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Abstract. We discuss the connection between Lax—Phillips scattering theory
and the theory of well-posed linear systems, and show that the latter theory
is a natural extension of the former. As a consequence of this, there is a
close connection between the Lax-Phillips generator and the generators of the
corresponding well-posed linear system. All the essential information about
these two systems is contained in the system operator Sz = [ 45, ], where A is
the generator of the (central) semigroup, B is the control operator, and C&D
is the combined observation/feedthrough operator. In the important Hilbert
space case this system operator can be written in the more familiar form
Sy = [£ 2], where C is a (not necessarily uniquely determined) observation
operator and D is the corresponding (generalized) feedthrough operator. The
system operator is closed and densely defined. In the reflexive case the adjoint
of Sx is the system operator of the dual system. We give formulas for the Lax—
Phillips generator and resolvent in terms of the system operator. By applying
the Hille-Yoshida theorem to the Lax—Phillips semigroup we get necessary
and sufficient conditions for the LP-admissibility or joint LP-admissibility of
a control operator B and an observation operator C. This leads to a criterion
for an H*°-function to be an LP-multiplier.

1. Background

This review of the relationship between the Lax—Phillips scattering theory on one
hand and the theory of well-posed linear systems on the other hand has a very
definite date of conception: the talk on ‘Passive Linear Systems and Scattering
Theory’ by Prof. D. Z. Arov given at MTNS in Padova in 1998. He said:

‘In the connection with Lax—Phillips scattering scheme Yu Smulijan [1986]
proposed the following definition of a linear continuous time-invariant system. It
is a little bit different from the one proposed in control theory by D. Salamon.’

This gave me the motivation to take a closer look at the scattering theory by
Lax and Phillips to find out how the theory developed by Arov and Smulijan differs
from the one developed by Salamon. After studying [4] and [14, 15] for some time
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FIGURE 1. Input/State/Output Diagram of ¥

I found the rather surprising answer: there is no real difference (although different
people tend to emphasize different aspects of the theory.)

Thus, this is a presentation of some of the basic notions of the general theory
of well-posed linear systems developed by, among others, Adamjan, Arov, Lax,
Helton, Nudelman, Ober, Phillips, Salamon, Smulijan, and Weiss. To me Arov’s
notation which he (at least partially) inherited from Lax and Phillips felt quite
cumbersome, since I am used to a control theory type notation. Therefore I use a
set of notations which is an extension of the standard control theory type notations
(and which resemble those used by Salamon and by Weiss).

I apologize for the fact that I do not in all instances know which results
should be credited to whom. Many of these results have been discovered and then
rediscovered, maybe even several times.

A preliminary version of this review was presented in [24]. Details and proofs
are given in the paper [26] by George Weiss and myself, and in the book manuscript
[25] available (in postscript form) at http://www.abo.fi/ “staffans/.

2. Introduction

Many infinite-dimensional systems can be described by the equations
7' (t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), t>0, (1)
z(0) = =z,
on a triple of Banach spaces, namely, the input space U, the state space X, and
the output space Y. We have u(t) € U, z(t) € X and y(t) € Y. The operator A
is the generator of a strongly continuous semigroup, and it is usually unbounded.
Also B and C are usually unbounded, whereas D is bounded. o
Because of the presence of the unboudned operators A, B, and C it is often
convenient to use the ‘integral’ representation of the system, which consists of the

four operators from the initial state xy and the input function u to the final state

z(t) and the output function y:
z(t) = Az + Bhu, @)
y= Cxo+ Dou.

Here, 2! is the semigroup generated by A (which maps the initial state xg into the
final state z(t)), B} is the map from the input u (restricted to the interval [0, ¢]) to
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the final state z(t), € is the map from the initial state zo to the output y, and Dy is
the input-output map from u (restricted to [0, 00)) to y. If the operators B, C, and
D in (1) are bounded, then we get formulas for the corresponding operators 9B},
¢, and Dy in (2) by using the standard ‘variation of parameters formula’ (recall
that At is the semigroup generated by A):

t
Bhu = / A=Y Bu(v) dv, t>0,
0
(€xo)(t) = CA'xo, t>0, (3)
t
@ou)(t) =T / A Bu(v) dv + Du(t), ¢ 3> 0.
0

As we shall see later, these formulas remain valid also for certain classes of un-
bounded operators B and C.

For the moment, let us ignore (1) and instead focus on the well-posedness of
the system (2). The standard well-posedness assumption is that (2) behaves well
in an LP-setting, where 1 < p < o0, i.e,, z(t) € X and y € LI (R";Y) depend

continuously on zp € X and on u € LY (RT;U). If this is the case, we call the

operators [%’%] a LP-well-posed linear system, where
Bu = lim BT u, Du = lim 7"D¢7"u,
t—o00 t—o0

each defined for those u € L{ (R;U) for which the respective limit exists; here

(ttu)(s) = u(s +1), —00 < s, t < 00, is the bilateral left shift by ¢. In the case
where (2) is induced by the system (1) with bounded B, C, and D, we have

0
Bu = / A7 Bu(v) dv,
(€x0)(t) = C™Azy, t>0, (4)
¢
Du = 6/ A'""YBu(v) dv + Du(t), te€R,

at least for those u whose support is bounded to the left.

As we shall see in Section 3, it is possible to define a well-posed linear system
Y= [%%] without any reference to the system of equations (1).

The classical Laz—Phillips model was developed by Lax and Phillips in [14]
(conservative systems) and [15] (dissipative systems) to provide a mathematical
description of a scattering process where an incoming wave hits an obstacle and
is scattered into an outgoing wave. It was soon realized (see [1], [4], and [10])
that it is possible to extend the classical Lax—Phillips model into a more general
model of a well-posed infinite-dimensional system by relaxing some of the original
assumptions on the incoming and outgoing subspaces, and by replacing the stan-
dard dissipativity assumption by a well-posedness assumption. In this extended
formulation the Lax—Phillips model is a semigroup with a particular structure: it
acts as an exponentially weighted incoming shift on the incoming subspace, as an
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exponentially weighted outgoing shift on the outgoing subspace, and the central
part of the semigroup describes ‘a generalized scattering process’. As we shall see
in Section 4, this central part can be taken to be an arbitrary well-posed linear sys-
tem. Thus there is a one-to-one correspondence between the class of all well-posed
linear systems and all extended Lax—Phillips models.

We begin by presenting the most basic results about a LP-well-posed linear
system (Section 3) and the corresponding Lax—Phillips model (Section 4). We pro-
ceed in Section 5 to show that there is a close connection between the Lax—Phillips
generator and the generators of the corresponding well-posed linear system. All
the essential information about these two systems is contained in the system op-
erator Sy, = [, 5] where A is the generator of the (central) semigroup, B is the
control operator, and C&D is the combined observation/feedthrough operator. In
the important case where X and U are Hilbert spaces this system operator can
be written in the more familiar form Sy = [g [B)], where C is a (not necessarily
unique) observation operator and D is the corresponding (generalized) feedthrough
operator. We system operator is closed and densely defined from X x U to X x Y.
In the reflexive case the adjoint of Sy, is the system operator of the dual system. We
give formulas for the Lax—Phillips generator and resolvent in terms of the system
operator. Finally, in the last section we apply the Hille—Yoshida theorem to the
Lax—Phillips semigroup and get necessary and sufficient conditions for the admis-
sibility or joint admissibility of a control operator B and an observation operator
C. This leads to a criterion for an H*°-function to be an LP-multiplier.

3. Well-posed linear systems

As already outlined in Section 2, it is possible to define a well-posed linear system

Y= [%%] without any reference to the system of equations (1). For this, we have
to introduce some spaces and some simple operators. We denote R = (—o0, 00),

RT =[0,00), R~ = (—0,0),

u(s), se€J,
= for all J C R,
(myu)(s) {07 oy or a
+
(s w)(s) = T = {g‘fs)’ h
0, s€eRT,
(v u)(s) = 7o = {u(s), .

(r"u)(s) =u(t+s), s, t€R.
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Thus 7, is ‘restriction to R*’, m_ is the ‘restriction to R™’, and 7¢ shift to the
left for ¢ > 0 and to the right for ¢ < 0. Moreover, we define

Ti =myTt, t>0,
™t =rlr_, t>0,

so that 7% is the left shift by ¢ > 0 on R and 72 is the left shift by ¢ > 0 on R™.
Thus, 74 is an ‘incoming left shift” and 7_ is an ‘outgoing left shift’.

The space LE(R™;U) consists of all the functions v € LP(R™;U) with a
bounded support. The space L? | (R;U) consists of all the functions v : R — U
that are locally in LP and whose support is bounded to the left. We interpret
LP(R7;U) as the subspace of functions in L7,  (R;U) which vanish on R*, and
LY .(R*;U) as the subspace of functions in L, (R;U) which vanish on R~. A
sequence of functions u, converges in LIc),loc(R; U) to a function w if the common
support of all the functions w, is bounded to the left and u, converges to u in
the L? sense on every bounded time interval. The continuity of B, € and ® in the

following definition is with respect to this convergence.

Definition 3.1. Let U, X, and Y be Banach spaces, and let 1 < p < oco. An LP-
well-posed linear system ¥ on (Y, X,U) is a quadruple ¥ = [%’%] of continuous
linear operators satisfying the following conditions:

(i) t— At is a strongly continuous semigroup of operators on X ;
(ii) B: LE(R;U) = X satisfies A'Bu = Brtu, for all u € LA(R™;U) and

all t € RF;
(iii) €: X — L (R;Y) satisfies €A’z = 7L €x, for all v € X and all t € RY;
(iv) @: L, (R U) = L2, (R;Y) satisfies TDu = D1tu, D71 u =0, and

T+ O7_u = €Bu, for allu e L¥ | (R;U) and all t € R.

c,loc
The different components of ¥ are called as follows: U is the input space, X is
the state space, Y is the output space, 2 is the semigroup, B is the input (or
reachability, or controllability) map, € is the output (or observability) map, and
D is the input-output map. The state x(t) € X at time t € RT and the output
y € LY (RT;Y) of T with initial time zero, initial state xo € X and input function

loc

u e Ly, (R*;U) are given by (2) with B = Br'nyg qu and Dou = Dy u.

loc

It is easy to see that the operators defined in (4) (with bounded B, C, and D)
satisfy these conditions. Moreover, we only have to integrate over a finite interval
since the support of u is bounded to the left. (There is also a similar theory for
the case p = oo; see [25].)

Every well-posed linear system has as a finite exponential growth bound. By
the growth bound wey of a system ¥ = [&’2] we understand the growth bound

; . ¢l
of its semigroup A:

t t
i s _  log (Il
t—o0 t t>0 t
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As is well known, we always have wy < 00, but possibly wyq = —oo. To explain
in which sense the other operators B, ¢, and ® are exponentially bounded we
introduce exponentially weighted LP-spaces of the following type: we let L? (R*; U)
represent the space of functions u: Rt — U for which ¢ — e “!u(t) belongs to
LP(RT;U).

Theorem 3.2. Let ¥ = [%%] be a LP-well-posed linear system, 1 < p < 0o, on
(Y, X, U) with growth bound wy, and let w > wy. Then B has a unique extension
to an bounded linear operator from LP (R~;U) to X, € is a bounded linear operator

from X to LP.(R';Y), and ® has a unique extension to a bounded linear operator
from L? (R;U) to L (R,;Y).

Every well-posed linear system also has a transfer function:

Theorem 3.3. Let ¥ = [%%] be a LP-well-posed linear system, 1 < p < 0o, on
(Y, X, U) with growth bound we. Then there is a unique analytic L(U;Y)-valued
transfer function D defined (at least) on Rz > wq determined by the fact that the
Laplace transform D/O\u of the input-output term Dou in (2) is given by, for all
we Ll (RY;U),

W
Dou = D(2)i(z), Rz > wa,
where U is the Laplace transform of u.

Thus, D can be interpreted as an ‘LP (U;Y)-multiplier’ for every w > wy.
The following theorem gives us a first connection between an arbitrary LP-
well-posed linear system and a system of equations of the type (1):

Theorem 3.4. Fvery LP-well-posed linear system X = [%’%] with 1 < p < oo has
a unique closed (unbounded) densly defined system operator

Sz;:XXUDD(Sz;)—)XXY
with the following properties. If zo € X, u € W1t7p(R+; U) and [ung)] € D(Sy),

C

then the state x(t) and the output y(t) of X with initial state xo, and input u

satisfies [28;] € D(Sx) for all t >0, and

u(t) - (5)

The proof of this theorem is given in [26] (and also in [25]).

Note that (5) reduces to (1) for smooth input functions and compatible initial
conditions provided Sy can be written in the form Sy, = [g [B)]. Is this always
possible?

Before giving a (partial) answer to this question we need to introduce two
auxiliary spaces X; and X_;. Choose any « in the resolvent set of the generator
A of A. We let X; = D(A), with the norm ||z||x, = [|[(v] — A)z||x, and X_; is the
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completion of X with the norm ||z||x_, = ||[(y] — A)~'z||x. We have X; C X C
X_; with continuous and dense imbeddings. The semigroup 2 can be restricted to
to a strongly continuous semigroup on X; and extended to a strongly continuous
semigroup on X_; (which still we denote by the same symbol). We denote the
space of bounded linear operators from U to Y by L(U;Y).

Theorem 3.5. FEvery LP-well-posed linear system ¥ = [i[ g] with 1 < p < o

has a unigque control operator B € L(U;X_1) and a unique combined observa-
tion/feedthrough operator C&D: D(Sy) — X x Y, such that Sy, can be written

in the form
s[-Bl] e

Thus, the state z(t) and the output y(t) of ¥ in Theorem 3.4 satisfy
7' (t) = Az(t) + Bu(t),

y(t) = C&D B( )

o] 120

z(0) = zo,
where the equation for x' is valid in X_1. Moreover, D(Sy.) is given by
D(Sy)={[4] € X xU | Az + Bue X }.

In particular, if x € X;, then [§] € D(Sy), and we can define the observation
operator C € L(X;;Y) by

Cx=C&D [ﬂ , r e X;.

This theorem is actually older than Theorem 3.4; see [4], [5], [17, 18], and [27,
28] (or [25]) for the proof. In [4] the combined observation/feedthrough operator
is denoted by V. The control operator B is said to be bounded if the range of B
lies in X, in which case B € L(U; X). The observation operator C' is said to be
bounded if it can be extended to an operator in £(X;Y).

There is an simple connection between the transfer function introduced in
Theorem 3.3 and the operators introduced in Theorem 3.5.

Theorem 3.6. With the notation of Theorems 3.3 and 3.5, the transfer function D
of X is given by

zI - A)~'B

D(z) = (C&D) {( 7

j| , Rz > wy.
Conwversely, for all z € C with Rz > wy and for all [§] € D(Sy) we have

C&D m = C[z + (I — A)~'Bu] + ®(2)u.
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For more details, explanations and examples we refer the reader to [1], [2, 3],
[4], [5], [17, 18], [19, 20, 22, 21, 23, 25], [27, 28, 29, 30, 32, 33|, [36] (and the
references therein). Most of the available literature deals with Hilbert spaces and
p=2.

Let us now return to the question of the possibility to split Sy even fur-

ther into Sy, = [% g]. For the purpose of the following discussion, let us tem-
porarily split Sy into Sy, = [A¥B], where, with the notation of Theorem 3.4,
A&B: D(Ss) — X maps [§] into 2’ and (as in Theorem 3.5) C&D: D(Sx) -V
maps [4] into y. According to Theorem 3.5, it is always possible to extend the
domain of A&B to all of X x U by allowing the values of A& B to belong to the
larger space X_;. This extension is unique since D(A&B) = D(Syx) is dense in

X x U. If we denote the extended operator by A& B, then
RE— T
A&B[}:[A B]{]:Aw-{-Bu, x € X, u € U,
u u

where

T

0 u

Aw:A&BH, Bu:A&B[O};

here A represents the extension of the original generator A to an operator X —
X 1.

In order to get a similar splitting of C&D into C&D = [C D] we need to
extend C&D in a similar fashion. This extension is more difficult since we cannot,
in general, replace the original range space Y of C&D be a larger space Y_;. For
example, if Y is finite-dimensional, then there is no natural candidate for the space
Y_4. The smallest possible domain of the extended operator C&D is Z x U, where
Z is defined as follows. We choose any 7 in the resolvent set of A, and let

Z={2€X|z=(y1-A)""(z + Bu)
forsome:vEXanduEU}.

(6)

This is a Banach space with the norm

911/2
|2z = (25 +lulg) ",

inf

(yI—A)~Y(z+Bu)=z
satisfying X; C Z C X, and it is a Hilbert space if both X and U are Hilbert
spaces. It is easy to see that D(Sy) C Z x U, but the embedding D(Sy) C Z x U
need not be dense.

Definition 3.7. The well-posed linear system ¥ = [2{ %] is compatible if its
combined observation/feedthrough operator C&D can be extended to an operator
C&D € L(Z x U;Y). We define the corresponding extended observation operator
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C € L(Z;Y) and feedthrough operator D € L(U;Y) by

C =C&D m z € Z,
0 (7)
Du = C&D M uweU.

The extension of C&D to Z x U need not be unique since D(Sy;) not be dense
in Z x U. This means that C and D need not be unique either. However, there is
a one-to-one correspondence between C&D, C and D, i.e., any one of these three
operators determine the other two uniquely.

In spite of the possible non-uniqueness of the extended observation operator
C and the corresponding feedthrough operator D, independently of how these
operators are chosen, it is still true that the formula for the output y in Theorem 3.5
simplifies into

y(t) = Ca(t) + Du(t), t >0,
and the formula for the transfer function given in Theorem 3.3 simplifies into
5(2’) =C(zI-A)'B+D. Rz > we.

In particular, the formula (3) holds whenever u € WP([0,¢];U) and [, ] €
D(Sy).

It has for some time been considered an open question among specialists
whether every LP-well-posed linear system is compatible. Recently it was discov-
ered that the answer to this question is positive, at least in the Hilbert space
case.

Theorem 3.8. Let ¥ be a LP-well-posed linear system on (Y, X,U). Then X is
compatible in (at least) the following cases:

(i) X and U are Hilbert spaces;
(ii) At least one of the spaces X, U, orY is finite-dimensional.

The more difficult part (i) of this theorem was proved in [26], and (the easy)
part (ii) in [25].

4. The Lax—Phillips Scattering Model

Instead of using a LP-well-posed linear system to formalize the idea of hav-
ing an output and state at time ¢ > 0 which depend continuously on an in-
put and the initial state we can proceed in a different way which leads to
a generalized Laz—Phillips scattering model. This is a semigroup T defined on
YxXxU=LP(R;Y)x X x LP(R*;U) with certain additional properties.
(Here LP(R™;Y) consists of all the functions y: R~ — Y for which ¢ — e™“y(t)
belongs to LP(R™;Y) and similarly for LP (R*;U).) We call U the incoming sub-
space, X the central state space, and Y the outgoing subspace. In the classical
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cases treated in [14, 15] w is taken to be zero and T is required to be unitary (the
conservative case) or a contraction semigroup (the nonconservative case).

We claim that there is a one-to-one correspondence between the class of all
well-posed linear systems and the class of all Lax—Phillips models. The parameter
w € R can be chosen in an arbitrary way (the best choice depends on the particular
application).

Let ¥ = [%%] be a given LP-well-posed linear system. To each such system
we construct a Lax—Phillips model T on Y x X x U as follows. The initial data
consists of the initial incoming state ug € U representing the future values of the
input, the initial central state o € X is identical to the initial state of X, and
the initial outgoing state yo € ) represents the past values of the output. At time
t > 0 the incoming state u; is the left-shifted input 7% uo (the unused part of the
input). The central state z; at time ¢ is equal to the state x(t) = Az + Biu of T
at time ¢ with initial time zero, initial state zp, and input wug (it depends only on
7y and on the discarded part 7o sju of u). The outgoing state y; at time ¢ consists
of two parts: it is the sum of 7t yo (the left-shifted original outgoing state) and
Ttﬂ'[07t] (Cxo + Douo) (the restriction of the output €xo + Doup of X to the interval
[0,¢] shifted to the left by 7! so that the support of the shifted and truncated
output is (—t,0)). Formalizing this idea we get the following theorem, where we
use the notations

%6 = %Ttﬂ'[mt], Q:é = ﬂ'[oyt]e:, @6 = 7T[07t]©7r[07t]'
Theorem 4.1. Letw € R, Y = L2(R™;Y) and U = L?(R*;U). For all t > 0 we
define on'Y x X x U the operator T' by
™ 0 0 I QIB Df)
T"=[0 I 0|0 A B
0 O ”rfr 0 0 I
Then T is a strongly continuous semigroup. If x and y are the state trajectory and

the output function of ¥ corresponding to the initial state xo € X and the input
function ug € U, and if we define y(t) = yo(t) for t <0, then for all t > 0,

T(—c0,t]Y ™t 0 0 Yo
zt) | =10 I 0 |T |x]. (8)
T[t,00) U0 0 0 7t U

Formula (8) shows that at any time ¢ > 0, the first component of T, [%E}

represents the past output, the second component represents the present state and
the third component represents the future input.

Here the strong continuity of T is obvious, and so is the property T(0) = I.
The proof of the semigroup property T(s + t) = T(s)T(¢) for s, ¢ > 0 is a short
algebraic computation based on Definition 3.1 (see [26] or [25] for details).

The semigroup T in Theorem 4.1 has an additional ‘causality’ property, which
in the Hilbert space case where p = 2 and U, X, and Y are Hilbert spaces can be
described as follows: for all ¢ > 0, the images of the central and incoming states
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under T" are orthogonal to the image of the outgoing state, and the null space of
T projected onto the central and outgoing spaces is orthogonal to the null space
of T! projected onto the incoming space. In the general case these properties can
easiest be characterized in the following way.

Definition 4.2. A Lax—Phillips model of type LP is a semigroup on Y x X xU =
LP(R™;Y) x X x LE(R™;U) with the structure
™ C' D

T'=|0 A" B, (9)
0 0 7t

where A is strongly continuous and B', C', and D' satisfy the causality conditions

C'= 7T(7t70)(ct, D' = ﬂ-(ft,())m)ta

(10)
]D)t = ]Dtﬂ'[mt], ]Bt = ]Btﬂ'[oyt].

This set of conditions is a rewritten version of conditions (1.2) in [15]. Helton
[10] uses the name inertness for this additional causality property.

Corollary 4.3. The semigroup T constructed in Theorem 4.1 is a Lax—Phillips
model of type L? .

This is immediate from Theorem 4.1 and Definition 4.2. We call the semigroup
T in Theorem 4.1 the Laxz—Phillips model (of type LP,) induced by X.

It is only slightly more difficult to prove a converse to Corollary 4.3: To every
Lax—Phillips model there corresponds a well-posed linear system which induces
this Lax—Phillips model:

Theorem 4.4. Let T be a Laz—Phillips model of type LF,. With the notations of
Definition 4.2, let

A=A, B = lim B*r~%,
§—00
¢ = lim r7!C', © = lim 7—°D*" 7t (11)
= o

Then ¥ = [%’%] is an LP-well-posed linear system on (Y, X,U), and T is the
Lax—Phillips model induced by this system.

The proof of Theorem 4.4 is another algebraic computation given in [25].

Corollary 4.5. For each w € R and 1 < p < oo, there is a one-to-one correspon-
dence between the class of all LP-well-posed linear systems and all Laz—Phillips
models of type LP: every LP-well-posed linear system X induces a unique Laz—
Phillips model T of type LP, and conversely, every Lax—Phillips model T of type
L? induces a unique LP-well-posed linear system X.

This is a union of Corollary 4.3 and Theorem 4.4. Parts of this corollary
(where either the input operator or output operator vanishes) were proved by
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Grabowski and Callier [7] and by Engel [6]. It is also (implicitly) contained in [4]
and mentioned in [3].

Our next theorem describes the generator of the Lax—Phillips semigroup:

Theorem 4.6. Letl <p< oo andw € R, let ¥ = [%%] be a LP-well-posed linear

system on (Y, X,U) with system operator Sy, = [é“&%], and let T be the generator
of the corresponding Laz—Phillips model T of type LY defined in Definition 4.2.

(i)

The domain of T consists of all the vectors [%E] € WP(R;Y) x X x

WLP(RT;U) which satisfy [uf(oo)] € D(Sx) and yo(0) = C&D [u:(oo)],
and on its domain T is given by

T [::Zg] = {Amo +y§3u0(0)-|

ol 1w )

Thus, the following three conditions are equivalent (here & and g are the
Laplace transforms of u and ug, and y and o are the left-sided Laplace
transforms of y and yo):

(a) [%E] € D(T) and [%] =T [gg],

uo

(b) yo € WHP(R™;Y), mo € X, ug € WEP(RT;U), [uo(0)] € D(Sx) and

o) =% L) 1= 1]

(c) yo € WHP(RT;Y), o € X, ug € WEP(RY;U), [ o0y ] € D(Sx) and

[yox())] =5 {u:(oo)] ’
z) = 200(2) —y0(0), Rz <w,

z) = zlg(z) + uo(0), Rz > w.

The spectrum of T contains the vertical line {Ra = w}. A point a with
Ra > w belongs to the spectrum of T iff it belongs to the spectrum of A,
and a point o whith Na < w belongs to the spectrum of T iff [ “I:C‘?&BB ]
is not invertible.

Let a € p(T) with Ra > w and let [Z] € L2(R;Y) x X x L2(R*;U).

~

Denote D(a) = C&D [(O‘I*‘?)AB]. Then the following three conditions

are equivalent:

o T8 =ter-m 12
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o] = Lo 5 ) ateo)

0
(b) yo(t) = e*y(0) + / eo‘(t_s)y(s) ds, t <0,
t
up(t) = / e t=3)y(s) ds, t>0.

. t

'[azo } :[(aI—A)—l (aI—A)‘lB} { T ]

yo(0) Clal — A)~! D(a) ()
(c) Jo(z) = 9(2) +40(0) Rz <w
ﬂo(z)ZM, Rz > w.

(iv) Let o € p(T) with Rex < w and let [Z] € L2(R;Y) x X x L2 (R*;U).
Then the following three conditions are equivalent:

o ] S
o] = [ ™) )
) { wolt) = - /_;ea“—”y(s)ds, t<o,
wo(t) = €“up(0) — /0 Ly (s ds. £ 0.
o] =[] )

\
4

(c) Go(z) = % Rz < w,
| ﬁo(z):w, Rz > w.

The proof of this theorem is given in [26] (and also in [25]).

There are a number of important ingredients in the Lax—Phillips scattering
theory, such as the backward and forward wave operators, the scattering operator,
and the scattering matrix. All of these have natural analogies in the theory of
well-posed linear systems. In the discussion below we choose w > wy, where wy is
the growth rate of .

The backward wave operator W_ (denoted by W5 in [15, Theorem 1.2]) is the
limit of the last column of Tr~! as ¢t — oco. It maps L?,(R;U) into LEZ(R™;Y) x
X x LP(R*T;U), and it is given by (cf. Theorem 4.4)

W_u = {W_%Q} u. (12)

| =
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Thus, it keeps the future input 7w intact, and maps the past input 7_u into the
past output 7_®Dwu and the present central state Bu.

The forward wave operator W (denoted by Wi in [15, Theorem 1.2]) is the
limit of the first row of 77T as t — oco. It maps LF,(R™;Y) x X x LP(R*;U) into
LP(R;Y), and it is given by (cf. Theorem 4.4)

Y )
Wy |wo| =[r- € Dry] |wo] . (13)
u u

Thus, it keeps the past output m_y intact, and maps the present central state xg
and the future input 7w into the future output €z + D u.

The scattering operator in Lax—Phillips theory is the product W, W_, and it
is given by

)]
WiW_=[r_ € Dny]| B |=m_D+B+m1,D=29. (14)
T+

Thus, the scattering operator is nothing but the (bilaterally shift-invariant) input-
output map D of the corresponding well-posed linear system.

To get the scattering matriz of the Lax— Phillips system we apply the scatter-
ing operator ® to an input of the form u(t) = e*ug, where z € C has a sufficiently
large real part and ug € U is fixed; see [15, pp. 187-188]. Because of the shift-
invariance of D, the resulting output is of the type y(t) = e*tyq for some yo € Y.
The scattering matrix (evaluated at z) is defined to be the operator that maps
up € U into yo € Y. It follows from [30, p. 194] that the scattering matrix of
a Lax—Phillips system is equal to the transfer function D of the corresponding
well-posed linear system.

In their study of the conservative case, Lax and Phillips [14] assume some
additional controllability and observability properties of the system:

(i) The image of the incoming subspace U under T!, 0 < t < 0, is dense in
the state space Y x X x U.

(ii) If the projection of a trajectory onto the outgoing subspace ) vanishes,
then the trajectory is tdentically zero.

These additional controllability and observability assumptions imply the fol-
lowing additional conclusions (in the conservative case):

(i) Both A* and A tend strongly to zero as t — oo,

(ii) D is inner from both sides, i.e. @(zw) is unitary for almost all real w,
(iii) Both the backward and the forward wave operators are unitary,
(iv) The system is ezactly controllable and ezxactly observable in infinite time.

Without the additional controllability and observability assumptions none of
the additional conclusions listed above need hold.
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According to [4], every contractive H* -function over Cy (= the right half-
plane) is the transfer function of some unitary system (which need not be con-
trollable or observable). It is also the transfer function of some controllable and
observable dissipative system. For more details on conservative and dissipative sys-
tems, see [4], [14, 15], and [35]

5. Admissibility

According to Corollary 4.5, there is a one-to-one correspondence between the class
of all LP-well-posed linear systems and all Lax—Phillips scattering models of type
LP. This means that we can reduce the study of the generators of a well-posed
linear system to the study of the generators the Lax—Phillips semigroup. This
way we can obtain necessary and sufficient conditions for the admissibility or joint
admissibility of a control operator B and an observation operator C'. These notions
are defined as follows.

As always we let U, X, and Y be Banach spaces and let 1 < p < oo. We let 2
be a strongly continuous semigroup on the Banach space X with generator A, and
define the spaces X; and X_; as in Section 2. This time we specify, in addition,
some w € R, and suppose that 2 is w-bounded, i.e., sup;soe™!||A]| < oco.

An operator B € L(U; X_,) is an LP-admissible control operator for A if for
some ¢ > 0 (hence for all ¢ > 0) the operator

t
%gu = / Q[t_sBU,(S) dS, u € Lp([oat]a U): (15)
0

maps LP([0,t];U) into X (instead of X_;). (This operator is then bounded with
values in X). We call B w-bounded if the resulting input map

0
Bu = lim 2A~°Bu(s) ds, ue LE(R7;0) (16)

vV—>—00 v

is w-bounded, i.e., it defines a bounded linear operator from LZ(R~;U) to X.
The operator C' € L£(X1;Y) is an LP-admissible observation operator for A
if the map

(€z)(t) = CA'x, x € X, t>0, (17)

can be extended to a bounded linear operator X — L{ (R™;Y), and it is

w-bounded if the resulting output map € is w-bounded, i.e., it maps X into
LE(R*;Y).

The operators B € L(U; X_1) and C € L(X1;Y) are jointly LP-admissible for
Aif B is an LP-admissible control operator for A, C'is an LP-admissible observation
operator for A, and the operator ®: W? (R;U) = C.(R;Y) defined by

c,loc

(Du)(t) = C[Br'u — (al — A)~"'Bu(t)] + Daul(t), teR, (18)
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can be extended to a continuous operator L?, (R;U) — L7, (R;Y). Here o €
p(A) and D, € L(U;Y) can be chosen in an arbitrary way. By introducing the

combined observation/feedthrough operator
C&D {Z] =C[z — (al — A)~'Bu] + Dqu. (19)

we can simplify the formula for (Du)(t) into
Briu
u(t)
We call B and C jointly w-bounded if both B and C' are w-bounded and, in addition,
the operator ® can be extended to a bounded linear operator from L2 (R;U) to
LP(R;Y). If (and only if) B and C are jointly admissible, then the four operator

A, B, €, and © can be combined into a LP-well-posed linear system [%%] with

system operator [ 2B, ]. (Here D is determined by A, B, and C only modulo a

constant static term.)

Before looking at the general case of LP-admissibility, let us treat the impor-
tant special case where p = 2 and U, X, and Y are Hilbert spaces. In this case
there is a very simple characterization of the class of all L?-well-posed w-bounded
transfer function:

(@u)(t):C’&D{ ] teR. (20)

Proposition 5.1. Let U and Y be Hilbert spaces. A L(U;Y)-valued function D
defined on R\ > w is the transfer function of an w-bounded L*-well-posed linear
system if and only if it is analytic and bounded on R\ > w (i.e., it belongs to H> ).

This was proved independently by (at least) Salamon [18] and Curtain and
Weiss [5].

The admissibility of a control operator B or an observation operator C is
much more delicate in this case. In 1990 George Weiss [31] made the following
conjecture:

Conjecture 5.2. Let U, X, and Y be Hilbert spaces, and let A generate a Cy semi-
group on X. Then

(i) B € L(U;X_1) is an L*-admissible w-bounded control operator for A if
and only if there is a constant K > 0 such that

K
M- A) B < —, RN > w.
I = 4Bl £ = .
(i) C € L(X1;Y) is an L*-admissible w-bounded observation operator for A
if and only if there is a constant K > 0 such that

K
CAN - A < —— R > w.
100 = )7 € Ze
It is easy to see that the given conditions are necessary. These two conjectures
are dual of each other, so it suffices to prove or disprove one of them.
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It was discovered recently by Zwart and Jacob [37] that Weiss’ conjecture
is false in general. It is not true even if we restrict the dimensions of U and Y
to be one (see [13]) or if we require the semigroup to be a contraction semigroup
(see [12]). However, it is true in several special cases. For example, the second
conjecture about the observation operator is known to be true in the following
special cases (here we denote the semigroup generated by A by t — At and take
w=0):
(i) Y is finite-dimensional and 2 is normal [8], [9], [31], [34],
(ii) Y is finite-dimensional and % is the right-shift on L?(R™) [16],
(iii) Y is finite-dimensional and 2 is a contraction semigroup [11],
(iv) 2 is exponentially stable and 2 is right-invertible for some (hence all)
t > 0 [31] [34].
Let us now return to the general case of LP-admissibility and Banach spaces.
By applying the Hille-Yoshida theorem to the semigroup in Corollary 4.5 we get
the following necessary and sufficient conditions for admissibility:

Theorem 5.3. Letw € R, 1 < p < 00, and let A be the generator of an w-bounded
Coy semigroup on X.

(i) B € L(U;X_1) is an LP-admissible w-bounded control operator for A if
and only if there is a constant M > 0 such that, for all u € LP(RT;U),
A>w,andn=0,1,2,...,

an
o\

(ii) C € L(X1;Y) is an LP-admissible w-bounded observation operator for A

if and only if there is a constant M > 0 such that, for all xo € X, A > w,

andn=20,1,2,...,
o (A—w)t 1 ? e Mn!

——e VN T¥ I—A)~ < — . 22

() foertmreon—ataf a) < o pmins e

(iii) The operators B € L(U; X_1) and C € L(X1;U) are jointly LP admissible
and w-bounded iff B is an LP-admissible w-bounded control operator for
A (¢f. (i), C is an admissible w-bounded observation operator for A (cf.
(ii)) and there is a constant M > 0 such that, for all u € LP(R*;U),
A>w,andn=0,1,2,...,

Mn!
. < =)t llull Lz (r+0)-

(AT — A)*lBﬂ()\)‘ (21)

*lo" o~ b 1/r Mn!
Y —(A—w)t ~ _ddns
(/; 6)\ne Q(A)U(A) Ydt> S ()\ _w)n+1 ||u||L5(R+;U)7 (23)
where
DN = (@ — N)C — A) Y(al — A) "B + Dy; (24)

here a with Ra > w and Dy € L(U;Y) can be chosen in an arbitrary
manner.
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Part (ii) of this theorem was proved by Grabowski and Callier [7] in the
exponentially stable Hilbert space case (i.e., 2 is exponentially stable, w = 0,
p=2,and U, X, and Y are Hilbert spaces), and the corresponding case of part (i)
can be derived from (ii) by duality. The general case of parts (i) and (ii) was proved
by Engel [6]. Part (iii) may (or may not) be new. A proof of the full theorem is
given in [25].

Condition (23) does not depend on the particular realization [%%] of ®,

i.e., it does not contain any direct references to 2, B, and €, but only to D which
is completely determined by ©. This indicates that the following conjecture may
be true:

Conjecture 5.4. An analytic L(U;Y)-valued function D on R\ > w is the transfer
function of an w-bounded LP-well-posed linear system if and only if there is a
constant M > 0 such that (23) holds for all w € LE(RT;U), A > w, and n =
0,1,2,....

Clearly, by Theorem 5.3, condition (23) is necessary for D to be a LP-well-
posed w-bounded transfer function, and we conjecture that it is also sufficient.
This would give us a necessary and sufficient condition for an H function to be
an LP-multiplier.
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