This construction is found in most of the papers listed in the bibliography (in slightly different
but equivalent forms), including [AN96], [MSWO05], and [Sal87]-[WT03].
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Definition 2.1. By a system node we mean a colligation ¥ := (S; X,U,Y), where

X, U and Y are Hilbert spaces and the system operator S = [ A¢B | is a (possibly

unbounded) linear operator from [Y] to [5] with the following properties:

(i) S is closed.
(ii) The operator A defined in (14) is the generator of a Cy semigroup t — 2,
t>0,on X. R
(iii) A&B has an extension [A B] € B([}]; X™!) (where B € B{U; X™1)).
(iv) D(S) = {[Z] € [X] | Az + Bu e X}, and A&B = [A B] |p(s);

As we will show below, (ii)—(iv) imply that the domain of S is dense in [7}]. It
is also true that if (ii)—(iv) holds, then (i) is equivalent to the following condition:

(v) C&D € B(D(S);)), where we use the graph norm
2|2 212

of A&B on D(S).

It is not difficult to see that the graph norm of A&B on D(S) is equivalent to the
full graph norm

[Elllps) = 1A&B 2[5 + IC&D (1[5, + Il + lul? (16)

of S.

We call A € B(XY; X) the main operator of ¥, t — A, t > 0, is the evolution
semigroup, B € B(U;X~1) is the control operator, and C&D € B(V;Y) is the
combined observation/feedthrough operator. From the last operator we can extract
C € B(X1;Y), the observation operator of X, defined by

Cx :=C&D B] , re Xt (17)
A short computation shows that for each o € p(A), the operator
_[x (a-A)7'B
E, = [ 0 1y (18)
is a bounded bijection from [{¥] onto itself and also from [¥'] onto D(S). In
particular, for each u € U there is some x € X such that [&] € D(S). Since [{{1]

is dense in [ Y], this implies that also D(S) is dense in [} ]. Since the second column
of E, maps U into D(S), we can define the transfer function of S by

(A—A)'B

D(\) := C&D { i

} L aep), (19)

which is an B(U; V)-valued analytic function. If B € B(U; X), then D(S) = [} ],

and we can define the operator D € B(U;Y) by D = PyS| 0] after which formula
u
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(19) can be rewritten in the form (9). By the resolvent identity, for any two «,

B € p(A),

)

(@) =D(B) =Clla— A~ — (8- A)7'|B
= (8- a)C(a—A)~' (3 - A)7'B.

re= (5 u)-foS) (21)

_ [W —OA>_1 (“‘@_13} . aep(A).

Then, for all & € p(A), F, is a bounded bijection from [;¥] onto D(S), and

e T AR
( ) (@)

One way to construct a system operator S = [égg} is to give a generator A

of a Cy semigroup on X, a control operator B € B(U; X~1), and an observation
operator C' € B(X;)), to fix some o € p(A) and an operator D, € B(U;)), to
define D(S) and A& B by (iv), and to finally define C&D [7] for all [§] € D(S)
by

(20)

Let

c&D || == C(z — (a — A)"'Bu) + Dau. (23)
i

The transfer function © of this system node satisfies ©(«) = D, (see [Sta05,
Lemma 4.7.6]).

Lemma 2.2. Let ¥ := (S;X,U,Y) be a system node with main operator A, control
operator B, observation operator C, transfer function ®, and evolution semigroup
t— At > 0. Then X* := (S*; X,U,Y) is another system node, which we call the
adjoint of 3. The main operator of ¥X* is A*, the control operator of ¥X* is C*, the
observation operator of X* is B*, the transfer function of ¥* is D (a@)*, a € p(A*),
and the evolution semigroup of X* is t — (AH)*, ¢ > 0.

For a proof (and for more details), see, e.g., [AN96, Section 3], [MSWO05,
Proposition 2.3], or [Sta05, Lemma 6.2.14].

If ¥ :=(S;X,U,)) is a system node, then (13) has (smooth) trajectories of
the following type. Note that we can use the operators A&B and C&D to split
(13) into
x(t
u(t

j:(t):A&B[ g] 1> s as) = o,

(24)
y(t) = C&D Bgﬂ , t>s.

Below we use the following notation: W,"([s, 00);U) is the set of U-valued

functions on [s, c0) which are locally absolutely continuous and have a derivative in
L2 (]s,00);U). An equivalent formulation is to say that u € W22 ([s, 00);U) if u €

loc
L% ([s,00);U) and the distribution derivative of the function u consists of a point
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mass of size u(s) at s plus a function in L2 ([s,00);U) (first extend u by zero to
(—00, s) before taklng the distribution derivative). The space Wlif([s, 00);U) con-
sists of those u € W2 ([s, 00);U) which are locally absolutely continuous and have

u' e W2 ([s, 00);U), too.

loc

Lemma 2.3. Let ¥ := (S; X,U,Y) be a system node. Then for each s € R, s € X
and uw € W22([s,00);U) such that [usy] € D(S), there is a unique function
x € CY([s,00); X) (called a state trajectory) satisfying x(s) = z, [zgg} € D(S)
t> s, andi(t) = A&B [u(t } t > s. If we define the output by y(t) = C&D {

t> s, then y € C([s,0);)), and the three functions u, z, and y satisfy (13).

® |’

This lemma is contained in [Sta05, Lemmas 4.7.7-4.7.8], which are actually
slightly stronger: it suffices to have u € Wli’cl([s, 00);U) (the second derivative is
locally in L' instead of locally in L?). (Equivalently, both v and ' are locally
absolutely continuous.)

In addition to the classical solutions of (13) presented in Lemma 2.3 we
shall also need generalized solutions. A generalized solution of (13) exists for
all initial times s € R, all initial states zs € X and all input functions v €
Wﬁ)’f([s, 00);U). The state trajectory z(t) is continuous in X, and the output y
belongs I/Vlgcl 2([s,00); V). This is the space of all distribution derivatives of func-
tions in L ([s, 00); ) (first extended the functions to all of R by zero on (—o0, s)).
This space can also be interpreted as the space of all distributions in VVl;C1 ’2(R; V)
which are supported on [s,00). It is the dual of the space W1?2([s,c0);)), where
the subindex ¢ means that the functions in this space have compact support.*

The construction of generalized solutions of (13) is carried out as follows.
It suffices to consider two separate cases where either x, or w is zero, since we
get the general case by adding the two special solutions. We begin with the case
where u = 0. For each z; € X we define the corresponding state trajectory x by
x(t) = A5z, where At t > 0, is the semigroup generated by the main operator
A. The corresponding output y € Wfl 2([8 00); V) is defined as follows. First we
observe that the function f v)dv = f AV~Sx, dv is a continuous function on

[s,00) with values in X' vanlshlng at s, hence C' f A*~3zs dv is continuous with
values in Y. We can therefore define the output y to be given by the following
distribution derivative:

d
t|—> cC | A%z dv)
v=(imc [,
here & stands for a distribution derivative. In particular, y € VVlgCl 2([s,00); V)
and the map from =z, to y is continuous from X to ngcl %([s,00); Y). Of course, if
4Note that VVloc ([s, 00); V) is not the same space as ngcl’Q((s7 00);Y), which is the dual of the
space of all functions in Wa2([s,00); ) which vanish at s. The space WIZCI’Q((S, 00);Y) is the

quotient of ngcl’2([s, 00); V) over all point evaluation functionals at s.
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xs € X1, then y(t) = CA =Sz, for all t > s. For more details, see [Sta05, Lemma
4.7.9].)

Next suppose that z; = 0 and that u € Wé’f([s, 00);U). We then define the
state trajectory x and the output distribution y as follows. We first replace u by
ui(t) = fst u(v) dv, let 1 and y; be the state and output given by Lemma 2.3 with
s = 0 and u replaced by u; (note that ui(s) = 0), and then define

, d

T =Ty, Y= &yla
where the differentiation is interpreted in the distribution sense. Again we find
that © € C([s,00); X) and that y € ngcl’Q([s,oo);y).

Given g € X and u € Wé’f([s,oo);b{) we shall refer to the functions
x € C([s,00); X) and y € ngcm([s, 00); Y) constructed above as the generalized
solution and output of (24), respectively. A generalized trajectory of (24) consists
of the triple (z,u,y) described above. A trajectory is smooth if it is of the type
described in Lemma 2.3.

By the system induced by a system node ¥ := (S; X',U,Y) we mean the node
itself together with all its generalized trajectories. We use the same notation ¥ for
the system as for the node.

Above we already introduced the notation Af, ¢t > 0, for the semigroup gen-
erated by the main operator A. The output map € maps X into V[flgcl’z(R+; V),
and it is the mapping from z( to y (i.e., take both the initial time s = 0 and the
input function u = 0). Thus,

@m;KmHo/Ewmm>
0

and if zg € X1, then €xy = t — CAtzy, t > 0. This map is continuous from X
into Wo*(R*;Y) and from X! into C[R*;)).

The input map B is defined for all u € WH3(R™;U), i.e., functions u €
W12(R™;U) whose support is bounded to the left. It is the map from u to z(0)
(take the initial time to be s < 0 and the initial state to be zero). To get an explicit
formula for this map we argue as follows. By Definition 2.1, we can rewrite the

first equation in (24) in the form
i(t) = Az(t) + Bu(t), t>s, x(s)=u,, (25)

where we now allow the equation to take its values in X —1. The operator A gen-
erates a Cj semigroup in X', which we denote by A*, t > 0, and B € B(U; X~1).
We can therefore use the variation of constants formula to solve for Bu = x(0)
(take zs = 0 and define u(v) to be zero for v < s)

Bu = /0 A" Bu(v) dv. (26)
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Here the integral is computed in X!, but the final result belongs to X, and B is
continuous from W12(R~;U) to X. (It is also possible to use (26) to extend B to
a continuous map from L2(R™;U) to X! as is done in [Sta05].)

Finally, the input/output map © is defined for all u € Wlf)f (R;U) whose
support is bounded to the left, and it is the map from u to y (take the initial time
to the left of the support of u, and the initial state to be zero). It maps this set of
functions continuously into the set of distributions in ngcl ’Z(R; V) whose support
is bounded to the left.

Our following lemma describes the connection between the input/output map
® and the transfer function ®.

Lemma 2.4. Let ¥; = (S;;X;,U,Y), i = 1,2, be two system nodes with main
operators A;, input/output maps ©;, and transfer functions ;. Let Qo be the
component of p(A1) N p(Az) which contains some right half-plane.

(i) If D1 =D, then D1(\) = Da(N) for all X € Qo
(ii) Conversely, if the set {A € Qo | D1(N) = D2(N)} has an interior cluster
point, then D1 = Ds.

Proof. Fix some real a > (3, where (§ is the maximum of the growth bounds
of the two semigroups 2Af, ¢t > 0, i = 1,2, and suppose that (t — e “u(t)) €
Wyt (RTU) == {u € WLR;U) | u(0) = «/(0) = 0}. Define y; = D,y and
y2 = Dou. Then, by [Sta05, Lemma 4.7.12], the functions ¢ — e~ “%y;(t), with
i = 1,2, are bounded, and the Laplace transforms of these functions satisfy §;(\) =
D;(A)a(A) in the half plane A > a.
 If®y = Dy, then y1 = y2, and hence we conclude that @1()\)11()\) =
Da(A)a(N) for all u of the type described above and for all ®A > «. This im-
plies that ©1(A\) = D3(A) for all RA > «, and by analytic continuation, for all
A €E Q. R R

Conversely, if set {\ € Qo | D1(A) = D2(A)} has an interior cluster point,
then by analytic extension theory, ©1(X) = Da()) for all A € Q. Thus, §1(N) =
92(N) for all ®X > «. Since the Laplace transform is injective, this implies that
y1 = y2. Hence, ®1u = Dou for all u of the type described above. By using the
bilateral shift-invariance of ®; and ®, we find that the same identity is true for
all u € W2’1(R;L{) whose support it bounded to the left. This set is dense in the

loc
common domain of ®; and D4, and so we must have D1 = Ds. O

Remark 2.5. The system operator S is determined uniquely by the semigroup ¢,
t > 0, the input map 9B, the output map &, and the input/output map ® of the
system X, or alternatively, by 21, ¢ > 0, B, € and the transfer function ®. The
corresponding operators for the adjoint system node X* are closely related to those
of . The semigroup of 3* is (A1)*, ¢ > 0, the input map of ¥* is SI€*, the output
map of ¥* is B*H, and the input/output map of ¥* is AD*, where S is the
time reflection operator: (Hu)(t) = u(—t), t € R. As we already remarked earlier,
the transfer function of ¥* is D(a)*, a € p(A*).
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We call ¥ (approzimately) controllable if the range of its input map B is dense
in X and (approzimately) observable if its output map € is injective. Finally, ¥ is
minimal if it is both controllable and observable.?

Lemma 2.6. The system node X is controllable or observable if and only if X* is
observable or controllable, respectively. In particular, ¥ is minimal if and only if
3* is manimal.

Proof. This is true because the duality between the input and output maps of X
and X* (see Remark 2.5). O

Lemma 2.7. Let ¥ := (S;X,U,Y) be a system node with main operator A, control
operator B, and observation operator C. Let po,(A) be the component of p(A)
which contains some right half-plane.

(i) X is observable if and only if
Mepu( N (C(A = A)71) = {0}
(ii) X is controllable if and only if
V)\Epoo(A)R (()\ — A\)_lB) =X,
where V stands for the closed linear span.
Proof. Proof of (i): We have zo € N (€) if and only if $C f(f Avz( dv vanishes
identically, or equivalently, if and only if C fg AYxo dv vanishes identically, or
equivalently, the Laplace transform of this function vanishes identically to the
right of the growth-bound of this function. This Laplace transform is given by
A7LC (N — A)~txg, and it vanishes to the right of the growth bound of 2!, ¢ > 0, if
and only if it vanishes on ps (4), or equivalently, C'(A\— A) ™'z, vanishes identically
on poo(A).
Proof of (ii): That (ii) holds follows from (i) by duality (see Lemma 2.6). O

3. The Cayley Transform

The proofs of some of the results of this paper are based on a reduction by means
of the Cayley transform of the continuous time case to the corresponding discrete
time case studied in [AKP05]. In a linear time-independent discrete time system
the input u = {u,}°2,, the state © = {z,,}°2,, and the output y = {y,}°2, are
sequences with values in the Hilbert spaces U, X', and ), respectively. The discrete
time system X is a colligation 3 := ([A B],X,U,Y)), where the system operator
[AB]eB([X];[]). The dynamics of this system is described by
Tn1 = Az, + Bu,,
Yn = Cxy, + Duy, n=20,1,2,..., (27)

Ty = given.

5There is another equivalent and more natural definition of minimality of a system: it should not
be a nontrivial dilation of some other system (see [AN96, Section 7]).
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We still call A the main operator, B the control operator, C the observation
operator, and D the feedthrough operator. We define the transfer function D of
¥ in the same way as in (9), namely by®

D(z)=C(z—A)"'B+D, zep(A).

Observability, controllability, and minimality of a discrete time system is de-
fined in exactly the same way as in continuous time, with continuous time trajecto-
ries replaced by discrete time trajectories. Thus, ¥ is (approximately) controllable
if the subspace of all states x,, reachable from the zero state in finite time (by a
suitable choice of input sequence) is dense in X, and it is (approximately) observ-
able if it has the following property: if both the input sequence and the output
sequence are zero, then necessarily o = 0. Finally, it is minimal if it is both
controllable and observable. The following discrete time version of Lemma 2.7 is
well-known: if we denote the unbounded component of the resolvent set of A by
Poo(A), then ¥ is observable if and only if

MNeepoa)N (C(z — A)7Y) = {0},
and that ¥ is controllable if and only if
Vieepeo(a)R ((Z — A)ilB) =X.

Given a system node ¥ := (S;X,U,)) with main operator A, for each
a € p(A) NCT it is possible to define the (internal) Cayley transform of ¥ with
parameter «. This is the discrete time system X(a) := ([‘éggg [B)Elé))} ;X,u,y)
whose coefficients are given by

Ala) =@+ A)(a—A)71, B(a) = V2Ra (a — A)~'B, 28)
C(a) = V2Ra C(a— A)7 1, D(a) = D(a).

Note that A(a)+ 1 =2Ra(a — A)~1, so that A(a) + 1 is injective and has dense
range. The transfer function D of 3(«) satisfies

D) =B, =210 A=TT aep), cepAE). (29

An equivalent way to write the Cayley transform is

"ot B[ eln [T ) e

where F, is the operator defined in (21).

The (internal) inverse Cayley transform with parameter a € CT of a discrete
time system ([& B]; X, U, ) is defined whenever A + 1 is injective and has dense
range. It is designed to reproduce the original system node X when applied to

6This is the standard “engineering” version of the transfer function. In the mathematical litera-
ture one usually replace z by 1/z.
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its Cayley transform ({‘égz; EEZ” XU, y). The system operator S = [ 4¢5 | of

this node is given by

A5 -1 0 A T

More specifically, the different operators which are part the node X are given by

A= (aA -a)(A+1)71, B=

) X (32
C= mC(a—AL D(a) =D.

If A is the generator of a Cp-semigroup (and only in this case) the operator S
defined in this way is the system operator of a system node ¥ = (S; X, U, Y).”

Lemma 3.1. Let ¥ := (S; X, U, y) be a system node with main operator A, and

let a € poo(A) NCT, where poo(A) is the component of p(A) which contains some
right half-plane. Let 3(« ([A(zg ggz)} XU y) be the Cayley transform of

3 with parameter . Then E( 1s controllable if and only if ¥ is controllable,
() is observable if and only if 3 is observable, and X(«) is minimal if and only
if 3 is minimal.

This follows from Lemma 2.7. (The linear fractional transformation from the
continuous time frequency variable A to the discrete time frequency variable z in
(29) maps poo(A) one-to-one onto poo(A(a)).)

For more details on Cayley transforms we refer the reader to [AN96, Section
5], [Sta02, Section 7], or [Sta05, Section 12.3].

4. Pseudo-Similar Systems and System Nodes

A linear operator @ acting from the Hilbert space X to the Hilbert space ) is
called a pseudo-similarity if it is closed and injective, its domain D(Q) is dense in
X, and its range R (Q) is dense in Y.

Definition 4.1. We say that two systems ¥;, ¢ = 1,2, with state spaces &, semi-
groups 2%, ¢ > 0, input maps B;, output maps €;, and input/output maps D;, are
pseudo-similar if there is a pseudo-similarity Q: X1 D D(Q) — R (Q) C Xa with
the following properties:

(i) D(Q) is invariant under ¢, ¢ > 0, and R (Q) is invariant under A5, ¢ > 0;
(i) R(B1) € D(Q) and R (B2) C R (Q);

7Otherwise it will be an operator node in the sense of [Sta05, Definition 4.7.2].
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(iii) The following intertwining conditions hold:

&0 = ¢pQ), (33)
%2 = Q%ly
Do = 99.

Theorem 4.2. Let ; := (S;; X, U, V), i = 1,2, be two systems with main operators
Ay, control operators B;, observation operators C;, semigroups AL, ¢t > 0, and
transfer functions ;. Let Q: X1 D D(Q) — R(Q) C Xy be pseudo-similarity,
with the graph

G(Q) = {[%]]| 2 e D@Q)}.
Let Qoo be the component of p(A1) N p(As) which contains some right half-plane.
Then the following conditions are equivalent:

(i) The systems 31 and 3o are pseudo-similar with pseudo-similarity operator
Q.
(ii) The following inclusion holds for some X € Q-
(A— Ay)~? 0 (A — A5) "' By
0 A—A) (-4 B {GQ{Q)] c {G%Q)]. (34)
CQ()\—AQ)_l —Cl()\—Al)_l @2()\) —@1(/\)
(iii) The inclusion (34) holds for all X € Q.

Remark 4.3. Tt is easy to see that condition (34) is equivalent to the following set
of conditions:

(A =A)7'D@Q) c DQ). (A—A) 'BiU  D(Q), (35)

and ) )
(A=42)7°Q =Q(A— A1) '|p)
Co(A—A2)7'Q = C1(A — A1) Mg,

(A= A) "By =Q(\— A))"'By,
Do(A) =D1(N).
Proof of Theorem 4.2. Proof of (i) = (ii): Fix an arbitrary A € C with R\ > g,
where 3 is the maximum of the growth bounds of the two semigroups 2, ¢ > 0,
i=1,2

We begin by showing that [Ei:ﬁfg:ij € G(Q) whenever [32] € G(Q). Take
[22] € G(Q), i.e., x1 € D(Q) and x5 = Q1. The first intertwining condition in (33)
gives e MALxy = Qe MALz;. Integrating this identity over R* and use the fact

that Q is closed we get (A—Az) " txg = Q(A\—A;)~ay. Thus, [Ei:ﬁj;:iﬂ € G(Q).

We next show that Cy(A— Az) ~tag = C1(A—A;) "oy whenever [52] € G(Q).
We first fix some real o > 3, and considering the case where x; is replaced by
T1,4 = a(a — A1)~ tay for some z1 € D(Q) and x5 is replace by z2 4 = Q1 4.

(36)
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Then, by what we have proved so far, 71, € X! ND(Q) and z2, € Xs. This
implies that for all ¢ > 0,
CQQ[Z%ZO‘ = (¢2$27a)(t) = (lel,a)(t) = C’ﬂl’ixlya.
Multiply this by e~ and integrate over RT to get
CQ()\ - Ag)_ll‘g,a = Cl()\ — Al)_lxl,a.
Let o — +oo along the real axis. Then z1 4 = a(a — A1) lz; — 27 in A} and
Tao = Qa(a — A2)7'zy = ala — A3)7'Qz1 — Qzq in X,. This implies that
CQ()\ — Ag)ilQZL'l = C1(>\ — Al)il.’bl for all z1 € D(Q)
-1
Next we show that {8722;,1?“0} € G(Q) for all ug € U. By the third
—A1 1uUo

intertwining condition in (33), for all a > 3, all t € R*, and all ug € U,

e [0, 2 () — e ) Byug v o
e [0 Uy (eMIHY) — alt+)) Buyg du '

Here, with ¢ =1, 2,
0
ef)\t/ é\[i—v(e)\(ﬂrv) . ea(t+v))Biu0 dv
—t

= (La, — e MAN(A — A) ' Biug
— e @ N1y — e U (o — A;) "' Biug.

i

Choose a and A so that 3 < a < RA, and let ¢ — oco. Then the above ex-
pression tends to (A — A;) ! B;ug in X, and the closedness of G(Q) implies that

(A=45)"' Boug
|:(/\721)_131u0 < G(Q) N N

Finally, since ®; = D9, by Lemma 2.4 we also have Da(\) = D1(\).

Proof of (ii) = (iii): Fix some Ay € Qo for which (34) holds. Equivalently,

(Mo — A1)7ID(Q) C D(Q), and
(Ao — 42)7'Q = Q(No — A1) Hp(o)-

By iterating this equation, using the fact that (Ag — A1) ~'D(Q) C D(Q), we find
that,

(Mo —A2)7"Q = Qo — A1) Flpg), k=1.2,.... (37)
Fix [722]G(Q). The function A — [Ei:‘:i;:jﬂ is a holomorphic [%]—valued

function on Q, and it follows from (37) that this function itself together with all
its derivatives belong to G(Q) at Ag. Therefore this function must belong to G(Q)
for all A € Q. the inner product of this function with any vector in G(Q)* is
an analytic function which vanishes together with all its derivatives at Ag; hence
it must vanish everywhere on .. This means that the first inclusion in (35) and
the first identity in (36) hold for all A € Q.

The proofs of the facts that also the second inclusion in (35) and the second
and third identities in (36) hold for all A € Q. are similar to the one above, and
we leave them to the reader.
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It remains to show that Do(\) = D1 (A) for all A € Q. But this follows from
(20) and the other intertwining conditions in (36), which give

Ao — )\CQ(AO—AQ) (—2)—1
— A 'By
@Q(AO—Al) ( A) 'B,
A)7'By

v}
[ V]
—
>
Nai?
Il
[ V]

(&)

I
) g)> 5)> ) )
— —~ /o;\ —~ —~

—
>
=

Proof of (iii) = (i): Fix some real A > 0 so that [A, 00) € Q.

We begin by showing that () intertwines the two semigroups. Take 1 € D(Q).
Then, for A > A, (A — A3)71Qx; = Q(\ — A;) ;. Iterating this identity we get
(A — A2)"Qz1 = Q(\ — Ay) "xy for all n € Z*. In particular, for all ¢ > 0 and
all sufficiently large n,

(1- %A2>_an1 =1~ %Al)_nxl.

Let n — oo to find that iz, € D(Q), AL Qz; € R (Q), and that ALQz; = QAL xq
for all t > 0.

Next we look at the second intertwining condition in (33). We know that, for
all 21 € D(Q),

Co(A — A2)"1Qmy = C1 (A — Ay) tay

for A > A. Let @ € Qu, and replace 71 by 71,4 = a(a — A1) "tz where 21 €
D(Q). Then (as we saw in the corresponding part of the proof of the implication
(i) = (ii)), the above identity is the Laplace transformed version of the identity
&Qx1 o = €171, which must then also hold. Let & — co. Then z;, — 1 in
X1 and Qz1,o — Q1 in Xy (see the proof of the implication (i) = (ii)). By the
continuity of €; and €5, €2Qx1 = €121, 1 € D(Q).

The third intertwining condition in (33) requires us to show that R (8B1) C
D(Q) and that By = QB;. Actually, it suffices to show this for functions u which
vanish on some interval (—oo, —t) and are given by u(v) = (eMFv) — e@(t+0))yq

n [—t,0] for some real A > « > A, because the span of functions of this type is
dense in W1H2(R™;U), B1 and By are continuous from WLH2(R™;U) to A7 and
X, respectively, and @ is closed. However, for i = 1,2, applying 28; to the above
function we get

%iu = e)‘t(l;(i - e_’\thﬁf)()\ - A\i)_lBin
— e (1y, — e~ A (a — A;) "' Bug.
This, together with the first condition in (33), condition (35), and the third con-

dition in (36) implies that Biu € D(Q) and that By = QB;.
Finally, that ©; = ®5 follows from Lemma 2.4. O
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In the sequel it shall be important how the operator F, defined in (21)
interacts with the pseudo-similarity operator @), and, in particular, with its domain.
Our following two lemmas address this issue.

Lemma 4.4. Let ¥ := (S; X,U,Y) be an system node with system operator S =
[égg} , main operator A, and control operator B, and let Z be a subspace of X.
Let oo € p(A) and define F,, as in (21).

(i) [#] is invariant under F, if and only if

(a—A)"'Zcz, (a«—A'BuUcZ. (38)
(ii) If (38) holds, then [%] belongs to the range of Fa|[g} if and only if
u
[#1eD(S), ze€Z, A&Bli]c€Z. (39)
In particular, the range of Fa|[g] does not depend on the particular o € p(A), as
u

long as [7] is invariant under F,.

Proof. That (i) holds follows directly from (21), so it suffices to prove (ii).

Suppose first that [5] = F,[7] for some z € Z C X and u € U. Then
[#] € D(S) (since F, maps [] into D(S)) and x € Z (by the assumed invari-
ance condition). Furthermore, by (21), ([§ %, ] = [4%F]) [£] = [Z]. In particular,
A&B[i] = ax —z € Z. Thus, [5] € D(S), z € Z, and A&B|[;] € Z whenever
[#] belongs to the range of Fa|[5]

Conversely, suppose that [&] € D(S), € Z, and A&B[;] € Z. Define z by
z=oar— A&B|[;]. Then z € Z and [§] = F, [Z], so [#] belongs to the range of

Lemma 4.5. Let X; := (S;; X, U,Y), i = 1,2, be two pseudo-similar system nodes
with main operators A;, control operators B;, and pseudo-similarity operator Q.
Let Qoo be the component of p(A1) N p(As) which contains some right half-plane.
For each A € Qu, define F; x, i =1,2, by
(/\—Ai)_l (A—A\i)_lBi
Fi\= .
’ 0 1y

Then, for each A € Qsy, F1,» maps [D&Q)] into itself, F» x maps [RZ(/{Q)} into itself,
and
8 ouf= [0
F: = F . 41
a8 )= 18 ) Aole (a1)

In particular, [g 1(;} maps the range of Fy )| [D(Q)] one-to-one onto the range of
u

(40)

F 5| [R&Q)] .

Proof. That Fj » maps [DZ(/IQ)} into itself follows from the two inclusions (A —
ANTID(Q) € D(Q) and (A — A;)~1BiU C D(Q) (see Remark 4.3). Analogously,
that F» , maps [R&Q)] into itself follows from the two inclusions (A—A42) 'R (Q) C
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R(Q), (A— 22)_1BQU C R(Q). Finally, (41) follows from (40) and the first and
third identities in (36). O

Our next theorem gives a characterization of pseudo-similarity which is given
directly in terms of the system operators involved.

Theorem 4.6. Let ¥; := (S;; X;,U,Y), i = 1,2, be two systems with system oper-

ators S; = Hgijg}f } , main operators A;, and control operators B;. Let Q: X1 D

D(Q) — R(Q) C Xy be a pseudo-similarity, and let Qo be the component of
p(A1) N p(Az) which contains some right half-plane. Then the following conditions
are equivalent:
(i) X1 and Xo are pseudo-similar with pseudo-similarity operator Q.
(ii) The following two conditions hold:
(a) (35) holds for some A € Q.
(b) For all [%}] € D(S1) such that z1 € D(Q) and [A&B]1 [%}] € D(Q) we

Q 0 X1 o Q O X1
52[0 W) [u] =0 1) [u] (42)
Proof. Proof of (i) = (ii). Assume (i). By Theorem 4.2 and Remark 4.3, (35)
holds for all A € Q. By Lemma 4.4, F} [D&Q)] C [DZ(/{Q)], and the condition

imposed on [%!] in (b) is equivalent to the requirement that [%}! ] belongs to the

range of Fi | [D&Q)]. If we replace [ %} ] in (42) by Fy ) [% ] with 21 € D(Q), then a

straightforward computation based on (22) shows that the right-hand side becomes

2o [ oL

u

A similar computation which also uses (41) shows that

Q 0 T1| Ag(a—Ag)_lQ a(a :A\Q)_lBQ X1
SQ [0 11,{ Fl’A w| Cg(Oé — Ag)_lQ @2(0[) u |’ (44)
By (36), the right-hand sides of (43) and (44) are equal, and this implies (42).

Proof of (ii) = (i): Assume (ii). Then it follows from (42) with [%} ] replaced
by Fy x[%] that for all 27 € D(Q) and all u € U (recall (21))

1@ 0 1 Q 0 - z1
Fy [0 | T w7 o 1 FsFua |y ]
Multiplying this by F5 x to the left we get (41). It follows from (42) that the left-
hand sides of (43) and (44) are equal, and by using (41) we conclude that also the

right-hand sides of (43) and (44) are equal. This implies (36). By Theorem 4.2,
Y1 and X5 are pseudo-similar with pseudo-similarity operator Q. O

Definition 4.7. Two system nodes ¥; := (S;; X;,U,Y) with system operators S; =

Hégg%f }7 i = 1,2, are called pseudo-similar with pseudo-similarity operator Q if

conditions (ii)(a) and (ii)(b) in Theorem 4.6 hold.
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Thus, with this terminology, Theorem 4.6 says that two systems %;, i = 1,2,
are pseudo-similar if and only if the corresponding system mnodes are pseudo-
similar, with the same pseudo-similarity operator. Two other equivalent charac-
terization of the pseudo-similarity of two system nodes are given by conditions (ii)
and (iii) in Theorem 4.2.

Theorem 4.6 can be used to recover Sy from Sy or S7 from Sy if we know the
pseudo-similarity operator Q.

Corollary 4.8. Let ¥; := (S;; X3, U, Y), i = 1,2 be two pseudo-similar system nodes

with system operators S; = Hégg%?} and pseudo-similarity operator Q. Then Si

and Sy can be reconstructed from each other in the following way:

(i) Sy is the closure of the restriction of [Q; 1(;] So [cg 1?4] to the set of all

(%] € [DLQ)] such that [9*1] € D(S2) and [A&B]2 [9*1] € R (Q).

(ii) Sy is the closure of the restriction of [(g 12}} Sy [Qo_l 1‘” to the set of all

[%2] € [R{D] such that [@}=2] € D(S1) and [A&B]; [Q)=2] € D(Q).
Proof. Because of the symmetry of the two statements it suffices to prove, for
example, (i). As we observed in the proof of Theorem 4.6, the set of conditions
imposed on [%! ] in condition (ii) in that theorem is equivalent to the requirement

that [%! ] belongs to the range of Fj | [D(Q)] . By Lemma 4.5, this is equivalent to
u
the requirement that [ ?*1] belongs to the range of I | [R(Q)] ,and by Lemma 4.4,
u
this is equivalent to the set of conditions on [%} ] listed in (i). By Theorem 4.6, and

since Sy is closed, S is a closed extension of the restriction of [le 1‘2{} Sy [%2 1(;]

to the range of F} ,| D(Q)] . That this is the minimal closed extension follows from

u
the fact that the range of F} | [D(Q)] is dense in D(S7) with respect to the graph
u

norm (because D(Q) is dense in X;, and Fj » is a bounded bijection of [f}] onto

D(51))-

Theorem 4.9. Let ¥; = (S;; X;,U,Y), i = 1,2 be two pseudo-similar system

nodes with system operators S; = Hégg%f} and pseudo-similarity operator Q.

Let s e R and u € VVli’CQ([s,oo);U), and let {225] € D(S1) with z1,5 € D(Q) and
[A&B]y HZS;] € D(Q). Define xo s := Qx1,s. Then the following conclusions hold.

(1) [i?s)} € D(Sz2), so that we can let x; and y;, i = 1,2, be the state trajectory
and the output of S; of described in Lemma 2.3 with initial state ;s and
input function u.

(ii) For allt > s, the solutions defined in (i) satisfy [21((:))} € D(S1), [wuz(%)} €
D(S2), 1(t), @1(t) € D(Q), z2(t), d2(t) € R(Q), and

mQ(t) = Q‘Tl(t)7 iQ(t) = Qil(t)a yQ(t) - yl(t), t>s.
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Thus, in particular, [A& B]y [21((;))} C D(Q) and [A& B {“;’f((tt))] C R(Q) for all
t>s.

Proof. That (i) holds follows from Lemmas 4.4 and 4.5. Thus, we can define the

solution as explained in (i). By Lemma 2.3, {fj((tt))} € D(S;) and x; is continuously

differentiable in X; for i = 1, 2.

We claim that z1(¢) € D(Q) and x2(t) = Qz1(t) for all ¢ > 0. To prove this
we split each of the two solutions into three parts: one where z; ; # 0 and u = 0,
one where z; ; = 0 and the input function is e’\(t_s)u(s)7 and one where z; s =0
and the input function is u(t) — e**=*)u(s); here A € Q, and i = 1,2. In the first
case we have x;(t) = AL *z; ,, and the first intertwining condition in (33) implies
that z1(¢) € D(Q) and z5(t) = Qz1(t) for t > s. In the second case we have

x;(t) = e”\(t_s)(lxi — e_’\(t_s)ﬂffs)()\ — Ei)_lBiu(s),

and again we have z1(t) € D(Q) and z2(t) = Qz1(t) for t > s because of the first
condition in (33) and the third condition in (36). In the third case we have

0
2i(t) = / A Bifu(t + v) — A=)y (s)] do.
s—t

This is B; applied to a function in W, 1?(R™;U), and by the third condition in
(33), again z1(t) € D(Q) and x2(t) = Qz1(t) for t > s. Adding these three special
solutions we find that the original solutions x; and xs satisfy z1(¢) € D(Q) and
x2(t) = Q1 (t) for t > s.

Since both x; and x5 = Qx; are continuously differentiable and @ is closed,
we must have @1(t) € D(Q) and @2(t) = Qi1(t) for all ¢ > s. In particular,

i1(t) = [A&B); [f;(g))} C D(Q) and iy (t) = [A&B], [ﬂf(%)} CR(Q) for all t > s.

Finally, by (42), y2(t) = y1(t) for all t > s. O

Let us end this section with a short discussion of the pseudo-similarity of
two discrete-times systems, based on [AKPO05]. We say that two discrete-time
systems ([éi 1123)1] ;Xl,u,y) and ([‘és ][3)2} ;Xz,u,y) are pseudo-similar if there
is a pseudo-similarity Q: X; D D(Q) — R (Q) C X, such that A1D(Q) C D(Q),
R (B1) C D(Q), and

ArQ = QAy|pg),

C2Q = Cilp(@), (45)
B2 = QBla
Dy, =D;.

Theorem 4.10. Let X; := (S;; X, U,Y), i = 1,2, be two system nodes with main
operators A;. Let Q: X1 D D(Q) — R(Q) C Xz be a pseudo-similarity. Let Qu
be the component of p(A1) N p(Az) which contains some right half-plane. Then the
following conditions are equivalent:®

8See also [AN96, Proposition 7.9].
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(i) 21 and X2 are pseudo-similar with pseudo-similarity operator Q.
(ii) For some o € CY NQy, the Cayley transforms of X1 and o with parameter
« defined by (28) are pseudo-similar with pseudo-similarity operator Q.
(iii) For all & € CT NQuo, the Cayley transforms of ¥1 and 3o with parameter o
are pseudo-similar with pseudo-similarity operator Q.

Proof. This follows directly from Theorem 4.2. O

Theorem 4.11. Let ¥; := (S;&;,U,Y), i = 1,2, be two minimal_systems with
main operators A;, input/output maps ©;, and transfer functions ©;. Let Qo be
the component of p(A1) N p(As2) which contains some right half-plane. Then the
following conditions are equivalent:

(i) X1 and Xo are pseudo-similar.

(ii) The set {\ € Qoo | D1(N) = D2(N)} has an interior cluster point.

(iii) D1(A) =D3(A) for all A € Qus.

(1V) 331 = DQ.

Proof. If 31 and Y5 are pseudo-similar, then it follows directly from Definition
4.1 that (iv) holds. By Lemma 2.4, (ii), (iii) and (iv) are equivalent. Thus, it only
remains to show that (iii) = (i).

Assume (iii). By Lemma 3.1, the Cayley transforms of ¥; and 39 with param-
eter A € CTNQ, are two minimal discrete-time systems, whose transfer functions
coincide in a neighborhood of co. According to [Aro79, Proposition 6], these two
discrete-time systems are pseudo-similar with some pseudo-similarity operator Q.
By Theorem 4.10, ¥; and ¥, are pseudo-similar with the same pseudo-similarity
operator Q). O

5. H-Passive Systems

The following definition is a closely related to the corresponding definition in the
two classical papers [Wil72a, Wil72b] (Willems allows the system to be nonlinear
and his storage functions are locally bounded).

By a nonnegative operator in a Hilbert space X we mean a (possibly un-
bounded) self-adjoint operator H satisfying (x, Hz)x > 0 for all z € D(H). If, in
addition, (z, Hz)x > 0 for all nonzero x € D(H), then we call H positive. The
(unique) nonnegative self-adjoint square root of such a nonnegative operator H is
denoted by vH.

Definition 5.1. A system node (or system) ¥ := (S; X,U,Y) with system operator
S = [AEB ] is (scattering) H-passive (or simply passive if H = 1) if the following
conditions hold:

(i) H is a positive operator on X. Let Q = v/ H.

(i) Ifu € W2 ([s,00);U) and [ 3] € D(S) with z, € D(Q) and A&B [ (3] €

D(Q), then the solution z in Lemma 2.3 satisfies z(t), #(t) € D(Q) for all
t > s, and both Qz and its derivative are continuous in X’ on [s, 00).
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(iii) Each solution of the type described in (ii) satisfies for all s < ¢,

(Qe(t), Qu(t)) x + / L@ dv < (Qu(s), Q(s)) x + / lu()|Z do.  (46)

If (46) holds in the form of an equality for all s <, i.e.,

t t
(Qa(t).QuO)x + [ (o) dv = (Qa(s), Qu(s) + [ Juw)lfydo. (a7
then X is (scattering) forward H -conservative,

We denote the set of all positive operators H for which ¥ is H-passive by
My.

As our following theorem shows, a system is H-passive (i.e., H € My,) if and
only if it is pseudo-similar to a passive system.

Theorem 5.2. Let ¥ := (S; X,U,Y) be a system node.

(i) If ¥ is pseudo-similar to a passive system node ¥y := (S1;X1,U,Y) with
pseudo-similarity operator Q, then ¥ is H-passive with H := Q*Q.

(ii) Conwversely, if ¥ is H-passive, and if Q: X — Xg is an arbitrary pseudo-
similarity satisfying Q*Q = H (for example, we can take Xo9 = X and
Q= \/ﬁ), then ¥ is pseudo-similar to a unique passive system node Y.q =
(Sq; Xq,U,Y), with pseudo-similarity operator Q. The system operator Sg

is the closure of the restriction of {602 1(;} S [le l(zﬂ to the set of all [I] €

[RID] such that [@'v] € D(S) and A&B [Q'#] € D(Q).

Proof. Proof of (i): Under the assumption of (i) it follows from Theorem 4.9 that
conditions (ii) and (iii) in Definition 5.1 hold for the given operator @. Define
H := Q*Q. Then H is a positive operator on X', and @ has the polar decomposition
Q = UVH, where U is a unitary operator X — X; and D(Q) = D(VH) (see, e.g.,
[Kat80, pp. 334-336] or [Sta05, Lemma A.2.5]). This implies conditions (i)—(iii) in
Definition 5.1.

Proof of (ii): Suppose that ¥ is H-passive, and that Q: X — X is an
arbitrary pseudo-similarity satisfying Q*@Q = H. Denote the main operator of
by A. By condition (ii) in Definition 5.1, for each x¢g € X*ND(Q) with Azy € D(Q)
and t € RT we can define A,z := Qx(t) and (€qxo)(t) := y(t), where z(-) is the
state trajectory and €gx is the output function of ¥ with initial state Q~1x¢ and
zero input function u. In other words,

Q[tQ.’to = QQ«[tQilt’Eo, (Q:on)(t) = CthilfL'o, t e RT.

By (47), for all t € R*, 27, is a contraction on its domain (with the norm of
X) into X, and €¢ is a contraction from its domain (with the norm of X) into
L?(R*;Y). Moreover, it is easy to see that Q[tQ, t > 0, is a Cy semigroup on its
domain. Therefore, this semigroup can be extended (being densely defined and
uniformly bounded) to a Cy semigroup on X, and likewise, €g can be extended
to a contraction mapping from all of X into L?(R*;)).
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We next let uw € W22(R;U) have a support which is bounded to the left.
We take some initial time s < 0 to the left of the support of u, and let = be
the state trajectory and y the output of ¥ with initial state x5 = 0 and input
function w. It follows from Definition 5.1 that x(0) € D(Q). This permits us to
define Bou_ := Qz(0) where u_ = u|g- and Dgu = y. Thus,

Bou = QBu, Dou = Du.

By condition (iii) in Definition 5.1, these two operators are contractions on their
domains (with the norm of L?(R;U)) into their range spaces, so by density and
continuity we can extend them to contraction operators defined on all of L2(R~,U)
and L?(R,U), respectively.

Q

It is easy to see that the quadruple [23 2; } is an L2-well-posed linear system

in the sense of [Sta05, Definition 2.2.1], i.e., that ¢ — Qlﬁ2 is a Cy semigroup, that
A, B and € satisfy the intertwining conditions

Q[tQ‘BQ :%QTZ, @QQ(tQ :Tj_Q:Q, t>0,

where 7! is the left-shift on L?(R™;U) and 7% is the left-shift on L?*(R*;Y), and
that €oBg = 7. Dn_ where m_ is the orthogonal projection of L?(R;U) onto
L?*(R™;U) and 7 is the orthogonal projection of L?(R;Y) onto L*(R*;U) (thus,
the Hankel operator induced by © is €oBg). This well-posed linear system is
induced by some system node Y = (Sq;X,U,)Y) (see, e.g., [Sta05, Theorem
4.6.5]). The main operator Ag of this system node is the generator of ¢ — 27,
the observation operator Cg is given by Cozx = (€qx)(0) for x € D(Ag), the
control operator Bg is determined by the fact that (Bjz.) = (BHz.)(0) for
all z,, € D(Ap), and the transfer function coincides with the original transfer
function ® on some right half-plane. We can now apply (21) and (22) with A, B,
and C replaced by Ag, Bg, and Cg, and with o € p(Ag) to recover the system
operator Sg. The semigroup, input map, output map, and input/output map of
Y g coincides with the maps given above. By construction, the conditions listed in
Definition 4.1 are satisfied, i.e., ¥ is pseudo-similar to ¥¢g with pseudo-similarity
operator (. Finally, it follows from condition (iii) in Definition 5.1 that Xq is
passive.

The explicit formula for the system operator Sq given at the end of (ii) is
contained in Corollary 4.8. (|

Remark 5.3. Instead of appealing to the theory of well-posed linear systems it
is possible to prove part (ii) of Theorem 5.2 by reducing it to the corresponding
result in discrete time via the Cayley transform. The proof of Theorem 5.7 that
we give below does not use part (ii) of Theorem 5.2. In that proof we use the
Cayley transform to show that X is pseudo-similar to a passive system ¥ 7 with

similarity operator v H. From this result we can get the general claim in part (ii)
of Theorem 5.2 by using the polar factorization of Q.
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We denote the set of all H € My, for which the passive system node X /7
defined in part (ii) of Theorem 5.2 is minimal by M.

It is not difficult to show (using Lemma 2.7) that this minimality condition
is equivalent to the following two conditions:

\/ R (\/E(A - X)—lB) — X,
Aepd(A)

N ~ (C()\ - A)‘1|D(\/ﬁ)) — 0.

Aepk(4)

(48)

For the formulation of our next theorem we recall the definition of the re-
stricted Schur class S(U,Y; ), where Q is an open connected subset of C*:
0 € S(U,Y;Q) means that 0 is the restriction to Q of a function in the Schur
class S(U,Y,CH).

Theorem 5.4. Let ¥ := (S;X,U,Y) be a system node with main operator A and
transfer function ©. Let pI (A) be the component of p(A) N CT which contains
some right half-plane.

(1) If £ is H-passive, i.e., if H € My, then 35|p;(A) eSU,Y; pt(A)).
(i) Conversely, suppose that X is minimal and that D|,+ 4 € SU,Y; pL(4)).
Then S is H-passive for some H € M&n,

Proof. Proof of (i): Suppose generalized ¥ is H-passive (see Theorem 5.7). By
Theorem 5.2, ¥ is pseudo-similar to a passive system 3 7, whose transfer function
6 is a Schur function (see [AN96, Proposition 4.4] or [Sta05, Theorem 10.3.5 and
Lemma 11.1.4]). By Theorem 4.11, the transfer functions of X and X 7 coincide
on the connected component of p(A) N C*. This proves (i).

Proof of (ii): Suppose that the transfer function coincides with some Schur
function in some right half-plane. This Schur function has a minimal passive re-
alization X1; see., e.g., [AN96, Proposition 7.6] or [Sta05, Theorem 11.8.14]. Since
the two transfer function coincides in some right-half plane, the input/output maps
of the two minimal systems are the same, and consequently, by Theorem 4.11, &
and ¥, are pseudo-similar with some pseudo-similarity (). By Theorem 5.2, this
implies that ¥ is H-passive with H = Q*Q. The system node X 7 in part (ii)
of Theorem 5.2 is unitarily similar to the system node ¥; with a similarity op-
erator U obtained from the polar decomposition Q = UvH of Q. Thus, ¥ VE 18
minimal. O

Corollary 5.5. If ¥ is minimal, then ME™ is nonempty if and only if My, is
nonempty.

Proof. This follows directly from Theorem 5.4. (|

In our next theorem we shall characterize the H-passivity of a system node
¥ in terms of a solution of the generalized (continuous time scattering) KYP in-
equality.
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Definition 5.6. Let ¥ := (S;X,U,Y) be a system node with system operator
S = [AEB], main operator A, and control operator B, and let pL (A) be the
component of p(A) N C*T which contains some right half-plane. By a solution of
the generalized (continuous time scattering) KYP inequality induced by ¥ we mean

a linear operator H satisfying the following conditions.

(i) H is a positive operator on X. Let Q = v H.
(i) (A —A)~'D(Q) C D(Q) for some X € pi (A).
(iii) (A — A)"1BU C D(Q) for some A € pt (A).
(iv) The operator QAQ ™!, defined on its natural domain consisting of those = €
R (Q) for which Q712 € D(A) and AQ 'z € D(Q), is closable.

(v) For all [32] € D(S) with xp € D(Q) and A& B[] € D(Q) we have
2R(QIA&B] [w], Quo)x + [|C&D [3 I3 < lluollz;- (49)

If H is bounded with D(H) = X, then (ii) and (iii) are redundant, and if
furthermore H~! is bounded, then also (iv) is redundant. Thus, in this case H
is a solution of the generalized KYP inequality if and only if (49) holds for all
(%] € D(S). If A&B =[A B]and C&D = [C D], and if A, B, C, D, H and
H~! are bounded, then conditions (ii)—(iv) are satisfied and (49) reduces to the
standard KYP inequality (7).

The significance of this definition is due to the following theorem.

Theorem 5.7. Let ¥ := (S;X,U,Y) be a system node, and let H be a positive
operator on X. Then the following two conditions are equivalent:

(i) X is H-passive (i.e., H € My),

(ii) H is a solution of the generalized KYP-inequality induced by .

Moreover, ¥ is forward H-conservative if and only if condition (v) in Definition
5.6 holds with the inequality (49) replaced by the equality

2R(QA&B] [ ], Quo)x + |C&D [R]115 = lluollz- (50)

In particular, ¥ is passive if and only if (49) holds with @ = 1y for all
[20] € D(S), and it is forward conservative if and only if (50) holds with @ = 1x
for all [50] € D(9).

As we shall see in a moment, one direction of the proof is fairly simple (the
one which says that H-passivity of X implies that H is a solution of the generalized
KYP-inequality). The proof of the converse is more difficult, especially the proof
of the the validity of condition (ii) in Definition 5.1. For that part of the proof
we shall need to study the H-passivity of the corresponding discrete time system
obtained via a Cayley transform.

Following [AKPO05], we call a discrete time system ¥ := ([é Bl; X,u,y)

H -passive (or simply passive if H = 1x), where H is a positive operator on X, if|
with Q := VH,

AD(Q) c D(Q), BU c D(Q), (51)
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and if, for all g € D(Q) and ug € U,
1Q(Azo + Bug)||% + |[|Czo + Duo||3, < [|Qxoll% + [uollZ- (52)

In this case we also refer to H as a solution of the discrete time (scattering)
generalized KYP-inequality induced by 3. If H is bounded with D(H) = X, then
(51) is redundant, and (52) is equivalent to the discrete time scattering KYP
inequality (11). In particular, passivity of 33 is equivalent to the requirement that
[& B] is a contraction from %] to [5].
Lemma 5.8. Let ¥ := (S; X,U,Y) be a system node with main operator A, and let
Y and H satisfy conditions (i)—(iii) in Definition 5.6, with the same X € p} (A) in
conditions (i) and (ii). Then condition (v) in Definition 5.6 holds if and only if the
Cayley transform X(X) = ([283 ]]:3)8” ;X,Z/{,y) of ¥ (with the same parameter
A as in (i) and (i) is H-passive.
Proof. Clearly, by (28), (ii) and (iii) in Definition 5.6 imply (51). Thus, to prove
the lemma it suffices to show that (49) is equivalent to (52).

According to Lemma 4.4, we have [ ] € D(S) with z € D(Q) and A&B [} ] €
D(Q) if and only if [§] = F) [ VZRA 1?4} [%0] for some z¢ € D(Q) and some u € U.

Replacing [ 2] in (49) by Fy [ﬂom ) } [20] and using (21) and (22) we find that

(49) is equivalent to the requirement that
2R(Q[AN — A)TIWV2RA 2o + (A — A) " Bug], Q(A — A)TV2R a0 ,,
+IC = A) T V2RA zo + D(\uol} (53)
< JuollZ

for all 9 € D(Q) and u € U. If we here replace A(A — A)~ by A(A — A)71 — 14
and expand the resulting expression we get a large number of simple terms. A
careful inspection shows that we get exactly the same terms by expanding (52)
after replacing A()\) by 2RA(A — A)~! — 1y and replacing B(\), C()), and D())
by the expressions given in (28). Thus, (49) and (52) are equivalent. O

Proof of Theorem 5.7. Suppose that X is H-passive. We must show that conditions
(i)—(v) in Definition 5.6 hold. Condition (i) is the same as condition (i) in Definition
5.1. By Theorem 5.2, ¥ is pseudo-similar to a system node Xq = (Sq; X,U,)),
and (ii) and (iii) follow from Theorem 4.2 (for all A € pt (A); see (35)). By part
(i) of Theorem 5.2, the operator QAQ~"! is closable (its closure is equal to the
main operator of ¥g). Thus (i)—(iv) hold. Divide (46) by t — s, let t — s | 0, and
use part (iii) of Definition 5.1 (and the closedness of Q) to get

20(Qa(t), Qr(t))x + ly()lly < llu(@)lu, t=0. (54)

Here we substitute #(t) = A&B {58} and y(t) = C&D [zg” and take t = 0 to

get (49) with [59] replaced by {2%8” Thus also (v) holds.
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Conversely, suppose that H is a solution of the generalized KYP-inequality.
Let us for the moment focus on the main operator A of S, and ignore the other
parts of ¥. By Lemma 5.8, applied to a system node with main operator A but
no input or output, the conditions (i) and (i) imply that the Cayley transform
A(X) of A (with the same X as in (ii)) satisfies A(A\)D(Q) C D(Q). In particular,
we can define Ag(\) := QA(N)Q ! with D(Ag(N)) = R(Q). It follows from (v)
that Ag(\) is a contraction from its domain (with the norm of X) into X'. Thus,
by density and continuity, Ag(X) can be extended to a contraction on X', which
we still denote by Ag ().

We claim that Ag(A) does not have —1 as an eigenvalue. By the definition
of Ag(A) as the closure of its restriction to R (@), this is equivalent to the claim
that if x,, € R(Q), z, — zin X and y,, := (lx +Ag(A))x,, — 0in X, then z = 0.
Since 1x + Ag(\) = 2RAQ(A — A)~1)Q ™!, we have

WAL, = (A — QAQ ™ )y,.

By (iv), the operator A\—QAQ ™! is closable. Now y,, — 0 in X and 2RA\z,, — 2RA\z
in X, so we must have x = 0. This proves that Ag()\) does not have —1 as an
eigenvalue.

Since Ag(A) is a contraction which does not have —1 as an eigenvalue, it
is the Cayley transform of the generator Ag of a Cy contraction semigroup 91'&2,
t > 0; see, e.g., [AN96, Theorem 5.2], [SF70, Theorem 8.1, p. 142], or [Sta05,
Theorem 12.3.7]. By Theorem 4.10 (applied to the situation where there is no
input or output), 2, ¢t > 0, is pseudo-similar to Ql’éz, t > 0, with pseudo-similarity
operator Q. In particular, by Theorem 4.2, condition (ii) holds for all A € pi (A).

Since (ii) holds for all A € p (A), we can use the same A in (ii) as in (iii),
and take the Cayley transform of the whole system node X. By Lemma 5.8, the

Cayley transform X()\) := ([28‘; 1]:3)8\” ;X,U,y) is a discrete time scattering

H-passive system. Therefore, by [AKP05, Proposition 4.2], this system is pseudo-
similar to a passive system, with pseudo-similarity operator Q = VvV H. It is easy
to see that the system operator of this contractive system must be the closure

of {Q&l 1(;} {283 ]1:3)8;] [%2 1(;} (cf. Corollary 4.8). Let us denote this system by

o) = ([228‘; 1]13)28\” ;X,Z/{,y). As we have shown above, A(\) does not

have —1 as an eigenvalue. This implies that ¥ (A) is the Cayley transform with
parameter A\ of a scattering passive system node Xg; see, e.g., [AN96, Theorem
5.2] or [Sta05, Theorem 12.3.7]. By Theorem 4.10, ¥ and g are pseudo-similar
with pseudo-similarity operator @. It then follows from Theorem 4.9 that condi-

tion (ii) in Definition 5.1 holds. Moreover, [283] € D(S) with z(t) € D(Q) and

A&B [ﬁm € D(Q) for all t > 0. Therefore, by (49), (54) holds for all ¢ > 0.
Integrating this inequality over the interval [s,t] we get (46). O

It is possible to replace conditions (ii) and (iv) in Definition 5.6 by another
equivalent condition, which can be formulated as follows.
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Proposition 5.9. The positive operator H is a solution of the generalized KYP-

inequality if and only if, in addition to conditions (i), (i), and (v) in Definition

5.6, the following condition holds:

(it') A'D(Q) C D(Q) for all t € RT, and the function t — QAlzy is continuous
on RT (with values in X) for all g € D(Q),

where A, t > 0, is the semigroup on 2.

Proof. The necessity of (ii’) follows from Theorem 5.7 and condition (ii) in Def-
inition 5.1 (the trajectory z is given by z(t) = 'z, when u = 0). Conversely,
if (ii’) holds, then we obtain a Cy semigroup 2%, ¢ > 0, in the same way as we
did in the proof of the part (ii) of Theorem 5.2. By repeating the final part of
the argument in the proof of the converse part of Theorem 5.7 we find that
is H-passive, and by the direct part of the same theorem, H is a solution of the
generalized KYP-inequality. O

Corollary 5.10. Let X := (S; X, U, DY) be a system node, let H be a positive operator
on X, and let Q = VH. Then the following three conditions are equivalent:

(i) X is H-passive,

(ii) For some \ € pt (A), the Cayley transform ([28\‘; ggi” ;X,L{,y) of % with
parameter \ is H-passive, and the closure of the operator Q= *A(N)Q does
not have —1 as an eigenvalue.

(iii) For all A € pt (A), the Cayley transform ({38‘; 38” ;X U,Y) of © with
parameter \ is H-passive, and the closure of the operator Q 1 A(N\)Q does
not have —1 as an eigenvalue.

In particular, when these conditions hold, then conditions (ii) and (iii) in Defini-

tion 5.6 hold for all A € pi (A).

Proof. As we saw in the first part of the proof of Theorem 5.7, if 3 is H-passive,
then conditions (ii) and (iii) in Definition 5.6 hold for all A € p} (A). We also
observed in the proof of Theorem 5.7 that condition (iv) in Definition 5.6 holds
if and only if the closure of the operator @ *A(N\)Q does not have —1 as an
eigenvalue. This, combined with Lemma 5.8, implies (iii). Trivially, (iii) = (ii).
That (ii) = (i) was established in the proof of the converse part of Theorem
5.7. O

In our next theorem we compare solutions H € MI" to each other by using
the partial ordering of nonnegative self-adjoint operators on X: if H; and Hs are
two nonnegative self-adjoint operators on the Hilbert space X', then we write H; =<
Hy whenever D(H,'?) € D(H,'?) and |H{*z| < ||Hy/?x|| for all 2 € D(H,'?).
For bounded nonnegative operators H; and Hy with D(Hy) = D(H;) = X this
ordering coincides with the standard ordering of bounded self-adjoint operators.

Theorem 5.11. Let ¥ := (S;X,U,Y) be a minimal system node with transfer
function ® satisfying the condition |+ 4y € SU,Y; pt (A)). Then ME™ is
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nonempty, and it contains a minimal element Hy, and a mazimal element H,, i.e.,
H,<H=<H, He&cMI"

Proof. By Theorem 5.4, under the present assumption the set MIZU" is nonempty.
We map both ¥ and the pseudo-similar system ¥ 7 into discrete time via the
Cayley transform with some parameter A € pT (A). By Proposition 5.10, H is a
solution of the corresponding discrete time generalized KYP inequality, and by
Lemma 3.1, the image ¥ 7 of X 7 under the Cayley transform is minimal. We
denote the discrete version of MI" by M@, According to [AKP05, Theorem 5.11
and Proposition 5.15], the set Mgi“ has a minimal solution H, and a maximal
solution H,. The passivity and minimality of 3z implies that the main operator
of ¥ /7 cannot have any eigenvalues with absolute value one, and in particular,
it cannot have —1 as an eigenvalue. As we saw in the proof of Theorem 5.7, this
condition is equivalent to condition (iv) in Definition 5.6 with @ = VvH. Thus, due
to the extra minimality condition on ¥ 7, there is a one-to-one correspondence
between the solutions H of the continuous time generalized KYP-inequality and
the discrete time generalized KYP-inequality, and the conclusion of Theorem 5.11
follows from [AKPO05, Theorem 5.11 and Proposition 5.15]. O

The two extremal storage functions Ey, and Eg, correspond to Willems’
[Wil72a, Wil72b] available storage and required supply, respectively. See [Sta05,
Remark 11.8.11] for details.

We remark that if ¥ = (S;X,U,)) is a minimal passive system, then M@n
is nonempty and H, < 1x =< H, (since 1y € Mg‘i“). In particular, both H, and
H;! are bounded.

_ We end this section by studying how H-passivity of a system is related to
H-passivity of its adjoint.

Theorem 5.12. The system 3 = (S; X,U,Y) is H-passive if and only if the adjoint
system ¥ = (S*; X, V,U) is H-passive.

Proof. It suffices to prove this in one direction since (X*)* = ¥. Suppose that ¥
is H-passive. Choose some a € p(A), where A is the main operator of X. Then,

by Proposition 5.10, the Cayley transform X(a) := ([‘égz; EEZ” ;X,Z/Ly) of ¥
is H-passive, and —1 is not an eigenvalue of the closure Ag()) of Q71 A()\)Q. By

[AKPO5, Proposition 4.6], the adjoint system X(a)* := ([ggg; ggz;*} ;X,y,?/l)

of ¥ is H™!-passive. The operator Ag()) is a contraction which does not have
—1 as an eigenvalue, and hence —1 is not an eigenvalue of Ag(A)*, which is the
closure of QA(A)*@Q 1. The Cayley transform of ¥* with parameter @ € p(A*) is
equal to X(a)*, and by Proposition 5.10, ©* is H~!-passive. O

Theorem 5.13. Let ¥ = (S; X,U,Y) be a system node. Then

(i) H € My, if and only if H=* € Ms~, .
(ii) H € M3 if and only if H- € M&in,
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Proof. Assertion (i) is a reformulation of Theorem 5.12. The second assertion
follows from the fact that the system X 7 is minimal if and only if (X )" is
minimal (see Lemma 2.6), and (X 7)" = (X%) 7= O

Lemma 5.14. Let ¥ = (S; X,U,)) be a minimal system node which is self-adjoint
in the sense that ¥ = ¥* = (S*;X,V,U) (in particular, U = Y). If My is
nonempty, then H, = H; ',

Proof. By Theorem 5.12 and the fact that ¥ is self-adjoint, H € M&" if and
only if H=1 € M3, The inequality H~1 < H, for all H € M&" implies that
H;! < H (see [AKPO05, Proposition 5.4]). In particular H, ! < H,. But we also
have the converse inequality H, < H, ! since H,! € H®". Thus, H, = H,'. O

The identity H, = H,_1 implies, in particular, that H, =< Ho_l. It is not
difficult to see that this implies that H, < 1y < H,. However, we can say even
more in this case.

Proposition 5.15. Let ¥ = (S; X,U,Y) be a minimal system node for which My, is
nonempty and H, = H; . Then X is passive, i.c., 1y € Mg‘in.

Proof. This follows from [Sta05, Theorem 11.8.14]. O

Definition 5.16. A minimal passive system X with the property that H, = H; ! is
called a passive balanced system.’

This is equivalent to [Sta05, Definition 11.8.13]. According to [Sta05, Theorem
11.8.14], every Schur function 6 has a passive balanced realization, and it is unique
up to unitary similarity.

We define Hy, € ME™ to be a balanced solution of the generalized KYP
inequality (49) if the system X N constructed from Hg is a passive balanced

system in the sense of Definition 5.16. Thus, if ¥ is minimal and My, is nonempty,
then the generalized KYP inequality has a least one balanced solution Hg, and all
the systems X NG obtained from these balanced solutions are unitarily similar.

6. H-Stability

The possible unboundedness of H and H~! where H is a solution of the general-
ized KYP inequality (49) has important consequences for the stability analysis of
Y. Indeed, in the finite-dimensional setting it is sufficient to prove stability with
respect to the storage function Ep defined in (3) in order to get stability with re-
spect to the original norm in the state space, since all norms in a finite-dimensional
space are equivalent. This is not true in the infinite-dimensional setting unless H

9We call this realization ‘passive balanced’ in order to distinguish it from other balanced real-
izations, such as Hankel balanced and LQG balanced realizations.
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and H~! are bounded. Taking into account that H and H~! may be unbounded
we replace the definition of Ey given in (3) by

Ey(z) = (VHz,VHz), x€D(WH). (55)

In this more general setting stability with respect to one storage function Ey, is
not equivalent to stability with respect to another storage function E,. Moreover,
the natural norm to use for the adjoint system is the one obtained from Fp-1
instead of Fp, taking into account that H is a solution of the generalized KYP
inequality (49) if and only if H = H' is a solution of the adjoint generalized
KYP inequality.

Definition 6.1. Let H be a positive operator in a Hilbert space X, and let t — 2A?,
t > 0, be a Cy semigroup in X. Then ¢ — 2At, ¢t > 0, is called

(i) strongly H-stable, if A'D(H/?) ¢ D(H'/?) for all t > 0 and

tlirgo||H1/2mtx|| — 0 for all z € D(H?),
(ii) strongly H-x-stable, if (A*)*R (H'/2) C R (H/?) for all t > 0 and
Jim |V 2, | — 0 for all 2, € R (H1/2) :
(iii) strongly H-bistable if both (i) and (ii) above hold.

Theorem 6.2. Let ¥ := (S;X,U,Y) be a minimal system node with transfer func-
tion © satisfying the condition @|p;(A) = 9|pio(A) for some 0 € S(U,Y;C). Let
H,, H,, and Hg, be the minimal, the mazimal, and a balanced solution in MIZ™®
of the generalized KYP inequality. Let t — A, t > 0, be the evolution semigroup
of . Then the following claims are true:

(i) t — At is strongly H,-stable if and only if the factorization problem
(N (X)) =1y — 0(N)*0(N) a.e. on iR (56)
has a solution ¢ € S(U, V,; CT) for some Hilbert space Y.,
(ii) t — At is strongly He-+-stable if and only if the factorization problem
Y(N)Y(AN)" =1y —0(N)O(N)* a.e. on iR (57)
has a solution ¢ € S(Uy,Y;CT) for some Hilbert space Uy .

(iil) ¢ +— A" is strongly He-bistable if and only if both the factorization problems
in (i) and (ii) are solvable.

In the case where H is the identity we simply call ¢ — ! strongly stable,
strongly *-stable, of strongly bi-stable.

Proof of Theorem 6.2. The proofs of all these claims are very similar to each other,
so we only prove (i), and leave the analogous proofs of (ii) and (iii) to the reader.

We start by replacing the original system by the passive system ¥ 7. This
system is strongly stable if and only if ¥ is strongly Ho-stable. We map X /-
into a discrete time system X by using the Cayley transform. It is easy to see
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that X is optimal in the sense of [AS05a] (i.e., it has the weakest norm among all
passive minimal realizations of the same transfer function). By [SF70, Corollary,
p. 149] or [Sta05, Theorem 12.3.10], the main operator A of X is strongly stable
(i.e., A € Cpe in the terminology of [SF70]) if and only if the evolution semigroup
of ¥ - is strongly stable, i.e., t — 2A is strongly H,-stable. By [AS05a, Lemma
4.4], A is strongly stable if and only if the discrete time analogue of (56) where
C™* is replaced by the unit disk and 6 is replaced by 0((a — @z)/(1 + 2)) has
a solution (see (29)). But these two factorization problems are equivalent since
z — (e —a@z)/(1 + z)) is a conformal mapping of the unit disk onto the right
half-plane. This proves (i). O

7. An Example

In this section we present two examples based on the heat equation on a semi-
infinite bar. Both of these are minimal systems with the same transfer function
0 satisfying the conditions of Theorem 5.4 (so that the the KYP inequality has
a generalized solution). The first example is exponentially stable, but H, is un-
bounded and H, has an unbounded inverse. In the second example all H € Mg‘i“
are unbounded.

We consider a damped heat equation on RT with Neumann control and
Dirichlet observation, described by the system of equations

Tt(t7 5) = Tf&(uf) - OéT(t, 5)7 t, £>0,
TE(ta O) - 7u(t)v t>0,
T(1,0) = y(0), t>0, 5%
T(ng) = 330(&), &E>0.

Here we suppose that the damping coefficient « satisfies a > 1. The state space
X of the standard realization X(S;X,C,C) of this system is X = L?(R"). We
interpret T'(¢,€) as a function ¢ — x(t), where x(t) € X is the function £ — T'(¢, ),
and define the system operator S = [ égg] as follows. We take the main operator
to be (Az)(&) = 2”(€) — ax(§) for x € D(A) := {z € W?2(RT) | 2/(0) = 0}. We
take the control operator to be (Bc) = dgc, ¢ € C, where g is the Dirac delta at
zero. We define D(S) to consist of those [%] € [&] for which z is of the form

z(§) = +c§+/ / v) dv dn

for some h € L2(R*), and define [A&B][%] = h — ax and [C&D][%] = z(0).
This realization is unitarily similar to another one that we get by applying the
Fourier cosine transform to all the vectors in the state space. The Fourier cosine
transform is defined by &(w) = /2/7 [ cos(wé)x(€) d¢ for x € L'(RT)NL*(RT),
and it can be extended to a umtary and self-adjoint map of L?(R™) onto itself (so
that it is its own inverse). Let us denote the Fourier cosine transform of T'(¢,€)
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and zo (&) with respect to the &-variable by T'(¢,w) and Zo(w), respectively. Then

T(t,w) satisfies the following set of equations:

Ti(t,w) = —(w? + a)T(t,w) + /2/m u(t), t, w>0,
y(t) = /2] / T T w) dw, £>0, (59)
T(0,w) = Zo(w), w > 0.

The system operator Sy = Héig]ﬁ} of the similarity transformed system ¥y =

(S0; X,C,C) is the following. The state space is still X = L?(R*). The main
operator is (ApZ)(w) = —(w? + @)Z(w) for T € D(Ag) :={Z € X | AgZ € X}, and
the control operator is (Boc)(w) = v/2/m¢, w > 0, for ¢ € C. The domain D(Sp)
consists of those [Z] € [¥] for which (w — —(w? + a)&(w) + /2/7¢) € X, and
[A&B]o and [C&D]y are defined by [A&Blo [?] (w) = —(w? + a)i(w) + v/2/7c,
and [C&D)o [%] = \/2/7f0 Z(w) dw for [Z] € D(Sp). The evolution semigroup is
given by (A57)(€) = e~ (“"+)F(w), ¢, € > 0, and consequently, it is exponentially
stable. From this representation it is easy to compute the transfer function: it is
given for all A € p(Ap) = C\ (—o0, —a] by

(A — EO)‘lBO}

B0 = fcwply |

2 / > dw B 1

T Jo Atatw? Ata
In particular, Des (CT), since we assume that o > 1. The corresponding impulse
response is b(t) = ﬁtil/ze’at, t >0. It is easy to see that ¥ is minimal, hence so
is X. Moreover, ¥ is exponentially stable, and it is self-adjoint in the sense that
Yo coincides with its adjoint Xf. Therefore, by Lemma 5.14 and Definition 5.16,
39 is passive balanced. In particular, it is passive.

It is possible to apply Theorem 6.2 with () = 1/+/\ + « to this example. In
this case both factorization problems (i) and (ii) in that theorem coincide, and they
are solvable. Consequently, the evolution semigroup ¢ — ! is strongly H,-stable,
strongly H,-*-stable, and strongly H-bistable (and even exponentially Hg-stable
in this case). Nevertheless, t — 2A' is not strongly H,-*-stable or strongly H,-
stable. This follows from the fact that 8 does not have a meromorphic pseudo-
continuation into the left half-plane (see [AS05a] for details).

A closer look at the preceding argument shows that in this example H, =
H: ' must be unbounded. This is equivalent to the claim that /H, and /H, are
not ordinary similarity transforms in X (since ¥, is passive H, = H, ' must
be bounded). Indeed, they can not be similarity transforms since the different
semigroups have different stability properties.

In our second example we use a different method to realize the same impulse
response b(t) = ﬁtil/%’o‘t, t > 0, with transfer function (\) = 1/vVX + a,
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A € CT, namely an exponentially weighted version of one of the standard Hankel
realizations (we still take @ > 1 so that 6 is a Schur function). We begin by
first replacing 6 by the shifted function 6;(\) := 1/VA+a+1, A € C*. The
corresponding impulse response is by(t) = #tilﬂe’“*a)t, t > 0. We realize
0, by means of the standard time domain output normalized shift realization
described in, e.g., [Sta05, Example 2.6.5(ii)], and we denote this realization by
¥ = (S1;&,C,C). The state space of this realization is X = L?(R*) and the

system operator S; = Hégg]ﬁ} is defined as follows. We take the main operator

to be (A12)(¢) = 2/ (€) for x € D(A;) := W2L(R*). Then X~ = W-123(RT), and
Ayz is the distribution derivative of 2 € L2(R*). We take the control operator
to be (B1c)(&) = b1(€)c for ¢ € C. We define D(S7) to consist of those [£] for
which z € L2(R") is of the form z(§) = z(0) + ff h(v)dv — cff b1 (v) dv for some
h € L?>(R*), and define [A&B]; [2] = h and [C&D]; [%] = 2(0). This realization
is output normalized in the sense that the observability Gramian is the identity,
and it is minimal because the range of the Hankel operator induced by b; is dense
in L2(RT) (see [Fuh81, Theorem 3-5, p. 254]). The evolution semigroup ¢ — 2A! is
the left-shift semigroup on L2(R*), i.e., (ALx)(&) = z(t + &) for t, £ > 0, and the
spectrum of A;j is the closed left half-plane {RA < 0}. From this realization we
get a minimal realization o := (S3; X', C, C) of the original transfer function 6 by
taking S1 = S1+ [15" 8} . Clearly the spectrum of the main operator As := A;+1y
is the closed half-plane {RA < 1}, the evolution semigroup ¢ — 2, given by
(Abz)(&) = etx(t + &) for t, € > 0, is unbounded, and the transfer function D is
the restriction of 6 to the half-plane £\ > 1.

Since 0|+ is a Schur function, it follows from Theorem 5.4 that the gener-
alized KYP inequality (49) has a solution H. Suppose that both H and H ! are
bounded. Then our original realization becomes passive if we replace the original
norm by the norm induced by the storage function Eg. In particular, with respect
to this norm the evolution semigroup is contractive. However, this is impossible
since we known that the semigroup is unbounded with respect to the original
norm, and the two norms are equivalent. This contradiction shows that H or H "
is unbounded. In this particular case it follows from [Sta05, Theorems 9.4.7 and
9.5.2] that if H € M, then H ! is bounded, hence H itself must be unbounded.

From the above example we can get another one where both H and H~!
must be unbounded for every H € M3 as follows. We take two independent

copies of the transfer function 6 considered above, i.e, we look at the matrix-
o(\) 0

0 6(A
independent realizations of the two blocks, so that we realize one of them with the
exponentially weighted output normalized shift realization described above, and
the other block with the adjoint of this realization. This will force both H and

H~! to be unbounded for every H € Mgi“, where ¥ is the combined system.

valued transfer function [ ) ] . We realize this transfer function by taking two
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