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Abstract. We study the distributed parameter suboptimal full infor-
mation H* problem for a stable well-posed linear system with control u,
disturbance w, state x, and output y. Here u, w, and y are L2-signals on
(0,00) with values in the Hilbert spaces U, W, and Y, and the state x is a
continuous function of time with values in the Hilbert space H. The problem
is to determine if there exists a (dynamic) y-suboptimal feedforward compen-
sator, i.e., a compensator U such that the choice u = UYw makes the norm of
the input/output map from w to y less than a given constant . A sufficient
condition for the existence of a y-suboptimal compensator is that an appro-
priately extended input/output map of the system has a (.J, S)-inner-outer
factorization of a special type, and if the control and disturbance spaces are
finite-dimensional and the system has an L' impulse response, then this con-
dition is also necessary. Moreover, in this case there exists a central state
feedback /feedforward controller, which can be used to give a simple param-
eterization of the set of all y-suboptimal compensators. Our proofs use a
game theory approach.
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1 Introduction

This is the second out of three papers that take the first steps in the develop-
ment a quite general state space theory for the full information H* problem,
and on a longer perspective, for the general suboptimal H* problem. In
our setting the transfer functions need not be rational or meromorphic; they
are just plain H* without any extra rationality or smoothness assumptions.
We are interested in state space results as opposed to pure frequency do-
main or input/output results. The outlines of our proofs follow the standard
frequency domain route (based on spectral factorization) that has also been



used for the finite dimensional (rational) H* problem, but we have trans-
formed the frequency domain arguments to the time domain and added some
state space ingredients. The key addition is the factorization of the Hankel
operator induced by the input/output map as the product of the controlla-
bility and observability maps, and this makes it possible to connect the state
space and the frequency domain theories to each other.

Because of the quite general class of systems that we allow, we need to
extend a large number of more or less well known finite dimensional results.
Some of the extensions are known, others are straightforward, and some are
neither known nor straightforward. One particular feature is that we bypass
all those finite-dimensional results that lean on the fact that it is possible to
normalize certain feedforward terms to be either zero or the identity opera-
tor. The primary motivation for this is that these feedforward terms need not
be well-defined in general. However, at the same time it leads to a simplifi-
cation in the sense that there is no need to perform a number of preliminary
normalizations before applying the final result. We believe that the results
presented here are interesting even in the finite dimensional setting due to
our somewhat different point of view.

The general problem that we study here is of the following type. Let
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space U, disturbance input space W, state space H, and output space Y. To
this system we adjoin the indefinite cost function

Q(zo, u, w) :/ (y(s), Jy(s))y ds, (1.1)

R+

] be a stable well-posed linear system with control input

where J = J* is an indefinite operator on Y, and
y=Cxy+ Dimiu+ Domyw (1.2)

is the output of ¥ with initial value zy € H, control v € L*(R*;U), and
disturbance w € L*(R™; W). The goal is to find out if there exists a (causal
dynamic) feedforward compensator & which makes ) a uniformly concave
function of w € L*(R*; W) if we take xg = 0 and v = Ur,w (see Figure 1
with 9 = 0 and @ = 0), and if this is the case, then we want to find a
simple parameterization of all such compensators. In other words, we want
to give a simple description of the set of all possible causal time-invariant
linear mapping U: L*(R™; W) — L*(R™;U) such that

QUO, U w,w) < —el|w |32y (1.3)
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Figure 1: Dynamic feedforward compensator

for some € > 0 and all w € L?*(R™;W). These compensators will be called
uniformly suboptimal.

The preceding formulation is a simplification and, at the same time, a
slight extension of the stable suboptimal full information H* minimization
problem: when is it possible to find a (dynamic causal) feedforward com-
pensator U which makes the norm of the input/output operator mapping
w € L*(RT; W) into the output y € L*(R*;Y) strictly less than than a
prescribed constant v if we take o = 0 and u = Um w (see Figure 1)7 This
input/output map is equal to (D;U + Dy)m,, so the problem is to find out
if it is possible to choose U in such a way that the norm of the operator
(DiU + Do)y : LA(RT; W) — LA2(R';Y) is strictly less than .

To connect this problem to the first one we reformulate it as follows: we
adjoin a copy of the disturbance w to the output ¥, creating a larger system

N A [B B]
<[ %

with output y = [¥]. This extended system has the same input space U x W
and the same state space H as the original system, but the output space
is now Y x W. For this extended system we define the cost function Q) as
above, with J = [é 732[]. In terms of the original system this cost can be
written in the form

Qo,w,10) = Nyl eroyy = 7 Nl oy (15)

hence
Q0,Uru,w) = (DU + D2)7T+w||iQ(R+;Y) — 9 ||w||%2(R+;W) :
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Figure 2: State feedback/feedforward controller

We find that Q(0, U7, w,w) is uniformly concave in w if and only if || DU +
Ds|| < 7, so the problem (1.1)—(1.2) contains the stable suboptimal full
information H* minimization problem as a special case.

In order to avoid some degenerate situations we shall most of the time
make the following nondegeneracy assumption.

Hypothesis 1.1 The function Q(0,u, 0) is uniformly convez inu € L*(RT;U),
i.e., Q(0,u,0) > 6||u||%2(R+,W), for some € >0 and all u € L*(R™;U).

It is well known that, under Hypothesis 1.1, in the full information case
with finite-dimensional U, W, H, and Y, there are several other conditions
which are equivalent to the existence of a uniformly suboptimal compensator.
More precisely, the following conditions (I)—(VI) are then equivalent (we have
formulated conditions (I)—(V) in such a way that they apply to the more
general problem (1.1)—(1.2) as well; the precise definitions of the notions
used here will be given later).

Conditions 1.2

(I) There exists a (dynamic) uniformly suboptimal feedforward compen-
sator U (see Figure 1);

(II) For each zy € H and w € L*(R*; W), the function u — Q(xg,u,w)
is uniformly conver on L?>(R*;U), and, for each o € H, the function
w = QMM (xg, w) = minger2m+r) Q(%o, u, w) is uniformly concave on

L*(R™;U);



(ITI) The input/output map D has a (J,T)-inner-outer factorization D =
NX, where both X and X;, have a bounded causal inverse. Here T =
(8 5] and X = [ﬁ; 2;], where the block form is the one induced by

the natural splitting of U x W into its components U and W .

(IV) There exists a so called central stabilizing state feedback/feedforward
controller (see Figure 2) such that the corresponding closed loop cost

function is uniformly concave with respect to w € L*(RT; W) for all
zo € H and all us € L*(RY;U).

(V) There ezists a stabilizing state feedback/feedforward controller (see Fig-
ure 2) such that the corresponding closed loop cost function is uni-
formly concave with respect to w € L*(R™; W) for all zy € H and all
us € L2(RT;U).

(VI) The full information H> Riccati equation has a stabilizing solution.

Our first main result is the following infinite-dimensional analogue of this
equivalence:

¢ [D1 Dy
system on (U x W, H,Y), let J = J* € L(Y), and define Q by (1.1)-(1.2).
Then (III) = (IV) = (V) = (I). If Hypothesis 1.1 holds, then (1) = (II),
and (II) together with Hypothesis 4.6 implies (III).

Theorem 1.3 Let ¥ = [£E] = [A 51 82}] be a stable well-posed linear

This theorem is a summary of Lemmas 2.3 and 2.7, Theorem 6.4, Defini-
tion 7.1, and Corollary 7.3.

It is an interesting fact that this theorem is valid both for the full informa-
tion problem and for the more general problem (1.1)—(1.2). In this theorem
the implications (IV) = (V) = (I) = (II) are trivial. Hypothesis 4.6 which
is used in the proof of the implication (IT) = (III) can be regarded an extra
regularity assumption on the input/output map. For example, it it satisfied
in the case where U and W are finite-dimensional and the system has an L'
impulse response (see Lemma 4.4).

The two implications missing in Theorem 1.3, namely (III) = (VI) =
(IIT), are true only under some extra “technical” assumption on the in-
put/output map. The implication (III) = (VI) was established in Staffans
[1998¢] (a summary is given at the end of Section 10) and the implication
(VI) = (IIT) in Mikkola [1997].



The major part of this work is devoted to the proof of Theorem 1.3. Our
proofs of the two nontrivial steps (II) = (III) = (IV) use a game theory
approach. This differs from the approach taken in most text books, such as
Green and Limebeer [1995] and Zhou et al. [1996], which invoke the Riccati
equation for these steps, but without explaining the true physical meaning
of the Riccati operator. There the Riccati operator is typically simply seen
as one out of several auxiliary operators that happens to be the solution to
a certain Riccati equation, and its role as the minimax value of a two player
dynamical zero sum game with quadratic cost function is all but ignored. We
feel that, in order to gain some insight in the physical meaning of the full
information Riccati equation, it is necessary to have a good understanding
of the underlying game.

This particular game is a two player game with decision variables u €
L*(R™;U) (controlled by the minimizing player; the control engineer) and
w € L*(R™; W) (controlled by the maximizing player; the nature), and cost
function Q(xg,u,w). Here xy plays a role of a parameter which influences
the value of the game. As usual (see, for example Bagar and Bernard [1991]
or Basar and Olsder [1995]), the open loop lower value Q(xo) and upper value

Q(zo) of this game are defined by

_ inf W), 1.6
Q) wELE(ligr;W) UEL%(I}“;U)Q(ZEO - ) (1.6)
Q(z9) = inf sup  Q(xo, u,w). (1.7)

uweL?(RT;U) weL(R+;W)

Trivially, Q(z) < Q(xo).

If Q(z0) = Q(w0), then Q(xy) = Q(x0) is called the open loop value of
the game at the point o € H. Since the cost function is quadratic and there
are no hard constraints, a necessary condition for the game to have a finite
open loop value is that Q(zg, u,w) is convex in u and concave in w, and a
sufficient condition for this to happen is that Q(zo, u, w) is uniformly convex
in » and uniformly concave in w. In the latter case the infima and suprema
in (1.6) are achieved for some u™* € L?2(R*;U) and w™® € L*(RT; W)
(depending on ), and this pair (ut, w) is an open loop saddle point (or
Nash equilibrium) for the game in the sense that

Q(«TO; ucrit, w) S Q(«TO; ucrit, wcrit) S Q(«TO; u, wcrit), (18)

for all w € L*(R*;U) and w € L*(R*, w).
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In general we cannot expect the system under study to have an open loop
saddle point. For example, the cost function (1.5) for the full information
H® minimization problem is concave in w iff ||Dy|| <, and it is uniformly
concave in w iff [|Dy|] < 7. Thus, if the system has an open loop saddle point
then the control objective is almost satisfied already by the open loop system
(where u = 0). Moreover, if the system has a uniform open loop saddle point
then the full control objective is satisfied by the open loop system, and the
solution to the H° minimization problem is trivial. We therefore need to
introduce a more sophisticated type of saddle point for this game.

If condition (II) in Theorem 1.3 holds, then obviously the lower value
Q@ is finite, whereas the upper value can be +oc. In the sequel we sim-
ply ignore the upper value, which is of no importance. In the computa-
tion of the lower value we fix xp € H and w € L*(R*; W), then com-
pute the control u™®(zg, w) that minimizes Q(zg, u, w), and finally maximize
Q™ (g, w) = Q(z9, u™(zg, w),w) over w € L*(RT;W). This leads to the
standard solution of the (open loop) Stackelberg game with w as the leader
(with no information available about the state = and the control u, only in-
formation about the initial state x;), and u as the follower (with complete
information available).

The Stackelberg solution is straightforward, but it does not yet lead to the
final solution due to the fact that it has the wrong information structure. In
the full information H* problem with cost function (1.5) we are really asking
whether it is possible to find a causal compensator for which the closed loop
system has a saddle point. In the Stackelberg solution the control u has too
much information available: it is not required to be causal, but can depend on
both “past” and “future” values of w. The correct information structure is to
allow u to depend only on the initial value zq and on “past” and “present”
values of the disturbance w. Thus, we are really looking for a “feedback
saddle point” (or feedback Nash equilibrium), where the disturbance loop is
open but the control loop is closed, and there is a possible feedforward term
from the disturbance to the control.

It is possible to get a certain type of feedback/feedforward representation
of the Stackelberg equilibrium by applying [Staffans 1998¢c, Theorem 5.1],
since this equilibrium is J-critical in the sense of [Staffans 1998¢, Definition
3.1]. (This amounts to finding a (J, S)-inner-outer factorization N'X of the
input/output map D with invertible outer factor X’; cf. (IIT).) However, that
theorem does not gives us the correct information structure either in the sense
that it gives solutions which employ feedback through both the control input



and the disturbance input; i.e., in addition to the desired feedback/feed-
forward term u = KCyzg + Fiympu + Framow there is another feedback /feed-
forward term w = Koxo+ Formru+ Foomw entering through the disturbance
input. The requirement is that even without this additional term the system
should be well-behaved.

Thus, the next problem that we have to solve is whether it is possible
to disconnect the feedback entering through the disturbance input, without
loss of well-posedness and stability, to turn the double feedback solution given
above into a feedback saddle point, where the only information available to w
is the initial state xq (i.e., w is an open loop input), whereas u is allowed to use
information about xy and causal information about the disturbance w. (This
is where the invertibility condition on X}, in (IIT) and the normalization of S
toS =T = [6 _OI} comes into play.) When this is possible we get a uniformly
suboptimal compensator of the type mentioned in (IV), i.e., a central state
feedback /feedforward controller.

We prove Theorem 1.3 in Sections 2-7, breaking it up into smaller pieces.
More precisely, we show that under the regularity assumptions listed in The-
orem 1.3, (V) = (I) = (II) = (III) = (IV) = (V). Parameterizations of
the sets of all suboptimal and all uniformly suboptimal compensators is de-
veloped in Sections 8 and 9. In Section 10 we introduce an extra regularity
condition which makes it possible to separate the feedback part of a state
feedback /feedforward controller from its feedforward part, and derive the al-
gebraic Riccati equation satisfied by the Riccati operator. Finally, in Section
11 we discuss how the factorizations that we use in this work are related to
the more common (.J, S)-lossless factorizations.

From time to time we make quite heavy use of Staffans [1998¢|, and we
expect the reader to have access to this paper. We also refer the reader to
the same paper for a short review of the theory of well-posed linear systems,
and recommend Staffans [1997 1998ab] for additional reading.

We use the following set of notations.

L(U;Y), L(U): The set of bounded linear operators from U into Y or from
U into itself, respectively.

I: The identity operator.

A*: The (Hilbert space) adjoint of the operator A.
dom(A): The domain of the (unbounded) operator A.
range(A): The range of the operator A.



R, R", R: R=(—00,0), R" =[0,00), and R™ = (—00, 0].

L*(J;U): The set of U-valued L-functions on the interval J.

TI(U;Y), TI(U): The set of bounded linear time-invariant operators from
L*(R;U) into L*(R;Y), or from L*(R;U) into itself.

TIC(U;Y), TIC(U): The set of causal operators in TI(U;Y) or TI(U).

() The inner product in the Hilbert space H.

T(t): The time shift operator 7(t)u(s) = u(t + s) (this is a left-shift
when ¢ > 0 and a right-shift when ¢ < 0).

if s € J, ) .
T (myu)(s) = {U(S) o , here J C R is an interval .

0 ifs¢.J
Ty, T_: T, = Tr+ and m1_ = TR-.
A>B, A>> B: See Definition 2.5.

Throughout this paper U, W, H, and Y are separable Hilbert spaces,
although many of the results that we prove are valid in nonseparable Hilbert
spaces as well. (We make explicit use of the separability assumption only
in the proof of Lemma 5.4, and we conjecture this lemma is true even in
the nonseparable case.) The operators J and S satisfy J = J* € L(Y) and
S = 5* € L(U x W). The operator T is given by T = [{ %] € L(U x W),
where the block form is the one induced by the natural splitting of U x W
into its components U and W. We frequently write V' for U x W.

We extend an L?-function u defined on a subinterval J of R to the
whole real line by requiring u to be zero outside of .J, and we denote the
extended function by mj;u. Thus, we use the same symbol 7; both for
the embedding operator L?*(J) — L?*(R) and for the corresponding or-
thogonal projection operator L?*(R) — range(m;). With this interpretation,
7, L*(R)=L*(R") Cc L?*(R) and 7_L?*(R) = L*(R") C L*(R).

Square brackets [ | are used to denote optional parts of a statement. Such
a statement remains valid if all the text within square brackets is omitted,
and also if the appropriate parts of the statement are replaced by the text in
the brackets.

2 The Implications (V) = (I) = (II)

In this section we present some basic definitions and preliminary results, and
establish the (easy) implications (V) = (I) = (II) in Theorem 1.3.

10



Definition 2.1 The operator U € TIC(W;U) is a suboptimal (dynamic
feedforward) compensator for U = [? [[gi %2” if the (open loop) cost function

Q(zo, u,w) defined in (1.1) satisfies
Q(OaUﬂ-eraw) S 0

for all w € L*(RT; W) (cf. Figure 1). It is a uniformly suboptimal compen-
sator for U if
Q(O,Z/{TF+U),U)) S _6||w||%2(R+;W)

for some € > 0 and all w € L*(RT; W).

Notice our use of the word “compensator” to represent this class of feed-
forward controllers. We use this word in order to distinguish this class of con-
trollers from the following class of controllers of state feedback/feedforward

type:
Definition 2.2

(i) The triple (K, Fy,F3) is a stabilizing state feedback/feedforward con-

_[AB B | A BBl ] ,
troller for ¥ = [c (D) DQ}] if €] [% 1]7__;] 15 a stable well-posed linear

system, and (I — Fy) has an inverse in TIC(U). (This means that the
feedback connection drawn in Figure 2 is also a stable well-posed linear
system (cf. [Staffans 1997, Proposition 20].)

(1) The corresponding closed loop cost function Q7 is given by
@ (ansussw) = [ (0l Tul5)y d,
R

where y = C™xy + D" myue + Dy wiw s the output in Figure 2 with
initial state vy € H, control us € L*(RT;U), and disturbance w €
L*(R*;W). Here (cf. [Staffans 1997, Proposition 20])

Cm = C —|—D1([ - .7:1)71’(:1,
DO =D - F),
Dy =Dy +Di(I - F) ' Fo.

11



(1ii) A stabilizing state feedback/feedforward controller (IC, Fy, Fs) is subop-
timal if the closed loop cost function Q" (xq,u, w) satisfies

Q7(0,0,w) <0
for allw € L*(R*;W).

(iv) A stabilizing state feedback/feedforward controller (IC,Fi,Fs) is uni-
formly suboptimal if the closed loop cost function Q" (g, u,w) satisfies

Q7(0,0,w) < —ef|wllf> @)
for some € > 0 and all w € L*(RT; W).

Lemma 2.3 If (K, Fy, F3) is a [uniformly] suboptimal state feedback/feed-
forward controller for ¥ = [? [[gi gi”, then U = (I — Fy) ' Fy is a [uni-

formly] suboptimal compensator for this system.

Proof. This follows from Definitions 2.1 and 2.2 and the fact that if we
take U = (I — F,)~' Fy, then Q(0,Ur w,w) = Q" (0,0, w). []

Definition 2.4 In the sequel we refer to the compensator U = (I — F,)~'Fy
in Lemma 2.3 as the compensator induced by the static state feedback /feed-
forward controller (IC, Fi, Fs).

Thus, the implication (V) = (I) is valid. We proceed to prove the impli-
cation (I) = (II).

Definition 2.5 The operator A = A* € L(H) is positive [uniformly positive]
if (v, Az) > 0 [z, Az) > ¢€||z]|* for some ¢ > 0] for all x € H. It is
[uniformly] negative if —A is [uniformly] positive. The notations A > B and
B <A [A>> B and B << A] mean that A — B is [uniformly] positive.

Our proof of the implication (I) = (II) uses the most elementary part

of the following lemma, namely the existence of the minimizing function
u™" (29, w) (the main part of this lemma will be needed later).

12



Lemma 2.6 Let ¥ = [? [[gi f;z]]] be a stable well-posed linear system. Then

Hypothesis 1.1 holds iff 7. D;JDymy >> 0 on L*(R™;U). In this case, for
each fized vo € H and w € L*(R*Y; W), the function v — Q(xg,u,w) is
uniformly conver on L2(R*;U), and there is a unique function u™™(zo, w)
that minimizes Q(xo,u,w) with respect to u. This function u™" and the
corresponding output y™" and state ™" are given by

u™(zg, w) = —7my (7 DI IDimy) tn DT (Cag + Dymyw), (2.1)
Y™ (29, w) = Cxo 4+ Dympu™" (z9, w) + Domyw
= (I = Dimy (7 D;IDymy) 7. Dy J) (Cao + Domryw)
= (I — P)) (Cxo + Dyryw), (2.2)
™0 (t, xo, w) = A(t)zo + Bir(t)m u™™ (20, w) + Bor ()T 4w
= A(t)zo + Bor(t)mpw
— Bir(t)my (. DY IDy7y) twy DT (Cxg + Domryw),  (2.3)

where P, = Dim (r.D;JDymwy) " 'w.D;J is the projection onto the range
of Dy along the null space of 7, DiJ. The minimal cost Q™" (zy, w) =
Q(xg, 2™ (o, w), w) = Minye 2w+ Q(%o, u, w) is given by

Qmin(l‘m ’U)) = <ymin(l‘07 ’U)), Jymin(xf)a w)>L2(R+;Y)
= < C.Z'U + DQ7T+U)) s J(I — Pl) (CZIIO + D27r+w)>L2(R+;Y)- (24)

In particular, there is a constant K < oo such that
Qmin(«’foaw) > —K ||Cxo + D27T+w||i2(R+;Y)' (2.5)

Moreover, the minimal output y™" satisfies

T D Jy™ " (o, w) = . DiJ (Cg + Dymypu™" (g, w) + Domiw) = 0. (2.6)

Proof. We begin by observing that Q(0,u,0) = (Dymyu, JDi T u) 2m+;y),
and this function is uniformly convex in u € L*(R*™; U) iff 7, D} JDy7 >> 0
on L*(R™;U). Fix some arbitrary o € H and w € L*(R*;W). Then the
quadratic term of Q(x, u, w) with respect to u is still equal to (Dy 7 u, JD17 u) 2 (m+y),
so even for nonzero xy and w, it is true that Q(zg, u, w) is uniformly convex
with respect to u iff 7, D7JDym, >> 0. In this case there is a unique min-
imizing control u™"(x,w) € L*(R*;U). To show that the corresponding

13



output y™n satisfies (2.6) we argue as follows. Without loss of generality,
let us suppose that U is a real Hilbert space (if not, then we replace the
inner product in U by the real inner product R(-,-)), and let us compute the
Fréchet derivative of the cost function Q(xg,u,w) with respect to u at the
optimal u™®, For each variation n € L2(R*;U), we have

dQ(xg, u™™n = 2 (Cxo + Dymu™" + Domryw, JD1W+77>L2(R+;U)

—9 <ymin, JD17T+77>L2(R+;U)
=2 <'DTJymina 77>L2(R+;U) ’

This is zero for all n € L*(R™; U) iff (2.6) holds. Clearly, (2.1) follows from
(2.6). By substituting this value for u™® into 2™ = Az + Byrr u™® +
Byrmiw, y™ = Cxy + Dimyu™" + Domryw, and Q(xg, u™™, w) (and making
a straightforward computation) we get the remaining formulas. [ ]

[B1 32]]
[D1 D2

has a [uniformly] suboptimal compensator U, and that Hypothesis 1.1 holds.
Then, for each xo € H and w € L*(R*; W), the function u — Q(xq,u,w)
is uniformly conver on L?*(R*;U) and, for each xy € H, the function w —
Q™™ (g, w) = minyer2w+1) Q(2o, u, w) is [uniformly] concave on L*(R*; W).

. A
Lemma 2.7 Suppose that the stable well-posed linear system ¥ = [ -

In other words, the implication (I) = (II) in Theorem 1.3 is true.

Proof. The uniform convexity of Q(xq, u, w) with respect tou € L*>(R*; U)
follows from Hypothesis 1.1 and Lemma 2.6. Let & be a [uniformly] subop-
timal compensator. Then there is some € > 0 [or € > 0 in the uniform case]
such that

Q0,Umyw,w) < —el|w||Fom+ ) w € LR W).
Clearly this implies that
Qn(0,w) < —elulmeny @€ LR I),
hence @™(0, w) is [uniformly] concave in w € L?(R™; W). As in the proof

of Lemma 2.6, this implies that, for all zyg € H, Q™"(xy,w) is [uniformly]
concave in w € L*(R*; W). ]

14



3 Minimax J-Coercivity

The convexity-concavity property that we have encountered in (IT) of The-
orem 1.3 and also in Lemma 2.7 is important enough to get a name of its
own.

Definition 3.1 A stable system ¥ = [4 5] = [“é [[gi gz]]] on (Ux W,H,Y)

18

(i) J-coercive if the Toeplitz operator w, D* D7, is invertible in L(L*(R™; U x
W),

(ii) minimaz J-coercive if, for each vy € H and w € L*(RT; W), the func-
tion u — Q(zo,u,w) is uniformly conver on L*(R*;U) and, for each
xoy € H, the function w — Q™" (xp, w) = min,er2m+r) Q(To, u, w) is
[uniformly] concave on L*(R*;W).

In the context of Weiss [1997], our J-minimax coercivity notion is closely
related to Weiss’ “analytic signature condition”, which is a combination of
Hypothesis 1.1 and condition (I); cf. Lemma 2.7.

We have the following more technical alternative characterization of min-
imax .J-coercivity.

[B1 B>]

Lemma 3.2 The system ¥ = [? [D1 D2)

] is minimax .J-coercive iff
74D JDymy >> 0
on L*(R™;U) and
74:D; (J — IDymy (. Dy IDymy )~ m D) Domy << 0 (3.1)

on L*(R*;W). Here (r, D;JDy7y)" " stands for the inverse of m,D; JDmy
in L(L*(R*;U)) (which exists since m. D} JDymy >>0).

Proof. By Lemma 2.6, the function u — Q(z, u,w) is uniformly convex
on L*(R*;U) for each fixed 7y € H and w € L*(R™; W) iff 7, D} JD 7y >>
0. Denote the operator on the left hand side of (3.1) by £. Then, by (2.4),
the quadratic term in the functional w — Q™" (xo, w) is (w, Ew)r2m+;w).
Thus, this functional is uniformly concave iff £ << 0. [ ]

Minimax J-coercive systems have the following properties.

15



Lemma 3.3 Let UV =[{ B] = [“é [[gi gé}]] be minimax J-coercive. Then the

following claims are true.

(1) ¥ is J-coercive (i.e., m . D* JDm has a bounded inverse). In particular,
the time-invariant operator D*JD is invertible in TI(U x W).

(i) The inverse & = [gi gj] of 1, D*JD7, is given by
Esp = (14D (J — JDymy (my Di Dy )~ D J) Doy )™,
821 = —522W+D;JD1W+(7T+DTJD17T+)71,
Eip = —(m D IDi7) ' my D I Doy Eon,
811 = (7T+DTJD17T+)71 + 8128251812.
iii) The time-invariant operator DiJD; is uniformly positive on L*(R;U),
1

and the time-invariant operator Dy (J — JD1(D;JDy) ' D;J) Dy is uni-
formly negative on L*(R;W).

Proof. (i) Since 7, D;JDim, >> 0, hence invertible, we conclude from
the Schur decomposition

T+ |:,ZD)%:| J [Dl DQ] T+

I 0
o |:7T+D;JD17T+(7T+DTJD17T+)_17T+ I:|

% 7T+DTJD17T+ 0
0 7T+D; (J — JD17T+ (7T+IDTJID17T+)_17T+D{J) D27T+
|:I (7T+DTJD17T+)17T+DTJD27T+:|
o T

that this Toeplitz operator in invertible. Thus D is J-coercive. The invert-
ibility of D*.JD follows from [Staffans 1998c, Lemma 4.4(iii)].

(ii) We get (ii) by inverting each of the operators in the Schur decompo-
sition given above, and multiplying the results.

(iii) The uniform positivity of Dj JD; follows from [Staffans 1998c, Lemma
4.4(ii)]. To get the second claim we use the same lemma to get for some € > 0,

—er(=t)my7(t)
> 7(=t)m D5 (J — JDywy (74 D IDimy) ' wy DY) Domyt(t)
> 7(—t)m, D} (J — JD,(DLID,) D} ) Dym, 7 (1),

16



Let t — —oo, and use [Staffans 1998¢, Lemma 4.4(i)] to conclude that
D; (J — JD:(D;JDy) 'DjJ) Dy << 0. [ ]

By combining Lemmas 3.2 and 3.3 we get still another characterization
of minimax .J-coercivity.

Lemma 3.4 The system ¥ = [? [[gi gz}]] 1s minimazx J-coercive iff the fol-

lowing three conditions hold:
(i) W is J-coercive, i.e., T, D*JD7 is invertible,
(ii) 7. D;JDy7 >> 0 on L*(RT;U),
(iii) Exp << 0 on L*(RT; W), where £ = [g; g;;] is the inverse of 1, D*.JDm ..

As we mentioned in Section 1, to investigate the validity of the implication
(IT) = (III) we employ a minimax argument, where we maximize the function
Q™1 (2, w) with respect to w to find the “worst possible disturbance”. As
the following lemma shows, this maximization is straightforward.

Lemma 3.5 Let ¥ = [£E] = [?[[gi gi}]] be minimazx J-coercive. De-

fine u™n, Fmin - gmin - gnd Q™M as in Lemma 2.6. Then, for each fived
xo € H, there is a unique function w*(xq) that mazimizes Q™" (xg, w) with
respect to w € L>(RY;W). Define 2 (zy) = 2™ (2, w™(z0)), u(z) =
Umin(l'[), wcrit(l’o)), ycrit(xo) — ymin(flfo, wcrit(xo))’ and chit — Qmin(xm wcrit(l’o)).

Then 2 (x4), ¥yt (20), u(z0), and w™(zy) are given by

uao)) (r.D*JDr.) 7, D* JCx (3.2)
wcrlt(l'[)) + U+ + + 05 .
. crit
ycrlt (-TO) = CZ‘O + D7T+ |::1L}(Irit((i(:))):|
= (I — D7T+(7T+ID*JID7T+)717T+D*J) ng
crit _ ucri.t (!L‘O)
2(120) = Al + Br (0, [ )]
= A(t)zog — Br(t)ny (. D*JD7y) ' 7 D* JCu, (3.4)

17



where P = Dr (7, D*JDr )" 'm.D*J is the projection onto the range of
Dr,y along the null space of . D*J. The minimazx cost is given by

crit _ min
@ (xo)_wELg%%}i;W)Q (%0, w).

— <ycrit($0),chrit($0)>L2(R+;Y)

crit

Moreover, the minimazx output Yy satisfies

7. D* Tyt (z0) = 7. D*J ( Cxo + Dy “Cm(x“) = 0. (3.6)
W™ (1)

Proof. Arguing in the same way as in the proof of Lemma 2.6 we find
that (since J; = J(I — Py) is self-adjoint)

0 =D;J(I — P)(Cxq + Dymyw™™)
— D;Jymin(ﬂfo, wcrit)

= D3 Ty ().
By (2.6), also D;Jy“*(z9) = 0, hence (3.6) holds. The rest of the proof
follows the same lines as the proof of Lemma 2.6. []

It follows from (3.6) and [Staffans 1998¢, Lemma 3.2] that the pair [Zcrit(“f’o) ]

Crit(IO)
is a J-critical control pair in the sense of [Staffans 1998¢, Definition 3.1].
Thus, all those results of Staffans [1998¢| that deal with stable systems can
be applied to stable minimax .J-coercive systems. In particular, we recall the
following definition:

C [D:1 D2]

Definition 3.6 ([Staffans 1998c, Definition 3.5]) Let ¥ =[4 5] = [A By 32]]
). Then we

be a J-coercive stable well-posed linear system on (U x W, H,Y
define
As(t) = A(t) — Br(t)n(my D*JDry ) 'n . D*JC,
Co = (I — Dry(rsD*JDry) "' D*J) C,
ICO = |:ICOI:| = —(7T+ID*JID7T+)717T+D*JC,
Koo
II=C*(J— JDr(nyD*JDry) ' myD*J) C.
The operator 11 is called the Riccati operator of U (with respect to the operator
J).

18



Note that in order to define these operators, it suffices if W is .J-coercive;
it need not be minimax .J-coercive. According to Lemma 3.5, if ¥ is minimax
J-coercive, then x™ = A (t)xg, y™* = Cyzg, u™ = Ko xo, W™ = Koo,

and Q" (xq) = (o, [Ixg) ;. Moreover, by (3.6)

7+ D*JCs = 0. (3.7)

4 (J,59)-Inner-Outer Factorizations and Feed-
back Representations

If ¥ is minimax J-coercive, then the construction in the preceding section
gave us a unique minimax control/disturbance pair. As shown in Staffans
[1998¢|, it is possible to get a feedback/feedforward representation for this
pair if we can find a (J, S)-inner-outer factorization of the input/output map
D. This notion and some related notions are defined as follows (with V' =
UxW).

Definition 4.1 ([Staffans 1998c, Definition 4.5]) Let J = J* € L(Y),
and let S = S5* € L(V).

(i) The operator N € TIC(V;Y) is (J,S)-inner if N*JN = S.

(ii) The operator X € TIC(V) is outer if the image of L>(R™; V) under
X7, is dense in L>(R*™; V).

(iii) The operator X € TIC(V') is an (invertible) S-spectral factor of D*JD €
TI(V) if X is invertible in TIC (V) and D*JD = X*SX.

(iv) The factorization D = N'X is a (J, S)-inner-outer factorization of D €
TIC(V;Y) if N € TIC(V;Y) is (J,S)-inner and X € TIC(V) is
outer.

(v) In each case we call S the sensitivity operator of N or of the factoriza-
tion.

There is a simple connection between inner-outer factorizations and spec-
tral factorizations.
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Lemma 4.2 ([Staffans 1998c, Lemma 4.6(i)]) If X is a S-spectral fac-
tor of D*JD, then NX = (DX~") X is a (J,S)-inner-outer factorization of
D. Conversely, if NX is a (J,S)-inner-outer factorization of D and X is
invertible in TIC(V'), then X is a S-spectral factor of D*JD.

In the classical case the existence of a S-spectral factor of D*JD is guar-
anteed whenever W is .J-coercive. In particular, in this case it follows from
Lemmas 2.7 and 4.2 that D has a (J, S)-inner-outer factorization whenever
¥ is minimax .J-coercive. This is no longer true in the infinite-dimensional
case (see [Staffans 1998c, Remark 4.8]), except in special cases, such as the
following.

Definition 4.3 A system ¥ = [# 5] on (V,H,Y) has an L' impulse re-
sponse if D is a convolution operator of the form (for all v € L*>(R; V) and
almost allt € R)

t

(Dv)(t) = Du(t) + / E(t — s)v(s) ds,

— 00

where D € L(U;Y) and E € L} R*; L(V;Y)).

Lemma 4.4 ([Staffans 1998c, Corollary 4.10]) If both U and W are finite-

dimensional, and if ¥ = [4AB] = [? [[gi gi” is J-coercive and has an L'

impulse response, then D has a (J, S)-inner-outer factorization.

As our next theorem shows, the existence of a well-posed state feed-
back/feedforward representation of the critical control/disturbance pair is
equivalent to the existence of a (.J, S)-inner-outer factorization of D.

Theorem 4.5 ([Staffans 1998c, Theorem 5.1]) Let ¥ = [£ B] = [? [[gi gz]}]

be a stable J-coercive well-posed linear system on (U x W, H,Y'). Define ut,
oyt and QM as in (3.2)—(3.5), and let 1 be the Riccati operator defined
in Definition 3.6.

(i) Suppose that D has a (J, S)-inner-outer factorization D = N'X. Then

S is invertible in L(U x W), X is invertible in TIC(U x W), and
X is a S-spectral factor of D*JD. Define M = X~ and [IC .7-—} =

20



(ii)

Uy u

0
+ -
.
[A_I ’LBlT BQTJI —5»
2 C D, Dy| ———F—
: ol A 7
we ++U w

Figure 3: Closed loop feedback connection

[-S'myN*JC (I —X)]. Then [K F] is a stabilizing state feed-
back/feedforward controller for W, i.e., the feedback connection drawn
in Figure 3 defines a well-posed linear system ¥, given by

As By A+BMrK  BM
‘I’O — CO DO- — -C + N’C N
Ko| |Fs) | MK M1

Moreover, the state and outputs of this closed loop system are equal

to it (t, x0), yit(zo), and Z):i((zz))

closed loop inputs us and we to be zero. The Riccati operator I1 of ¥
can be written in the following alternative forms:

, respectively, if we take the two

M =C*JC — K*SK = C*JCss = Cos* JCos = Cs* JC.

y(‘,rit (1‘0)

Conversely, suppose that [ucrit(m) ] 15 equal to the output of some stable

state feedback perturbation \If@( ?))f U with initial value xy, nitial time
0, zero control, zero disturbance, and some admissible stable state feed-
back pair [IC f]. Then there ezists an operator S = S* € L(U x
W) such that NX is a (J,S)-inner-outer factorization of D, where
N=DI-F) " and X = (I - F). Moreover, K is given by K =
St N*JC.
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(iii) Let the two equivalent conditions (i) and (ii) hold. If y = Csxy +
Doy mius+Deymiwes is the first output of the critical closed loop system
U with initial state xg € H, control us € L*(R*;U), and disturbance
we € L2(RT; W), then the closed loop cost Qx5 (xg, ey, we) 8 given by

Qulan o) = [ (0(s), Tu(s)y ds

=t [ (o) s ), o

To get any further in our proof of the implication (II) = (III) we need a
feedback representation of the critical minimax solution of the type described
in Theorem 4.5, and we therefore have to invoke the following “regularity”
hypothesis.

(4.1)

Hypothesis 4.6 The input/output map D has a (J,S)-inner-outer factor-
1zation.

By Lemma 4.4, this hypothesis is redundant if U and W are finite-
dimensional and ¥ is .J-coercive and has an L' impulse response. It is still
an open problem to what extent this hypothesis can be weakened.

The reason for calling S the sensitivity operator associated with the given
factorization is found in the final formula for the cost given in part (iii) of
Theorem 4.5. Observe that this formula rewrites the cost in terms of the
initial state xy and the two closed loop inputs u and w in Figure 3. This
formula plays a key role in the subsequent development.

Several times in the sequel we need to pass back and forth between the
open loop system ¥ and the corresponding closed loop system W.. This
passage is greatly simplified by the following remarks.

Remark 4.7 ([Staffans 1998a, Remark 3.9]) It is possible, and in many
cases more convenient, to replace the feedback output z in Figure 4 by the
output v = [ 3], which is equal to the input of the original system. (In this
figure we have combined the two inputs [wy ]| into one input denoted by v,
and also combined the two feedback outputs signals into one signal called z;
cf. Figure 3.) This only amounts to the addition of a identity feedforward
term to the input/output map from vs to z, so the new input/output map
from z to v is M instead of M — I that appears in the bottom right corner
in the definition of V. All the other elements of VU remain unchanged in
this setting.
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Lo

|a
??QL‘“‘

=

\]

Figure 4: Closed loop version of state feedback connection

To
xr l—
— Ay Byt
—J | Co D
{’Co} {fo} | =
Uy ++V v

Figure 5: Closed loop system written in open loop form

To

RQL‘—‘
oy
\]

Vo + U

Figure 6: Open loop version of state feedback connection
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Lo

-

DU A Bst
—L 1 Tes Dy
Kol [Fo] =
Uo + U

Figure 7: Use negative feedback to recover the open loop system

Lemma 4.8 The state x, output y, and state feedback output z of the closed
loop system V5 with initial value xq and control/disturbance pair vy = [ 43 |
is equal to the state, output, and state feedback output of the open loop system

=-1{

with initial value xo and control/disturbance pair

U =v=2z4+mTL0
w— - + Y0

= Kxo+ Fv+ 705

= ICQQ?O + foﬁ+’0© + IRV

. ’Clxo + .'/_"11’& + .'/_"1210 + Tiug

- ICQ!L’O + .'/_"21’& + .'/_"22’(1] + T4 Wey

_ ICQIQSO + M117T+UQ + M127T+’LUQ
ICQQQSO + M217T+UQ + M227T+’LUO ’

where M = (I — F)~'. Conwversely, the state x, output y, and state feed-
back output z of the open loop system W with initial value xo and con-
trol/disturbance pair v =[] is equal to the state, output, and state feed-
back output of the closed loop system V. with initial value xq and con-
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trol/disturbance pair

= —Koxg — Fovs + v
= —Kxy —Fryv+myv

_ [—’Coﬁo — Fonuo — Forpwo + 7T+U}
— Koo — Foguo — Fopws + miw

—Kixo + Xmpu + Xpmpw
—ICon + X217T+U + X227r+w

where X =1 —F = M~".

Proof. The first half of this lemma is obvious; see the equivalent Figures 4
and 5. The second half of the lemma is equally obvious since the connections
drawn in Figures 6 and 7 are equivalent to those in Figures 4 and 5. [ ]

Corollary 4.9 The open and closed loop cost functions defined in (1.1) and
(4.1) satisfy

Q(an u, U)) = QO (xUJ U, wO)
if we choose the control and disturbance signals u, w, us, and we to satisfy
any one of the following four equivalent sets of equations

{Uo _ —Kowo — Fopue — Fopwo + 7T+U}
we| [ Koo = Fog iy — FogWe + mrw
UO- i -—’Clﬂfo + X117T+U + X127T+’UJ
’LUQ_ o _—’CQQSO + X217T+U + X227r+w

u_ -’Clﬂfo + fnu + flg’w + T4 U
w _ICQ!L’O + .'/_"21’& + .'/_"2210 + T W ’

u_ -Kolxo + M117T+UQ + M127r+wo
w _ICQZQSO + M217T+UQ + M227r+wo '

Here F=1—X and M = X1,

Let us remark that the first and third equation are written in feedback
form corresponding to Figures 7 and 4, and that the second and forth equa-
tion above are written in explicit input/output form, corresponding Figures
6 and 5.
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For the convenience of the reader, let us recall still a few more results from
Staffans [1998b] and Staffans [1998¢] concerning the feedback representation
of the critical solution.

Lemma 4.10 Let NX bea particular S-inner-outer factorization of D, and
define M = X~'. Then the set of all possible sensitivity operators S, the
set of all possible (.J,S)-inner-outer factorizations of D, and the set of all
possible operators M in Theorem 4.5 can be parameterized as

S=FESE, X=EFE'X, N=NE, M=ME,

where E varies over the set of all invertible operators in L(U x W). The
corresponding feedback pair [IC .7-—] in Theorem 4.5 is given by

K=E'K, (I-F)=E'(I-7),

where K = —§7r+./\7*JC and F = (I — /T/lil), i.e., [Iz .7::} is the feed-
back pair in Theorem 4.5 corresponding to the factorization D = NX. The
parameterized version of the formula for the closed loop system in Theorem

4.5 18

As By A+BMrK  BME
Us=|[Cs] [Ds]|=|[C+NK] [ NE
Ko| |Fo MK ME — I

The first column is independent of E (but the second is not).

Proof. This follows from [Staffans 1998b, Proposition 4.7] and [Staffans
1998¢, Remark 5.2]. []

The operator E has a very simple interpretation: it represents a coordi-
nate change in the input space for the closed loop system.

Proposition 4.11 In addition to the notation introduced in Lemma 4.10,
denote the vectors [4] and [w3] by v and vy, respectively. Then the two
diagrams drawn in Figures 8 and 9 are equivalent in the sense that the rela-
tionships between all the signals with tdentical names are identical in the two
diagrams (but z differs in general from Z.)

Proof. This follows from [Staffans 1998b, Proposition 4.8] and [Staffans
1998¢, Remark 5.2]. []
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-
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E ’ K| |F

7T_|_'Uo ++ v

Figure 8: Internal parameterization of the feedback equilibrium

Zo

[STRNSE RS

?ﬁmhv—‘
o)
\]

+

T Uy E + B v

Figure 9: External parameterization of the feedback equilibrium
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5 Minimax Properties of the Closed Loop Sys-
tem

Lemma 4.10 contains the free parameter . According to Theorem 4.5 and
Lemma 4.10, all possible choices of F lead to equivalent control strategies
in the sense that as long as neither of the two players deviate from their
“critical” strategy (i.e., vy = 0 in Figures 8 and 9) the actual control v ()
and disturbance w®*(zy) will remain the same, and they are equal to the
minimax pair defined in Lemma 3.5. However, if either of the players deviates
from the critical strategy, then the behavior of the closed loop system depends
strongly on the parameter F. This parameter must be chosen in such a way
that the closed loop system has the appropriate minimax property.

Definition 5.1 Let Q: Hx L>(R*;U)x L?(R*; W) — R. We call the point
(fl?o,Uo,U)o) € H x LQ(R+, U) X LQ(R+,W)

(i) a saddle point of Q (with respect to the last two variables) if
Q(zo, u,wy) > Q(xg, ug, wy) and
Q(x0, uo, w) < Q(w0, ug, wo)
for allw € L*(RT;U) and w € L*(RT; W);
(i1) a uniform saddle point of Q if
Q(xo, u, wo) > Q(x0, ug, wo) + € ||u — u0||L2(R+;U) and
Q(xo, ug, w) < Q(xo, w0, wo) — €[w — wol| 2 g+
for some € > 0 and allu € L*(R™;U) and w € L*(RT; W);
(7ii) a saddle point of Q with principal axes U and W if
Q(xg, u, w) > Q(xg, ug, w) and
Q(zo, u,w) < Q(xq, u, wp)
for allu € L*(RT;U) and w € L*(RT; W);
(iv) a uniform saddle point of Q@ with principal axes U and W if
Q (w0, u, w) > Q(wo, ug, w) + € |lu — U0||L2(R+;U) and
Q(wo, u, w) < Q(xo, u, wo) — €lw — w0||L2(R+;W)

for some € >0 and all u € L*(R%;U) and w € L*(RT; W).

28



Theorem 5.2 Let U =[48] = [? [[gi gz]]] be a stable J-coercive well-posed

linear system on (U x W, H,Y"), and suppose that D has a (J,S)-inner-outer

factorization D = NX. Write S in block form S = [g; g;;] corresponding

to the natural splitting of the space U x W into its components U and W.
Let Q) be the closed loop cost function defined in (4.1).

(1) Qx(xo,us, ws) is [uniformly] convexr with respect to ue if and only if
S11 is [uniformly] positive.

(11) Qux(xq,us, ws) is [uniformly] concave with respect to wy if and only if
Sao is [uniformly] negative.

(iii) For each xo € H, the point (zy,0,0) is a [uniform] saddle point of Qs
if and only if Sy is [uniformly] positive and Sao is [uniformly] negative.

(iv) For each xo € H, the following conditions are equivalent:

(a) (x0,0,0) is a saddle point of Qs with principal axes U and W ;

(b) (20,0,0) is a uniform saddle point of Qs with principal azes U
and W ;

(c) Si1 >0, 8% <0, Si2=0, and Sy = 0;
(d) S>> 0, Soy << 0, Sy = 0, and Sy = 0.
(v) If Si1 >> 0 then, for each fivred ws € L*(R*; W), the minimum of
Qe (o, s, we) with respect to u € L*(RY;U) is achieved for ue =

—S'Siswes.  If we replace the variable us by the new independent
variable i = us + Sy Siawe, then

o] =2 ] =l

and we get a new closed loop system of the type described Theorem 4.5
with S replaced by the congruent operator

% . I 0 SH Slg I —51_11512
EySEr = {—5215111 I] [521 522] [o I

T o e
0 522—5215f11512’
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and N and M replaced by N'E, and ME,, respectively. If Soy —
SZISiISIQ < 0, or equivalently, if Sop — SQISiISIQ << 0, then this
results in a new closed loop system with a uniform saddle point with
principal azes U and W.

(vi) If Sy << 0O then, for each fized us € L*(RT;U), the mazimum of
Qo (w0, Uy, wes) with respect to wes € L?(RT; W) is achieved for wys =
— Syt Soruey.  If we replace the variable we by the new independent
variable W = we + Soy So1tcs, then

o] =7 5] = Lt ][9]

and we get a new closed loop system of the type described in Theorem
4.5 with S replaced by the congruent operator

EiSE, [1 _51255;} [sn suH I 0]

0 1 521 522 —5521521 I
_ S — 51252_21521 0
0 Saa |’

and N and M replaced by N'Ey and ME,, respectively. If Sy —
5’125’2_215'21 > 0, or equivalently, S1q —51252_21521 >> 0, then this results
in a new closed loop system with a uniform saddle point with principal
ares U and W.

(vii) If (z0,0,0) is a uniform saddle point of Qw, then both part (v) and part
(vi) apply, and both the resulting closed loop systems have a uniform
saddle point with principal axes U and W.

Proof. (1)—(iv) These four claims follow directly from part (iii) of Theorem
4.5. (Observe that parts (c) and (d) of (iv) are equivalent because of the
invertibility of S.)
(v) To prove (v) we use part (iii) of Theorem 4.5, and rearrange the terms
(complete the square with respect to us) to get
Qo (2o, ue, we) = (o, zo)
+ (ue, Sutie + S12We) oy T (Wo, St + S22wo) 2 mtawy
= <930, HIL'O>H
+ <(’LLQ + 51_1151211)0) y 511 (Uo + Sﬁ1512w0)>L2(R+;U)

+ <’LUQ, (522 — 5215ﬁ1512) wO>L2(R+;W) .
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This expression is minimized by the function us = —S;;'S12we. The proof of
the fact that the change of variable & = u +S;,' S1ow leads to a new closed
loop system with the listed properties is the same as the proof of Proposition
4.11. If Soy — 52151_11512 < 0, then it must be uniformly negative since S is
invertible.

(vi) The proof of (vi) is similar to the proof of (v).

(vii) This follows from (iii). []

Remark 5.3 It follows from Theorem 5.2 that not all choices of the parame-
ter E in Lemma 4.10 lead to an acceptable closed loop system. In particular,
we observe the following facts:

(1) It is not in the interest of the minimizing player (the control engineer)
to take part in a feedback/feedforward scheme where Say is anything but
negative, because in such a scheme the maximizing player can make the
closed loop cost arbitrarily large by choosing the closed loop disturbance
we appropriately.

(i1) It is not in the interest of the maximizing player (nature) to take part
in a feedback/feedforward scheme where Syy is anything but positive,
because in such a scheme the minimizing player can make the cost of
the closed loop system arbitrarily negative by choosing the closed loop
control us appropriately. In this case the feedback/feedforward policy
for the second player even leads to a worse result than the open loop

policy, because for each fized open loop disturbance w the cost is bounded
from below; cf. (2.5).

(1ii) If S11 >> 0 and S # 0, then the minimizing player can improve the
outcome of the game (i.e., decrease the value of the cost function) for
nonzero closed loop disturbances wy by using the policy described in
part (v) of Theorem 5.2. This change does not affect the disturbance
feedback/feedforward equation

w = ’Cgfl?g + .7:21U + .7:22?1} + TLWe,
but it does change the control feedback/feedforward equation from

u = ICIII?U —l—}'nu—i—}'12w+7r+u©
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mnto
u = (Kl + Sﬂlslglcg) o + (.,/_"11 + 51_11512.7"21) Uu
+ (.'/_"12 + 51_11512 (.'/_"22 — I)) W+ TyUg.

(iv) If Sey << 0 and So1 # 0, then the mazimizing player can improve the
outcome of the game (i.e., increase the value of the cost function) for
nonzero closed loop controls uc by using the policy described in part (vi)
of Theorem 5.2. This change does not affect the control feedback/feed-
forward equation

u=Kizy+ Friu+ Frow + miups
but it does change the disturbance feedback/feedforward equation from
w = Kozg + Foru + Foow + TLwe
into
u= Ky + S S21K1) o + (Fa1 + Sz So1 (Fi1 — I)) w
+ (Foz + S5 So1 Fiz) w + w4 wes.

Because of the facts listed in Remark 5.3, we shall in the sequel only
study factorizations for which Sy << 0 and Sy, — 51252_21521 >> 0. Much
of the time we shall, in addition, assume that the off-diagonal terms S, and
Sa1 = S5 vanish and that Sy >> 0. In the latter case the closed loop cost
function ()5 has a uniform saddle point with principal axes U and W.

Is it then always possible to take Si; >> 0 and Sy, << 07 The answer is
“yes” if ¥ is minimax J-coercive (rather than just plain .J-coercive).
Lemma 5.4 Let ¥ = [4 5] = [“é [[gi gz}]] be minimazx .J-coercive, and sup-
pose that D*JD has an S-spectral factor X. Then S is a congruence transfor-
mation of the operatorT’ = [6 PI] (where the block form is the one induced by
the natural splitting of UXW into its components U and W ), i.e., S = E*TE
for some invertible operator E € L(U x W). Moreover, it is possible to find
a T-spectral factor Xr, and the set of all possible S-spectral factorizations
of D*JD can be parameterized as S = E*TE and X = E~'Xp, where E
varies over the set of all invertible operators in L(U x W). In all cases the
dimension of the positive eigenspace of S is equal to the dimension of U, and
the dimension of the negative eigenspace of S is equal to the dimension of
W. (These dimensions are called the inertia of S.)
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Proof. (i) Use the Schur decomposition (cf. the proof of Lemma 3.3) to
rewrite S in the form

Dy

§=(x7 {D;

] J[Dy Dy Xt
I 0
o *\—1
=) ooy )
D:JD, 0
0 Di(J—JD,(D:JD,) D) Dy
[ (PLID) DD o
0 1
where, according to Lemma 3.3(iii), D;JD; >> 0 on L?(R;U), and
D (J — JD:(DjJDy) 'DiJ) Dy << 0

on L?(R;Y). Use [Staffans 1998¢, Lemma 4.3(iv)] to factor these two oper-
ators as

D;JD, = X; Xy,  Dj(J— JDy(D{JDy)"'DiJ) Dy = —X; X,

and to conclude that S can be written in the form

LT 0
seul Ou

where

0 A5] |0 1

has a bounded inverse in TI(U x W).

The equation above induces an analogous equation in the frequency do-
main. The operator U induces a strongly measurable L(U x W)-valued L*
function I defined on the imaginary axis jR, called the symbol of U; see, e.g.,
[Foures and Segal 1955, Theorem 1] or [Thomas 1997, Theorem 5.2] (this is
where we need the assumption that U and W are separable). This symbol
is determined by the fact that if we use a hat = to represent the bilateral
Laplace (Plancherel) transform, then

[u/m ] (jw) = U(jw) [
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for allu € L?>(R;U), w € L*(R; W), and for almost all w € R. The algebraic
structure of TI(U x W) is preserved under the passage to the symbols, so
we find that

s=ariio) g | @i,

for almost all w € R. Fix any w for which this equation holds. We conclude
that S is a congruence transformation of the operator T = [6 _OI]. The
claims about the dimensions of the positive and negative eigenspaces of S
then follow from the standard properties of congruence transformations, and
the remaining claims from Lemma 4.2 and Lemma 4.10. [ ]

Lemma 5.4 implies the following result.

Lemma 5.5 Let ¥ = [4 B8] = [? [[gi gi” be minimax J-coercive, and sup-
pose that D*JD has an S-spectral factor X. Split S into S = [g; g;;], and

suppose that the off diagonal terms Sy and Soy vanish. Then

(1) if either U or W is finite-dimensional and Sy; > 0, then S1; >> 0 and
522 << 0,

(i1) if either U or W is finite-dimensional and Ssy < 0, then S1; >> 0 and
Sy << 0.

Proof. This follows from the fact that the dimension of the positive
eigenspace of S equals the dimension of U, and that the dimension of the
negative eigenspace of S equals the dimension of W. [ ]

Remark 5.6 The claims (i) and (ii) in Lemma 5.5 are not true if both U and
W are infinite-dimensional, as the following counterexample shows. Suppose
that D*JD has a T-spectral factor Xp, where T = [6 _OI]; cf. Lemma 5.4.
Choose an arbitrary orthonormal basis {en}ngoo in U, and another arbitrary
orthonormal basis {e,},—, in W. Let E € L(U x W) be the shift operator
that maps ey, into e,y for all n. This operator is invertible in L(U x W),
so if we define X = E='Xp and S = E*TE, then X is a S-spectral factor of
D*JD; cf. Lemma 5.4. Moreover, S;1 =1 >> 0, Si5 =0, So; =0, but it is
not true that Sy << 0, because (e1, Se;) =1 > 0.
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Figure 10: Final semi-closed feedback connection

6 Cutting the Disturbance Feedback Loop

Up to now we have considered feedback representations of the minimax equi-
librium where the feedback enters both through the control variable v and
through the disturbance variable w. We have also investigated the saddle
point properties of the closed loop system. We have found that if the pa-
rameter F' is chosen appropriately, then the closed loop system has a saddle
point with principal axes U and W, and the optimal strategies for both the
minimizing player (the control engineer) and the maximizing player (nature)
is to take the inputs u and wg to the closed loop system W to be zero.

The statement above applies as long as we impose the given “double”
feedback structure on the solution. However, in the original formulation
the maximizing player is allowed to choose the original disturbance variable
w € L*(RT;W) in an arbitrary manner. In particular, nothing forces him
to employ the given feedback formula; he may choose to cut the disturbance
feedback loop and to apply an arbitrary open loop disturbance w instead, as
drawn in Figure 10. If this is done, then we get a system where the control u
is generated by a feedback loop, whereas the disturbance is open loop. This
is the structure of feedback/feedforward solution that we were looking for in
the first place; cf. Definition 2.2 and conditions (III)—(IV) in Theorem 1.3.

The following theorem describes what happens when the disturbance feed-
back loop is opened:
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Theorem 6.1 Let U =[48] = [? [[gi gz]]] be a stable J-coercive well-posed

linear system on (U x W, H,Y"), and suppose that D has a (J,S)-inner-outer
factorization D = N'X. Introduce the same notations as in Theorem 4.5.
Then the following conditions are equivalent:

(i) The operator [§19] is an admissible stable output feedback operator for
the extended open loop system (see [Staffans 1997, Definition 19])

A B, B,
\Ijext — C Dl DZ

K:l I— Xll _XIZ

K:2 _XZI I— XQZ

(ii) The operator [§§ °] is an admissible stable output feedback operator
for the extended closed loop system

Ao (B, B,

\IIO — CO Nl N2
’COl M11 i M12
’CO2 M21 M22 -1

(1ii) X11 has an inverse in TIC(U).
(iv) Moy has an inverse in TIC(W).

Moreover, the two closed loop systems that we get in (i) and (ii) are the same,
and they are given by

[ A" Bl ByT]
or_ €] [ Do
KT Fi Fh
| K3 Fin Fan
[ A+ Bt K [BiX'm Bor — BiX ' X7 ]
| [ c+DxT'K DX Dy, — DI X Xy,
- XK, Xt -1 — X X
|| K2 — Xo1 X1 K4 —Xn X1t T — X + Xy Xy XKoo
[ A — BO2TM2_21’CO2 [BON— - BOQMEQIMﬂT BOQM52IT]
[ Co—=NoaM5 Koy N = NoMizy M NoMsy
o ’COl — M12M2_21K:02 MH — I - M12M2_21M21 M12M2_21
[ MuKs, Moy Mo I— M
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Proof. This follows from a standard result on repeated feedbacks; see
[Staffans 1998a, Definition 3.1 and Propositions 3.2-3.3]. ]

Lemma 6.2 The four equivalent conditions in Theorem 6.1 are satisfied if
and only if X and M can be factored (boundedly) as

X = M_lya M = y_lMa

in TIC(U x W); here

=
I

<
!

=
I

(X1 X
0 T
I 0 ]
(Mo M|’
I+ Fy FH
o0 T
BT rape <P
0 T
My — M12M2_21M21 M12M2_21]
0 1 ’

I 0 ]
—Fy 1 —Fy

T 0 ]
_—M521M21 Msy

1 0
_/35'219('1711 Xyo — X21X111X12] '

Moreover, if we replace either the last row or the second last row of the system
U™ by a zero row, then the two systems that we get in this way are given by

Am

o

K
|0

Am

o
0

Ky

[?g; g{:ﬂ' A+ B XK BY -
20 =lceDX TR px ' ||,

Fi Fh — 1 Y

0 o] Ll *E -

[1'31131 %ﬂT] (Ays — BotM 'Ky BoM™'r
0| (e ] v
A A M_lK: I— M_l

Far Fao] | -L o 7O T
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where

In particular,

C"=C+DX 'K=Co—-NM'K,,
DO =DX = NM,

KO =X 'K+ M 'K,
Fo=X M.
Proof. We leave the straightforward algebraic proof to the reader. [ ]

Definition 6.3 A (., S)-inner-outer factorization D = NX of D € TIC (U %
W;Y) is feasible if S = S* is invertible in LU x W), X = [31 3] is in-
vertible in TIC(U x W) and X1 is invertible in TIC(U).

Compare this definition to conditions(III) in 1.3 and Theorems 4.5(i) and
6.1(iii).

Theorem 6.4 Let J € L(Y) and let ¥ = [£ 5] = [? [[gi g” be a stable
minimaz J-coercive well-posed linear system on (U x W, H,Y"), and suppose
that D has a (J,S)-inner-outer factorization D = NX. If we choose this

factorization in such a way that S =T = [6 _01] (this is possible according
to Lemma 5.4), then it is feasible.

This theorem shows that condition (IT) in Theorem 1.3 together with
Hypothesis 4.6 implies (III).

Proof of Theorem 6.4. According to Lemma 3.3(i) and Theorems 4.5(i)
and 6.1, to prove Theorem 6.4 it suffices to show that M, has a causal in-
verse, where M = [ﬁ; ﬁ;ﬂ = X~'. We shall do this by applying [Staffans
1998¢, Lemma 4.11(iii)] to Mae. The main assumption of that lemma con-
sists of the two conditions

MiaMay >> 0 on L*(R, W), (6.1)
Magpm M, >> 0 on L*(RT,W). (6.2)
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Let us start with the verification of condition (6.1). By Theorem 4.5(iii),
the closed loop cost with initial value xq = 0 and control us = 0 is

Q:5(0,0,wes) = (wes, Saatwes) < —el|wes| T2y

for some € > 0, since we assume Sy << 0. On the other hand, by Corol-
lary 4.9 and Lemma 2.6 (see, in particular, (2.5)),

Q5(0,0,ws) = Q(0, Miamywe, MapT we)
> Q™™(0, Moymywes)
> —K ||M227T+w©||i2(3+;y);

for some K < oco. Thus,
Ty My Mapmy >> 0 on L*(RY, W),

which by [Staffans 1998c, Lemma 4.4(ii)] is equivalent to (6.1). (So far we
have used only the assumptions Sy << 0 and 7, D;JD 7y >> 0.)

Next we verify condition (6.2). Since X is an T-spectral factor of D*.JD,
by [Staffans 1998c, Lemma 4.3(iii)], the inverse of the Toeplitz operator
7. D*JDr, is X' T HX*)™" = Mr, TM* (note that T~' = T). Thus,
by Lemma 3.4(iii),

—~Mopm My << =Maoym M5, <0,

which proves (6.2).

By [Staffans 1998¢, Lemma 4.11(iii)], My is invertible in T1C (W), hence
X1y is invertible in T1C(U) (cf. Theorem 6.1). []

Let us end this section with some remarks which simplify the passage
between between the open loop system W, the semi-closed loop system ¥,
and the closed loop system W .

Remark 6.5 [t is possible to pass between the open loop system WV, the semi-
closed loop system U, and the closed loop system WV essentially in the same
way as we passed from V to V. and back in Lemma 4.8. It involves three
diagrams built around VU with different directions of the lines on the top and
the bottom, three diagrams built around V" (out of which Figure 11 is one),
and three more diagrams built around V. We leave the exact formulation of
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Figure 11: Semi-closed system written in open loop form

this result to the reader. The key observation is that we have three equivalent
expressions for zi, namely

Z1 = K:lflfo + .7:117T+U + ]-'127r+w
=K wo + Fimius + Flomiw

= Koo + Fopmius + FopTiwe,
and likewise, there are three equivalent expressions for zo, namely

Z9 = ’CQQ?O + f2171'+u + fQQW+w
= K3 xg + Fo ' miues + Foymiw
= Koo + Fou Tt + FogTiwe.
In particular, it follows from Figure 11 that we can pass from the semi-
closed loop system W to the open loop system ¥ by keeping the open loop

disturbance w intact and replacing the closed loop control us by the open loop
control

U=z +myuy =K wg+ (I + F)miue + Flomiw,
—1 —1 -1
= K{'zo + Xy mhus — Xy Xy myw,

and that we can pass from the same system to the fully closed loop system
U by keeping the closed loop control us intact, but replacing the open loop
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disturbance w by the closed loop disturbance

W = =2 + 1w =—K3 vy — Fymoue + (I — Foy)myow
—1 -1
= —IC?!L'O - MQQ M217T+UQ + MQQ TLw.

7 Central Suboptimal Controllers

Only two of the implications in Theorem 1.3 remains to be proved, namely
(IIT) = (IV) = (V). Out of these the latter implication is trivial, once we have
defined what we mean by a central state feedback/feedforward controller.
Let us recall the definition of a stabilizing state feedback /feedforward
controller for ¥ presented in Definition 2.2. Clearly, if we ignore the bottom
part of Figure 10 which produces the signals z, and w, then this figure
becomes functionally equivalent to Figure 2 with (IC, Fy, F») replaced by
(K1, Fi1, Fi2). This means that Definition 2.2 can be applied to the semi-
closed loop system W . Recall that F in Figure 10 is given by F =1 — X,
hence F; and F; can alternatively be written as 7y = [ —AX7; and F, = —AX)5.

Definition 7.1 A central state feedback/feedforward controller (IC, Fy, F2)

for U =[4B] = [“é [[gi gé]]] is a stabilizing state feedback/feedforward con-

troller which can be obtained from a semi-closed loop system U™ of the type
drawn in Figure 10, i.e., D has a feasible (J, S)-inner-outer factorization
D=NX= [%] [ﬁ; 2;] such that F1 = I — X1, Fo = —Xio, and K is the
first component of —S~'m N*JC.

Indeed, comparing this definition to Definition 2.2 we realize that the
implication (IV) = (V) in Theorem 1.3 is trivial. See Theorem 9.1 for an
explanation of in which sense this controller is “central”.

To prove the final implication (III) = (IV) in Theorem 1.3 we need to
study the minimax properties of the semi-closed loop system WU,
Theorem 7.2 Let J € L(Y) and let ¥ = [ B] = [? [[gi gz” be a stable
well-posed linear system on (U x W, H,Y'), and suppose that D has a feasible
(J, S)-inner-outer factorization D = NX. Let Q" (xo,us,w) be the cost
function associated with the semi-closed loop system U, i.e,

Q" (o, ugy, w) :/ (y(s), Jy(s))y ds,

Rt
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where y = C"xg + D1 us + D5 miw is the output of the semi-closed loop
system U with initial state xo € H, control us € L*(RY;U), and distur-
bance w € L*(R*; W). Then the following claims are true.

(i) The semi-closed loop cost function Q" (xg, ux, w) can be written in the
form

Qn(xm Uy, ’UJ) - <IL'0, H‘r0>H

_ <D?{ o ] ,JDI{ o ]>
Trw — Koyto T = Koyo L2(RT;Y)

(o Lo L)
Tiw — Koo Tw — Koslo L2(R+;Y)

where X and M are defined as in Lemma 6.2.

(ii) For each xo € H and w € L?>(R*; W), the function u — Q" (o, u, w)
is conver on L*(RT;U) iff 7y D;JDymy > 0 on LA(RT;U), and it is
uniformly conver on L*(R*;U) iff 7, DfJJDimy >> 0 on L*(RT;U).

(iii) For each zy € H and u € L*(R*;U), the function w — Q" (xo, u, w)
is concave on L*(RT; W) iff Sop < 0, and it is uniformly concave on

LZ(RJr; W) Zﬁ Sop << 0.

(iv) Foreachxy € H, (9,0, Koyx0) is a saddle point of Q7 iff 7y Dy J Dy >
0 and Ss2 < 0, and it is a uniform saddle point iff 7. Dy JDimy >> 0
and SQQ << 0.

Proof. (i) We leave the straightforward proof of (i) to the reader. It is
based on Theorem 6.1, Lemma 6.2, and (3.7).
(ii) By (i) and Lemma 6.2, the quadratic term of Q" (zg, us,w) with
respect to ug is
Qn(oa Uy, 0) = <D?W+Uo, ']D?W+UO>L2(R+;Y)
= <XIEIW+UO, IDTJIDIXIEIT‘.+U/0>L2(R+;Y) .

As X},! is invertible in TTC(U), this function if convex iff 7, D*JD;m, > 0
on L?(R*; U), and it is uniformly convex iff 7, D} JD 7, >> 0 on L2(RT; U).
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(iii) By (i) and Lemma 6.2, the quadratic term of Q" (zo, uw,w) with
respect to w is

Q7(0,0,w) = (D3 'msw, JD3TLW) 2 g+.yy

= <M521W+w, S22M521W+w>L2(R+;Y) .
As My, is invertible in TIC (W), this function if concave iff Sy, < 0, and it
is uniformly concave iff Syy << 0.

(iv) This follows from (i)—(iii). []

Corollary 7.3 The central state feedback/feedforward controller induced by
a feasible (J, S)-inner-outer factorization NX of D is [uniformly] suboptimal
if and only if Ssy is [uniformly] negative.

Proof. This follows from Definitions 2.2 and 7.1 and Theorem 7.2. [ ]
Theorem 6.4 and Corollary 7.3 give us the final implication (III) = (IV)
in Theorem 1.3. Thus, our proof of Theorem 1.3 is now complete.

8 Parameterization of All Suboptimal Cen-
tral Controllers

Our next task is to develop a parameterization of the set of all uniformly sub-
optimal compensators. As a first step in this parameterization we investigate
the set of all central suboptimal state feedback/feedforward controllers. To
simplify the discussion we introduce the following additional definition.

Definition 8.1 A (.J,S)-inner-outer factorization NX of D is [uniformly]
suboptimal if it is feasible (see Definition 6.3) and the induced central state
feedback/feedforward controller (see Definition 7.1) is [uniformly] suboptimal
(see Definition 2.2).

Thus, a feasible (.J, S)-inner-outer factorization is [uniformly] suboptimal
iff Spo < 0 [Sge << 0]; see Corollary 7.3.

We begin by giving some necessary and some sufficient conditions on an
(J, S)-inner-outer factorization in order for this factorization to be uniformly
suboptimal.
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Lemma 8.2 Suppose that D has a uniformly suboptimal (J,S)-inner-outer
factorization D = N X and that 7, D;JDim, >> 0 on L*(R*;U). Then the
following claims hold:

(Z) Sy << 0 and Si; — 51252_21521 >> 0.

(i1) If the cross terms Sio and Sey = Si, vanish, then S1; >> 0, and F3}
satisfies

~a—1/2 —1qg—1/2
1(=822) 2 F ST | = 11(=5) 220 X7 S|
= [|(=Sa2) 2 Mz Moy S|
<1,

where we use the same notations as in Theorem 6.1.

(i1i) D has a uniformly suboptimal (J, T)-inner-outer factorization, where
T:[gﬂ]

(iv) An arbitrary (J, §)—mner—outer factorization NX of D is uniformly
suboptimal_(in_particular, it is feasible) if and only if Sy << 0 and
S — §12§2_21§21 > 0, or equivalently, if and only if Ses << 0 and
S — 5125;21521 >> (.

Proof. (i) By Corollary 7.3, Soy << 0. We claim that we may, without
loss of generality, assume that the cross terms S5 and Sy; = ST, vanish. If
not, then we use the construction described in part (iv) of Remark 5.3 to
replace S5 by zero. This does not change X;; = I — Fj; and Sss, hence
it does not affect the uniform suboptimality of the factorization. However,
it does replace Sy; by Si; — 51252’215’21. Thus, the uniform positivity of
Si1 — S12S55 So1 follows from (ii).

(ii) Recall that X is an S-spectral factor of D*JD, i.e., X*SX = D*JD.
If the cross terms vanish, then the top left corner of this equation gives

X{lellel + X2*1522X21 - DTJDl
Since X}y is invertible in TIC(U), we may rewrite this equation as

S = (/‘\7'1*1)71/‘\7'2*1(_522)/1?21/1?1711 + (X1*1)71DTJD1X1711-
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The assumptions 7, D JDymy >> 0 and Sy << 0 imply that the right-hand
side is uniformly positive, hence S;; >> 0. Multiply the equation above by
51_11/2 both to the left and to the right to get

T= S (X0) G (=S X Xy Sy 812 (A0) T DLTD S,
where the last term is uniformly positive. This implies that
(= S22) /22 231 S, 2 < 1.

(iii) As in the proof of (i), we may assume without loss of generality that
the off-diagonal terms of S vanish. If S1; # I or Syy # I, then we factor S

as
o {55{2 0 ] [I 0 ] {511{2 0 }
0 (=Sl lo —1] [0 (=sm”

and absorb the two factors to the left and right into X* and X’; see Qem~ma 4.10.

(iv) The necessity of the two conditions Sge << 0and Sy — 51252_2 Sy >>
0 follows from (i). Conversely, suppose that 522 << 0and Si — 51255, Soy >
0. We may remove the cross terms S, and 521 = 512 in the same way as we
did in the proof of (i), without affecting the feasibility of the factorization.
After this transformation we must have 511 >> 0 since S is invertible, or
in terms of the original data, SH 512522 521 >> 0. Next we transform S
into T" as we did in the proof of (iii), still without affecting the feasibility
and uniform suboptimality of the given factorization (that we still denote
by NX). Thus, at this point we know that N'X is a (J,T)-inner-outer
factorization of D, but we do know know if it if feasible, i.e., we do not know
if X'y, is invertible.

By (iii), D has a uniformly suboptimal (.J, T)-inner-outer factorization.
Let us for simplicity denote this factorization by NX. By Lemma 4.10,
X = EX for some operator E satisfying E*T'E = T'. Inverting this equation
we get T-! = E-'T-YE1Y*, or equivalently, ETE* = T. The top left
component of the equation F*TE =T gives

EiklEll - E;lEgl - I,
and the top left component of the equation ETE* =T gives

EllEikl - ElgEiKQ - I
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Together these two equations show that Fy; is invertible (both i Ej; >> 0
and Ey Ef| >> 0), and that |[E}' Eis|| < 1 and ||Ex B < 1.
Since X = EX, we have

X1 = EnX + By = By (I + B B X Xy ) X1
This operator is invertible in TIC(U) since
1B B X X | < | By B || o X | < 1
cf. (ii). [ ]

Next we investigate the correspondence between a feasible (J, S)-inner-
outer factorization and the corresponding central compensator:

Definition 8.3 We call the operator
.'/_"{; = _X1_11X12 = M12M2_21

defined in Theorem 6.1 the central compensator induced by the feasible (J,S)-
inner-outer factorization N X, and we call the factorization N X a represen-
tation of this compensator (cf. Definition 2.4).

Every central compensator has more than one representation:

Lemma 8.4 Let D = NX be a feasible (J, S)-inner-outer factorization of
D, and let D = NX be another feasible (J, S)-inner-outer factorization of

D. These factorizations induce the same central compensator if and only if
X = EX for some (invertible) E € L(U x W) of the form

Ey 0
E = ,
{Em E22]

where Eyy is invertible in L(U) and Eqy is invertible in L(W).

Proof. If X = EX for some E of the form given above, then XU = E X
and X9 = Fj1 X2, hence )('11 2('12 = Xn X2, and the two factorizations
induce the same central compensator.

To prove the converse part we first observe that, by Lemma 4.10, X =FEX
for some invertible E € L(U x W). Thus,

/'?11 = B X+ B Xy,
Xig = B Xig + Eia Xy,
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The two factorizations induce the same central compensator iff X~12 = X~11 2('1’112('12,
ie., iff
X1y = En X+ By
= /'?11X1711X12
= (EnXi1 + EinXoy) X' Ao
= EnXis + EipXo X' X

This is equivalent to

0=E (XQQ - X21X1_11X12)
= EpMyy,

where the last equality follows from the formula for F; given in Theorem
6.1. However, this is equivalent to the condition Eio = 0. _ B
Substitute Ei» = 0 into the preceding formula for Xy to get X'y =
FE11X11. Since both X';; and Aj; are invertible, Fq; must be invertible. This,
together with the invertibility of F implies that Fs, is invertible. [ ]
Motivated by the preceding lemma, we make the following definition:

Definition 8.5 The (J, S)-inner-outer factorization N X of D is equivalent

to the (J,S)-inner-outer factorization NX of D if X = EX for some E €
L(U x W) of the form
5o [En 0 ]

E21 E22

with Eyy is invertible in L(U) and Fays is invertible in L(W'). These factor-
wzations are strictly equivalent if, in addition, E1; = 1.

The following lemma lists some of the properties of equivalent factoriza-
tions.

Lemma 8.6 Suppose_that the (J, S)-inner-outer factorization NX of D is
equivalent to the (J,S)-inner-outer factorization NX of D, and let E =
XX~ be the operator in Definition 8.5. Then the following statements are
true:

(i) The two sensitivity operators S and S satisfy
St — $128%' S = Ej (§11 - §12§§21§21) Eyy,

S22 — E;2522E22-
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(11) The first factorization is feasible iff the second factorization is feasible.

(11i) The first factorization is [uniformly] suboptimal iff the second factor-
ization is [uniformly] suboptimal.

(iv) The two factorizations induce the same central compensator, and if
they are strictly equivalent, then the two semi-closed loop systems in-
duced by these factorization are identical, if we ignore their last row
corresponding to the output labeled z5 in Figure 11.

Proof. (i) This proof is a mechanical computation based on Lemma 4.10.
(ii) Clearly, X = EX is invertible iff A’ is invertible, S = E*SE is
invertible iff S if invertible, and X'1; = E;; X4y is invertible iff X7y is invertible.
(iii) This follows from (i), (ii) and Corollary 7.3. B
_ (iv) The first claim follows from Lemma 8.4. If Fy; = I, then, X'; = &),
X132 = Xjo, and Theorem 6.1(iv) shows that the first three rows of the semi-
closed system U are identical for the two factorizations. [ ]

Lemma 8.7 FEvery uniformly suboptimal (J, §)—mner—0uter factorization NX
of D is strictly equivalent to a uniformly suboptimal (J,S)-inner-outer fac-
torization for which the off-diagonal terms Si2 and Sy = S}, vanish, and,
if . D;JDymy >> 0, then it is equivalent to a uniformly suboptimal (J,T)-

inner-outer factorization with sensitivity operator T = [6 ,OI}.

Proof. The proof of this lemma is contained in the proof of Lemma 8.2.

]

Theorem 8.8 Suppose that m,D;JDim, >> 0 on L*(R*;U), and that D =
N X is a uniformly suboptimal (J, S)-inner-outer factorization of D for which
the cross terms Sio and Sy = S, vanish. If By € L(W;U) satisfies

S11? Era(—Sas) 2

<1, (8.1)
and if we define E by

0 I

then the factorization NX = (NE)(E'X) is also uniformly suboptimal;
hence it induces a uniformly suboptimal central compensator. Every possible
uniformly suboptimal central compensator has a representation of this form,

-

48



+, ++T N
I
"A'I [[817' BQTJI —5»
Eyy 21 ¢ Dy Dof
x|
We J_+ w

Figure 12: Parameterization of all suboptimal central compensators

i.e., by choosing the operator E.o appropriately we can generate every pos-
sible uniformly suboptimal central compensator. Moreover, different choices
of F1o give rise to different central compensators, i.e., there is a one-to-one
correspondence between the operator Ei5 and the corresponding central com-
pensator.

Before proving this theorem, let us warn the reader that this parameter-
ization does not generate all possible semi-closed loop systems ¥. Instead
it generates exactly one representative for each equivalence class, if we con-
sider two semi-closed systems to be equivalent whenever they induced the
same central compensator. (To get a parameterization of all possible feasible
semi-closed loop systems it suffices to combine this theorem with Lemma
8.4.) Figure 12 contains a picture of the parameterization in Theorem 8.8.

Proof of Theorem 8.8. Choose some E; € L(W;U), and define F as in
the theorem. A direct computation shows that the sensitivity operator S of
the factorization NX = (NE)(E~'X) is given by (cf. Lemma 4.10)

S [Sn Su] _ { S S11E1
So1 Soo E7,511 So + EfS11Ee|

In particular, §11 is always uniformly positive, and §22 << 0 if and only
(8.1) holds. This together with Lemma 8.2(iv) implies that the factorization
N X is uniformly suboptimal iff (8.1) holds.
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Conversely, suppose that NX is a uniformly suboptimal (.J, §)—inner—
outer factorization of D. Without loss of generality (see Lemma 8.7) we
can suppose that the cross terms Sy and Sy = S7, vanish. An inspec-
tion of the proof of Lemma 8.2(iv) shows that there is an invertible operator
F € L(U x W) with invertible Fy; such that

X =FX.
Since Fi; is invertible, F' has the LU-decomposition

Fiy Fio _ Fiy 0 I Fﬂan
Fy Fy Fy FQQ—FmFﬂlFlQ 0 I '

The first factor represents an equivalence transformation in the sense of Def-
inition 8.5, so we can discard this factor if we at the same time replace the
factorization N'X' by an equivalent one (for which we still use the same no-
tation N'X). But this means that NX = (NE)(E 'X), where E is of the
form given in Theorem 8.8 with £ = —F, ' Fi,.

The uniqueness claim follows from Lemma 8.4. []

Remark 8.9 A closer inspection of the proofs of Lemma 8.2(iv) and The-
orem 8.8 show that if we relaz (8.1) to ||S1{>Eia(—Ss)~"/2|| < 1, then the
resulting factorization is still suboptimal (but not uniformly). It is even possi-
ble to allow a norm slightly bigger than one without loosing feasibility, but in
this case the suboptimality is lost. In particular, in this way we can construct
an example of a feasible factorization that is not suboptimal.

9 Parameterization of All Suboptimal Con-
trollers

In the previous section we gave a parameterization of all uniformly sub-
optimal central compensators. The same parameterization can be used to
generate all possible suboptimal or uniformly suboptimal compensators: it
suffices to replace the static parameter Fi5 in Theorem 8.8 by a dynamic
parameter V), as indicated in Figure 13.

Theorem 9.1 Suppose that m,D;JDim, >> 0 on L*>(R*;U), and that D =
N X is a uniformly suboptimal (J, S)-inner-outer factorization of D for which
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Figure 13: Parameterization of all suboptimal compensators

the cross terms Syo and So; = S}, vanish. Define M = X~'. Then, for each
Ve TIC(W;U) satisfying

1172V (= S820) 12| < 1, 9.1)

the operator Xy —V Xy has an inverse in TIC(U), the operator MoV + Moy
has an inverse in TIC(W), and the operator U defined by

U=(I—Fu+VFn) (Fla+V—VFn)
= (X — V) ' (= Xz 4+ V) 92)
=V +FouV+ Fop) (~7:021V+I+-7'—022)71 '
= (MY + M) (MaV + M) ™!

s a suboptimal compensator for W. The operator U is uniformly suboptimal

for U iff
15172V (= S) 12| < 1. (9.3)

FEvery possible suboptimal compensator U has a representation of the form
(9.2) for some V satisfying (9.1), i.e., by appropriate choice of the parame-
ter V we can generate every possible suboptimal compensator U. Moreover,
different choices of V give rise to different compensators, i.e., there is a one-
to-one correspondence between the parameter V and the corresponding sub-
optimal compensator U. (We get the central compensator by taking V = 0.)
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Figure 14: Suboptimal parameterization based on closed loop system

See Figures 13 and 14 for diagrams describing the parameterization in
Theorem 9.1. If we in those diagram take zy = 0, then U is the mapping
from w to u, and V is the mapping from u; to w.

Proof of Theorem 9.1. Consider the connection drawn in Figure 13. From
that diagram we get

u=Kixg+ Friu+ Fromyw + V (miw — Koxg — Foru — Foomiw) .

Formally, with xq = 0, this leads to the formula v = Um, w, where U is the
operator defined in the first two lines of the formula in Theorem 9.1.

Let us prove the claim about the invertibility of the operator X7j; — VXs;.
The feasibility of the factorization implies that X3, is invertible in TIC(U).

Factor out 5111/22('11 to the right and Sl_ll/2 to the left to get
Xt — VX = (Sl‘f/ 2 VX21X1‘1151_11/2) S2x,

_ Sﬂm ([- _ 511{2)}(_522)71/2(_522)1/2/1’;21%71151—11/2) 511{2/1,11_

From this factorization and from Lemma 8.2 we find that X;; — VA5 is,
indeed, invertible. Hence we can use the first part of (9.2) to define U €
TIC(U).

To derive the second part of (9.2) we rewrite Figure 13 into Figure 14,
which is based on the closed loop system W instead of on the extended open
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Figure 15: Recovery of the parameter of a suboptimal compensator

loop system W. From this diagram we get

Wy = 1w — KygZo — Fog VWi — FspaWe,
u = V’LUQ + ICQIQSO + }"OHVwO + f012wo.

Formally, with xy = 0, this leads to the definition of ¢ to be given by the last
two lines of (9.2). To show that the operator My V + Moy, has an inverse in
TIC(W) one argues essentially in the same way as above, using Lemma 8.2
and the invertibility of Mas.

The cost of myw in Figures 13 and 14 with zy = 0 can be written alter-
natively as (cf. Theorem 4.5 and Corollary 4.9)

Q0, Ut w, w) = Qu(0, VI iwes, wes)

= (VT we, SuVmTiwe) oy + (Wos S22W0) po ) -

From this the claims about the suboptimality and uniform suboptimality
follow easily (cf. the proof of Lemma 8.2(iv)).

That the parameterization given in Theorem 9.1 generates all possible
suboptimal compensators follows from Theorem 9.2 below. [ ]

The proof of the fact that the parameterization in Theorem 9.1 captures
all possible suboptimal compensators and that there is a one-to-one corre-
spondence between the compensator & and the parameter V requires some
preliminary considerations:
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Theorem 9.2 Make the same assumptions as in Theorem 9.1.

(i) The suboptimal compensators U obtained in Theorem 9.1 satisfy the
following two invertibility conditions:

(a) My, —UMyy has an inverse in TIC(U),
(b) Xoo + XorU has an inverse in TIC(W).

Moreover, the inverses above are given by

(My —UMyp) ™" = Xy — VA,

] (9.4
(X + X1 ld) = MoV + Mos.

(i) The two invertibility conditions in part (i) are equivalent, and every
suboptimal compensator U that satisfies (one of) these conditions is of
the type described in Theorem 9.1. The corresponding operator V is
given by

V=U+Fy; — u}—ml)_l (=Fos19 U +UF )
My — UM21)_1 (— Mg + UMys)
U—Fild — Fro) (—Foid + I — Fap) ™

XU + Xig) (Xond + -9522)71 .

=
=
_( (9.5)
=

(iii) The set of compensators U obtained in Theorem 9.1 is bounded in
TIC(W;U).

(iv) Every suboptimal compensator U has a parameterization of the type
given by Theorem 9.1. Thus, all suboptimal compensators satisfy (i)-

(iii).

Proof. The proof of (i) is a direct computation based on the fact that
M = X~'. We leave this computation to the reader.

(ii) Suppose that U satisfies condition (a) in part (i), i.e., that My —
UMy has an inverse in TIC(U). Then the diagram drawn in Figure 15
defines a well-posed system (in the L2-sense), and

us =u— Koyxo = Foryte — ForaTiws
= U (Wey + Kspo + Foogitiey + FrogaTiwe) — Koo — Foyptey — FooTrwes.
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Figure 16: Alternative recovery of the parameter

If we here take ¢y = 0 and solve for u, then we get the first two formulas in
(9.5). The suboptimality of ¢/ implies that ¥ must satisfy the norm condition
1512V (= S55)""2|| < 1 (cf. the proof of Theorem 9.1). By part (i), U also
satisfies condition (b) in part (i).

If, on the other hand, U satisfies condition (b) in part (ii), i.e., if Aoy +
Xo1U has an inverse in TIC (W), then we argue essentially in the same way,
but replace Figure 15 by the equivalent Figure 16. We leave the details to
the reader.

(iii) We get a uniform bound on the norm of & by using (9. ) (9.2), and
the fact that Lemma 8.2(ii) gives us a uniform bound on [|(X;" — VA )7
(cf. the proof of Theorem 9.1).

(iv) We claim that the set of all suboptimal compensators & obtained
in Theorem 9.1 is both open and closed in the set of all suboptimal com-
pensators. To see that it is open it suffices to observe that the set of com-
pensators satisfying the two equivalent invertibility conditions in part (i) is
open in TIC(W;U); hence open in the set of suboptimal compensators. To
see that it is closed it suffices to observe that (9.4) give us an priori bounds
on the norms of (Mj; — Z/l./\/l21)71 and (Xoe + 2('212/{)71, hence if we take a
sequence of suboptimal compensators U, of the type described in Theorem
9.1 converging to an arbitrary suboptimal compensator ¢/, then this limiting
compensator must also satisfy conditions (a) and (b) in part (i). Thus, we
conclude that the set of all compensators & parameterized by Theorem 9.1
is a bounded component of the set of all suboptimal compensators (more
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precisely, the component that contains the central compensator F73).

To complete the proof of (iv) it suffices to show that the set of all subop-
timal compensators is convex, hence connected. However, this follows from
the positivity of 7, D*JDm, which implies that, for each fixed xo € H and
w € L*(RT; W), the cost function Q(0,u,w) is convex in wu. ]

10 Separation of Feedback and Feed-Forward
Terms

In the primary state feedback/feedforward representation of the minimax
solution given in Theorem 4.5 there is no direct reference to possible feed-
forward terms, and it is in fact impossible to include such a reference, due to
the fact that for an arbitrary well-posed system it is not possible to separate
a possible feedforward term from the feedback term. To do this we need an
extra reqularity assumption on the system introduced by George Weiss. In
[Weiss 1994a, Theorem 5.8] he gives eight equivalent characterizations of the
needed regularity notion, one of which is the following:

Definition 10.1 (i) A causal time-invariant operator D: L*(R; V) — L*(R;Y)
is called regular if, for every vy € V', the strong Abel mean

Duvo = lim D(A)vp

A—+00

exists for every vy € V; here A tends to infinity along the real azis and
D is the transfer function (the distribution Laplace transform) of D.

(1) The operator D: V' — 'Y defined in (i) is called the feedthrough operator
of D.

(iii) A regular map D: L*(R; V) — L*(R;Y) is called strictly proper if its
feedthrough operator vanishes.

(iv) We say that D is reqular together with its adjoint if, in addition to (i),
the strong Abel mean limy_, ;o D*(N)y, exists for every yo € Y. (This
limit is equal to D*vy whenever it erists.)

(v) A well-posed linear time-invariant system U is reqular [together with its
adjoint] if its input/output map is reqular [together with its adjoint].
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We borrow the following result (due to Weiss [1994a]) from [Staffans 1997,
Proposition 39] (and at the same time extend it slightly to cover also the
situation described in Theorem 6.1):

Proposition 10.2 Suppose that D is J-coercive and that D a (J,S)-inner-
outer factorization D = N'X. In addition, suppose that the extended system
pext — [[g] [?__]] constructed in Theorem 4.5 is reqular together with its
adjoint, i.e., D and F are reqular together with their adjoints.

(i) Then all the input/output maps appearing in Theorem 4.5 are reqular
together with their adjoints. If we denote the feedthrough operators of
D, N, X, M, F, and F by D, N, X, M, F, and F, respectively,
then

D=NX, X=M"' F=I-X, Fs=M-1.
In particular, X and M are invertible.

(i1) If, in addition, the factorization N'X is feasible, then all the input /output
maps appearing in Theorem 6.1 and Lemma 6.2 are regular together
with their adjoints. If we denote the feedthrough operators of D™ and
F by D and F, respectively, then

DO Dp [ DX Dy — D1 X' X1o
FY Fol = | Xt — I1 — X1 X0 1
ER Ff |~ Xo X1t T — Xop + X X' X

Ny, — NQM{QIMQI NQM{QI
= (M —1— M12M2}1M21 M12M2}1
M,,' Moy I — My,

In particular, X1, and My are invertible.

(iii) There is a unique (J, S)-inner-outer factorization N'X in Theorem 4.5
for which the feedthrough operator of F is zero (i.e., there is “no feed-
forward term inside the feedback loop”), namely the one where M =
X =1 and D = N. The formulas in part (ii) then simplify into

D =D=N, F~=0.
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Observe that these relations between the feedthrough maps simply reflect
the same relations valid between the corresponding input/output maps; cf.
the formulas in Theorems 4.5 and 6.1. Part (iii) corresponds to the “stan-
dard” classical normalization described in, for example, [Green and Limebeer
1995, Chapter 6].

It is possible to parameterize the set of all central compensators using
their feedforward operator as a parameter:

Lemma 10.3 Under the assumptions of Proposition 10.2(ii) every central
compensator is determined uniquely by its feedthrough operator F\3, and
it has a (unique) representation induced by a factorization for which the
feedthrough operator of the spectral factor X is given by

_ I
X‘{o I ]

Proof Take an arbitrary parameterization of the central compensator.
Then, by Proposition 10.2, the feedthrough operator X of the spectral factor
X has an invertible upper left corner X;;. This means that we can factor X
into the LU-form

X X _ X 0 I XﬂlXu
Xo1 Xoo Xo1 X22—X21X1_11X12 0 I '

-1
If we multiply X by [21 X22_X2?X1_11X12] to the left, then we get a new

equivalent spectral factor whose feedthrough operator is of the required form
[é _1;3 ] This spectral factor is unique (since a spectral factor is determined
uniquely by its feedthrough operator), hence the corresponding central com-

pensator is also determined uniquely by its feedthrough operator. [ ]

Theorem 10.4 In addition to the assumptions of Proposition 10.2, suppose
that 7y D7 JDy >> 0. Let NX be the special (J,S)-inner-outer factorization
(with zero feedthrough operator) of D described in Proposition 10.2(iii).

(i) There exists at most one strictly proper central compensator. Such a
compensator exists if and only if the factorization N'X is feasible, in
which case it is induced by this factorization. It is [uniformly] subopti-
mal iff Sz is [uniformly] negative.
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(11) If §11 >> 0, then there exists a uniformly suboptimal central compen-
sator if and only if the factorization with feedthrough operator
X = {0 I
is uniformly suboptimal, i.e., if and only if this factorization is feasible

and Sy — SngfllSlg << 0. The sensitivity operator of this factoriza-

.. T3 0
tion zs[ v ]
0 S22—5215;; S12

Proof (i) This follows from Corollary 7.3 and Lemma 10.3.

(ii) Suppose that a uniformly suboptimal central compensator U does
exist (in particular, this is true if the special factorization given in (ii) is
uniformly suboptimal). Since the feedthrough operator of X" is the identity,
the corresponding outer factor produced by the parameterization in Lemma,

10.3 is equal to
I -G 5
X= {0 I ] X,

where G is the feedthrough operator of #/. Comparing this formula to the
formula in Lemma 4.10 we find that the sensitivity of this factorization is

given by (note that [} *IG]_l =09

Sit S| _ |1 0 Su 512 I G
Sy Sa|  |G* I S Sa| [0 1
_ Su _ _ S11G + Sip _
G*S11+ S G*S1G+G*S1a+ SaG + S|

In particular, 511 = §11 >> 0, and G*gllG —+ G*§12 —+ §21G—|— §22 = 522 <<
0. By rearranging the terms (completing the square) we can rewrite this
operator in the form

522 = §22 — §21§1_11§12 + (G —+ gl_llglg)* §11 (G + §1_11§12) << 0.

Thus Soy — §21§1_11§12~ << 0. By Lemma 8.2(iv), the factorization with

sensitivity operator [S“ Y ] is feasible. But this is exactly the
0 S22—521511 S12 e
factorization that we get by taking G' = —S7;' S1s. [ ]

Theorem 10.4 stresses the importance of the particular sensitivity oper-
ator S corresponding to the factorization in Theorem 10.2(iii). What do
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we know about this sensitivity operator? Not very much in general, except
that it is bounded from below by D*.JD whenever the Riccati operator IT is
nonnegative on the reachable subspace:

Lemma 10.5 In addition to the assumptions of Proposition 10.2, suppose
that I1 > 0 on the reachable subspace. Then the special sensitivity operator
S that corresponds to the case of a zero feedthrough term in the feedback loop
described in Theorem 10.4 satisfies S > D*JD. In particular, S1; > D7JDy,
hence S11 >> 0 whenever DiJDy >> 0.

Proof. The inequality S > D*JD follows from [Staffans 1998c, Theorem
6.13]. Trivially, this implies that Sy, > DjJD;. []

Remark 10.6 In particular, Lemma 10.5 applies to the full information
problem (1.4)—(1.5), because for the cost function (1.5) we have Q(zo,u,0) >
0, hence for all xo € H,

_ crit _ min min
(o, o) r = Q" (w9) = weerI}?fi;W)Q (20, w) > Q™" (20,0) > 0.

Thus, in this case §11 >> (0 whenever Dy Dy >> 0.

For the convenience of the reader, let us end this section by recalling from
Staffans [1998bc] that the Riccati operator IT satisfies an algebraic Riccati
equation. To formulate this result we need a few more facts about the general
theory about well-posed linear systems. More precisely, it is known (see,
e.g., Weiss [1994ab] or [Staffans 1997, Propositions 29 and 36]) that, in the
case where u € WYA(R";U), w € W'(RT; W), and Az(0) + Byu(0) +
Byw(0) € H (where A is the generator of A and B; and B, are the two
control operators; see the formula below), the input-state-output relations
of the extended system appearing in Theorem 10.4(ii) can be written in the
form (for all £ € R™T)

z'(t) = Ax(t) + Byu(t) + Baw(t),
y(t) = Cx(t) + Dyu(t) + Doyw(t),
21(t) = Kiz(t) + Fraw(t),

2(t) = Ky (t),
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where Fjy = —§1_11§12. The operators C, K;, and K, are the Weiss ex-
tensions of the observation operators C', K;, and K, defined on dom(A),
ie.,

C= lim A\COAM - A)', K;= lim AK;(\[-A)!, i=1,2.

A—+00 A——+00

The adjoints B} and Bj of the operators By and By are defined on dom(A*),
and they are extended in a similar way into B; = limy_, oo ABf (A — A*)7",
t = 1,2. Moreover, we define

_ [ K1 n* _ EI _ [0 Fiz _ St 0
K= [K2] ’ B = [ES] ’ F= [0 0 ] ’ 5= [ 0 §22—§21§1_11§12
With these notations we have the following result:

Theorem 10.7 The Riccati operator 11 and the feedback operator K satisfy
the following two equations for all zo € dom(A) and z; € dom(A):

(Ax, Tzy) 7 + (20, [TAZ)
= — (Cxy, JCO1)y + (Ko, SK21)y; (10.1)
Kzg=—S"YI - F*)~" (B*I1 4+ D*JO) .
Proof. This follows from [Staffans 1998b, Theorem 6.1] and [Staffans
1998¢, Remark 5.2]. []
By combining the two equations in (10.1) we get an algebraic Riccati
equation for II.

It is possible to write out the two components K; and K, of K explicitly
in terms of the data: a substitution into (10.1) gives

K, = =S, (Bl + D;,C)),
Ky = — (§22 — §21§1_11§12)71 (B3I + D;,Cy — §21K1) )

Note that both of these operators appear in the algebraic Riccati equation
for II that we get from Theorem 10.7, but that only K is used in the actual
central control, i.e., in the feedback/feedforward formula

u(t) = Kiz(t) + Fiow(t)

for u. The role of K3 is to reproduce the “worst possible” disturbance w(t) =
Kx(t) in feedback form.
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We observe that the Riccati equation that we get differs from the usual
one in the sense that there is an extra unknown parameter S that does
not normally occur in the continuous time case (although it is standard in
the discrete time case).! This parameter can be computed from the Riccati
operator:

Theorem 10.8 The sensitivity operator S can be computed as the strong
limit _ B
Svg = D*JDvo + lim B*TI(\ — A)~' By,
—00

for each vy € U x W ; here X tends to +oo along the positive real axis.

Proof. This follows from [Staffans 1998b, Corollary 7.2] and [Staffans
1998¢, Remark 5.2]. ]

11 (J,5)-Lossless Factorizations

The purpose of this final short section is to relate our central notion of
a “uniformly suboptimal (.J, S)-inner-outer factorization” N'X of D to the
more commonly known notion of a (.J, S)-lossless-outer factorization used in,
e.g., Green [1992] and Curtain and Green [1997]. A formal definition of a
(J, S)-lossless-outer factorization in the spirit of the present work is given
in [Staffans 1998¢, Definition 6.1]. This definition does not refer to any
minimax properties of the problem. It is stated in terms of the inner factor
N as opposed to the outer factor X used by Definitions 8.1, and it does not
depend on how S is chosen. The notion of a lossless factorization is also easy
to connect to the Riccati operator: according to [Staffans 1998¢, Theorem
6.5], an (.J, S)-inner-outer factorization of D is lossless if and only if the
corresponding Riccati operator II is nonnegative on the reachable subspace.
We have implicitly used this fact in the proof Lemma 10.5; cf. [Staffans 1998c,
Theorem 6.13].

Although the two notions are related, they are not identical. For example,
it is not true that every uniformly suboptimal (.J, T')-inner-outer factorization
is (J, T)-lossless. To see this it suffices to take the dimension of W to be zero,

!The reader may compare the formulas for K; and K> given above to those valid in the
discrete case; see, e.g., [Green and Limebeer 1995, Appendix B]. It is natural to expect a
feedforward term from w to u in our case, too, since the class of discrete systems can be
imbedded in the class of well-posed linear systems. See Staffans [1996].
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which reduces the minimax problem to the minimization problem studied in
Staffans [1998b]. For example, the Riccati operators corresponding to the
bounded and positive real lemmas presented in [Staffans 1998b, Section 8|
are negative definite, and this prevents the corresponding factorizations from
being lossless. (To get an example where the dimension of W is nonzero we
can simply combine this example with another independent example of full
information type.)

On the other hand, if we replace the general problem (1.1)—(1.2) by the
special full information problem (1.4)—(1.5), then every (.J, S)-inner-outer fac-
torization is lossless; this follows from [Staffans 1998c, Theorem 6.5] and Re-
mark 10.6. (The factorization is not uniformly suboptimal unless Sy << 0;
cf. Corollary 7.3.) As a matter of fact, one of the key conditions used in
our proof of Theorem 6.4, namely (6.2), can be interpreted as a “lossless-
ness” condition; cf. [Staffans 1998¢, Lemma 4.11 and Definition 6.1], and our
first proof of Theorem 1.3 (which was inspired by Green [1992] and Curtain
and Green [1997]) was based on the fact that certain (.J,S)-lossless factor-
izations are uniformly suboptimal. (That proof was more complicated than
the present one and it produced a weaker result: it applied only to the full
information problem (1.4)—(1.5), and it required W to be finite dimensional.)

Recently we have together with Kalle Mikkola studied the suboptimal
Nehari problem in Mikkola and Staffans [1998]. Here, too, the notion of a
uniformly suboptimal factorization seems to simpler and more useful than the
notion of a lossless factorization. This has to do with the fact that, whereas
the outer factor is still causal in the Nehari problem, the inner factor is
neither causal nor anticausal, and the definition of a lossless factorization
becomes more complicated.
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