
Well-Posed Linear Systems,

Lax{Phillips Sattering, and

L

p

-Multipliers

Olof J. Sta�ans

Abstrat. We disuss the onnetion between Lax{Phillips sattering theory

and the theory of well-posed linear systems, and show that the latter theory

is a natural extension of the former. As a onsequene of this, there is a

lose onnetion between the Lax{Phillips generator and the generators of the

orresponding well-posed linear system. All the essential information about

these two systems is ontained in the system operator S

�

= [

A B

C&D

℄, where A is

the generator of the (entral) semigroup, B is the ontrol operator, and C&D

is the ombined observation/feedthrough operator. In the important Hilbert

spae ase this system operator an be written in the more familiar form

S

�

=

�

A B

C D

�

, where C is a (not neessarily uniquely determined) observation

operator and D is the orresponding (generalized) feedthrough operator. The

system operator is losed and densely de�ned. In the reexive ase the adjoint

of S

�

is the system operator of the dual system. We give formulas for the Lax{

Phillips generator and resolvent in terms of the system operator. By applying

the Hille{Yoshida theorem to the Lax{Phillips semigroup we get neessary

and suÆient onditions for the L

p

-admissibility or joint L

p

-admissibility of

a ontrol operator B and an observation operator C. This leads to a riterion

for an H

1

-funtion to be an L

p

-multiplier.

1. Bakground

This review of the relationship between the Lax{Phillips sattering theory on one

hand and the theory of well-posed linear systems on the other hand has a very

de�nite date of oneption: the talk on `Passive Linear Systems and Sattering

Theory ' by Prof. D. Z. Arov given at MTNS in Padova in 1998. He said:

`In the onnetion with Lax{Phillips sattering sheme Yu Smulijan [1986℄

proposed the following de�nition of a linear ontinuous time-invariant system. It

is a little bit di�erent from the one proposed in ontrol theory by D. Salamon.'

This gave me the motivation to take a loser look at the sattering theory by

Lax and Phillips to �nd out how the theory developed by Arov and Smulijan di�ers

from the one developed by Salamon. After studying [4℄ and [14, 15℄ for some time
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Figure 1. Input/State/Output Diagram of �

I found the rather surprising answer: there is no real di�erene (although di�erent

people tend to emphasize di�erent aspets of the theory.)

Thus, this is a presentation of some of the basi notions of the general theory

of well-posed linear systems developed by, among others, Adamjan, Arov, Lax,

Helton, Nudelman, Ober, Phillips, Salamon, Smulijan, and Weiss. To me Arov's

notation whih he (at least partially) inherited from Lax and Phillips felt quite

umbersome, sine I am used to a ontrol theory type notation. Therefore I use a

set of notations whih is an extension of the standard ontrol theory type notations

(and whih resemble those used by Salamon and by Weiss).

I apologize for the fat that I do not in all instanes know whih results

should be redited to whom. Many of these results have been disovered and then

redisovered, maybe even several times.

A preliminary version of this review was presented in [24℄. Details and proofs

are given in the paper [26℄ by GeorgeWeiss and myself, and in the book manusript

[25℄ available (in postsript form) at http://www.abo.�/~sta�ans/.

2. Introdution

Many in�nite-dimensional systems an be desribed by the equations

x

0

(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t); t � 0;

x(0) = x

0

;

(1)

on a triple of Banah spaes, namely, the input spae U , the state spae X , and

the output spae Y . We have u(t) 2 U , x(t) 2 X and y(t) 2 Y . The operator A

is the generator of a strongly ontinuous semigroup, and it is usually unbounded.

Also B and C are usually unbounded, whereas D is bounded.

Beause of the presene of the unboudned operators A, B, and C it is often

onvenient to use the `integral' representation of the system, whih onsists of the

four operators from the initial state x

0

and the input funtion u to the �nal state

x(t) and the output funtion y:

x(t) = A

t

x

0

+B

t

0

u;

y = Cx

0

+D

0

u:

(2)

Here, A

t

is the semigroup generated by A (whih maps the initial state x

0

into the

�nal state x(t)), B

t

0

is the map from the input u (restrited to the interval [0; t℄) to
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the �nal state x(t), C is the map from the initial state x

0

to the output y, and D

0

is

the input-output map from u (restrited to [0;1)) to y. If the operators B, C, and

D in (1) are bounded, then we get formulas for the orresponding operators B

t

0

,

C, and D

0

in (2) by using the standard `variation of parameters formula' (reall

that A

t

is the semigroup generated by A):

B

t

0

u =

Z

t

0

A

t�v

Bu(v) dv; t � 0;

(Cx

0

)(t) = CA

t

x

0

; t � 0;

(D

0

u)(t) = C

Z

t

0

A

t�v

Bu(v) dv +Du(t); t � 0:

(3)

As we shall see later, these formulas remain valid also for ertain lasses of un-

bounded operators B and C.

For the moment, let us ignore (1) and instead fous on the well-posedness of

the system (2). The standard well-posedness assumption is that (2) behaves well

in an L

p

-setting, where 1 � p < 1, i.e., x(t) 2 X and y 2 L

p

lo

(R

+

;Y ) depend

ontinuously on x

0

2 X and on u 2 L

p

lo

(R

+

;U). If this is the ase, we all the

operators

�

A B

C D

�

a L

p

-well-posed linear system, where

Bu = lim

t!1

B

t

0

�

�t

u; Du = lim

t!1

�

t

D

0

�

�t

u;

eah de�ned for those u 2 L

p

lo

(R;U) for whih the respetive limit exists; here

(�

t

u)(s) = u(s + t), �1 < s; t < 1, is the bilateral left shift by t. In the ase

where (2) is indued by the system (1) with bounded B, C, and D, we have

Bu =

Z

0

�1

A

�v

Bu(v) dv;

(Cx

0

)(t) = CA

t

x

0

; t � 0;

Du = C

Z

t

�1

A

t�v

Bu(v) dv +Du(t); t 2 R;

(4)

at least for those u whose support is bounded to the left.

As we shall see in Setion 3, it is possible to de�ne a well-posed linear system

� =

�

A B

C D

�

without any referene to the system of equations (1).

The lassial Lax{Phillips model was developed by Lax and Phillips in [14℄

(onservative systems) and [15℄ (dissipative systems) to provide a mathematial

desription of a sattering proess where an inoming wave hits an obstale and

is sattered into an outgoing wave. It was soon realized (see [1℄, [4℄, and [10℄)

that it is possible to extend the lassial Lax{Phillips model into a more general

model of a well-posed in�nite-dimensional system by relaxing some of the original

assumptions on the inoming and outgoing subspaes, and by replaing the stan-

dard dissipativity assumption by a well-posedness assumption. In this extended

formulation the Lax{Phillips model is a semigroup with a partiular struture: it

ats as an exponentially weighted inoming shift on the inoming subspae, as an
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exponentially weighted outgoing shift on the outgoing subspae, and the entral

part of the semigroup desribes `a generalized sattering proess'. As we shall see

in Setion 4, this entral part an be taken to be an arbitrary well-posed linear sys-

tem. Thus there is a one-to-one orrespondene between the lass of all well-posed

linear systems and all extended Lax{Phillips models.

We begin by presenting the most basi results about a L

p

-well-posed linear

system (Setion 3) and the orresponding Lax{Phillips model (Setion 4). We pro-

eed in Setion 5 to show that there is a lose onnetion between the Lax{Phillips

generator and the generators of the orresponding well-posed linear system. All

the essential information about these two systems is ontained in the system op-

erator S

�

=

�

A B

C&D

�

where A is the generator of the (entral) semigroup, B is the

ontrol operator, and C&D is the ombined observation/feedthrough operator. In

the important ase where X and U are Hilbert spaes this system operator an

be written in the more familiar form S

�

=

�

A B

C D

�

, where C is a (not neessarily

unique) observation operator andD is the orresponding (generalized) feedthrough

operator. We system operator is losed and densely de�ned from X�U to X�Y .

In the reexive ase the adjoint of S

�

is the system operator of the dual system. We

give formulas for the Lax{Phillips generator and resolvent in terms of the system

operator. Finally, in the last setion we apply the Hille{Yoshida theorem to the

Lax{Phillips semigroup and get neessary and suÆient onditions for the admis-

sibility or joint admissibility of a ontrol operator B and an observation operator

C. This leads to a riterion for an H

1

-funtion to be an L

p

-multiplier.

3. Well-posed linear systems

As already outlined in Setion 2, it is possible to de�ne a well-posed linear system

� =

�

A B

C D

�

without any referene to the system of equations (1). For this, we have

to introdue some spaes and some simple operators. We denote R = (�1;1),

R

+

= [0;1), R

�

= (�1; 0),

(�

J

u)(s) =

(

u(s); s 2 J;

0; s =2 J;

for all J � R;

(�

+

u)(s) = �

R

+
u =

(

u(s); s 2 R

+

;

0; s 2 R

�

;

;

(�

�

u)(s) = �

R

�
u =

(

0; s 2 R

+

;

u(s); s 2 R

�

;

;

(�

t

u)(s) = u(t+ s); s; t 2 R:
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Thus �

+

is `restrition to R

+

', �

�

is the `restrition to R

�

', and �

t

shift to the

left for t > 0 and to the right for t < 0. Moreover, we de�ne

�

t

+

= �

+

�

t

; t � 0;

�

t

�

= �

t

�

�

; t � 0;

so that �

t

+

is the left shift by t � 0 on R

+

and �

t

�

is the left shift by t � 0 on R

�

.

Thus, �

+

is an `inoming left shift' and �

�

is an `outgoing left shift'.

The spae L

p



(R

�

;U) onsists of all the funtions u 2 L

p

(R

�

;U) with a

bounded support. The spae L

p

;lo

(R;U) onsists of all the funtions u : R ! U

that are loally in L

p

and whose support is bounded to the left. We interpret

L

p



(R

�

;U) as the subspae of funtions in L

p

;lo

(R;U) whih vanish on R

+

, and

L

p

lo

(R

+

;U) as the subspae of funtions in L

p

;lo

(R;U) whih vanish on R

�

. A

sequene of funtions u

n

onverges in L

p

;lo

(R;U) to a funtion u if the ommon

support of all the funtions u

n

is bounded to the left and u

n

onverges to u in

the L

p

sense on every bounded time interval. The ontinuity of B, C and D in the

following de�nition is with respet to this onvergene.

De�nition 3.1. Let U , X, and Y be Banah spaes, and let 1 � p < 1. An L

p

-

well-posed linear system � on (Y;X;U) is a quadruple � =

�

A B

C D

�

of ontinuous

linear operators satisfying the following onditions:

(i) t 7! A

t

is a strongly ontinuous semigroup of operators on X;

(ii) B : L

p



(R

�

;U) ! X satis�es A

t

Bu = B�

t

�

u, for all u 2 L

p



(R

�

;U) and

all t 2 R

+

;

(iii) C : X ! L

p

lo

(R;Y ) satis�es CA

t

x = �

t

+

Cx, for all x 2 X and all t 2 R

+

;

(iv) D : L

p

;lo

(R;U)! L

p

;lo

(R;Y ) satis�es �

t

Du = D�

t

u, �

�

D�

+

u = 0, and

�

+

D�

�

u = CBu, for all u 2 L

p

;lo

(R;U) and all t 2 R.

The di�erent omponents of � are alled as follows: U is the input spae, X is

the state spae, Y is the output spae, A is the semigroup, B is the input (or

reahability, or ontrollability) map, C is the output (or observability) map, and

D is the input-output map. The state x(t) 2 X at time t 2 R

+

and the output

y 2 L

p

lo

(R

+

;Y ) of � with initial time zero, initial state x

0

2 X and input funtion

u 2 L

p

lo

(R

+

;U) are given by (2) with B

t

0

= B�

t

�

[0;t℄

u and D

0

u = D�

+

u.

It is easy to see that the operators de�ned in (4) (with bounded B, C, and D)

satisfy these onditions. Moreover, we only have to integrate over a �nite interval

sine the support of u is bounded to the left. (There is also a similar theory for

the ase p =1; see [25℄.)

Every well-posed linear system has as a �nite exponential growth bound. By

the growth bound !

A

of a system � =

�

A B

C D

�

we understand the growth bound

of its semigroup A:

!

A

= lim

t!1

log(kA

t

k)

t

= inf

t>0

log(kA

t

k)

t

:
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As is well known, we always have !

A

< 1, but possibly !

A

= �1. To explain

in whih sense the other operators B, C, and D are exponentially bounded we

introdue exponentially weighted L

p

-spaes of the following type: we let L

p

!

(R

+

;U)

represent the spae of funtions u : R

+

! U for whih t 7! e

�!t

u(t) belongs to

L

p

(R

+

;U).

Theorem 3.2. Let � =

�

A B

C D

�

be a L

p

-well-posed linear system, 1 � p < 1, on

(Y;X;U) with growth bound !

A

, and let ! > !

A

. Then B has a unique extension

to an bounded linear operator from L

p

!

(R

�

;U) to X, C is a bounded linear operator

from X to L

p

!

(R

+

;Y ), and D has a unique extension to a bounded linear operator

from L

p

!

(R;U) to L

p

!

(R;Y ).

Every well-posed linear system also has a transfer funtion:

Theorem 3.3. Let � =

�

A B

C D

�

be a L

p

-well-posed linear system, 1 � p < 1, on

(Y;X;U) with growth bound !

A

. Then there is a unique analyti L(U ;Y )-valued

transfer funtion

b

D de�ned (at least) on <z > !

A

determined by the fat that the

Laplae transform

d

D

0

u of the input-output term D

0

u in (2) is given by, for all

u 2 L

p

!

A

(R

+

;U),

d

D

0

u =

b

D(z)û(z); <z > !

A

;

where û is the Laplae transform of u.

Thus,

b

D an be interpreted as an `L

p

!

(U ;Y )-multiplier' for every ! > !

A

.

The following theorem gives us a �rst onnetion between an arbitrary L

p

-

well-posed linear system and a system of equations of the type (1):

Theorem 3.4. Every L

p

-well-posed linear system � =

�

A B

C D

�

with 1 � p <1 has

a unique losed (unbounded) densly de�ned system operator

S

�

: X � U � D(S

�

)! X � Y

with the following properties. If x

0

2 X, u 2 W

1;p

lo

(R

+

;U) and

�

x

0

u(0)

�

2 D(S

�

),

then the state x(t) and the output y(t) of � with initial state x

0

, and input u

satis�es

h

x(t)

u(t)

i

2 D(S

�

) for all t � 0, and

�

x

0

(t)

y(t)

�

= S

�

�

x(t)

u(t)

�

; t � 0;

x(0) = x

0

:

(5)

The proof of this theorem is given in [26℄ (and also in [25℄).

Note that (5) redues to (1) for smooth input funtions and ompatible initial

onditions provided S

�

an be written in the form S

�

=

�

A B

C D

�

. Is this always

possible?

Before giving a (partial) answer to this question we need to introdue two

auxiliary spaes X

1

and X

�1

. Choose any  in the resolvent set of the generator

A of A. We let X

1

= D(A), with the norm kxk

X

1

= k(I�A)xk

X

, and X

�1

is the
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ompletion of X with the norm kxk

X

�1

= k(I � A)

�1

xk

X

. We have X

1

� X �

X

�1

with ontinuous and dense imbeddings. The semigroup A an be restrited to

to a strongly ontinuous semigroup on X

1

and extended to a strongly ontinuous

semigroup on X

�1

(whih still we denote by the same symbol). We denote the

spae of bounded linear operators from U to Y by L(U ;Y ).

Theorem 3.5. Every L

p

-well-posed linear system � =

�

A B

C D

�

with 1 � p < 1

has a unique ontrol operator B 2 L(U ;X

�1

) and a unique ombined observa-

tion/feedthrough operator C&D : D(S

�

) ! X � Y , suh that S

�

an be written

in the form

S

�

�

x

u

�

=

�

A B

C&D

� �

x

u

�

;

�

x

u

�

2 D(S

�

):

Thus, the state x(t) and the output y(t) of � in Theorem 3.4 satisfy

x

0

(t) = Ax(t) +Bu(t);

y(t) = C&D

�

x(t)

u(t)

�

; t � 0;

x(0) = x

0

;

where the equation for x

0

is valid in X

�1

. Moreover, D(S

�

) is given by

D(S

�

) =

�

[

x

u

℄ 2 X � U

�

�

Ax+Bu 2 X

	

:

In partiular, if x 2 X

1

, then [

x

0

℄ 2 D(S

�

), and we an de�ne the observation

operator C 2 L(X

1

;Y ) by

Cx = C&D

�

x

0

�

; x 2 X

1

:

This theorem is atually older than Theorem 3.4; see [4℄, [5℄, [17, 18℄, and [27,

28℄ (or [25℄) for the proof. In [4℄ the ombined observation/feedthrough operator

is denoted by N . The ontrol operator B is said to be bounded if the range of B

lies in X , in whih ase B 2 L(U ;X). The observation operator C is said to be

bounded if it an be extended to an operator in L(X ;Y ).

There is an simple onnetion between the transfer funtion introdued in

Theorem 3.3 and the operators introdued in Theorem 3.5.

Theorem 3.6. With the notation of Theorems 3.3 and 3.5, the transfer funtion

b

D

of � is given by

b

D(z) = (C&D)

�

(zI �A)

�1

B

I

�

; <z > !

A

:

Conversely, for all z 2 C with <z > !

A

and for all [

x

u

℄ 2 D(S

�

) we have

C&D

�

x

u

�

= C[x+ (zI �A)

�1

Bu℄ +

b

D(z)u:
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For more details, explanations and examples we refer the reader to [1℄, [2, 3℄,

[4℄, [5℄, [17, 18℄, [19, 20, 22, 21, 23, 25℄, [27, 28, 29, 30, 32, 33℄, [36℄ (and the

referenes therein). Most of the available literature deals with Hilbert spaes and

p = 2.

Let us now return to the question of the possibility to split S

�

even fur-

ther into S

�

=

�

A B

C D

�

. For the purpose of the following disussion, let us tem-

porarily split S

�

into S

�

=

�

A&B

C&D

�

, where, with the notation of Theorem 3.4,

A&B : D(S

�

)! X maps [

x

u

℄ into x

0

and (as in Theorem 3.5) C&D : D(S

�

)! Y

maps [

x

u

℄ into y. Aording to Theorem 3.5, it is always possible to extend the

domain of A&B to all of X � U by allowing the values of A&B to belong to the

larger spae X

�1

. This extension is unique sine D(A&B) = D(S

�

) is dense in

X � U . If we denote the extended operator by A&B, then

A&B

�

x

u

�

=

�

A B

�

�

x

u

�

= Ax+Bu; x 2 X; u 2 U;

where

Ax = A&B

�

x

0

�

; Bu = A&B

�

0

u

�

;

here A represents the extension of the original generator A to an operator X !

X

�1

.

In order to get a similar splitting of C&D into C&D =

�

C D

�

we need to

extend C&D in a similar fashion. This extension is more diÆult sine we annot,

in general, replae the original range spae Y of C&D be a larger spae Y

�1

. For

example, if Y is �nite-dimensional, then there is no natural andidate for the spae

Y

�1

. The smallest possible domain of the extended operator C&D is Z�U , where

Z is de�ned as follows. We hoose any  in the resolvent set of A, and let

Z =

�

z 2 X

�

�

z = (I �A)

�1

(x+Bu)

for some x 2 X and u 2 U

	

:

(6)

This is a Banah spae with the norm

jzj

Z

= inf

(I�A)

�1

(x+Bu)=z

�

jxj

2

X

+ juj

2

U

�

1=2

;

satisfying X

1

� Z � X , and it is a Hilbert spae if both X and U are Hilbert

spaes. It is easy to see that D(S

�

) � Z �U , but the embedding D(S

�

) � Z �U

need not be dense.

De�nition 3.7. The well-posed linear system � =

�

A B

C D

�

is ompatible if its

ombined observation/feedthrough operator C&D an be extended to an operator

C&D 2 L(Z � U ;Y ). We de�ne the orresponding extended observation operator
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C 2 L(Z;Y ) and feedthrough operator D 2 L(U ;Y ) by

C = C&D

�

x

0

�

; x 2 Z;

Du = C&D

�

0

u

�

; u 2 U:

(7)

The extension of C&D to Z�U need not be unique sine D(S

�

) not be dense

in Z �U . This means that C and D need not be unique either. However, there is

a one-to-one orrespondene between C&D, C and D, i.e., any one of these three

operators determine the other two uniquely.

In spite of the possible non-uniqueness of the extended observation operator

C and the orresponding feedthrough operator D, independently of how these

operators are hosen, it is still true that the formula for the output y in Theorem 3.5

simpli�es into

y(t) = Cx(t) +Du(t); t � 0;

and the formula for the transfer funtion given in Theorem 3.3 simpli�es into

b

D(z) = C(zI �A)

�1

B +D: <z > !

A

:

In partiular, the formula (3) holds whenever u 2 W

1;p

([0; t℄;U) and

�

x

0

u(0)

�

2

D(S

�

).

It has for some time been onsidered an open question among speialists

whether every L

p

-well-posed linear system is ompatible. Reently it was disov-

ered that the answer to this question is positive, at least in the Hilbert spae

ase.

Theorem 3.8. Let � be a L

p

-well-posed linear system on (Y;X;U). Then � is

ompatible in (at least) the following ases:

(i) X and U are Hilbert spaes;

(ii) At least one of the spaes X, U , or Y is �nite-dimensional.

The more diÆult part (i) of this theorem was proved in [26℄, and (the easy)

part (ii) in [25℄.

4. The Lax{Phillips Sattering Model

Instead of using a L

p

-well-posed linear system to formalize the idea of hav-

ing an output and state at time t > 0 whih depend ontinuously on an in-

put and the initial state we an proeed in a di�erent way whih leads to

a generalized Lax{Phillips sattering model. This is a semigroup T

T

T de�ned on

Y � X � U = L

p

!

(R

�

;Y ) � X � L

p

!

(R

+

;U) with ertain additional properties.

(Here L

p

!

(R

�

;Y ) onsists of all the funtions y : R

�

! Y for whih t 7! e

�!t

y(t)

belongs to L

p

(R

�

;Y ) and similarly for L

p

!

(R

+

;U).) We all U the inoming sub-

spae, X the entral state spae, and Y the outgoing subspae. In the lassial



10 O. J. Sta�ans

ases treated in [14, 15℄ ! is taken to be zero and T

T

T is required to be unitary (the

onservative ase) or a ontration semigroup (the nononservative ase).

We laim that there is a one-to-one orrespondene between the lass of all

well-posed linear systems and the lass of all Lax{Phillips models. The parameter

! 2 R an be hosen in an arbitrary way (the best hoie depends on the partiular

appliation).

Let � =

�

A B

C D

�

be a given L

p

-well-posed linear system. To eah suh system

we onstrut a Lax{Phillips model T

T

T on Y � X � U as follows. The initial data

onsists of the initial inoming state u

0

2 U representing the future values of the

input, the initial entral state x

0

2 X is idential to the initial state of �, and

the initial outgoing state y

0

2 Y represents the past values of the output. At time

t � 0 the inoming state u

t

is the left-shifted input �

t

+

u

0

(the unused part of the

input). The entral state x

t

at time t is equal to the state x(t) = A

t

x

0

+B

t

0

u of �

at time t with initial time zero, initial state x

0

, and input u

0

(it depends only on

x

0

and on the disarded part �

[0;t℄

u of u). The outgoing state y

t

at time t onsists

of two parts: it is the sum of �

t

�

y

0

(the left-shifted original outgoing state) and

�

t

�

[0;t℄

(Cx

0

+D

0

u

0

) (the restrition of the output Cx

0

+D

0

u

0

of � to the interval

[0; t℄ shifted to the left by �

t

so that the support of the shifted and trunated

output is (�t; 0)). Formalizing this idea we get the following theorem, where we

use the notations

B

t

0

= B�

t

�

[0;t℄

; C

t

0

= �

[0;t℄

C; D

t

0

= �

[0;t℄

D�

[0;t℄

:

Theorem 4.1. Let ! 2 R, Y = L

2

!

(R

�

;Y ) and U = L

2

!

(R

+

;U). For all t � 0 we

de�ne on Y �X � U the operator T

T

T

t

by

T

T

T

t

=

2

4

�

t

0 0

0 I 0

0 0 �

t

+

3

5

2

4

I C

t

0

D

t

0

0 A

t

B

t

0

0 0 I

3

5

:

Then T

T

T is a strongly ontinuous semigroup. If x and y are the state trajetory and

the output funtion of � orresponding to the initial state x

0

2 X and the input

funtion u

0

2 U , and if we de�ne y(t) = y

0

(t) for t < 0, then for all t � 0,

2

4

�

(�1;t℄

y

x(t)

�

[t;1)

u

0

3

5

=

2

4

�

�t

0 0

0 I 0

0 0 �

�t

3

5

T

T

T

t

2

4

y

0

x

0

u

0

3

5

: (8)

Formula (8) shows that at any time t � 0, the �rst omponent of T

T

T

t

h

y

0

x

0

u

0

i

represents the past output, the seond omponent represents the present state and

the third omponent represents the future input.

Here the strong ontinuity of T

T

T is obvious, and so is the property T

T

T(0) = I .

The proof of the semigroup property T

T

T(s + t) = T

T

T(s)T

T

T(t) for s, t � 0 is a short

algebrai omputation based on De�nition 3.1 (see [26℄ or [25℄ for details).

The semigroupT

T

T in Theorem 4.1 has an additional `ausality' property, whih

in the Hilbert spae ase where p = 2 and U , X , and Y are Hilbert spaes an be

desribed as follows: for all t � 0, the images of the entral and inoming states
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under T

T

T

t

are orthogonal to the image of the outgoing state, and the null spae of

T

T

T

t

projeted onto the entral and outgoing spaes is orthogonal to the null spae

of T

T

T

t

projeted onto the inoming spae. In the general ase these properties an

easiest be haraterized in the following way.

De�nition 4.2. A Lax{Phillips model of type L

p

!

is a semigroup on Y �X � U =

L

p

!

(R

�

;Y )�X � L

p

!

(R

+

;U) with the struture

T

T

T

t

=

2

4

�

t

�

C

C

C

t

D

D

D

t

0 A

A

A

t

B

B

B

t

0 0 �

t

+

3

5

; (9)

where A

A

A is strongly ontinuous and B

B

B

t

, C

C

C

t

, and D

D

D

t

satisfy the ausality onditions

C

C

C

t

= �

(�t;0)

C

C

C

t

; D

D

D

t

= �

(�t;0)

D

D

D

t

;

D

D

D

t

= D

D

D

t

�

[0;t℄

; B

B

B

t

= B

B

B

t

�

[0;t℄

:

(10)

This set of onditions is a rewritten version of onditions (1.2) in [15℄. Helton

[10℄ uses the name inertness for this additional ausality property.

Corollary 4.3. The semigroup T

T

T onstruted in Theorem 4.1 is a Lax{Phillips

model of type L

p

!

.

This is immediate from Theorem 4.1 and De�nition 4.2. We all the semigroup

T

T

T in Theorem 4.1 the Lax{Phillips model (of type L

p

!

) indued by �.

It is only slightly more diÆult to prove a onverse to Corollary 4.3: To every

Lax{Phillips model there orresponds a well-posed linear system whih indues

this Lax{Phillips model:

Theorem 4.4. Let T

T

T be a Lax{Phillips model of type L

p

!

. With the notations of

De�nition 4.2, let

A = A

A

A ; B = lim

s!1

B

B

B

s

�

�s

;

C = lim

t!1

�

�t

C

C

C

t

; D = lim

t!1

s!1

�

�s

D

D

D

s+t

�

�t

:

(11)

Then � =

�

A B

C D

�

is an L

p

-well-posed linear system on (Y;X;U), and T

T

T is the

Lax{Phillips model indued by this system.

The proof of Theorem 4.4 is another algebrai omputation given in [25℄.

Corollary 4.5. For eah ! 2 R and 1 � p < 1, there is a one-to-one orrespon-

dene between the lass of all L

p

-well-posed linear systems and all Lax{Phillips

models of type L

p

!

: every L

p

-well-posed linear system � indues a unique Lax{

Phillips model T

T

T of type L

p

!

, and onversely, every Lax{Phillips model T

T

T of type

L

p

!

indues a unique L

p

-well-posed linear system �.

This is a union of Corollary 4.3 and Theorem 4.4. Parts of this orollary

(where either the input operator or output operator vanishes) were proved by
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Grabowski and Callier [7℄ and by Engel [6℄. It is also (impliitly) ontained in [4℄

and mentioned in [3℄.

Our next theorem desribes the generator of the Lax{Phillips semigroup:

Theorem 4.6. Let 1 � p <1 and ! 2 R, let � =

�

A B

C D

�

be a L

p

-well-posed linear

system on (Y;X;U) with system operator S

�

=

�

A B

C&D

�

, and let T be the generator

of the orresponding Lax{Phillips model T

T

T of type L

p

!

de�ned in De�nition 4.2.

(i) The domain of T onsists of all the vetors

h

y

0

x

0

u

0

i

2 W

1;p

!

(R

�

;Y ) �X �

W

1;p

!

(R

+

;U) whih satisfy

�

x

0

u

0

(0)

�

2 D(S

�

) and y

0

(0) = C&D

�

x

0

u

0

(0)

�

,

and on its domain T is given by

T

2

4

y

0

x

0

u

0

3

5

=

2

4

y

0

0

Ax

0

+Bu

0

(0)

u

0

0

3

5

:

Thus, the following three onditions are equivalent (here û and û

0

are the

Laplae transforms of u and u

0

, and ŷ and ŷ

0

are the left-sided Laplae

transforms of y and y

0

):

(a)

h

y

0

x

0

u

0

i

2 D(T ) and

h

y

x

u

i

= T

h

y

0

x

0

u

0

i

;

(b) y

0

2W

1;p

!

(R

�

;Y ), x

0

2 X, u

0

2W

1;p

!

(R

+

;U),

�

x

0

u

0

(0)

�

2 D(S

�

) and

�

x

y

0

(0)

�

= S

�

�

x

0

u

0

(0)

�

;

�

y

u

�

=

�

y

0

0

u

0

0

�

:

() y

0

2W

1;p

!

(R

�

;Y ), x

0

2 X, u

0

2W

1;p

!

(R

+

;U),

�

x

0

u

0

(0)

�

2 D(S

�

) and

�

x

y

0

(0)

�

= S

�

�

x

0

u

0

(0)

�

;

ŷ(z) = zŷ

0

(z)� y

0

(0); <z < !;

û(z) = zû

0

(z) + u

0

(0); <z > !:

(ii) The spetrum of T ontains the vertial line f<� = !g. A point � with

<� > ! belongs to the spetrum of T i� it belongs to the spetrum of A,

and a point � whith <� < ! belongs to the spetrum of T i�

�

�I�A �B

�C&D

�

is not invertible.

(iii) Let � 2 �(T ) with <� > ! and let

h

y

x

u

i

2 L

2

!

(R

�

;Y ) �X � L

2

!

(R

+

;U).

Denote

b

D(�) = C&D

h

(�I�A)

�1

B

I

i

. Then the following three onditions

are equivalent:

(a)

h

y

0

x

0

u

0

i

= (�I � T )

�1

h

y

x

u

i

;
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(b)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�

x

0

y

0

(0)

�

=

�

(�I �A)

�1

(�I �A)

�1

B

C(�I �A)

�1

b

D(�)

� �

x

û(�)

�

;

y

0

(t) = e

�t

y

0

(0) +

Z

0

t

e

�(t�s)

y(s) ds; t � 0;

u

0

(t) =

Z

1

t

e

�(t�s)

u(s) ds; t � 0:

()

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�

x

0

y

0

(0)

�

=

�

(�I �A)

�1

(�I �A)

�1

B

C(�I �A)

�1

b

D(�)

� �

x

û(�)

�

;

ŷ

0

(z) =

ŷ(z) + y

0

(0)

�� z

; <z < !;

û

0

(z) =

û(z)� û(�)

�� z

; <z > !:

(iv) Let � 2 �(T ) with <� < ! and let

h

y

x

u

i

2 L

2

!

(R

�

;Y ) �X � L

2

!

(R

+

;U).

Then the following three onditions are equivalent:

(a)

h

y

0

x

0

u

0

i

= (�I � T )

�1

h

y

x

u

i

;

(b)

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�

x

0

u

0

(0)

�

=

�

�I �A �B

�C&D

�

�1

�

x

ŷ(�)

�

;

y

0

(t) = �

Z

t

�1

e

�(t�s)

y(s) ds; t � 0;

u

0

(t) = e

�t

u

0

(0)�

Z

t

0

e

�(t�s)

u(s) ds; t � 0:

()

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�

x

0

u

0

(0)

�

=

�

�I �A �B

�C&D

�

�1

�

x

ŷ(�)

�

;

ŷ

0

(z) =

ŷ(z)� ŷ(�)

�� z

; <z < !;

û

0

(z) =

û(z) + u

0

(0)

�� z

; <z > !:

The proof of this theorem is given in [26℄ (and also in [25℄).

There are a number of important ingredients in the Lax{Phillips sattering

theory, suh as the bakward and forward wave operators, the sattering operator,

and the sattering matrix. All of these have natural analogies in the theory of

well-posed linear systems. In the disussion below we hoose ! > !

A

, where !

A

is

the growth rate of A.

The bakward wave operator W

�

(denoted byW

2

in [15, Theorem 1.2℄) is the

limit of the last olumn of T

T

T�

�t

as t ! 1. It maps L

p

!

(R;U) into L

p

!

(R

�

;Y ) �

X � L

p

!

(R

+

;U), and it is given by (f. Theorem 4.4)

W

�

u =

2

4

�

�

D

B

�

+

3

5

u: (12)
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Thus, it keeps the future input �

+

u intat, and maps the past input �

�

u into the

past output �

�

Du and the present entral state Bu.

The forward wave operator W

+

(denoted by W

1

in [15, Theorem 1.2℄) is the

limit of the �rst row of �

�t

T

T

T as t!1. It maps L

p

!

(R

�

;Y )�X�L

p

!

(R

+

;U) into

L

p

!

(R;Y ), and it is given by (f. Theorem 4.4)

W

+

2

4

y

x

0

u

3

5

=

�

�

�

C D�

+

�

2

4

y

x

0

u

3

5

: (13)

Thus, it keeps the past output �

�

y intat, and maps the present entral state x

0

and the future input �

+

u into the future output Cx

0

+D�

+

u.

The sattering operator in Lax{Phillips theory is the produt W

+

W

�

, and it

is given by

W

+

W

�

=

�

�

�

C D�

+

�

2

4

�

�

D

B

�

+

3

5

= �

�

D+ CB+ �

+

D = D: (14)

Thus, the sattering operator is nothing but the (bilaterally shift-invariant) input-

output map D of the orresponding well-posed linear system.

To get the sattering matrix of the Lax{Phillips system we apply the satter-

ing operator D to an input of the form u(t) = e

zt

u

0

, where z 2 C has a suÆiently

large real part and u

0

2 U is �xed; see [15, pp. 187{188℄. Beause of the shift-

invariane of D, the resulting output is of the type y(t) = e

zt

y

0

for some y

0

2 Y .

The sattering matrix (evaluated at z) is de�ned to be the operator that maps

u

0

2 U into y

0

2 Y . It follows from [30, p. 194℄ that the sattering matrix of

a Lax{Phillips system is equal to the transfer funtion

b

D of the orresponding

well-posed linear system.

In their study of the onservative ase, Lax and Phillips [14℄ assume some

additional ontrollability and observability properties of the system:

(i) The image of the inoming subspae U under T

T

T

t

, 0 � t < 1, is dense in

the state spae Y �X � U .

(ii) If the projetion of a trajetory onto the outgoing subspae Y vanishes,

then the trajetory is identially zero.

These additional ontrollability and observability assumptions imply the fol-

lowing additional onlusions (in the onservative ase):

(i) Both A

t

and A

�t

tend strongly to zero as t!1,

(ii)

b

D is inner from both sides, i.e.,

b

D(i!) is unitary for almost all real !,

(iii) Both the bakward and the forward wave operators are unitary,

(iv) The system is exatly ontrollable and exatly observable in in�nite time.

Without the additional ontrollability and observability assumptions none of

the additional onlusions listed above need hold.
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Aording to [4℄, every ontrative H

1

-funtion over C

0

(= the right half-

plane) is the transfer funtion of some unitary system (whih need not be on-

trollable or observable). It is also the transfer funtion of some ontrollable and

observable dissipative system. For more details on onservative and dissipative sys-

tems, see [4℄, [14, 15℄, and [35℄

5. Admissibility

Aording to Corollary 4.5, there is a one-to-one orrespondene between the lass

of all L

p

-well-posed linear systems and all Lax{Phillips sattering models of type

L

p

. This means that we an redue the study of the generators of a well-posed

linear system to the study of the generators the Lax{Phillips semigroup. This

way we an obtain neessary and suÆient onditions for the admissibility or joint

admissibility of a ontrol operator B and an observation operator C. These notions

are de�ned as follows.

As always we let U , X , and Y be Banah spaes and let 1 � p <1. We let A

be a strongly ontinuous semigroup on the Banah spae X with generator A, and

de�ne the spaes X

1

and X

�1

as in Setion 2. This time we speify, in addition,

some ! 2 R, and suppose that A is !-bounded, i.e., sup

t>0

e

�!t

kA

t

k <1.

An operator B 2 L(U ;X

�1

) is an L

p

-admissible ontrol operator for A if for

some t > 0 (hene for all t > 0) the operator

B

t

0

u =

Z

t

0

A

t�s

Bu(s) ds; u 2 L

p

([0; t℄;U); (15)

maps L

p

([0; t℄;U) into X (instead of X

�1

). (This operator is then bounded with

values in X). We all B !-bounded if the resulting input map

Bu = lim

v!�1

Z

0

v

A

�s

Bu(s) ds; u 2 L

p

!

(R

�

;U) (16)

is !-bounded, i.e., it de�nes a bounded linear operator from L

p

!

(R

�

;U) to X .

The operator C 2 L(X

1

;Y ) is an L

p

-admissible observation operator for A

if the map

(Cx)(t) = CA

t

x; x 2 X

1

; t � 0; (17)

an be extended to a bounded linear operator X ! L

p

lo

(R

+

;Y ), and it is

!-bounded if the resulting output map C is !-bounded, i.e., it maps X into

L

p

!

(R

+

;Y ).

The operatorsB 2 L(U ;X

�1

) and C 2 L(X

1

;Y ) are jointly L

p

-admissible for

A if B is an L

p

-admissible ontrol operator for A, C is an L

p

-admissible observation

operator for A, and the operator D : W

1;p

;lo

(R;U)! C



(R;Y ) de�ned by

(Du)(t) = C

�

B�

t

u� (�I �A)

�1

Bu(t)

�

+D

�

u(t); t 2 R; (18)
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an be extended to a ontinuous operator L

p

;lo

(R;U) ! L

p

;lo

(R;Y ). Here � 2

�(A) and D

�

2 L(U ;Y ) an be hosen in an arbitrary way. By introduing the

ombined observation/feedthrough operator

C&D

�

x

u

�

= C

�

x� (�I �A)

�1

Bu

�

+D

�

u: (19)

we an simplify the formula for (Du)(t) into

(Du)(t) = C&D

�

B�

t

u

u(t)

�

; t 2 R: (20)

We allB and C jointly !-bounded if both B and C are !-bounded and, in addition,

the operator D an be extended to a bounded linear operator from L

p

!

(R;U) to

L

p

!

(R;Y ). If (and only if) B and C are jointly admissible, then the four operator

A, B, C, and D an be ombined into a L

p

-well-posed linear system

�

A B

C D

�

with

system operator

�

A B

C&D

�

. (Here D is determined by A, B, and C only modulo a

onstant stati term.)

Before looking at the general ase of L

p

-admissibility, let us treat the impor-

tant speial ase where p = 2 and U , X , and Y are Hilbert spaes. In this ase

there is a very simple haraterization of the lass of all L

2

-well-posed !-bounded

transfer funtion:

Proposition 5.1. Let U and Y be Hilbert spaes. A L(U ;Y )-valued funtion

b

D

de�ned on <� > ! is the transfer funtion of an !-bounded L

2

-well-posed linear

system if and only if it is analyti and bounded on <� > ! (i.e., it belongs to H

1

).

This was proved independently by (at least) Salamon [18℄ and Curtain and

Weiss [5℄.

The admissibility of a ontrol operator B or an observation operator C is

muh more deliate in this ase. In 1990 George Weiss [31℄ made the following

onjeture:

Conjeture 5.2. Let U , X, and Y be Hilbert spaes, and let A generate a C

0

semi-

group on X. Then

(i) B 2 L(U ;X

�1

) is an L

2

-admissible !-bounded ontrol operator for A if

and only if there is a onstant K > 0 suh that

k(�I �A)

�1

Bk �

K

p

<�� !

; <� > !:

(ii) C 2 L(X

1

;Y ) is an L

2

-admissible !-bounded observation operator for A

if and only if there is a onstant K > 0 suh that

kC(�I �A)

�1

k �

K

p

<�� !

; <� > !:

It is easy to see that the given onditions are neessary. These two onjetures

are dual of eah other, so it suÆes to prove or disprove one of them.
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It was disovered reently by Zwart and Jaob [37℄ that Weiss' onjeture

is false in general. It is not true even if we restrit the dimensions of U and Y

to be one (see [13℄) or if we require the semigroup to be a ontration semigroup

(see [12℄). However, it is true in several speial ases. For example, the seond

onjeture about the observation operator is known to be true in the following

speial ases (here we denote the semigroup generated by A by t 7! A

t

and take

! = 0):

(i) Y is �nite-dimensional and A is normal [8℄, [9℄, [31℄, [34℄,

(ii) Y is �nite-dimensional and A is the right-shift on L

2

(R

+

) [16℄,

(iii) Y is �nite-dimensional and A is a ontration semigroup [11℄,

(iv) A is exponentially stable and A

t

is right-invertible for some (hene all)

t > 0 [31℄ [34℄.

Let us now return to the general ase of L

p

-admissibility and Banah spaes.

By applying the Hille{Yoshida theorem to the semigroup in Corollary 4.5 we get

the following neessary and suÆient onditions for admissibility:

Theorem 5.3. Let ! 2 R, 1 � p <1, and let A be the generator of an !-bounded

C

0

semigroup on X.

(i) B 2 L(U ;X

�1

) is an L

p

-admissible !-bounded ontrol operator for A if

and only if there is a onstant M > 0 suh that, for all u 2 L

p

!

(R

+

;U),

� > !, and n = 0; 1; 2; : : : ,

�

�

�

�

n

��

n

(�I �A)

�1

Bû(�)

�

�

�

X

�

Mn!

(�� !)

n+1

kuk

L

p

!

(R

+

;U)

: (21)

(ii) C 2 L(X

1

;Y ) is an L

p

-admissible !-bounded observation operator for A

if and only if there is a onstant M > 0 suh that, for all x

0

2 X, � > !,

and n = 0; 1; 2; : : : ,

�

Z

1

0

�

�

�

�

�

n

��

n

e

�(��!)t

C(�I �A)

�1

x

0

�

�

�

�

p

Y

dt

�

1=p

�

Mn!

(�� !)

n+1

jx

0

j

X

: (22)

(iii) The operators B 2 L(U ;X

�1

) and C 2 L(X

1

;U) are jointly L

p

admissible

and !-bounded i� B is an L

p

-admissible !-bounded ontrol operator for

A (f. (i)), C is an admissible !-bounded observation operator for A (f.

(ii)) and there is a onstant M > 0 suh that, for all u 2 L

p

!

(R

+

;U),

� > !, and n = 0; 1; 2; : : : ,

�

Z

1

0

�

�

�

�

�

n

��

n

e

�(��!)t

b

D(�)û(�)

�

�

�

�

p

Y

dt

�

1=p

�

Mn!

(�� !)

n+1

kuk

L

p

!

(R

+

;U)

;

(23)

where

b

D(�) = (�� �)C(�I �A)

�1

(�I �A)

�1

B +D

�

; (24)

here � with <� > ! and D

�

2 L(U ;Y ) an be hosen in an arbitrary

manner.
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Part (ii) of this theorem was proved by Grabowski and Callier [7℄ in the

exponentially stable Hilbert spae ase (i.e., A is exponentially stable, ! = 0,

p = 2, and U , X , and Y are Hilbert spaes), and the orresponding ase of part (i)

an be derived from (ii) by duality. The general ase of parts (i) and (ii) was proved

by Engel [6℄. Part (iii) may (or may not) be new. A proof of the full theorem is

given in [25℄.

Condition (23) does not depend on the partiular realization

�

A B

C D

�

of D,

i.e., it does not ontain any diret referenes to A, B, and C, but only to

b

D whih

is ompletely determined by D. This indiates that the following onjeture may

be true:

Conjeture 5.4. An analyti L(U ;Y )-valued funtion

b

D on <� > ! is the transfer

funtion of an !-bounded L

p

-well-posed linear system if and only if there is a

onstant M > 0 suh that (23) holds for all u 2 L

p

!

(R

+

;U), � > !, and n =

0; 1; 2; : : : .

Clearly, by Theorem 5.3, ondition (23) is neessary for

b

D to be a L

p

-well-

posed !-bounded transfer funtion, and we onjeture that it is also suÆient.

This would give us a neessary and suÆient ondition for an H

1

funtion to be

an L

p

-multiplier.
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