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Abstrat

This is a short survey of the notion of a well-posed linear system. We

start by desribing the most basi onepts, proeed to disuss dissipative and

onservative systems, and �nally introdue J-energy preserving systems, i.e.,

systems that preserve energy with respet to some generalized inner produts

(possibly semi-de�nite or inde�nite) in the input, state, and output spaes.

The lass of well-posed linear systems ontains most linear time-independent

distributed parameter systems: internal or boundary ontrol of PDE:s, integral

equations, delay equations, et. These systems have existed in an impliit form

in the mathematis literature for a long time, and they are losely onneted to

the sattering theory by Lax and Phillips and to the model theory by Sz.-Nagy

and Foia�s. The theory has been developed independently by many di�erent

shools, and only reently have these di�erent approahes begun to onverge.

One of the most interesting objets of present study is the Riati equation

theory for this lass of in�nite-dimensional systems (H

2

- and H

1

-theory).
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1 Well-Posed Linear Systems

Many in�nite-dimensional linear time-independent ontinuous-time systems an be

desribed by the equations

x

0

(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t); t � 0;

x(0) = x

0

;

(1)

on a triple of Hilbert spaes, namely, the input spae U , the state spae X, and

the output spae Y . We have u(t) 2 U , x(t) 2 X and y(t) 2 Y . The operator
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A is supposed to be the generator of a strongly ontinuous semigroup t 7! A

t

.

The generating operators A, B and C are usually unbounded, whereas D is always

bounded.

By modifying this set of equations slightly we get the notion of a well-posed

linear system. In the sequel, we think about the blok matrix S =

�

A B

C D

�

as one

single (unbounded) operator from X � U to X � Y , and write (1) in the form

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

; t � 0; x(0) = x

0

: (2)

The operator S ompletely determines the system. Thus, we may identify the system

with suh an operator, whih we all the node of the system.

There are some neessary onditions whih a node S must satisfy in order to

generate a well-posed linear system. First of all, S must be losed and densely

de�ned as an operator from X � U into X � Y . Let us denote the domain of X by

D(S). Then S an be split into S =

h

S

1

S

2

i

, where S

1

maps D(S) into X and S

1

maps

D(S) into Y . By analogy to the �nite-dimensional ase, let us denote S

1

= A&B

and S

2

= C&D, so that S =

�

A&B

C&D

�

(the reader who �nds this notation onfusing

may throughout replae A&B by S

1

and C&D by S

2

). It is not true, in general,

that A&B and C&D (de�ned on D(S)) an be deomposed into A&B =

�

A B

�

and C&D =

�

C D

�

; this is possibly only in the ase where D(S) an be written as

the produt of one subset of X times another subset of U . However, as we shall see

below, ertain extended versions of A&B and C&D an be deomposed as indiated

above, so that A&B and C&D are the restritions to D(S) of

�

A B

�

respetively

�

C D

�

for suitably de�ned operators A, B, C, and D. The �rst of these two

deompositions is more fundamental than the seond, so we have inorporated it in

the following de�nition of a system node (the seond deomposition is ommented

on after De�nition 1.4).

De�nition 1.1. We all S a system node on the three Hilbert spaes (U;X; Y ) if

it satis�es ondition (S) below:

(S) S :=

�

A&B

C&D

�

: X � U � D(S) ! X � Y is a losed linear operator. Here

A&B is the restrition to D(S) of

�

A B

�

, where A is the generator of a C

0

semigroup, whih has been extended to an operator in L(X;X

�1

), where X

�1

is the ompletion of X under the norm kxk

X

�1

:= k(�I � A)

�1

xk

X

(� is an

arbitrary number in the resolvent set of A). The operator B is an arbitrary

operator in L(U ;X

�1

), and C&D is an arbitrary linear operator from D(S) to

Y . In addition, we require that

D(S) = f[

x

u

℄ 2 X � U j Ax+Bu 2 Xg:

In the sequel we shall simply write S =

�

A B

C&D

�

and ignore the fat that

�

A B

�

is de�ned on all of X�U (with values in X

�1

) and not just on D(S) (with values in

X). Often X

�1

is de�ned in a di�erent but equivalent way as the dual of D(A

�

) (we

identify the dual of X with X itself). Let us also remark that we an replae the

assumption that S is losed by the equivalent assumption that C&D is ontinuous

from D(S) (with the graph norm) to Y .
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As the following lemma shows, every system node indues a \dynamial system"

of a ertain type:

Lemma 1.2. Let S be a system node on (U;X; Y ). Then, for eah x

0

2 X and

u 2W

2;1

(R

+

;U) with

�

x

0

u(0)

�

2 D(S), the equation

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

; t � 0; x(0) = x

0

; (3)

has a unique solution (x; y) satisfying

h

x(t)

u(t)

i

2 D(S) for all t � 0, x 2 C

1

(R

+

;X),

and y 2 C(R

+

;Y ).

De�nition 1.3. By the linear system � generated by a system node S we under-

stand the family � of maps de�ned by

�

t

0

�

x

0

�

[0;t℄

u

�

:=

�

x(t)

�

[0;t℄

y

�

;

parametrized by t � 0, where x

0

, x(t), u, and y are as in Lemma 1.2 and �

[0;t℄

u and

�

[0;t℄

y are the restritions of u and y to [0; t℄. The transfer funtion of � is de�ned

by

b

D(z) := C&D

�

(zI �A)

�1

B

I

�

; z 2 �(A):

By taking Laplae transforms in (3) we �nd that if u is Laplae transformable

with transform û, then the output y is also Laplae transformable with transform

ŷ(z) = C(zI �A)

�1

x

0

+

b

D(z)û(z)

for <z large enough. Here

Cx := C&D

�

x

0

�

for x 2 D(A):

Thus, our de�nition of the transfer funtion is equivalent to the standard de�nition

in the lassial ase.

So far we have de�ned �

t

0

only for the lass of smooth data given in Lemma 1.2.

In order to extend �

t

0

to a larger lass of data we need an extra well-posedness

assumption.

De�nition 1.4. A system � generated by a system node S is well-posed if the

following additional ondition holds:

(WP) For some t > 0 there is a �nite onstant K(t) suh that the solution (x; y) in

Lemma 1.2 satis�es

kx(t)k

2

+ kyk

2

L

2

(0;t)

� K(t)

�

kx

0

k

2

+ kuk

2

L

2

(0;t)

�

:
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Figure 1: Input/state/output diagram of �

It is not diÆult to show that if this ondition holds for one t > 0, then it holds

of all t > 0. If a system is well-posed, then � an be extended by ontinuity to a

family of operators

�

t

0

:=

h

A

t

B

t

0

C

t

0

D

t

0

i

from X � L

2

([0; t℄;U) to X � L

2

([0; t℄;Y ). (We still denote the extended family by

�.)

As shown in [42℄, the system node S of a well-posed system an be always split

into

S =

�

A B

C D

�

;

where A : X ! X

�1

, B : U ! X

�1

, C : W ! Y , and D : U ! Y . Here

D(A) =: X

1

�W � X � X

�1

andW = (�I�A)

�1

(X+BU) where � 2 �(A). The operators A and B are unique,

but C and D are not always unique (only the restrition of C to X

1

= D(A) is

unique). The operators A, B, and C may be unbounded, but D is always bounded.

If � is well-posed, then

b

D is bounded on some right half-plane, and

b

D an be written

in the familiar form

b

D(z) = C(zI �A)

�1

B +D; z 2 �(A):

For more details, explanations and examples we refer the reader to [1℄, [2, 3℄, [4℄,

[10℄, [27, 28℄, [33, 34, 35, 36, 38, 40℄, [42, 43℄, [46, 47, 48, 49, 50, 51℄ and [55℄ (and

the referenes therein). Note that di�erent groups of authors use di�erent notations.

For example, in an alternative set of notations (introdued by George Weiss) the

system itself and the transfer funtion are denoted by

�

t

:=

h

T

t

�

t

	

t

F

t

i

:=

h

A

t

B

t

0

C

t

0

D

t

0

i

; G(s) :=

b

D(s):

In the notation of Grabowski and Callier [18℄ the system node and the transfer

funtion are denoted by

�

A Ad



℄

0

�

:= S; ĝ(s) :=

b

D(s):

Translating the notation used by Arov and Nudelman [4℄ to our notation we obtain

� := �; N

�

:= U; N

+

:= Y;

�

B L

M K

�

:=

�

A B

C D

�

; N := C&D; �

�

(s) :=

b

D(�is):
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In addition to the referenes mentioned above there is there is a large range

of relevant literature that we do not ite expliitly. This applies, in partiular, to

most of the Russian literature, represented by Adamjan, Arov, Brodski��, Kre��n,

Liv�si, Nudelman, Potapov, and

�

Smulijan, among others. Another large blok of

relevant results is found in the western operator theory and sattering theory group,

represented by Ball, de Branges, Douglas, Lax, Fuhrman, Helson, Helton, Phillips,

Rosenblum, and Rovnyak. A third group of missing results are those that have

been developed in stohasti identi�ation theory, represented by Byrnes, Georgiou,

Gilliam, Lindquist, and Pii. (The above lists of researhers are far from omplete.)

2 Lax{Phillips Sattering

A generalized Lax{Phillips sattering model is a semigroup T de�ned on

Y �X � U = L

2

(R

�

;Y )�X � L

2

(R

+

;U)

with ertain additional properties. We all U the inoming subspae, X the entral

state spae, and Y the outgoing subspae. In the lassial ases treated in [21, 22℄

T is required to be unitary (the onservative ase) or a ontration semigroup (the

dissipative ase). Below we use the following notation:

(�

J

u)(s) :=

(

u(s); s 2 J;

0; otherwise:

;

(�

+

u)(s) :=

(

u(s); s 2 R

+

;

0; s 2 R

�

;

;

(�

t

u)(s) := u(t+ s); s; t 2 R:

�

t

+

:= �

+

�

t

; t � 0;

Theorem 2.1. Let Y = L

2

(R

�

;Y ) and U = L

2

(R

+

;U). For all t � 0 we de�ne

on Y �X � U the operator T

t

by

T

t

=

2

4

�

t

0 0

0 I 0

0 0 �

t

+

3

5

2

4

I C

t

0

D

t

0

0 A

t

B

t

0

0 0 I

3

5

: (4)

Then T is a strongly ontinuous semigroup. If x and y are the state trajetory and

the output funtion of � with initial state x

0

2 X and input funtion u

0

2 U , and if

we de�ne y(t) = y

0

(t) for t < 0, then for all t � 0,

2

4

�

t

0 0

0 I 0

0 0 �

t

3

5

2

4

�

(�1;t℄

y

x(t)

�

[t;1)

u

0

3

5

= T

t

2

4

y

0

x

0

u

0

3

5

: (5)

Formula (5) shows that at any time t � 0, the �rst omponent of T

t

h

y

0

x

0

u

0

i

repre-

sents the past output, the seond omponent represents the present state, and the

third omponent represents the future input.
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The preeding theorem is taken from [42℄, and it is also found in [40℄. Speial

ases of this result (where either the input or the output is missing) appear in

[12℄ and [17℄. The roots of Theorem 2.1 are very old, and the preeding referenes

represent only a fration of all the relevant ones. The setting whih we desribe

above orresponds to the one found in orthogonal sattering theory. Non-orthogonal

sattering has also been studied intensively. This ase is important in, for example,

the state spae onstrution in stohasti identi�ation theory.

3 Dissipative and Conservative Systems

Below we shall interpret the words \dissipative" and \onservative" in a rather

restrited sense. Many authors use these words to represent (some sublass of) the

more general lasses of (R;P; J)-dissipative and (R;P; J)-onservative systems that

we de�ne in Setion 5. In partiular, the following de�nition is a speial ase of the

de�nitions in the two lassial papers [56, 57℄ by Willems.

De�nition 3.1. A system � generated by a system node S is dissipative if the

following energy inequality holds:

(D) For all t > 0, the solution (x; y) in Lemma 1.2 satis�es

kx(t)k

2

+ kyk

2

L

2

(0;t)

� kx

0

k

2

+ kuk

2

L

2

(0;t)

:

Thus, every dissipative system is well-posed : The dissipativity inequality (D) im-

plies the well-posedness inequality (WP). Physially, dissipativity means that there

are no internal energy soures.

Theorem 3.2. The following onditions are equivalent:

1. � is dissipative.

2. The orresponding Lax{Phillips model is a ontration semigroup.

3. For all t > 0, the operator �

t

0

=

h

A

t

B

t

0

C

t

0

D

t

0

i

is a ontration from X�L

2

([0; t);U)

to X � L

2

([0; t);Y ).

Dissipativity an also be haraterized by some algebrai operator inequalities

involving the system node S =

�

A B

C D

�

(whih are Linear Matrix Inequalities in the

�nite-dimensional ase). See [42℄ for the general ase and [57℄ for the matrix ase.

De�nition 3.3. A system � generated by a system node S is energy-preserving if

the following energy balane equation holds:

(E) For all t > 0, the solution (x; y) in Lemma 1.2 satis�es

kx(t)k

2

+ kyk

2

L

2

(0;t)

= kx

0

k

2

+ kuk

2

L

2

(0;t)

:

Note that every energy onserving system is dissipative, hene well-posed. Phys-

ially, a system is energy preserving if there are no internal energy soures or sinks.
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De�nition 3.4. A system � generated by a system node S is onservative if both

the original system and the dual system are energy preserving.

The dual system is the one generated by S

�

. (If S is a system node, then so is

S

�

.) A �nite-dimensional system is onservative if and only if it is energy preserving

and U = Y . Some related (but more ompliated) results are true also in in�nite-

dimensions.

Theorem 3.5. The following onditions are equivalent:

1. � is onservative.

2. The orresponding Lax{Phillips model is a unitary semigroup.

3. For all t > 0, the operator �

t

0

=

h

A

t

B

t

0

C

t

0

D

t

0

i

is a unitary operator from X �

L

2

([0; t);U) to X � L

2

([0; t);Y ).

Preservation of energy an also be haraterized by some algebrai operator

identities involving the system node S =

�

A B

C D

�

: di�erentiating the energy balane

equation with respet to t (by Lemma 1.2, this is possible) we �nd that, for all

[

x

u

℄ 2 D(S) =

�

[

x

u

℄ 2 X � U

�

�

Ax+Bu 2 X

	

,

hAx+Bu; xi

X

+ hx;Ax+Bui

X

+ hCx+Du;Cx+Dui

Y

= hu; ui

U

: (6)

(Here we have used the fat that we an write C&D [

x

u

℄ = Cx+Du for [

x

u

℄ 2 D(S)

sine � is well-posed.) In the �nite-dimensional ase this set of equations deouples

into the three independent equations

A+A

�

+ C

�

C = 0;

B + C

�

D = 0;

(B

�

+D

�

C = 0; )

D

�

D = I:

(7)

(The third equation above is the adjoint of the seond.) In the in�nite-dimensional

ase suh a deoupling is muh more diÆult. This problem is disussed further in

Setion 6.

The results presented in this setion are taken from [4℄, [24℄, [42℄, and [52℄, and

they are also found in [40℄.

4 The Universal Model of a Contration Semigroup

There is a lassial problem in mathematis:

Let A be an arbitrary ontration semigroup on some Hilbert spae X. Is it

always possible to �nd a unitary dilation

e

A of A de�ned on some larger spae

e

X?

By this we meant the following: X is a subset of

e

X ,

e

A is a unitary semigroup

on

e

X , and for all t � 0 and x 2 X,

A

t

x = �

X

e

A

t

x;

where �

X

is the orthogonal projetion of

e

X ontoX. We also say that A a ompression

of

e

X . The answer to this question is:
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Theorem 4.1. Given an arbitrary ontration semigroup A on a Hilbert spae X,

it is always possible to �nd a onservative system � whose semigroup is the given

semigroup A. The orresponding Lax{Phillips semigroup is a unitary dilation of A.

The system � is unique (modulo unitary similarity transformations in the input and

output spaes) if we require

b

D to be stritly ontrative.

Strit ontrativity of

b

D means that there is no nontrivial subspae of U on

whih

b

D redues to a isometri onstant. This additional restrition on the transfer

funtion is a minimality requirement : by fatoring out N (B) from U and R(C)

?

from Y , we an always redue a onservative system to a system whose transfer

funtion is stritly ontrative. The orresponding Lax-Phillips semigroup is then a

minimal unitary dilation of A.

The preeding theorem also has a \onverse":

Theorem 4.2. Every ontrative ausal shift invariant operator D from L

2

(R

+

;U)

to L

2

(R

+

;Y ) has a onservative realization, i.e., there exists a onservative system

� with this input/output map. The system � is unique (modulo unitary similarity

transformations in its state spae) if we require A to be ompletely non-unitary.

Complete non-unitarity of the semigroup A means that there is no nontrivial re-

duing subspae on whih A is unitary. Again the requirement that A is ompletely

non-unitary is a minimality requirement : We an always redue a onservative sys-

tem to a system with a ompletely non-unitary semigroup by fatoring out the

intersetion of the unreahable and unobservable subspaes.

By ombining the preeding results with a further representation result for the

Lax{Phillips semigroup orresponding to a onservative system we arrive at the

following universal model of a ompletely non-unitary ontration semigroup:

Theorem 4.3. Every ompletely non-unitary ontration semigroup A on some

Hilbert spae X is unitarily equivalent to a ompression of the (bilateral) shift oper-

ator on some subspae

e

X of L

2

(R;Z) (and there are formulas for how to �nd the

spae Z and the subspae

e

X).

The results presented in this setion are taken from the book [44℄ by Sz.-Nagy

and Foia�s, and the same book also ontains a wealth of additional material on on-

servative systems, inluding results on strong stability, ontrollability, observability,

and transfer funtions being inner (or o-inner or bi-inner). This book is written pri-

marily in disrete time, but the results apply equally well in ontinuous time. Reall

that well-posedness does not ause any problems when the systems are dissipative.

The Cayley transform maps a well-de�ned sublass of all disrete time dissipative

[or onservative℄ systems one-to-one onto the lass of ontinuous time dissipative

[or onservative℄ linear systems, and it preserves ontrollability, observability, strong

stability, inner transfer funtions, et. In other words, it preserves almost all the

important properties of a system. The only exeptions are exponential stability and

all properties related to the behavior of the system over a �nite time interval (suh

as exat ontrollability/observability in �nite time).

Of ourse, there is also a fair amount of additional literature on this subjet,

in partiular, a huge Russian literature. See [53℄ for a detailed desription of a
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partiular ase of the general onstrution presented in Theorem 4.1. Theorem 4.2

is also found in [4℄ (in ontinuous time). Theorem 4.3 is found in [44℄ (both in

disrete and ontinuous time). A modern presentation of the results presented up

to now (in ontinuous time) is found in the book manusript [40℄.

5 (R;P; J)-Energy Preserving Systems

The standard energy inequality of a dissipative system an also be written with the

help of inner produts:

hx(t); x(t)i

X

+

Z

t

0

hy(s); y(s)i

Y

ds � hx

0

; x

0

i

X

+

Z

t

0

hu(s); u(s)i

U

ds:

We an make this equation more general by introduing self-adjoint ost operators:

the input ost operator R : U ! U , the state ost operator P : X ! X, and the

output ost operator J : Y ! Y .

De�nition 5.1. A system � generated by a system node S is (R;P; J)-dissipative

if the following (R;P; J)-energy inequality holds:

(JD) For all t > 0, the solution (x; y) in Lemma 1.2 satis�es

hx(t); Px(t)i

X

+

Z

t

0

hy(s); Jy(s)i

Y

ds � hx

0

; Px

0

i

X

+

Z

t

0

hu(s); Ru(s)i

U

ds:

The system � is (R;P; J)-energy preserving if the above inequality holds as an

equality:

(JE) For all t > 0, the solution (x; y) in Lemma 1.2 satis�es

hx(t); Px(t)i

X

+

Z

t

0

hy(s); Jy(s)i

Y

ds = hx

0

; Px

0

i

X

+

Z

t

0

hu(s); Ru(s)i

U

ds:

Finally, � is (R;P; J)-onservative if both � and the dual system �

d

are (R;P; J)-

energy preserving.

It is important to observe that in the above ases well-posedness in not guaran-

teed, nor is it neessarily relevant. This possible lak of well-posedness auses some

additional diÆulties, but it is still possible to extend some of the results mentioned

in Setion 3 to the lass of systems desribed in De�nition 5.1. For simpliity, let us

restrit the disussion to the ase where the system is (R;P; J)-energy preserving.

Di�erentiating the (R;P; J)-energy balane equation with respet to t (and using

Lemma 1.2) we obtain the following Lyapunov equation,

hAx+Bu;Pxi

X

+ hx; P (Ax +Bu)i

X

+ hC&D [

x

u

℄ ; J [C&D℄ [

x

u

℄i

Y

= hu;Rui

U

;

(8)
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valid for all [

x

u

℄ 2 D(S). In the �nite-dimensional ase this set of equations deouples

into the three independent equations

A

�

P + PA+ C

�

JC = 0;

PB + C

�

JD = 0;

(B

�

P +D

�

JC = 0; )

D

�

JD = R:

(9)

Again, in the in�nite-dimensional ase suh a deoupling is muh more diÆult (see

the disussion in Setion 6).

(R;P; J)-energy preserving systems appear in optimal ontrol, for example in

minimization problems (H

2

-optimal ontrol) and in minimax problems (H

1

-optimal

ontrol). The operator J is known, but the original system is not energy preserving

in any sense. Instead we want to �nd a feedbak operator K, an input ost operator

R, and a state ost operator (Riati operator) P suh that the orresponding losed

loop system is (R;P; J)-energy preserving. By this we mean the following. We add

another ombined observation/feedthrough operator K&L to the bottom of the

system node S (similar to the original C&D), and we then feed this output bak

into the system, i.e., we take u to be of the form

u = v +K&L

�

x

u

�

;

where v is the losed loop input. To simplify the disussion, let us assume that we

an split K&L into K&L =

�

K L

�

, and that we an take L = 0 (and let us also

ignore the fat that the splitting of K&L into

�

K L

�

need not be unique). Then

K&L [

x

u

℄ = Kx, so that

u = v +Kx:

As we mentioned above, the operator K should be hosen in suh a way that losed

loop system is (R;P; J)-energy preserving for some (unknown) ost operators R and

P . By replaing u in the Lyapunov equation (8) by v = u�Kx we get the Riati

equation

hAx+Bu;Pxi

X

+ hx; P (Ax +Bu)i

X

+ hC&D [

x

u

℄ ; J [C&D℄ [

x

u

℄i

Y

= hu�Kx;R(u�Kx)i

U

;

(10)

whih is valid for all [

x

u�Kx

℄ 2 D(S). In the �nite-dimensional ase this set of

equations deouples into the three equations

A

�

P + PA+ C

�

JC = K

�

RK;

PB + C

�

JD = �K

�

R;

(B

�

P +D

�

JC = �RK; )

D

�

JD = R:

(11)

Espeially in the ase of the positive real lemma (whih will be disussed below) the

system (11) is often referred to as the Popov{Kalman{Szeg�o{Yakubovi system. In

10



A

t

B

t

0

C

t

0

D

t

0

0 I

?

x

0

�

x(t)

�

y

�

u

6

u

Figure 2: Input added to output of �

the in�nite-dimensional ase the interpretation of these equations raises some serious

questions.

By appropriate hoie of R, P , and J we get many of the standard one-blok and

two-blok \optimal ontrol" results. This time we work with the extended system

of Figure 2, where we have added a opy of the input to the output (in addition the

systems used in the full information H

1

problem has two inputs instead of one):

1. y := [

y

u

℄, C :=

�

C

0

�

, D :=

�

0

I

�

, J :=

�

I 0

0 R

�

. This is the standard LQR Riati

equation. Here R � 0 is the same operator whih appears in the de�nition of

J , and both R � 0 and J � 0. We further require P � 0, and (11) beomes

A

�

P + PA+ C

�

C = K

�

RK;

RK = �B

�

P:

Usually R is assumed to be invertible, in whih ase we an eliminate K to

get the standard regulator Riati equation

A

�

P + PA+ C

�

C = PBR

�1

B

�

P:

2. y := [

y

u

℄, C :=

�

C

0

�

, D :=

�

D

I

�

, J :=

�

I 0

0 I

�

. This is the normalized oprime

fatorization problem. We still have J � 0, P � 0, R � 0, and (11) beomes

A

�

P + PA+ C

�

C = K

�

RK;

RK = �(B

�

P +D

�

C);

R = I +D

�

D:

Clearly R is invertible, and we may eliminate R and K to get the normalized

oprime fatorization Riati equation

A

�

P + PA+ C

�

C = (PB + C

�

D)(I +D

�

D)

�1

(B

�

P +D

�

C):

3. y := [

y

u

℄, C :=

�

C

0

�

, D :=

�

D

I

�

, J :=

h

I 0

0 �

2

I

i

. This is the bounded real lemma.

Here J is inde�nite and (11) beomes

A

�

P + PA+ C

�

C = K

�

RK;

RK = �(B

�

P +D

�

C);

R = D

�

D � 

2

I:

11



Usually  is hosen so that R � 0 is invertible and P � 0. Eliminating R and

K from the above system we get the bounded real lemma Riati equation

A

�

P + PA+ C

�

C = �(PB + C

�

D)(

2

I �D

�

D)

�1

(B

�

P +D

�

C):

4. y := [

y

u

℄, C :=

�

C

0

�

, D :=

�

D

I

�

, J := �

�

0 I

I 0

�

: This is the positive real lemma.

The operator J is again inde�nite, and (11) beomes

A

�

P + PA = K

�

RK;

RK = �B

�

P + C;

R = �(D +D

�

):

Clearly R � 0, and we require that P � 0. If D + D

�

is invertible, then we

an eliminate R and K to get the positive real lemma Riati equation

A

�

P + PA+ C

�

C = �(PB �C)(D +D

�

)

�1

(B

�

P � C):

5. u := [

w

u

℄, y := [

y

u

℄, B :=

�

B

1

B

2

�

, C :=

�

C

0

�

, D :=

�

D

11

D

12

0 I

�

, J :=

h

I 0

0 �

2

I

i

.

This is the H

1

full information problem. In this problem P � 0, but J and

R are inde�nite. In the speial ase where D

12

= 0 the system (11) beomes

(the feedbak operator K has two omponents K =

h

K

1

K

2

i

sine we now have

two inputs)

A

�

P + PA+ C

�

C =

�

K

�

1

K

�

2

�

R

�

K

1

K

1

�

;

R

�

K

1

K

1

�

= �

��

B

�

1

B

�

2

�

P +

�

D

�

11

D

�

12

�

C

�

;

R =

�

D

�

11

D

11

0

0 �

2

I

�

:

(If D

12

6= 0 then the solution ontains an additional feed-forward term from

the disturbane to the ontrol input.) For further omments on this example

we refer the reader to standard text books on H

1

ontrol.

One important problem whih is missing from the above list is the Nehari prob-

lem. It is related to the full information H

1

-problem disussed above, but it does

not quite �t into the general framework of this setion (a minimax approah to this

problem is presented in [41℄). Another related problem is the omputation of the

n:th singular value of the Hankel operator. In the last problem even the appropriate

Riati operator P is inde�nite.

6 Open Questions and Some Solutions

Presently researh is going on to extend the �nite-dimensional Riati equation

theory to the setting of an in�nite-dimensional well-posed linear system. Muh

has been done, but even more remains to be done. There are several problems

12



whih makes the the in�nite-dimensional theory signi�antly more diÆult than

the �nite-dimensional one. The �rst question to ask is: what do we really want

out of the Riati equation? Depending on the answer (optimal ontrol, spetral

fatorization, omputation of invariant subspaes, optimal identi�ation, et.) the

\orret formulation" of the problem might be di�erent. One we have deided the

purpose of the Riati equation, we are faed with the problem that the losed loop

system may not be a system, or it may not be well-posed. If it is a system, then

what is the \orret form" of the Riati equation? For example, to ompute the

feedbak operator K from the equation K = �R

�1

(B

�

P +D

�

JC) we need to know

for whih x 2 D(C) it is true that Px 2 D(B

�

). In addition the non-uniqueness of

the splitting of the observation/feedthrough operators C&D into

�

C D

�

and K&L

into

�

K L

�

omes into play. All the operators A, B, C, D, and K appear in the

Riati equation (L is supposed to be zero), but whih are the \orret" versions of

these operators? Can we always take L = 0? Is there always a \orret splitting" of

C&D and K&L whih makes the Riati equation valid? Suh a splitting does not

depend only on the system itself, but also on the given ost operator J .

The diÆulties desribed above have been approahed in di�erent ways. Some

results on the \orret splitting" of C&D into

�

C D

�

(i.e., a splitting whih makes

the Riati equation valid with L = 0) are found in [13℄ (this referene does not

require the optimal losed loop system to be well-posed). If

b

D(1) exists, then the

system is alled regular, and it is possible to take D =

b

D(1). In general this splitting

is not ompatible with the Riati equation, and we have to add some orretion

terms to the Riati equation, similar to those seen in the disrete time theory. In

partiular, the formula for R beomes more ompliated. See [25℄, [31, 32, 33, 35,

36, 37, 39℄, and [55℄. These results are largely based on spetral fatorization, and

so are [5, 6, 7℄ and [14, 15, 16℄. When the losed loop system is not well-posed

we an use the (non-well-posed) ompensators with internal loop introdued in [11℄

(see [25℄). Another approah is to use the Cayley transform to map the ontinuous

time system into a disrete time system and use the disrete time Riati equation

theory (joint work with Malinen is in progress). In disrete time all the operators

beome bounded, but some extra orretion terms enter the Riati equations. In

many ases additional smoothing properties have been used (Prithard{Salamon and

paraboli ases); see, e.g., [8℄, [9℄, [19℄, [45℄, [26℄, [30, 29℄, and [54℄.

Aknowledgement. While working on this manusript I had several intensive

disussions with Jarmo Malinen, who spotted many misleading or lumsy formula-

tions and suggested alternative approahes. Some further omments by one of the

editors also helped me to improve the presentation.
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