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Abstra
t. We dis
uss the 
onne
tion between Lax{Phillips s
attering theory

and the theory of well-posed linear systems, and show that the latter theory

is a natural extension of the former. As a 
onsequen
e of this, there is a


lose 
onne
tion between the Lax{Phillips generator and the generators of the


orresponding well-posed linear system. All the essential information about

these two systems is 
ontained in the system operator S

�

= [

A B

C&D

℄, where A is

the generator of the (
entral) semigroup, B is the 
ontrol operator, and C&D

is the 
ombined observation/feedthrough operator. In the important Hilbert

spa
e 
ase this system operator 
an be written in the more familiar form

S

�

=

�

A B

C D

�

, where C is a (not ne
essarily uniquely determined) observation

operator and D is the 
orresponding (generalized) feedthrough operator. The

system operator is 
losed and densely de�ned. In the re
exive 
ase the adjoint

of S

�

is the system operator of the dual system. We give formulas for the Lax{

Phillips generator and resolvent in terms of the system operator. By applying

the Hille{Yoshida theorem to the Lax{Phillips semigroup we get ne
essary

and suÆ
ient 
onditions for the L

p

-admissibility or joint L

p

-admissibility of

a 
ontrol operator B and an observation operator C. This leads to a 
riterion

for an H

1

-fun
tion to be an L

p

-multiplier.

1. Ba
kground

This review of the relationship between the Lax{Phillips s
attering theory on one

hand and the theory of well-posed linear systems on the other hand has a very

de�nite date of 
on
eption: the talk on `Passive Linear Systems and S
attering

Theory ' by Prof. D. Z. Arov given at MTNS in Padova in 1998. He said:

`In the 
onne
tion with Lax{Phillips s
attering s
heme Yu Smulijan [1986℄

proposed the following de�nition of a linear 
ontinuous time-invariant system. It

is a little bit di�erent from the one proposed in 
ontrol theory by D. Salamon.'

This gave me the motivation to take a 
loser look at the s
attering theory by

Lax and Phillips to �nd out how the theory developed by Arov and Smulijan di�ers

from the one developed by Salamon. After studying [4℄ and [14, 15℄ for some time
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Figure 1. Input/State/Output Diagram of �

I found the rather surprising answer: there is no real di�eren
e (although di�erent

people tend to emphasize di�erent aspe
ts of the theory.)

Thus, this is a presentation of some of the basi
 notions of the general theory

of well-posed linear systems developed by, among others, Adamjan, Arov, Lax,

Helton, Nudelman, Ober, Phillips, Salamon, Smulijan, and Weiss. To me Arov's

notation whi
h he (at least partially) inherited from Lax and Phillips felt quite


umbersome, sin
e I am used to a 
ontrol theory type notation. Therefore I use a

set of notations whi
h is an extension of the standard 
ontrol theory type notations

(and whi
h resemble those used by Salamon and by Weiss).

I apologize for the fa
t that I do not in all instan
es know whi
h results

should be 
redited to whom. Many of these results have been dis
overed and then

redis
overed, maybe even several times.

A preliminary version of this review was presented in [24℄. Details and proofs

are given in the paper [26℄ by GeorgeWeiss and myself, and in the book manus
ript

[25℄ available (in posts
ript form) at http://www.abo.�/~sta�ans/.

2. Introdu
tion

Many in�nite-dimensional systems 
an be des
ribed by the equations

x

0

(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t); t � 0;

x(0) = x

0

;

(1)

on a triple of Bana
h spa
es, namely, the input spa
e U , the state spa
e X , and

the output spa
e Y . We have u(t) 2 U , x(t) 2 X and y(t) 2 Y . The operator A

is the generator of a strongly 
ontinuous semigroup, and it is usually unbounded.

Also B and C are usually unbounded, whereas D is bounded.

Be
ause of the presen
e of the unboudned operators A, B, and C it is often


onvenient to use the `integral' representation of the system, whi
h 
onsists of the

four operators from the initial state x

0

and the input fun
tion u to the �nal state

x(t) and the output fun
tion y:

x(t) = A

t

x

0

+B

t

0

u;

y = Cx

0

+D

0

u:

(2)

Here, A

t

is the semigroup generated by A (whi
h maps the initial state x

0

into the

�nal state x(t)), B

t

0

is the map from the input u (restri
ted to the interval [0; t℄) to
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the �nal state x(t), C is the map from the initial state x

0

to the output y, and D

0

is

the input-output map from u (restri
ted to [0;1)) to y. If the operators B, C, and

D in (1) are bounded, then we get formulas for the 
orresponding operators B

t

0

,

C, and D

0

in (2) by using the standard `variation of parameters formula' (re
all

that A

t

is the semigroup generated by A):

B

t

0

u =

Z

t

0

A

t�v

Bu(v) dv; t � 0;

(Cx

0

)(t) = CA

t

x

0

; t � 0;

(D

0

u)(t) = C

Z

t

0

A

t�v

Bu(v) dv +Du(t); t � 0:

(3)

As we shall see later, these formulas remain valid also for 
ertain 
lasses of un-

bounded operators B and C.

For the moment, let us ignore (1) and instead fo
us on the well-posedness of

the system (2). The standard well-posedness assumption is that (2) behaves well

in an L

p

-setting, where 1 � p < 1, i.e., x(t) 2 X and y 2 L

p

lo


(R

+

;Y ) depend


ontinuously on x

0

2 X and on u 2 L

p

lo


(R

+

;U). If this is the 
ase, we 
all the

operators

�

A B

C D

�

a L

p

-well-posed linear system, where

Bu = lim

t!1

B

t

0

�

�t

u; Du = lim

t!1

�

t

D

0

�

�t

u;

ea
h de�ned for those u 2 L

p

lo


(R;U) for whi
h the respe
tive limit exists; here

(�

t

u)(s) = u(s + t), �1 < s; t < 1, is the bilateral left shift by t. In the 
ase

where (2) is indu
ed by the system (1) with bounded B, C, and D, we have

Bu =

Z

0

�1

A

�v

Bu(v) dv;

(Cx

0

)(t) = CA

t

x

0

; t � 0;

Du = C

Z

t

�1

A

t�v

Bu(v) dv +Du(t); t 2 R;

(4)

at least for those u whose support is bounded to the left.

As we shall see in Se
tion 3, it is possible to de�ne a well-posed linear system

� =

�

A B

C D

�

without any referen
e to the system of equations (1).

The 
lassi
al Lax{Phillips model was developed by Lax and Phillips in [14℄

(
onservative systems) and [15℄ (dissipative systems) to provide a mathemati
al

des
ription of a s
attering pro
ess where an in
oming wave hits an obsta
le and

is s
attered into an outgoing wave. It was soon realized (see [1℄, [4℄, and [10℄)

that it is possible to extend the 
lassi
al Lax{Phillips model into a more general

model of a well-posed in�nite-dimensional system by relaxing some of the original

assumptions on the in
oming and outgoing subspa
es, and by repla
ing the stan-

dard dissipativity assumption by a well-posedness assumption. In this extended

formulation the Lax{Phillips model is a semigroup with a parti
ular stru
ture: it

a
ts as an exponentially weighted in
oming shift on the in
oming subspa
e, as an
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exponentially weighted outgoing shift on the outgoing subspa
e, and the 
entral

part of the semigroup des
ribes `a generalized s
attering pro
ess'. As we shall see

in Se
tion 4, this 
entral part 
an be taken to be an arbitrary well-posed linear sys-

tem. Thus there is a one-to-one 
orresponden
e between the 
lass of all well-posed

linear systems and all extended Lax{Phillips models.

We begin by presenting the most basi
 results about a L

p

-well-posed linear

system (Se
tion 3) and the 
orresponding Lax{Phillips model (Se
tion 4). We pro-


eed in Se
tion 5 to show that there is a 
lose 
onne
tion between the Lax{Phillips

generator and the generators of the 
orresponding well-posed linear system. All

the essential information about these two systems is 
ontained in the system op-

erator S

�

=

�

A B

C&D

�

where A is the generator of the (
entral) semigroup, B is the


ontrol operator, and C&D is the 
ombined observation/feedthrough operator. In

the important 
ase where X and U are Hilbert spa
es this system operator 
an

be written in the more familiar form S

�

=

�

A B

C D

�

, where C is a (not ne
essarily

unique) observation operator andD is the 
orresponding (generalized) feedthrough

operator. We system operator is 
losed and densely de�ned from X�U to X�Y .

In the re
exive 
ase the adjoint of S

�

is the system operator of the dual system. We

give formulas for the Lax{Phillips generator and resolvent in terms of the system

operator. Finally, in the last se
tion we apply the Hille{Yoshida theorem to the

Lax{Phillips semigroup and get ne
essary and suÆ
ient 
onditions for the admis-

sibility or joint admissibility of a 
ontrol operator B and an observation operator

C. This leads to a 
riterion for an H

1

-fun
tion to be an L

p

-multiplier.

3. Well-posed linear systems

As already outlined in Se
tion 2, it is possible to de�ne a well-posed linear system

� =

�

A B

C D

�

without any referen
e to the system of equations (1). For this, we have

to introdu
e some spa
es and some simple operators. We denote R = (�1;1),

R

+

= [0;1), R

�

= (�1; 0),

(�

J

u)(s) =

(

u(s); s 2 J;

0; s =2 J;

for all J � R;

(�

+

u)(s) = �

R

+
u =

(

u(s); s 2 R

+

;

0; s 2 R

�

;

;

(�

�

u)(s) = �

R

�
u =

(

0; s 2 R

+

;

u(s); s 2 R

�

;

;

(�

t

u)(s) = u(t+ s); s; t 2 R:
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Thus �

+

is `restri
tion to R

+

', �

�

is the `restri
tion to R

�

', and �

t

shift to the

left for t > 0 and to the right for t < 0. Moreover, we de�ne

�

t

+

= �

+

�

t

; t � 0;

�

t

�

= �

t

�

�

; t � 0;

so that �

t

+

is the left shift by t � 0 on R

+

and �

t

�

is the left shift by t � 0 on R

�

.

Thus, �

+

is an `in
oming left shift' and �

�

is an `outgoing left shift'.

The spa
e L

p




(R

�

;U) 
onsists of all the fun
tions u 2 L

p

(R

�

;U) with a

bounded support. The spa
e L

p


;lo


(R;U) 
onsists of all the fun
tions u : R ! U

that are lo
ally in L

p

and whose support is bounded to the left. We interpret

L

p




(R

�

;U) as the subspa
e of fun
tions in L

p


;lo


(R;U) whi
h vanish on R

+

, and

L

p

lo


(R

+

;U) as the subspa
e of fun
tions in L

p


;lo


(R;U) whi
h vanish on R

�

. A

sequen
e of fun
tions u

n


onverges in L

p


;lo


(R;U) to a fun
tion u if the 
ommon

support of all the fun
tions u

n

is bounded to the left and u

n


onverges to u in

the L

p

sense on every bounded time interval. The 
ontinuity of B, C and D in the

following de�nition is with respe
t to this 
onvergen
e.

De�nition 3.1. Let U , X, and Y be Bana
h spa
es, and let 1 � p < 1. An L

p

-

well-posed linear system � on (Y;X;U) is a quadruple � =

�

A B

C D

�

of 
ontinuous

linear operators satisfying the following 
onditions:

(i) t 7! A

t

is a strongly 
ontinuous semigroup of operators on X;

(ii) B : L

p




(R

�

;U) ! X satis�es A

t

Bu = B�

t

�

u, for all u 2 L

p




(R

�

;U) and

all t 2 R

+

;

(iii) C : X ! L

p

lo


(R;Y ) satis�es CA

t

x = �

t

+

Cx, for all x 2 X and all t 2 R

+

;

(iv) D : L

p


;lo


(R;U)! L

p


;lo


(R;Y ) satis�es �

t

Du = D�

t

u, �

�

D�

+

u = 0, and

�

+

D�

�

u = CBu, for all u 2 L

p


;lo


(R;U) and all t 2 R.

The di�erent 
omponents of � are 
alled as follows: U is the input spa
e, X is

the state spa
e, Y is the output spa
e, A is the semigroup, B is the input (or

rea
hability, or 
ontrollability) map, C is the output (or observability) map, and

D is the input-output map. The state x(t) 2 X at time t 2 R

+

and the output

y 2 L

p

lo


(R

+

;Y ) of � with initial time zero, initial state x

0

2 X and input fun
tion

u 2 L

p

lo


(R

+

;U) are given by (2) with B

t

0

= B�

t

�

[0;t℄

u and D

0

u = D�

+

u.

It is easy to see that the operators de�ned in (4) (with bounded B, C, and D)

satisfy these 
onditions. Moreover, we only have to integrate over a �nite interval

sin
e the support of u is bounded to the left. (There is also a similar theory for

the 
ase p =1; see [25℄.)

Every well-posed linear system has as a �nite exponential growth bound. By

the growth bound !

A

of a system � =

�

A B

C D

�

we understand the growth bound

of its semigroup A:

!

A

= lim

t!1

log(kA

t

k)

t

= inf

t>0

log(kA

t

k)

t

:
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As is well known, we always have !

A

< 1, but possibly !

A

= �1. To explain

in whi
h sense the other operators B, C, and D are exponentially bounded we

introdu
e exponentially weighted L

p

-spa
es of the following type: we let L

p

!

(R

+

;U)

represent the spa
e of fun
tions u : R

+

! U for whi
h t 7! e

�!t

u(t) belongs to

L

p

(R

+

;U).

Theorem 3.2. Let � =

�

A B

C D

�

be a L

p

-well-posed linear system, 1 � p < 1, on

(Y;X;U) with growth bound !

A

, and let ! > !

A

. Then B has a unique extension

to an bounded linear operator from L

p

!

(R

�

;U) to X, C is a bounded linear operator

from X to L

p

!

(R

+

;Y ), and D has a unique extension to a bounded linear operator

from L

p

!

(R;U) to L

p

!

(R;Y ).

Every well-posed linear system also has a transfer fun
tion:

Theorem 3.3. Let � =

�

A B

C D

�

be a L

p

-well-posed linear system, 1 � p < 1, on

(Y;X;U) with growth bound !

A

. Then there is a unique analyti
 L(U ;Y )-valued

transfer fun
tion

b

D de�ned (at least) on <z > !

A

determined by the fa
t that the

Lapla
e transform

d

D

0

u of the input-output term D

0

u in (2) is given by, for all

u 2 L

p

!

A

(R

+

;U),

d

D

0

u =

b

D(z)û(z); <z > !

A

;

where û is the Lapla
e transform of u.

Thus,

b

D 
an be interpreted as an `L

p

!

(U ;Y )-multiplier' for every ! > !

A

.

The following theorem gives us a �rst 
onne
tion between an arbitrary L

p

-

well-posed linear system and a system of equations of the type (1):

Theorem 3.4. Every L

p

-well-posed linear system � =

�

A B

C D

�

with 1 � p <1 has

a unique 
losed (unbounded) densly de�ned system operator

S

�

: X � U � D(S

�

)! X � Y

with the following properties. If x

0

2 X, u 2 W

1;p

lo


(R

+

;U) and

�

x

0

u(0)

�

2 D(S

�

),

then the state x(t) and the output y(t) of � with initial state x

0

, and input u

satis�es

h

x(t)

u(t)

i

2 D(S

�

) for all t � 0, and

�

x

0

(t)

y(t)

�

= S

�

�

x(t)

u(t)

�

; t � 0;

x(0) = x

0

:

(5)

The proof of this theorem is given in [26℄ (and also in [25℄).

Note that (5) redu
es to (1) for smooth input fun
tions and 
ompatible initial


onditions provided S

�


an be written in the form S

�

=

�

A B

C D

�

. Is this always

possible?

Before giving a (partial) answer to this question we need to introdu
e two

auxiliary spa
es X

1

and X

�1

. Choose any 
 in the resolvent set of the generator

A of A. We let X

1

= D(A), with the norm kxk

X

1

= k(
I�A)xk

X

, and X

�1

is the
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ompletion of X with the norm kxk

X

�1

= k(
I � A)

�1

xk

X

. We have X

1

� X �

X

�1

with 
ontinuous and dense imbeddings. The semigroup A 
an be restri
ted to

to a strongly 
ontinuous semigroup on X

1

and extended to a strongly 
ontinuous

semigroup on X

�1

(whi
h still we denote by the same symbol). We denote the

spa
e of bounded linear operators from U to Y by L(U ;Y ).

Theorem 3.5. Every L

p

-well-posed linear system � =

�

A B

C D

�

with 1 � p < 1

has a unique 
ontrol operator B 2 L(U ;X

�1

) and a unique 
ombined observa-

tion/feedthrough operator C&D : D(S

�

) ! X � Y , su
h that S

�


an be written

in the form

S

�

�

x

u

�

=

�

A B

C&D

� �

x

u

�

;

�

x

u

�

2 D(S

�

):

Thus, the state x(t) and the output y(t) of � in Theorem 3.4 satisfy

x

0

(t) = Ax(t) +Bu(t);

y(t) = C&D

�

x(t)

u(t)

�

; t � 0;

x(0) = x

0

;

where the equation for x

0

is valid in X

�1

. Moreover, D(S

�

) is given by

D(S

�

) =

�

[

x

u

℄ 2 X � U

�

�

Ax+Bu 2 X

	

:

In parti
ular, if x 2 X

1

, then [

x

0

℄ 2 D(S

�

), and we 
an de�ne the observation

operator C 2 L(X

1

;Y ) by

Cx = C&D

�

x

0

�

; x 2 X

1

:

This theorem is a
tually older than Theorem 3.4; see [4℄, [5℄, [17, 18℄, and [27,

28℄ (or [25℄) for the proof. In [4℄ the 
ombined observation/feedthrough operator

is denoted by N . The 
ontrol operator B is said to be bounded if the range of B

lies in X , in whi
h 
ase B 2 L(U ;X). The observation operator C is said to be

bounded if it 
an be extended to an operator in L(X ;Y ).

There is an simple 
onne
tion between the transfer fun
tion introdu
ed in

Theorem 3.3 and the operators introdu
ed in Theorem 3.5.

Theorem 3.6. With the notation of Theorems 3.3 and 3.5, the transfer fun
tion

b

D

of � is given by

b

D(z) = (C&D)

�

(zI �A)

�1

B

I

�

; <z > !

A

:

Conversely, for all z 2 C with <z > !

A

and for all [

x

u

℄ 2 D(S

�

) we have

C&D

�

x

u

�

= C[x+ (zI �A)

�1

Bu℄ +

b

D(z)u:
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For more details, explanations and examples we refer the reader to [1℄, [2, 3℄,

[4℄, [5℄, [17, 18℄, [19, 20, 22, 21, 23, 25℄, [27, 28, 29, 30, 32, 33℄, [36℄ (and the

referen
es therein). Most of the available literature deals with Hilbert spa
es and

p = 2.

Let us now return to the question of the possibility to split S

�

even fur-

ther into S

�

=

�

A B

C D

�

. For the purpose of the following dis
ussion, let us tem-

porarily split S

�

into S

�

=

�

A&B

C&D

�

, where, with the notation of Theorem 3.4,

A&B : D(S

�

)! X maps [

x

u

℄ into x

0

and (as in Theorem 3.5) C&D : D(S

�

)! Y

maps [

x

u

℄ into y. A

ording to Theorem 3.5, it is always possible to extend the

domain of A&B to all of X � U by allowing the values of A&B to belong to the

larger spa
e X

�1

. This extension is unique sin
e D(A&B) = D(S

�

) is dense in

X � U . If we denote the extended operator by A&B, then

A&B

�

x

u

�

=

�

A B

�

�

x

u

�

= Ax+Bu; x 2 X; u 2 U;

where

Ax = A&B

�

x

0

�

; Bu = A&B

�

0

u

�

;

here A represents the extension of the original generator A to an operator X !

X

�1

.

In order to get a similar splitting of C&D into C&D =

�

C D

�

we need to

extend C&D in a similar fashion. This extension is more diÆ
ult sin
e we 
annot,

in general, repla
e the original range spa
e Y of C&D be a larger spa
e Y

�1

. For

example, if Y is �nite-dimensional, then there is no natural 
andidate for the spa
e

Y

�1

. The smallest possible domain of the extended operator C&D is Z�U , where

Z is de�ned as follows. We 
hoose any 
 in the resolvent set of A, and let

Z =

�

z 2 X

�

�

z = (
I �A)

�1

(x+Bu)

for some x 2 X and u 2 U

	

:

(6)

This is a Bana
h spa
e with the norm

jzj

Z

= inf

(
I�A)

�1

(x+Bu)=z

�

jxj

2

X

+ juj

2

U

�

1=2

;

satisfying X

1

� Z � X , and it is a Hilbert spa
e if both X and U are Hilbert

spa
es. It is easy to see that D(S

�

) � Z �U , but the embedding D(S

�

) � Z �U

need not be dense.

De�nition 3.7. The well-posed linear system � =

�

A B

C D

�

is 
ompatible if its


ombined observation/feedthrough operator C&D 
an be extended to an operator

C&D 2 L(Z � U ;Y ). We de�ne the 
orresponding extended observation operator
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C 2 L(Z;Y ) and feedthrough operator D 2 L(U ;Y ) by

C = C&D

�

x

0

�

; x 2 Z;

Du = C&D

�

0

u

�

; u 2 U:

(7)

The extension of C&D to Z�U need not be unique sin
e D(S

�

) not be dense

in Z �U . This means that C and D need not be unique either. However, there is

a one-to-one 
orresponden
e between C&D, C and D, i.e., any one of these three

operators determine the other two uniquely.

In spite of the possible non-uniqueness of the extended observation operator

C and the 
orresponding feedthrough operator D, independently of how these

operators are 
hosen, it is still true that the formula for the output y in Theorem 3.5

simpli�es into

y(t) = Cx(t) +Du(t); t � 0;

and the formula for the transfer fun
tion given in Theorem 3.3 simpli�es into

b

D(z) = C(zI �A)

�1

B +D: <z > !

A

:

In parti
ular, the formula (3) holds whenever u 2 W

1;p

([0; t℄;U) and

�

x

0

u(0)

�

2

D(S

�

).

It has for some time been 
onsidered an open question among spe
ialists

whether every L

p

-well-posed linear system is 
ompatible. Re
ently it was dis
ov-

ered that the answer to this question is positive, at least in the Hilbert spa
e


ase.

Theorem 3.8. Let � be a L

p

-well-posed linear system on (Y;X;U). Then � is


ompatible in (at least) the following 
ases:

(i) X and U are Hilbert spa
es;

(ii) At least one of the spa
es X, U , or Y is �nite-dimensional.

The more diÆ
ult part (i) of this theorem was proved in [26℄, and (the easy)

part (ii) in [25℄.

4. The Lax{Phillips S
attering Model

Instead of using a L

p

-well-posed linear system to formalize the idea of hav-

ing an output and state at time t > 0 whi
h depend 
ontinuously on an in-

put and the initial state we 
an pro
eed in a di�erent way whi
h leads to

a generalized Lax{Phillips s
attering model. This is a semigroup T

T

T de�ned on

Y � X � U = L

p

!

(R

�

;Y ) � X � L

p

!

(R

+

;U) with 
ertain additional properties.

(Here L

p

!

(R

�

;Y ) 
onsists of all the fun
tions y : R

�

! Y for whi
h t 7! e

�!t

y(t)

belongs to L

p

(R

�

;Y ) and similarly for L

p

!

(R

+

;U).) We 
all U the in
oming sub-

spa
e, X the 
entral state spa
e, and Y the outgoing subspa
e. In the 
lassi
al
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ases treated in [14, 15℄ ! is taken to be zero and T

T

T is required to be unitary (the


onservative 
ase) or a 
ontra
tion semigroup (the non
onservative 
ase).

We 
laim that there is a one-to-one 
orresponden
e between the 
lass of all

well-posed linear systems and the 
lass of all Lax{Phillips models. The parameter

! 2 R 
an be 
hosen in an arbitrary way (the best 
hoi
e depends on the parti
ular

appli
ation).

Let � =

�

A B

C D

�

be a given L

p

-well-posed linear system. To ea
h su
h system

we 
onstru
t a Lax{Phillips model T

T

T on Y � X � U as follows. The initial data


onsists of the initial in
oming state u

0

2 U representing the future values of the

input, the initial 
entral state x

0

2 X is identi
al to the initial state of �, and

the initial outgoing state y

0

2 Y represents the past values of the output. At time

t � 0 the in
oming state u

t

is the left-shifted input �

t

+

u

0

(the unused part of the

input). The 
entral state x

t

at time t is equal to the state x(t) = A

t

x

0

+B

t

0

u of �

at time t with initial time zero, initial state x

0

, and input u

0

(it depends only on

x

0

and on the dis
arded part �

[0;t℄

u of u). The outgoing state y

t

at time t 
onsists

of two parts: it is the sum of �

t

�

y

0

(the left-shifted original outgoing state) and

�

t

�

[0;t℄

(Cx

0

+D

0

u

0

) (the restri
tion of the output Cx

0

+D

0

u

0

of � to the interval

[0; t℄ shifted to the left by �

t

so that the support of the shifted and trun
ated

output is (�t; 0)). Formalizing this idea we get the following theorem, where we

use the notations

B

t

0

= B�

t

�

[0;t℄

; C

t

0

= �

[0;t℄

C; D

t

0

= �

[0;t℄

D�

[0;t℄

:

Theorem 4.1. Let ! 2 R, Y = L

2

!

(R

�

;Y ) and U = L

2

!

(R

+

;U). For all t � 0 we

de�ne on Y �X � U the operator T

T

T

t

by

T

T

T

t

=

2

4

�

t

0 0

0 I 0

0 0 �

t

+

3

5

2

4

I C

t

0

D

t

0

0 A

t

B

t

0

0 0 I

3

5

:

Then T

T

T is a strongly 
ontinuous semigroup. If x and y are the state traje
tory and

the output fun
tion of � 
orresponding to the initial state x

0

2 X and the input

fun
tion u

0

2 U , and if we de�ne y(t) = y

0

(t) for t < 0, then for all t � 0,

2

4

�

(�1;t℄

y

x(t)

�

[t;1)

u

0

3

5

=

2

4

�

�t

0 0

0 I 0

0 0 �

�t

3

5

T

T

T

t

2

4

y

0

x

0

u

0

3

5

: (8)

Formula (8) shows that at any time t � 0, the �rst 
omponent of T

T

T

t

h

y

0

x

0

u

0

i

represents the past output, the se
ond 
omponent represents the present state and

the third 
omponent represents the future input.

Here the strong 
ontinuity of T

T

T is obvious, and so is the property T

T

T(0) = I .

The proof of the semigroup property T

T

T(s + t) = T

T

T(s)T

T

T(t) for s, t � 0 is a short

algebrai
 
omputation based on De�nition 3.1 (see [26℄ or [25℄ for details).

The semigroupT

T

T in Theorem 4.1 has an additional `
ausality' property, whi
h

in the Hilbert spa
e 
ase where p = 2 and U , X , and Y are Hilbert spa
es 
an be

des
ribed as follows: for all t � 0, the images of the 
entral and in
oming states
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under T

T

T

t

are orthogonal to the image of the outgoing state, and the null spa
e of

T

T

T

t

proje
ted onto the 
entral and outgoing spa
es is orthogonal to the null spa
e

of T

T

T

t

proje
ted onto the in
oming spa
e. In the general 
ase these properties 
an

easiest be 
hara
terized in the following way.

De�nition 4.2. A Lax{Phillips model of type L

p

!

is a semigroup on Y �X � U =

L

p

!

(R

�

;Y )�X � L

p

!

(R

+

;U) with the stru
ture

T

T

T

t

=

2

4

�

t

�

C

C

C

t

D

D

D

t

0 A

A

A

t

B

B

B

t

0 0 �

t

+

3

5

; (9)

where A

A

A is strongly 
ontinuous and B

B

B

t

, C

C

C

t

, and D

D

D

t

satisfy the 
ausality 
onditions

C

C

C

t

= �

(�t;0)

C

C

C

t

; D

D

D

t

= �

(�t;0)

D

D

D

t

;

D

D

D

t

= D

D

D

t

�

[0;t℄

; B

B

B

t

= B

B

B

t

�

[0;t℄

:

(10)

This set of 
onditions is a rewritten version of 
onditions (1.2) in [15℄. Helton

[10℄ uses the name inertness for this additional 
ausality property.

Corollary 4.3. The semigroup T

T

T 
onstru
ted in Theorem 4.1 is a Lax{Phillips

model of type L

p

!

.

This is immediate from Theorem 4.1 and De�nition 4.2. We 
all the semigroup

T

T

T in Theorem 4.1 the Lax{Phillips model (of type L

p

!

) indu
ed by �.

It is only slightly more diÆ
ult to prove a 
onverse to Corollary 4.3: To every

Lax{Phillips model there 
orresponds a well-posed linear system whi
h indu
es

this Lax{Phillips model:

Theorem 4.4. Let T

T

T be a Lax{Phillips model of type L

p

!

. With the notations of

De�nition 4.2, let

A = A

A

A ; B = lim

s!1

B

B

B

s

�

�s

;

C = lim

t!1

�

�t

C

C

C

t

; D = lim

t!1

s!1

�

�s

D

D

D

s+t

�

�t

:

(11)

Then � =

�

A B

C D

�

is an L

p

-well-posed linear system on (Y;X;U), and T

T

T is the

Lax{Phillips model indu
ed by this system.

The proof of Theorem 4.4 is another algebrai
 
omputation given in [25℄.

Corollary 4.5. For ea
h ! 2 R and 1 � p < 1, there is a one-to-one 
orrespon-

den
e between the 
lass of all L

p

-well-posed linear systems and all Lax{Phillips

models of type L

p

!

: every L

p

-well-posed linear system � indu
es a unique Lax{

Phillips model T

T

T of type L

p

!

, and 
onversely, every Lax{Phillips model T

T

T of type

L

p

!

indu
es a unique L

p

-well-posed linear system �.

This is a union of Corollary 4.3 and Theorem 4.4. Parts of this 
orollary

(where either the input operator or output operator vanishes) were proved by



12 O. J. Sta�ans

Grabowski and Callier [7℄ and by Engel [6℄. It is also (impli
itly) 
ontained in [4℄

and mentioned in [3℄.

Our next theorem des
ribes the generator of the Lax{Phillips semigroup:

Theorem 4.6. Let 1 � p <1 and ! 2 R, let � =

�

A B

C D

�

be a L

p

-well-posed linear

system on (Y;X;U) with system operator S

�

=

�

A B

C&D

�

, and let T be the generator

of the 
orresponding Lax{Phillips model T

T

T of type L

p

!

de�ned in De�nition 4.2.

(i) The domain of T 
onsists of all the ve
tors

h

y

0

x

0

u

0

i

2 W

1;p

!

(R

�

;Y ) �X �

W

1;p

!

(R

+

;U) whi
h satisfy

�

x

0

u

0

(0)

�

2 D(S

�

) and y

0

(0) = C&D

�

x

0

u

0

(0)

�

,

and on its domain T is given by

T

2

4

y

0

x

0

u

0

3

5

=

2

4

y

0

0

Ax

0

+Bu

0

(0)

u

0

0

3

5

:

Thus, the following three 
onditions are equivalent (here û and û

0

are the

Lapla
e transforms of u and u

0

, and ŷ and ŷ

0

are the left-sided Lapla
e

transforms of y and y

0

):

(a)

h

y

0

x

0

u

0

i

2 D(T ) and

h

y

x

u

i

= T

h

y

0

x

0

u

0

i

;

(b) y

0

2W

1;p

!

(R

�

;Y ), x

0

2 X, u

0

2W

1;p

!

(R

+

;U),

�

x

0

u

0

(0)

�

2 D(S

�

) and

�

x

y

0

(0)

�

= S

�

�

x

0

u

0

(0)

�

;

�

y

u

�

=

�

y

0

0

u

0

0

�

:

(
) y

0

2W

1;p

!

(R

�

;Y ), x

0

2 X, u

0

2W

1;p

!

(R

+

;U),

�

x

0

u

0

(0)

�

2 D(S

�

) and

�

x

y

0

(0)

�

= S

�

�

x

0

u

0

(0)

�

;

ŷ(z) = zŷ

0

(z)� y

0

(0); <z < !;

û(z) = zû

0

(z) + u

0

(0); <z > !:

(ii) The spe
trum of T 
ontains the verti
al line f<� = !g. A point � with

<� > ! belongs to the spe
trum of T i� it belongs to the spe
trum of A,

and a point � whith <� < ! belongs to the spe
trum of T i�

�

�I�A �B

�C&D

�

is not invertible.

(iii) Let � 2 �(T ) with <� > ! and let

h

y

x

u

i

2 L

2

!

(R

�

;Y ) �X � L

2

!

(R

+

;U).

Denote

b

D(�) = C&D

h

(�I�A)

�1

B

I

i

. Then the following three 
onditions

are equivalent:

(a)

h

y

0

x

0

u

0

i

= (�I � T )

�1

h

y

x

u

i

;
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(b)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�

x

0

y

0

(0)

�

=

�

(�I �A)

�1

(�I �A)

�1

B

C(�I �A)

�1

b

D(�)

� �

x

û(�)

�

;

y

0

(t) = e

�t

y

0

(0) +

Z

0

t

e

�(t�s)

y(s) ds; t � 0;

u

0

(t) =

Z

1

t

e

�(t�s)

u(s) ds; t � 0:

(
)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�

x

0

y

0

(0)

�

=

�

(�I �A)

�1

(�I �A)

�1

B

C(�I �A)

�1

b

D(�)

� �

x

û(�)

�

;

ŷ

0

(z) =

ŷ(z) + y

0

(0)

�� z

; <z < !;

û

0

(z) =

û(z)� û(�)

�� z

; <z > !:

(iv) Let � 2 �(T ) with <� < ! and let

h

y

x

u

i

2 L

2

!

(R

�

;Y ) �X � L

2

!

(R

+

;U).

Then the following three 
onditions are equivalent:

(a)

h

y

0

x

0

u

0

i

= (�I � T )

�1

h

y

x

u

i

;

(b)

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�

x

0

u

0

(0)

�

=

�

�I �A �B

�C&D

�

�1

�

x

ŷ(�)

�

;

y

0

(t) = �

Z

t

�1

e

�(t�s)

y(s) ds; t � 0;

u

0

(t) = e

�t

u

0

(0)�

Z

t

0

e

�(t�s)

u(s) ds; t � 0:

(
)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�

x

0

u

0

(0)

�

=

�

�I �A �B

�C&D

�

�1

�

x

ŷ(�)

�

;

ŷ

0

(z) =

ŷ(z)� ŷ(�)

�� z

; <z < !;

û

0

(z) =

û(z) + u

0

(0)

�� z

; <z > !:

The proof of this theorem is given in [26℄ (and also in [25℄).

There are a number of important ingredients in the Lax{Phillips s
attering

theory, su
h as the ba
kward and forward wave operators, the s
attering operator,

and the s
attering matrix. All of these have natural analogies in the theory of

well-posed linear systems. In the dis
ussion below we 
hoose ! > !

A

, where !

A

is

the growth rate of A.

The ba
kward wave operator W

�

(denoted byW

2

in [15, Theorem 1.2℄) is the

limit of the last 
olumn of T

T

T�

�t

as t ! 1. It maps L

p

!

(R;U) into L

p

!

(R

�

;Y ) �

X � L

p

!

(R

+

;U), and it is given by (
f. Theorem 4.4)

W

�

u =

2

4

�

�

D

B

�

+

3

5

u: (12)
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Thus, it keeps the future input �

+

u inta
t, and maps the past input �

�

u into the

past output �

�

Du and the present 
entral state Bu.

The forward wave operator W

+

(denoted by W

1

in [15, Theorem 1.2℄) is the

limit of the �rst row of �

�t

T

T

T as t!1. It maps L

p

!

(R

�

;Y )�X�L

p

!

(R

+

;U) into

L

p

!

(R;Y ), and it is given by (
f. Theorem 4.4)

W

+

2

4

y

x

0

u

3

5

=

�

�

�

C D�

+

�

2

4

y

x

0

u

3

5

: (13)

Thus, it keeps the past output �

�

y inta
t, and maps the present 
entral state x

0

and the future input �

+

u into the future output Cx

0

+D�

+

u.

The s
attering operator in Lax{Phillips theory is the produ
t W

+

W

�

, and it

is given by

W

+

W

�

=

�

�

�

C D�

+

�

2

4

�

�

D

B

�

+

3

5

= �

�

D+ CB+ �

+

D = D: (14)

Thus, the s
attering operator is nothing but the (bilaterally shift-invariant) input-

output map D of the 
orresponding well-posed linear system.

To get the s
attering matrix of the Lax{Phillips system we apply the s
atter-

ing operator D to an input of the form u(t) = e

zt

u

0

, where z 2 C has a suÆ
iently

large real part and u

0

2 U is �xed; see [15, pp. 187{188℄. Be
ause of the shift-

invarian
e of D, the resulting output is of the type y(t) = e

zt

y

0

for some y

0

2 Y .

The s
attering matrix (evaluated at z) is de�ned to be the operator that maps

u

0

2 U into y

0

2 Y . It follows from [30, p. 194℄ that the s
attering matrix of

a Lax{Phillips system is equal to the transfer fun
tion

b

D of the 
orresponding

well-posed linear system.

In their study of the 
onservative 
ase, Lax and Phillips [14℄ assume some

additional 
ontrollability and observability properties of the system:

(i) The image of the in
oming subspa
e U under T

T

T

t

, 0 � t < 1, is dense in

the state spa
e Y �X � U .

(ii) If the proje
tion of a traje
tory onto the outgoing subspa
e Y vanishes,

then the traje
tory is identi
ally zero.

These additional 
ontrollability and observability assumptions imply the fol-

lowing additional 
on
lusions (in the 
onservative 
ase):

(i) Both A

t

and A

�t

tend strongly to zero as t!1,

(ii)

b

D is inner from both sides, i.e.,

b

D(i!) is unitary for almost all real !,

(iii) Both the ba
kward and the forward wave operators are unitary,

(iv) The system is exa
tly 
ontrollable and exa
tly observable in in�nite time.

Without the additional 
ontrollability and observability assumptions none of

the additional 
on
lusions listed above need hold.
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A

ording to [4℄, every 
ontra
tive H

1

-fun
tion over C

0

(= the right half-

plane) is the transfer fun
tion of some unitary system (whi
h need not be 
on-

trollable or observable). It is also the transfer fun
tion of some 
ontrollable and

observable dissipative system. For more details on 
onservative and dissipative sys-

tems, see [4℄, [14, 15℄, and [35℄

5. Admissibility

A

ording to Corollary 4.5, there is a one-to-one 
orresponden
e between the 
lass

of all L

p

-well-posed linear systems and all Lax{Phillips s
attering models of type

L

p

. This means that we 
an redu
e the study of the generators of a well-posed

linear system to the study of the generators the Lax{Phillips semigroup. This

way we 
an obtain ne
essary and suÆ
ient 
onditions for the admissibility or joint

admissibility of a 
ontrol operator B and an observation operator C. These notions

are de�ned as follows.

As always we let U , X , and Y be Bana
h spa
es and let 1 � p <1. We let A

be a strongly 
ontinuous semigroup on the Bana
h spa
e X with generator A, and

de�ne the spa
es X

1

and X

�1

as in Se
tion 2. This time we spe
ify, in addition,

some ! 2 R, and suppose that A is !-bounded, i.e., sup

t>0

e

�!t

kA

t

k <1.

An operator B 2 L(U ;X

�1

) is an L

p

-admissible 
ontrol operator for A if for

some t > 0 (hen
e for all t > 0) the operator

B

t

0

u =

Z

t

0

A

t�s

Bu(s) ds; u 2 L

p

([0; t℄;U); (15)

maps L

p

([0; t℄;U) into X (instead of X

�1

). (This operator is then bounded with

values in X). We 
all B !-bounded if the resulting input map

Bu = lim

v!�1

Z

0

v

A

�s

Bu(s) ds; u 2 L

p

!

(R

�

;U) (16)

is !-bounded, i.e., it de�nes a bounded linear operator from L

p

!

(R

�

;U) to X .

The operator C 2 L(X

1

;Y ) is an L

p

-admissible observation operator for A

if the map

(Cx)(t) = CA

t

x; x 2 X

1

; t � 0; (17)


an be extended to a bounded linear operator X ! L

p

lo


(R

+

;Y ), and it is

!-bounded if the resulting output map C is !-bounded, i.e., it maps X into

L

p

!

(R

+

;Y ).

The operatorsB 2 L(U ;X

�1

) and C 2 L(X

1

;Y ) are jointly L

p

-admissible for

A if B is an L

p

-admissible 
ontrol operator for A, C is an L

p

-admissible observation

operator for A, and the operator D : W

1;p


;lo


(R;U)! C




(R;Y ) de�ned by

(Du)(t) = C

�

B�

t

u� (�I �A)

�1

Bu(t)

�

+D

�

u(t); t 2 R; (18)
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an be extended to a 
ontinuous operator L

p


;lo


(R;U) ! L

p


;lo


(R;Y ). Here � 2

�(A) and D

�

2 L(U ;Y ) 
an be 
hosen in an arbitrary way. By introdu
ing the


ombined observation/feedthrough operator

C&D

�

x

u

�

= C

�

x� (�I �A)

�1

Bu

�

+D

�

u: (19)

we 
an simplify the formula for (Du)(t) into

(Du)(t) = C&D

�

B�

t

u

u(t)

�

; t 2 R: (20)

We 
allB and C jointly !-bounded if both B and C are !-bounded and, in addition,

the operator D 
an be extended to a bounded linear operator from L

p

!

(R;U) to

L

p

!

(R;Y ). If (and only if) B and C are jointly admissible, then the four operator

A, B, C, and D 
an be 
ombined into a L

p

-well-posed linear system

�

A B

C D

�

with

system operator

�

A B

C&D

�

. (Here D is determined by A, B, and C only modulo a


onstant stati
 term.)

Before looking at the general 
ase of L

p

-admissibility, let us treat the impor-

tant spe
ial 
ase where p = 2 and U , X , and Y are Hilbert spa
es. In this 
ase

there is a very simple 
hara
terization of the 
lass of all L

2

-well-posed !-bounded

transfer fun
tion:

Proposition 5.1. Let U and Y be Hilbert spa
es. A L(U ;Y )-valued fun
tion

b

D

de�ned on <� > ! is the transfer fun
tion of an !-bounded L

2

-well-posed linear

system if and only if it is analyti
 and bounded on <� > ! (i.e., it belongs to H

1

).

This was proved independently by (at least) Salamon [18℄ and Curtain and

Weiss [5℄.

The admissibility of a 
ontrol operator B or an observation operator C is

mu
h more deli
ate in this 
ase. In 1990 George Weiss [31℄ made the following


onje
ture:

Conje
ture 5.2. Let U , X, and Y be Hilbert spa
es, and let A generate a C

0

semi-

group on X. Then

(i) B 2 L(U ;X

�1

) is an L

2

-admissible !-bounded 
ontrol operator for A if

and only if there is a 
onstant K > 0 su
h that

k(�I �A)

�1

Bk �

K

p

<�� !

; <� > !:

(ii) C 2 L(X

1

;Y ) is an L

2

-admissible !-bounded observation operator for A

if and only if there is a 
onstant K > 0 su
h that

kC(�I �A)

�1

k �

K

p

<�� !

; <� > !:

It is easy to see that the given 
onditions are ne
essary. These two 
onje
tures

are dual of ea
h other, so it suÆ
es to prove or disprove one of them.
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It was dis
overed re
ently by Zwart and Ja
ob [37℄ that Weiss' 
onje
ture

is false in general. It is not true even if we restri
t the dimensions of U and Y

to be one (see [13℄) or if we require the semigroup to be a 
ontra
tion semigroup

(see [12℄). However, it is true in several spe
ial 
ases. For example, the se
ond


onje
ture about the observation operator is known to be true in the following

spe
ial 
ases (here we denote the semigroup generated by A by t 7! A

t

and take

! = 0):

(i) Y is �nite-dimensional and A is normal [8℄, [9℄, [31℄, [34℄,

(ii) Y is �nite-dimensional and A is the right-shift on L

2

(R

+

) [16℄,

(iii) Y is �nite-dimensional and A is a 
ontra
tion semigroup [11℄,

(iv) A is exponentially stable and A

t

is right-invertible for some (hen
e all)

t > 0 [31℄ [34℄.

Let us now return to the general 
ase of L

p

-admissibility and Bana
h spa
es.

By applying the Hille{Yoshida theorem to the semigroup in Corollary 4.5 we get

the following ne
essary and suÆ
ient 
onditions for admissibility:

Theorem 5.3. Let ! 2 R, 1 � p <1, and let A be the generator of an !-bounded

C

0

semigroup on X.

(i) B 2 L(U ;X

�1

) is an L

p

-admissible !-bounded 
ontrol operator for A if

and only if there is a 
onstant M > 0 su
h that, for all u 2 L

p

!

(R

+

;U),

� > !, and n = 0; 1; 2; : : : ,

�

�

�

�

n

��

n

(�I �A)

�1

Bû(�)

�

�

�

X

�

Mn!

(�� !)

n+1

kuk

L

p

!

(R

+

;U)

: (21)

(ii) C 2 L(X

1

;Y ) is an L

p

-admissible !-bounded observation operator for A

if and only if there is a 
onstant M > 0 su
h that, for all x

0

2 X, � > !,

and n = 0; 1; 2; : : : ,

�

Z

1

0

�

�

�

�

�

n

��

n

e

�(��!)t

C(�I �A)

�1

x

0

�

�

�

�

p

Y

dt

�

1=p

�

Mn!

(�� !)

n+1

jx

0

j

X

: (22)

(iii) The operators B 2 L(U ;X

�1

) and C 2 L(X

1

;U) are jointly L

p

admissible

and !-bounded i� B is an L

p

-admissible !-bounded 
ontrol operator for

A (
f. (i)), C is an admissible !-bounded observation operator for A (
f.

(ii)) and there is a 
onstant M > 0 su
h that, for all u 2 L

p

!

(R

+

;U),

� > !, and n = 0; 1; 2; : : : ,

�

Z

1

0

�

�

�

�

�

n

��

n

e

�(��!)t

b

D(�)û(�)

�

�

�

�

p

Y

dt

�

1=p

�

Mn!

(�� !)

n+1

kuk

L

p

!

(R

+

;U)

;

(23)

where

b

D(�) = (�� �)C(�I �A)

�1

(�I �A)

�1

B +D

�

; (24)

here � with <� > ! and D

�

2 L(U ;Y ) 
an be 
hosen in an arbitrary

manner.
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Part (ii) of this theorem was proved by Grabowski and Callier [7℄ in the

exponentially stable Hilbert spa
e 
ase (i.e., A is exponentially stable, ! = 0,

p = 2, and U , X , and Y are Hilbert spa
es), and the 
orresponding 
ase of part (i)


an be derived from (ii) by duality. The general 
ase of parts (i) and (ii) was proved

by Engel [6℄. Part (iii) may (or may not) be new. A proof of the full theorem is

given in [25℄.

Condition (23) does not depend on the parti
ular realization

�

A B

C D

�

of D,

i.e., it does not 
ontain any dire
t referen
es to A, B, and C, but only to

b

D whi
h

is 
ompletely determined by D. This indi
ates that the following 
onje
ture may

be true:

Conje
ture 5.4. An analyti
 L(U ;Y )-valued fun
tion

b

D on <� > ! is the transfer

fun
tion of an !-bounded L

p

-well-posed linear system if and only if there is a


onstant M > 0 su
h that (23) holds for all u 2 L

p

!

(R

+

;U), � > !, and n =

0; 1; 2; : : : .

Clearly, by Theorem 5.3, 
ondition (23) is ne
essary for

b

D to be a L

p

-well-

posed !-bounded transfer fun
tion, and we 
onje
ture that it is also suÆ
ient.

This would give us a ne
essary and suÆ
ient 
ondition for an H

1

fun
tion to be

an L

p

-multiplier.
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