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Abstract. We study the distributed parameter suboptimal full infor-

mation H

1

problem for a stable well-posed linear system with control u,

disturbance w, state x, and output y. Here u, w, and y are L

2

-signals on

(0;1) with values in the Hilbert spaces U , W , and Y , and the state x is a

continuous function of time with values in the Hilbert space H. The problem

is to determine if there exists a (dynamic) -suboptimal feedforward compen-

sator, i.e., a compensator U such that the choice u = Uw makes the norm of

the input/output map from w to y less than a given constant . A su�cient

condition for the existence of a -suboptimal compensator is that an appro-

priately extended input/output map of the system has a (J; S)-inner-outer

factorization of a special type, and if the control and disturbance spaces are

�nite-dimensional and the system has an L

1

impulse response, then this con-

dition is also necessary. Moreover, in this case there exists a central state

feedback/feedforward controller, which can be used to give a simple param-

eterization of the set of all -suboptimal compensators. Our proofs use a

game theory approach.
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game, (J; S)-spectral factorization, (J; S)-inner-outer factorization, (J; S)-
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1 Introduction

This is the second out of three papers that take the �rst steps in the develop-

ment a quite general state space theory for the full informationH

1

problem,

and on a longer perspective, for the general suboptimal H

1

problem. In

our setting the transfer functions need not be rational or meromorphic; they

are just plain H

1

without any extra rationality or smoothness assumptions.

We are interested in state space results as opposed to pure frequency do-

main or input/output results. The outlines of our proofs follow the standard

frequency domain route (based on spectral factorization) that has also been

2



used for the �nite dimensional (rational) H

1

problem, but we have trans-

formed the frequency domain arguments to the time domain and added some

state space ingredients. The key addition is the factorization of the Hankel

operator induced by the input/output map as the product of the controlla-

bility and observability maps, and this makes it possible to connect the state

space and the frequency domain theories to each other.

Because of the quite general class of systems that we allow, we need to

extend a large number of more or less well known �nite dimensional results.

Some of the extensions are known, others are straightforward, and some are

neither known nor straightforward. One particular feature is that we bypass

all those �nite-dimensional results that lean on the fact that it is possible to

normalize certain feedforward terms to be either zero or the identity opera-

tor. The primary motivation for this is that these feedforward terms need not

be well-de�ned in general. However, at the same time it leads to a simpli�-

cation in the sense that there is no need to perform a number of preliminary

normalizations before applying the �nal result. We believe that the results

presented here are interesting even in the �nite dimensional setting due to

our somewhat di�erent point of view.

The general problem that we study here is of the following type. Let

	 =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

be a stable well-posed linear system with control input

space U , disturbance input space W , state space H, and output space Y . To

this system we adjoin the inde�nite cost function

Q(x

0

; u; w) =

Z

R

+

hy(s); Jy(s)i

Y

ds; (1.1)

where J = J

�

is an inde�nite operator on Y , and

y = Cx

0

+D

1

�

+

u+D

2

�

+

w (1.2)

is the output of 	 with initial value x

0

2 H, control u 2 L

2

(R

+

;U), and

disturbance w 2 L

2

(R

+

;W ). The goal is to �nd out if there exists a (causal

dynamic) feedforward compensator U which makes Q a uniformly concave

function of w 2 L

2

(R

+

;W ) if we take x

0

= 0 and u = U�

+

w (see Figure 1

with x

0

= 0 and ~u = 0), and if this is the case, then we want to �nd a

simple parameterization of all such compensators. In other words, we want

to give a simple description of the set of all possible causal time-invariant

linear mapping U : L

2

(R

+

;W )! L

2

(R

+

;U) such that

Q(0;U�

+

w;w) � ��kwk

2

L

2

(R

+

;W )

(1.3)
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Figure 1: Dynamic feedforward compensator

for some � > 0 and all w 2 L

2

(R

+

;W ). These compensators will be called

uniformly suboptimal.

The preceding formulation is a simpli�cation and, at the same time, a

slight extension of the stable suboptimal full information H

1

minimization

problem: when is it possible to �nd a (dynamic causal) feedforward com-

pensator U which makes the norm of the input/output operator mapping

w 2 L

2

(R

+

;W ) into the output y 2 L

2

(R

+

;Y ) strictly less than than a

prescribed constant  if we take x

0

= 0 and u = U�

+

w (see Figure 1)? This

input/output map is equal to (D

1

U + D

2

)�

+

, so the problem is to �nd out

if it is possible to choose U in such a way that the norm of the operator

(D

1

U +D

2

)�

+

: L

2

(R

+

;W )! L

2

(R

+

;Y ) is strictly less than .

To connect this problem to the �rst one we reformulate it as follows: we

adjoin a copy of the disturbance w to the output y, creating a larger system

	

FI

=

2

4

A

�

B

1

B

2

�

�

C

0

� �

D

1

D

2

0 I

�

3

5

(1.4)

with output y = [

y

w

]. This extended system has the same input space U�W

and the same state space H as the original system, but the output space

is now Y �W . For this extended system we de�ne the cost function Q as

above, with J =

�

I 0

0 �

2

I

�

. In terms of the original system this cost can be

written in the form

Q(x

0

; u; w) = kyk

2

L

2

(R

+

;Y )

� 

2

kwk

2

L

2

(R

+

;W )

; (1.5)

hence

Q(0;U�

+

u; w) = k(D

1

U +D

2

)�

+

wk

2

L

2

(R

+

;Y )

� 

2

kwk

2

L

2

(R

+

;W )

:
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Figure 2: State feedback/feedforward controller

We �nd that Q(0;U�

+

w;w) is uniformly concave in w if and only if kD

1

U +

D

2

k < , so the problem (1.1){(1.2) contains the stable suboptimal full

information H

1

minimization problem as a special case.

In order to avoid some degenerate situations we shall most of the time

make the following nondegeneracy assumption.

Hypothesis 1.1 The function Q(0; u; 0) is uniformly convex in u 2 L

2

(R

+

;U),

i.e., Q(0; u; 0) � �kuk

2

L

2

(R

+

;W )

, for some � > 0 and all u 2 L

2

(R

+

;U).

It is well known that, under Hypothesis 1.1, in the full information case

with �nite-dimensional U , W , H, and Y , there are several other conditions

which are equivalent to the existence of a uniformly suboptimal compensator.

More precisely, the following conditions (I){(VI) are then equivalent (we have

formulated conditions (I){(V) in such a way that they apply to the more

general problem (1.1){(1.2) as well; the precise de�nitions of the notions

used here will be given later).

Conditions 1.2

(I) There exists a (dynamic) uniformly suboptimal feedforward compen-

sator U (see Figure 1);

(II) For each x

0

2 H and w 2 L

2

(R

+

;W ), the function u 7! Q(x

0

; u; w)

is uniformly convex on L

2

(R

+

;U), and, for each x

0

2 H, the function

w 7! Q

min

(x

0

; w) = min

u2L

2

(R

+

;U)

Q(x

0

; u; w) is uniformly concave on

L

2

(R

+

;U);
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(III) The input/output map D has a (J; T )-inner-outer factorization D =

NX , where both X and X

11

have a bounded causal inverse. Here T =

�

I 0

0 �I

�

and X =

�

X

11

X

12

X

21

X

22

�

, where the block form is the one induced by

the natural splitting of U �W into its components U and W .

(IV) There exists a so called central stabilizing state feedback/feedforward

controller (see Figure 2) such that the corresponding closed loop cost

function is uniformly concave with respect to w 2 L

2

(R

+

;W ) for all

x

0

2 H and all u

	

2 L

2

(R

+

;U).

(V) There exists a stabilizing state feedback/feedforward controller (see Fig-

ure 2) such that the corresponding closed loop cost function is uni-

formly concave with respect to w 2 L

2

(R

+

;W ) for all x

0

2 H and all

u

	

2 L

2

(R

+

;U).

(VI) The full information H

1

Riccati equation has a stabilizing solution.

Our �rst main result is the following in�nite-dimensional analogue of this

equivalence:

Theorem 1.3 Let 	 = [

A B

C D

] =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

be a stable well-posed linear

system on (U �W;H; Y ), let J = J

�

2 L(Y ), and de�ne Q by (1.1){(1.2).

Then (III) ) (IV) ) (V) ) (I). If Hypothesis 1.1 holds, then (I) ) (II),

and (II) together with Hypothesis 4.6 implies (III).

This theorem is a summary of Lemmas 2.3 and 2.7, Theorem 6.4, De�ni-

tion 7.1, and Corollary 7.3.

It is an interesting fact that this theorem is valid both for the full informa-

tion problem and for the more general problem (1.1){(1.2). In this theorem

the implications (IV) ) (V) ) (I) ) (II) are trivial. Hypothesis 4.6 which

is used in the proof of the implication (II) ) (III) can be regarded an extra

regularity assumption on the input/output map. For example, it it satis�ed

in the case where U and W are �nite-dimensional and the system has an L

1

impulse response (see Lemma 4.4).

The two implications missing in Theorem 1.3, namely (III) ) (VI) )

(III), are true only under some extra \technical" assumption on the in-

put/output map. The implication (III) ) (VI) was established in Sta�ans

[1998c] (a summary is given at the end of Section 10) and the implication

(VI) ) (III) in Mikkola [1997].
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The major part of this work is devoted to the proof of Theorem 1.3. Our

proofs of the two nontrivial steps (II) ) (III) ) (IV) use a game theory

approach. This di�ers from the approach taken in most text books, such as

Green and Limebeer [1995] and Zhou et al. [1996], which invoke the Riccati

equation for these steps, but without explaining the true physical meaning

of the Riccati operator. There the Riccati operator is typically simply seen

as one out of several auxiliary operators that happens to be the solution to

a certain Riccati equation, and its role as the minimax value of a two player

dynamical zero sum game with quadratic cost function is all but ignored. We

feel that, in order to gain some insight in the physical meaning of the full

information Riccati equation, it is necessary to have a good understanding

of the underlying game.

This particular game is a two player game with decision variables u 2

L

2

(R

+

;U) (controlled by the minimizing player; the control engineer) and

w 2 L

2

(R

+

;W ) (controlled by the maximizing player; the nature), and cost

function Q(x

0

; u; w). Here x

0

plays a role of a parameter which inuences

the value of the game. As usual (see, for example Ba�sar and Bernard [1991]

or Ba�sar and Olsder [1995]), the open loop lower value Q(x

0

) and upper value

Q(x

0

) of this game are de�ned by

Q(x

0

) = sup

w2L

2

(R

+

;W )

inf

u2L

2

(R

+

;U)

Q(x

0

; u; w); (1.6)

Q(x

0

) = inf

u2L

2

(R

+

;U)

sup

w2L

2

(R

+

;W )

Q(x

0

; u; w): (1.7)

Trivially, Q(x

0

) � Q(x

0

).

If Q(x

0

) = Q(x

0

), then Q(x

0

) = Q(x

0

) is called the open loop value of

the game at the point x

0

2 H. Since the cost function is quadratic and there

are no hard constraints, a necessary condition for the game to have a �nite

open loop value is that Q(x

0

; u; w) is convex in u and concave in w, and a

su�cient condition for this to happen is that Q(x

0

; u; w) is uniformly convex

in u and uniformly concave in w. In the latter case the in�ma and suprema

in (1.6) are achieved for some u

crit

2 L

2

(R

+

;U) and w

crit

2 L

2

(R

+

;W )

(depending on x

0

), and this pair (u

crit

; w

crit

) is an open loop saddle point (or

Nash equilibrium) for the game in the sense that

Q(x

0

; u

crit

; w) � Q(x

0

; u

crit

; w

crit

) � Q(x

0

; u; w

crit

); (1.8)

for all u 2 L

2

(R

+

;U) and w 2 L

2

(R

+

; w).
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In general we cannot expect the system under study to have an open loop

saddle point. For example, the cost function (1.5) for the full information

H

1

minimization problem is concave in w i� kD

2

k � , and it is uniformly

concave in w i� kD

2

k < . Thus, if the system has an open loop saddle point

then the control objective is almost satis�ed already by the open loop system

(where u � 0). Moreover, if the system has a uniform open loop saddle point

then the full control objective is satis�ed by the open loop system, and the

solution to the H

1

minimization problem is trivial. We therefore need to

introduce a more sophisticated type of saddle point for this game.

If condition (II) in Theorem 1.3 holds, then obviously the lower value

Q is �nite, whereas the upper value can be +1. In the sequel we sim-

ply ignore the upper value, which is of no importance. In the computa-

tion of the lower value we �x x

0

2 H and w 2 L

2

(R

+

;W ), then com-

pute the control u

min

(x

0

; w) that minimizes Q(x

0

; u; w), and �nally maximize

Q

min

(x

0

; w) = Q(x

0

; u

min

(x

0

; w); w) over w 2 L

2

(R

+

;W ). This leads to the

standard solution of the (open loop) Stackelberg game with w as the leader

(with no information available about the state x and the control u, only in-

formation about the initial state x

0

), and u as the follower (with complete

information available).

The Stackelberg solution is straightforward, but it does not yet lead to the

�nal solution due to the fact that it has the wrong information structure. In

the full informationH

1

problem with cost function (1.5) we are really asking

whether it is possible to �nd a causal compensator for which the closed loop

system has a saddle point. In the Stackelberg solution the control u has too

much information available: it is not required to be causal, but can depend on

both \past" and \future" values of w. The correct information structure is to

allow u to depend only on the initial value x

0

and on \past" and \present"

values of the disturbance w. Thus, we are really looking for a \feedback

saddle point" (or feedback Nash equilibrium), where the disturbance loop is

open but the control loop is closed, and there is a possible feedforward term

from the disturbance to the control.

It is possible to get a certain type of feedback/feedforward representation

of the Stackelberg equilibrium by applying [Sta�ans 1998c, Theorem 5.1],

since this equilibrium is J-critical in the sense of [Sta�ans 1998c, De�nition

3.1]. (This amounts to �nding a (J; S)-inner-outer factorization NX of the

input/output map D with invertible outer factor X ; cf. (III).) However, that

theorem does not gives us the correct information structure either in the sense

that it gives solutions which employ feedback through both the control input

8



and the disturbance input; i.e., in addition to the desired feedback/feed-

forward term u = K

1

x

0

+ F

11

�

+

u+ F

12

�

+

w there is another feedback/feed-

forward term w = K

2

x

0

+F

21

�

+

u+F

22

�

+

w entering through the disturbance

input. The requirement is that even without this additional term the system

should be well-behaved.

Thus, the next problem that we have to solve is whether it is possible

to disconnect the feedback entering through the disturbance input, without

loss of well-posedness and stability, to turn the double feedback solution given

above into a feedback saddle point, where the only information available to w

is the initial state x

0

(i.e., w is an open loop input), whereas u is allowed to use

information about x

0

and causal information about the disturbance w. (This

is where the invertibility condition on X

11

in (III) and the normalization of S

to S = T =

�

I 0

0 �I

�

comes into play.) When this is possible we get a uniformly

suboptimal compensator of the type mentioned in (IV), i.e., a central state

feedback/feedforward controller.

We prove Theorem 1.3 in Sections 2{7, breaking it up into smaller pieces.

More precisely, we show that under the regularity assumptions listed in The-

orem 1.3, (V) ) (I) ) (II) ) (III) ) (IV) ) (V). Parameterizations of

the sets of all suboptimal and all uniformly suboptimal compensators is de-

veloped in Sections 8 and 9. In Section 10 we introduce an extra regularity

condition which makes it possible to separate the feedback part of a state

feedback/feedforward controller from its feedforward part, and derive the al-

gebraic Riccati equation satis�ed by the Riccati operator. Finally, in Section

11 we discuss how the factorizations that we use in this work are related to

the more common (J; S)-lossless factorizations.

From time to time we make quite heavy use of Sta�ans [1998c], and we

expect the reader to have access to this paper. We also refer the reader to

the same paper for a short review of the theory of well-posed linear systems,

and recommend Sta�ans [1997 1998ab] for additional reading.

We use the following set of notations.

L(U ;Y ); L(U): The set of bounded linear operators from U into Y or from

U into itself, respectively.

I: The identity operator.

A

�

: The (Hilbert space) adjoint of the operator A.

dom(A): The domain of the (unbounded) operator A.

range(A): The range of the operator A.

9



R; R

+

; R

�

: R = (�1;1), R

+

= [0;1), and R

�

= (�1; 0].

L

2

(J ;U): The set of U -valued L

2

-functions on the interval J .

TI(U ;Y ); T I(U): The set of bounded linear time-invariant operators from

L

2

(R;U) into L

2

(R;Y ), or from L

2

(R;U) into itself.

TIC(U ;Y ); T IC(U): The set of causal operators in TI(U ;Y ) or TI(U).

h�; �i

H

: The inner product in the Hilbert space H.

�(t): The time shift operator �(t)u(s) = u(t + s) (this is a left-shift

when t > 0 and a right-shift when t < 0).

�

J

: (�

J

u)(s) =

(

u(s) if s 2 J;

0 if s =2 J

, here J � R is an interval .

�

+

; �

�

: �

+

= �

R

+

and �

�

= �

R

�

.

A � B; A >> B: See De�nition 2.5.

Throughout this paper U , W , H, and Y are separable Hilbert spaces,

although many of the results that we prove are valid in nonseparable Hilbert

spaces as well. (We make explicit use of the separability assumption only

in the proof of Lemma 5.4, and we conjecture this lemma is true even in

the nonseparable case.) The operators J and S satisfy J = J

�

2 L(Y ) and

S = S

�

2 L(U �W ). The operator T is given by T =

�

I 0

0 �I

�

2 L(U �W ),

where the block form is the one induced by the natural splitting of U �W

into its components U and W . We frequently write V for U �W .

We extend an L

2

-function u de�ned on a subinterval J of R to the

whole real line by requiring u to be zero outside of J , and we denote the

extended function by �

J

u. Thus, we use the same symbol �

J

both for

the embedding operator L

2

(J) ! L

2

(R) and for the corresponding or-

thogonal projection operator L

2

(R) ! range(�

J

). With this interpretation,

�

+

L

2

(R) = L

2

(R

+

) � L

2

(R) and �

�

L

2

(R) = L

2

(R

�

) � L

2

(R).

Square brackets [ ] are used to denote optional parts of a statement. Such

a statement remains valid if all the text within square brackets is omitted,

and also if the appropriate parts of the statement are replaced by the text in

the brackets.

2 The Implications (V) ) (I) ) (II)

In this section we present some basic de�nitions and preliminary results, and

establish the (easy) implications (V) ) (I) ) (II) in Theorem 1.3.
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De�nition 2.1 The operator U 2 TIC(W ;U) is a suboptimal (dynamic

feedforward) compensator for 	 =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

if the (open loop) cost function

Q(x

0

; u; w) de�ned in (1.1) satis�es

Q(0;U�

+

w;w) � 0

for all w 2 L

2

(R

+

;W ) (cf. Figure 1). It is a uniformly suboptimal compen-

sator for 	 if

Q(0;U�

+

w;w) � ��kwk

2

L

2

(R

+

;W )

for some � > 0 and all w 2 L

2

(R

+

;W ).

Notice our use of the word \compensator" to represent this class of feed-

forward controllers. We use this word in order to distinguish this class of con-

trollers from the following class of controllers of state feedback/feedforward

type:

De�nition 2.2

(i) The triple (K;F

1

;F

2

) is a stabilizing state feedback/feedforward con-

troller for 	 =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

if

�

A [
B

1

B

2

]

[

C

K

]

h

D

1

D

2

F

1

F

2

i

�

is a stable well-posed linear

system, and (I �F

1

) has an inverse in TIC(U). (This means that the

feedback connection drawn in Figure 2 is also a stable well-posed linear

system (cf. [Sta�ans 1997, Proposition 20].)

(ii) The corresponding closed loop cost function Q

x

is given by

Q

x

(x

0

; u

	

; w) =

Z

R

+

hy(s); Jy(s)i

Y

ds;

where y = C

x

x

0

+ D

x

1

�

+

u

	

+ D

x

2

�

+

w is the output in Figure 2 with

initial state x

0

2 H, control u

	

2 L

2

(R

+

;U), and disturbance w 2

L

2

(R

+

;W ). Here (cf. [Sta�ans 1997, Proposition 20])

C

x

= C +D

1

(I �F

1

)

�1

K

1

;

D

x

1

= D

1

(I � F

1

)

�1

;

D

x

2

= D

2

+D

1

(I �F

1

)

�1

F

2

:

11



(iii) A stabilizing state feedback/feedforward controller (K;F

1

;F

2

) is subop-

timal if the closed loop cost function Q

x

(x

0

; u; w) satis�es

Q

x

(0; 0; w) � 0

for all w 2 L

2

(R

+

;W ).

(iv) A stabilizing state feedback/feedforward controller (K;F

1

;F

2

) is uni-

formly suboptimal if the closed loop cost function Q

x

(x

0

; u; w) satis�es

Q

x

(0; 0; w) � ��kwk

2

L

2

(R

+

;W )

for some � > 0 and all w 2 L

2

(R

+

;W ).

Lemma 2.3 If (K;F

1

;F

2

) is a [uniformly] suboptimal state feedback/feed-

forward controller for 	 =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

, then U = (I � F

1

)

�1

F

2

is a [uni-

formly] suboptimal compensator for this system.

Proof. This follows from De�nitions 2.1 and 2.2 and the fact that if we

take U = (I �F

1

)

�1

F

2

, then Q(0;U�

+

w;w) = Q

x

(0; 0; w).

De�nition 2.4 In the sequel we refer to the compensator U = (I �F

1

)

�1

F

2

in Lemma 2.3 as the compensator induced by the static state feedback/feed-

forward controller (K;F

1

;F

2

).

Thus, the implication (V) ) (I) is valid. We proceed to prove the impli-

cation (I) ) (II).

De�nition 2.5 The operator A = A

�

2 L(H) is positive [uniformly positive]

if hx;Axi � 0 [hx;Axi � �kxk

2

for some � > 0] for all x 2 H. It is

[uniformly] negative if �A is [uniformly] positive. The notations A � B and

B � A [A >> B and B << A] mean that A�B is [uniformly] positive.

Our proof of the implication (I) ) (II) uses the most elementary part

of the following lemma, namely the existence of the minimizing function

u

min

(x

0

; w) (the main part of this lemma will be needed later).

12



Lemma 2.6 Let 	 =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

be a stable well-posed linear system. Then

Hypothesis 1.1 holds i� �

+

D

�

1

JD

1

�

+

>> 0 on L

2

(R

+

;U). In this case, for

each �xed x

0

2 H and w 2 L

2

(R

+

;W ), the function u 7! Q(x

0

; u; w) is

uniformly convex on L

2

(R

+

;U), and there is a unique function u

min

(x

0

; w)

that minimizes Q(x

0

; u; w) with respect to u. This function u

min

and the

corresponding output y

min

and state x

min

are given by

u

min

(x

0

; w) = ��

+

(�

+

D

�

1

JD

1

�

+

)

�1

�

+

D

�

1

J (Cx

0

+D

2

�

+

w) ; (2.1)

y

min

(x

0

; w) = Cx

0

+D

1

�

+

u

min

(x

0

; w) +D

2

�

+

w

=

�

I �D

1

�

+

(�

+

D

�

1

JD

1

�

+

)

�1

�

+

D

�

1

J

�

(Cx

0

+D

2

�

+

w)

= (I � P

1

) (Cx

0

+D

2

�

+

w) ; (2.2)

x

min

(t; x

0

; w) = A(t)x

0

+ B

1

�(t)�

+

u

min

(x

0

; w) + B

2

�(t)�

+

w

= A(t)x

0

+ B

2

�(t)�

+

w

� B

1

�(t)�

+

(�

+

D

�

1

JD

1

�

+

)

�1

�

+

D

�

1

J (Cx

0

+D

2

�

+

w) ; (2.3)

where P

1

= D

1

�

+

(�

+

D

�

1

JD

1

�

+

)

�1

�

+

D

�

1

J is the projection onto the range

of D

1

�

+

along the null space of �

+

D

�

1

J . The minimal cost Q

min

(x

0

; w) =

Q(x

0

; x

min

(x

0

; w); w) = min

u2L

2

(R

+

;U)

Q(x

0

; u; w) is given by

Q

min

(x

0

; w) = hy

min

(x

0

; w); Jy

min

(x

0

; w)i

L

2

(R

+

;Y )

= h(Cx

0

+D

2

�

+

w) ; J(I � P

1

) (Cx

0

+D

2

�

+

w)i

L

2

(R

+

;Y )

: (2.4)

In particular, there is a constant K <1 such that

Q

min

(x

0

; w) � �K kCx

0

+D

2

�

+

wk

2

L

2

(R

+

;Y )

: (2.5)

Moreover, the minimal output y

min

satis�es

�

+

D

�

1

Jy

min

(x

0

; w) = �

+

D

�

1

J

�

Cx

0

+D

1

�

+

u

min

(x

0

; w) +D

2

�

+

w

�

= 0: (2.6)

Proof. We begin by observing thatQ(0; u; 0) = hD

1

�

+

u; JD

1

�

+

ui

L

2

(R

+

;Y )

,

and this function is uniformly convex in u 2 L

2

(R

+

;U) i� �

+

D

�

1

JD

1

�

+

>> 0

on L

2

(R

+

;U). Fix some arbitrary x

0

2 H and w 2 L

2

(R

+

;W ). Then the

quadratic term ofQ(x

0

; u; w) with respect to u is still equal to hD

1

�

+

u; JD

1

�

+

ui

L

2

(R

+

;Y )

,

so even for nonzero x

0

and w, it is true that Q(x

0

; u; w) is uniformly convex

with respect to u i� �

+

D

�

1

JD

1

�

+

>> 0. In this case there is a unique min-

imizing control u

min

(x

0

; w) 2 L

2

(R

+

;U). To show that the corresponding

13



output y

min

satis�es (2.6) we argue as follows. Without loss of generality,

let us suppose that U is a real Hilbert space (if not, then we replace the

inner product in U by the real inner product <h�; �i), and let us compute the

Fr�echet derivative of the cost function Q(x

0

; u; w) with respect to u at the

optimal u

min

. For each variation � 2 L

2

(R

+

;U), we have

dQ(x

0

; u

min

)� = 2




Cx

0

+D

1

�

+

u

min

+D

2

�

+

w; JD

1

�

+

�

�

L

2

(R

+

;U)

= 2




y

min

; JD

1

�

+

�

�

L

2

(R

+

;U)

= 2




D

�

1

Jy

min

; �

�

L

2

(R

+

;U)

:

This is zero for all � 2 L

2

(R

+

;U) i� (2.6) holds. Clearly, (2.1) follows from

(2.6). By substituting this value for u

min

into x

min

= Ax

0

+ B

1

��

+

u

min

+

B

2

��

+

w, y

min

= Cx

0

+D

1

�

+

u

min

+D

2

�

+

w, and Q(x

0

; u

min

; w) (and making

a straightforward computation) we get the remaining formulas.

Lemma 2.7 Suppose that the stable well-posed linear system 	 =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

has a [uniformly] suboptimal compensator U , and that Hypothesis 1.1 holds.

Then, for each x

0

2 H and w 2 L

2

(R

+

;W ), the function u 7! Q(x

0

; u; w)

is uniformly convex on L

2

(R

+

;U) and, for each x

0

2 H, the function w 7!

Q

min

(x

0

; w) = min

u2L

2

(R

+

;U)

Q(x

0

; u; w) is [uniformly] concave on L

2

(R

+

;W ).

In other words, the implication (I) ) (II) in Theorem 1.3 is true.

Proof. The uniform convexity ofQ(x

0

; u; w) with respect to u 2 L

2

(R

+

;U)

follows from Hypothesis 1.1 and Lemma 2.6. Let U be a [uniformly] subop-

timal compensator. Then there is some � � 0 [or � > 0 in the uniform case]

such that

Q(0;U�

+

w;w) � ��kwk

2

L

2

(R

+

;W )

; w 2 L

2

(R

+

;W ):

Clearly this implies that

Q

min

(0; w) � ��kwk

2

L

2

(R

+

;W )

; w 2 L

2

(R

+

;W ):

hence Q

min

(0; w) is [uniformly] concave in w 2 L

2

(R

+

;W ). As in the proof

of Lemma 2.6, this implies that, for all x

0

2 H, Q

min

(x

0

; w) is [uniformly]

concave in w 2 L

2

(R

+

;W ).
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3 Minimax J-Coercivity

The convexity-concavity property that we have encountered in (II) of The-

orem 1.3 and also in Lemma 2.7 is important enough to get a name of its

own.

De�nition 3.1 A stable system 	 = [

A B

C D

] =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

on (U �W;H; Y )

is

(i) J-coercive if the Toeplitz operator �

+

D

�

JD�

+

is invertible in L(L

2

(R

+

;U�

W )),

(ii) minimax J-coercive if, for each x

0

2 H and w 2 L

2

(R

+

;W ), the func-

tion u 7! Q(x

0

; u; w) is uniformly convex on L

2

(R

+

;U) and, for each

x

0

2 H, the function w 7! Q

min

(x

0

; w) = min

u2L

2

(R

+

;U)

Q(x

0

; u; w) is

[uniformly] concave on L

2

(R

+

;W ).

In the context of Weiss [1997], our J-minimax coercivity notion is closely

related to Weiss' \analytic signature condition", which is a combination of

Hypothesis 1.1 and condition (I); cf. Lemma 2.7.

We have the following more technical alternative characterization of min-

imax J-coercivity.

Lemma 3.2 The system 	 =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

is minimax J-coercive i�

�

+

D

�

1

JD

1

�

+

>> 0

on L

2

(R

+

;U) and

�

+

D

�

2

�

J � JD

1

�

+

(�

+

D

�

1

JD

1

�

+

)

�1

�

+

D

�

1

J

�

D

2

�

+

<< 0 (3.1)

on L

2

(R

+

;W ). Here (�

+

D

�

1

JD

1

�

+

)

�1

stands for the inverse of �

+

D

�

1

JD

1

�

+

in L(L

2

(R

+

;U)) (which exists since �

+

D

�

1

JD

1

�

+

>> 0).

Proof. By Lemma 2.6, the function u 7! Q(x

0

; u; w) is uniformly convex

on L

2

(R

+

;U) for each �xed x

0

2 H and w 2 L

2

(R

+

;W ) i� �

+

D

�

1

JD

1

�

+

>>

0. Denote the operator on the left hand side of (3.1) by E . Then, by (2.4),

the quadratic term in the functional w 7! Q

min

(x

0

; w) is hw; Ewi

L

2

(R

+

;W )

.

Thus, this functional is uniformly concave i� E << 0.

Minimax J-coercive systems have the following properties.
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Lemma 3.3 Let 	 = [

A B

C D

] =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

be minimax J-coercive. Then the

following claims are true.

(i) 	 is J-coercive (i.e., �

+

D

�

JD�

+

has a bounded inverse). In particular,

the time-invariant operator D

�

JD is invertible in TI(U �W ).

(ii) The inverse E =

�

E

11

E

12

E

21

E

22

�

of �

+

D

�

JD�

+

is given by

E

22

= (�

+

D

�

2

�

J � JD

1

�

+

(�

+

D

�

1

JD

1

�

+

)

�1

�

+

D

�

1

J

�

D

2

�

+

)

�1

;

E

21

= �E

22

�

+

D

�

2

JD

1

�

+

(�

+

D

�

1

JD

1

�

+

)

�1

;

E

12

= �(�

+

D

�

1

JD

1

�

+

)

�1

�

+

D

�

1

JD

2

�

+

E

22

;

E

11

= (�

+

D

�

1

JD

1

�

+

)

�1

+ E

12

E

�1

22

E

12

:

(iii) The time-invariant operator D

�

1

JD

1

is uniformly positive on L

2

(R;U),

and the time-invariant operator D

�

2

(J � JD

1

(D

�

1

JD

1

)

�1

D

�

1

J)D

2

is uni-

formly negative on L

2

(R;W ).

Proof. (i) Since �

+

D

�

1

JD

1

�

+

>> 0, hence invertible, we conclude from

the Schur decomposition

�

+

�

D

�

1

D

�

2

�

J

�

D

1

D

2

�

�

+

=

�

I 0

�

+

D

�

2

JD

1

�

+

(�

+

D

�

1

JD

1

�

+

)

�1

�

+

I

�

�

�

�

+

D

�

1

JD

1

�

+

0

0 �

+

D

�

2

(J � JD

1

�

+

(�

+

D

�

1

JD

1

�

+

)

�1

�

+

D

�

1

J)D

2

�

+

�

�

�

I (�

+

D

�

1

JD

1

�

+

)

�1

�

+

D

�

1

JD

2

�

+

0 I

�

that this Toeplitz operator in invertible. Thus D is J-coercive. The invert-

ibility of D

�

JD follows from [Sta�ans 1998c, Lemma 4.4(iii)].

(ii) We get (ii) by inverting each of the operators in the Schur decompo-

sition given above, and multiplying the results.

(iii) The uniform positivity ofD

�

1

JD

1

follows from [Sta�ans 1998c, Lemma

4.4(ii)]. To get the second claim we use the same lemma to get for some � > 0,

� ��(�t)�

+

�(t)

� �(�t)�

+

D

�

2

�

J � JD

1

�

+

(�

+

D

�

1

JD

1

�

+

)

�1

�

+

D

�

1

J

�

D

2

�

+

�(t)

� �(�t)�

+

D

�

2

�

J � JD

1

(D

�

1

JD

1

)

�1

D

�

1

J

�

D

2

�

+

�(t):
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Let t! �1, and use [Sta�ans 1998c, Lemma 4.4(i)] to conclude that

D

�

2

�

J � JD

1

(D

�

1

JD

1

)

�1

D

�

1

J

�

D

2

<< 0:

By combining Lemmas 3.2 and 3.3 we get still another characterization

of minimax J-coercivity.

Lemma 3.4 The system 	 =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

is minimax J-coercive i� the fol-

lowing three conditions hold:

(i) 	 is J-coercive, i.e., �

+

D

�

JD�

+

is invertible,

(ii) �

+

D

�

1

JD

1

�

+

>> 0 on L

2

(R

+

;U),

(iii) E

22

<< 0 on L

2

(R

+

;W ), where E =

�

E

11

E

12

E

21

E

22

�

is the inverse of �

+

D

�

JD�

+

.

As we mentioned in Section 1, to investigate the validity of the implication

(II)) (III) we employ a minimax argument, where we maximize the function

Q

min

(x

0

; w) with respect to w to �nd the \worst possible disturbance". As

the following lemma shows, this maximization is straightforward.

Lemma 3.5 Let 	 = [

A B

C D

] =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

be minimax J-coercive. De-

�ne u

min

, x

min

, y

min

, and Q

min

as in Lemma 2.6. Then, for each �xed

x

0

2 H, there is a unique function w

crit

(x

0

) that maximizes Q

min

(x

0

; w) with

respect to w 2 L

2

(R

+

;W ). De�ne x

crit

(x

0

) = x

min

(x

0

; w

crit

(x

0

)), u

crit

(x

0

) =

u

min

(x

0

; w

crit

(x

0

)), y

crit

(x

0

) = y

min

(x

0

; w

crit

(x

0

)), and Q

crit

= Q

min

(x

0

; w

crit

(x

0

)).

Then x

crit

(x

0

), y

crit

(x

0

), u

crit

(x

0

), and w

crit

(x

0

) are given by

�

u

crit

(x

0

)

w

crit

(x

0

)

�

= ��

+

(�

+

D

�

JD�

+

)

�1

�

+

D

�

JCx

0

; (3.2)

y

crit

(x

0

) = Cx

0

+D�

+

�

u

crit

(x

0

)

w

crit

(x

0

)

�

=

�

I �D�

+

(�

+

D

�

JD�

+

)

�1

�

+

D

�

J

�

Cx

0

= (I � P )Cx

0

; (3.3)

x

crit

(t; x

0

) = A(t)x

0

+ B�(t)�

+

�

u

crit

(x

0

)

w

crit

(x

0

)

�

= A(t)x

0

� B�(t)�

+

(�

+

D

�

JD�

+

)

�1

�

+

D

�

JCx

0

; (3.4)
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where P = D�

+

(�

+

D

�

JD�

+

)

�1

�

+

D

�

J is the projection onto the range of

D�

+

along the null space of �

+

D

�

J . The minimax cost is given by

Q

crit

(x

0

) = max

w2L

2

(R

+

;W )

Q

min

(x

0

; w):

= hy

crit

(x

0

); Jy

crit

(x

0

)i

L

2

(R

+

;Y )

= hx

0

; C

�

J(I � P )Cx

0

i

H

: (3.5)

Moreover, the minimax output y

crit

satis�es

�

+

D

�

Jy

crit

(x

0

) = �

+

D

�

J

�

Cx

0

+D�

+

�

u

min

(x

0

)

w

crit

(x

0

)

��

= 0: (3.6)

Proof. Arguing in the same way as in the proof of Lemma 2.6 we �nd

that (since J

1

= J(I � P

1

) is self-adjoint)

0 = D

�

2

J(I � P

1

)(Cx

0

+D

2

�

+

w

crit

)

= D

�

2

Jy

min

(x

0

; w

crit

)

= D

�

2

Jy

crit

(x

0

):

By (2.6), also D

�

1

Jy

crit

(x

0

) = 0, hence (3.6) holds. The rest of the proof

follows the same lines as the proof of Lemma 2.6.

It follows from (3.6) and [Sta�ans 1998c, Lemma 3.2] that the pair

h

u

crit

(x

0

)

w

crit

(x

0

)

i

is a J-critical control pair in the sense of [Sta�ans 1998c, De�nition 3.1].

Thus, all those results of Sta�ans [1998c] that deal with stable systems can

be applied to stable minimax J-coercive systems. In particular, we recall the

following de�nition:

De�nition 3.6 ([Sta�ans 1998c, De�nition 3.5]) Let 	 = [

A B

C D

] =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

be a J-coercive stable well-posed linear system on (U �W;H; Y ). Then we

de�ne

A

	

(t) = A(t)� B�(t)�

+

(�

+

D

�

JD�

+

)

�1

�

+

D

�

JC;

C

	

=

�

I �D�

+

(�

+

D

�

JD�

+

)

�1

�

+

D

�

J

�

C;

K

	

=

�

K

	

1

K

	

2

�

= �(�

+

D

�

JD�

+

)

�1

�

+

D

�

JC;

� = C

�

�

J � JD�

+

(�

+

D

�

JD�

+

)

�1

�

+

D

�

J

�

C:

The operator � is called the Riccati operator of 	 (with respect to the operator

J).
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Note that in order to de�ne these operators, it su�ces if 	 is J-coercive;

it need not be minimax J-coercive. According to Lemma 3.5, if 	 is minimax

J-coercive, then x

crit

= A

	

(t)x

0

, y

crit

= C

	

x

0

, u

crit

= K

	

1

x

0

, w

crit

= K

	

2

x

0

,

and Q

crit

(x

0

) = hx

0

;�x

0

i

H

. Moreover, by (3.6)

�

+

D

�

JC

	

= 0: (3.7)

4 (J; S)-Inner-Outer Factorizations and Feed-

back Representations

If 	 is minimax J-coercive, then the construction in the preceding section

gave us a unique minimax control/disturbance pair. As shown in Sta�ans

[1998c], it is possible to get a feedback/feedforward representation for this

pair if we can �nd a (J; S)-inner-outer factorization of the input/output map

D. This notion and some related notions are de�ned as follows (with V =

U �W ).

De�nition 4.1 ([Sta�ans 1998c, De�nition 4.5]) Let J = J

�

2 L(Y ),

and let S = S

�

2 L(V ).

(i) The operator N 2 TIC(V ;Y ) is (J; S)-inner if N

�

JN = S.

(ii) The operator X 2 TIC(V ) is outer if the image of L

2

(R

+

;V ) under

X�

+

is dense in L

2

(R

+

;V ).

(iii) The operator X 2 TIC(V ) is an (invertible) S-spectral factor of D

�

JD 2

TI(V ) if X is invertible in TIC(V ) and D

�

JD = X

�

SX .

(iv) The factorization D = NX is a (J; S)-inner-outer factorization of D 2

TIC(V ;Y ) if N 2 TIC(V ;Y ) is (J; S)-inner and X 2 TIC(V ) is

outer.

(v) In each case we call S the sensitivity operator of N or of the factoriza-

tion.

There is a simple connection between inner-outer factorizations and spec-

tral factorizations.

19



Lemma 4.2 ([Sta�ans 1998c, Lemma 4.6(i)]) If X is a S-spectral fac-

tor of D

�

JD, then NX = (DX

�1

)X is a (J; S)-inner-outer factorization of

D. Conversely, if NX is a (J; S)-inner-outer factorization of D and X is

invertible in TIC(V ), then X is a S-spectral factor of D

�

JD.

In the classical case the existence of a S-spectral factor of D

�

JD is guar-

anteed whenever 	 is J-coercive. In particular, in this case it follows from

Lemmas 2.7 and 4.2 that D has a (J; S)-inner-outer factorization whenever

	 is minimax J-coercive. This is no longer true in the in�nite-dimensional

case (see [Sta�ans 1998c, Remark 4.8]), except in special cases, such as the

following.

De�nition 4.3 A system 	 = [

A B

C D

] on (V;H; Y ) has an L

1

impulse re-

sponse if D is a convolution operator of the form (for all v 2 L

2

(R;V ) and

almost all t 2 R)

(Dv)(t) = Dv(t) +

Z

t

�1

E(t� s)v(s) ds;

where D 2 L(U ;Y ) and E 2 L

1

(R

+

;L(V ;Y )).

Lemma 4.4 ([Sta�ans 1998c, Corollary 4.10]) If both U andW are �nite-

dimensional, and if 	 = [

A B

C D

] =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

is J-coercive and has an L

1

impulse response, then D has a (J; S)-inner-outer factorization.

As our next theorem shows, the existence of a well-posed state feed-

back/feedforward representation of the critical control/disturbance pair is

equivalent to the existence of a (J; S)-inner-outer factorization of D.

Theorem 4.5 ([Sta�ans 1998c, Theorem 5.1]) Let 	 = [

A B

C D

] =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

be a stable J-coercive well-posed linear system on (U�W;H; Y ). De�ne u

crit

,

x

crit

, y

crit

, and Q

crit

as in (3.2){(3.5), and let � be the Riccati operator de�ned

in De�nition 3.6.

(i) Suppose that D has a (J; S)-inner-outer factorization D = NX . Then

S is invertible in L(U � W ), X is invertible in TIC(U � W ), and

X is a S-spectral factor of D

�

JD. De�ne M = X

�1

and

�

K F

�

=
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Figure 3: Closed loop feedback connection

�

�S

�1

�

+

N

�

JC (I � X )

�

. Then

�

K F

�

is a stabilizing state feed-

back/feedforward controller for 	, i.e., the feedback connection drawn

in Figure 3 de�nes a well-posed linear system 	

	

, given by

	

	

=

2

4

A

	

B

	

�

C

	

K

	

� �

D

	

F

	

�

3

5

=

2

4

A+ BM�K BM

�

C +NK

MK

� �

N

M� I

�

3

5

:

Moreover, the state and outputs of this closed loop system are equal

to x

crit

(t; x

0

), y

crit

(x

0

), and

h

u

crit

(x

0

)

w

crit

(x

0

)

i

, respectively, if we take the two

closed loop inputs u

	

and w

	

to be zero. The Riccati operator � of 	

can be written in the following alternative forms:

� = C

�

JC � K

�

SK = C

�

JC

	

= C

	

�

JC

	

= C

	

�

JC:

(ii) Conversely, suppose that

�

y

crit

(x

0

)

u

crit

(x

0

)

w

crit

(x

0

)

�

is equal to the output of some stable

state feedback perturbation 	

	

of 	 with initial value x

0

, initial time

0, zero control, zero disturbance, and some admissible stable state feed-

back pair

�

K F

�

. Then there exists an operator S = S

�

2 L(U �

W ) such that NX is a (J; S)-inner-outer factorization of D, where

N = D (I � F)

�1

and X = (I � F). Moreover, K is given by K =

�S

�1

�

+

N

�

JC.
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(iii) Let the two equivalent conditions (i) and (ii) hold. If y = C

	

x

0

+

D

	

1

�

+

u

	

+D

	

2

�

+

w

	

is the �rst output of the critical closed loop system

	

	

with initial state x

0

2 H, control u

	

2 L

2

(R

+

;U), and disturbance

w

	

2 L

2

(R

+

;W ), then the closed loop cost Q

	

(x

0

; u

	

; w

	

) is given by

Q

	

(x

0

; u

	

; w

	

) =

Z

R

+

hy(s); Jy(s)i

Y

ds

= hx

0

;�x

0

i

H

+

Z

R

+

��

u

	

(s)

w

	

(s)

�

; S

�

u

	

(s)

w

	

(s)

��

U

ds:

(4.1)

To get any further in our proof of the implication (II) ) (III) we need a

feedback representation of the critical minimax solution of the type described

in Theorem 4.5, and we therefore have to invoke the following \regularity"

hypothesis.

Hypothesis 4.6 The input/output map D has a (J; S)-inner-outer factor-

ization.

By Lemma 4.4, this hypothesis is redundant if U and W are �nite-

dimensional and 	 is J-coercive and has an L

1

impulse response. It is still

an open problem to what extent this hypothesis can be weakened.

The reason for calling S the sensitivity operator associated with the given

factorization is found in the �nal formula for the cost given in part (iii) of

Theorem 4.5. Observe that this formula rewrites the cost in terms of the

initial state x

0

and the two closed loop inputs u

	

and w

	

in Figure 3. This

formula plays a key role in the subsequent development.

Several times in the sequel we need to pass back and forth between the

open loop system 	 and the corresponding closed loop system 	

	

. This

passage is greatly simpli�ed by the following remarks.

Remark 4.7 ([Sta�ans 1998a, Remark 3.9]) It is possible, and in many

cases more convenient, to replace the feedback output z in Figure 4 by the

output v = [

u

w

], which is equal to the input of the original system. (In this

�gure we have combined the two inputs [

u

	

w

	

] into one input denoted by v

	

,

and also combined the two feedback outputs signals into one signal called z;

cf. Figure 3.) This only amounts to the addition of a identity feedforward

term to the input/output map from v

	

to z, so the new input/output map

from z to v is M instead of M� I that appears in the bottom right corner

in the de�nition of 	

	

. All the other elements of 	

	

remain unchanged in

this setting.
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Figure 4: Closed loop version of state feedback connection
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Figure 5: Closed loop system written in open loop form
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Figure 6: Open loop version of state feedback connection
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Figure 7: Use negative feedback to recover the open loop system

Lemma 4.8 The state x, output y, and state feedback output z of the closed

loop system 	

	

with initial value x

0

and control/disturbance pair v

	

= [

u

	

w

	

]

is equal to the state, output, and state feedback output of the open loop system

	

ext

=

2

4

A B

�

C

K

� �

D

F

�

3

5

with initial value x

0

and control/disturbance pair

�

u

w

�

= v = z + �

+

v

	

= Kx

0

+ Fv + �

+

v

	

= K

	

x

0

+ F

	

�

+

v

	

+ �

+

v

	

=

�

K

1

x

0

+ F

11

u+ F

12

w + �

+

u

	

K

2

x

0

+ F

21

u+ F

22

w + �

+

w

	

�

=

�

K

	

1

x

0

+M

11

�

+

u

	

+M

12

�

+

w

	

K

	

2

x

0

+M

21

�

+

u

	

+M

22

�

+

w

	

�

;

where M = (I � F)

�1

. Conversely, the state x, output y, and state feed-

back output z of the open loop system 	

ext

with initial value x

0

and con-

trol/disturbance pair v = [

u

w

] is equal to the state, output, and state feed-

back output of the closed loop system 	

	

with initial value x

0

and con-
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trol/disturbance pair

�

u

	

w

	

�

= v

	

= �z + �

+

v

= �K

	

x

0

� F

	

v

	

+ �

+

v

= �Kx

0

�F�

+

v + �

+

v

=

�

�K

	

1

x

0

�F

	

11

u

	

� F

	

12

w

	

+ �

+

u

�K

	

2

x

0

� F

	

21

u

	

� F

	

22

w

	

+ �

+

w

�

=

�

�K

1

x

0

+ X

11

�

+

u+ X

12

�

+

w

�K

2

x

0

+ X

21

�

+

u+ X

22

�

+

w

�

;

where X = I �F =M

�1

.

Proof. The �rst half of this lemma is obvious; see the equivalent Figures 4

and 5. The second half of the lemma is equally obvious since the connections

drawn in Figures 6 and 7 are equivalent to those in Figures 4 and 5.

Corollary 4.9 The open and closed loop cost functions de�ned in (1.1) and

(4.1) satisfy

Q(x

0

; u; w) = Q

	

(x

0

; u

	

; w

	

)

if we choose the control and disturbance signals u, w, u

	

, and w

	

to satisfy

any one of the following four equivalent sets of equations

�

u

	

w

	

�

=

�

�K

	

1

x

0

�F

	

11

u

	

�F

	

12

w

	

+ �

+

u

�K

	

2

x

0

� F

	

21

u

	

� F

	

22

w

	

+ �

+

w

�

;

�

u

	

w

	

�

=

�

�K

1

x

0

+ X

11

�

+

u+ X

12

�

+

w

�K

2

x

0

+ X

21

�

+

u+ X

22

�

+

w

�

;

�

u

w

�

=

�

K

1

x

0

+ F

11

u+ F

12

w + �

+

u

	

K

2

x

0

+ F

21

u+ F

22

w + �

+

w

	

�

;

�

u

w

�

=

�

K

	

1

x

0

+M

11

�

+

u

	

+M

12

�

+

w

	

K

	

2

x

0

+M

21

�

+

u

	

+M

22

�

+

w

	

�

:

Here F = I �X and M = X

�1

.

Let us remark that the �rst and third equation are written in feedback

form corresponding to Figures 7 and 4, and that the second and forth equa-

tion above are written in explicit input/output form, corresponding Figures

6 and 5.
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For the convenience of the reader, let us recall still a few more results from

Sta�ans [1998b] and Sta�ans [1998c] concerning the feedback representation

of the critical solution.

Lemma 4.10 Let

e

N

e

X be a particular

e

S-inner-outer factorization of D, and

de�ne

f

M =

e

X

�1

. Then the set of all possible sensitivity operators S, the

set of all possible (J; S)-inner-outer factorizations of D, and the set of all

possible operators M in Theorem 4.5 can be parameterized as

S = E

�

e

SE; X = E

�1

e

X ; N =

e

NE; M =

f

ME;

where E varies over the set of all invertible operators in L(U � W ). The

corresponding feedback pair

�

K F

�

in Theorem 4.5 is given by

K = E

�1

e

K; (I � F) = E

�1

(I �

e

F);

where

e

K = �

e

S�

+

e

N

�

JC and

e

F =

�

I �

f

M

�1

�

, i.e.,

�

e

K

e

F

�

is the feed-

back pair in Theorem 4.5 corresponding to the factorization D =

e

N

e

X . The

parameterized version of the formula for the closed loop system in Theorem

4.5 is

	

	

=

2

4

A

	

B

	

�

C

	

K

	

� �

D

	

F

	

�

3

5

=

2

4

A+ B

f

M�

e

K B

f

ME

�

C +

e

N

e

K

f

M

e

K

� �

e

NE

f

ME � I

�

3

5

:

The �rst column is independent of E (but the second is not).

Proof. This follows from [Sta�ans 1998b, Proposition 4.7] and [Sta�ans

1998c, Remark 5.2].

The operator E has a very simple interpretation: it represents a coordi-

nate change in the input space for the closed loop system.

Proposition 4.11 In addition to the notation introduced in Lemma 4.10,

denote the vectors [

u

w

] and [

u

	

w

	

] by v and v

	

, respectively. Then the two

diagrams drawn in Figures 8 and 9 are equivalent in the sense that the rela-

tionships between all the signals with identical names are identical in the two

diagrams (but z di�ers in general from ~z.)

Proof. This follows from [Sta�ans 1998b, Proposition 4.8] and [Sta�ans

1998c, Remark 5.2].

26



A B�

�

C

K

� �

D

F

�

?

x

0

�

x

�

y

�

z

s

?

d

+

+

-

�

+

v

	

-

v

s

6

Figure 8: Internal parameterization of the feedback equilibrium
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Figure 9: External parameterization of the feedback equilibrium
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5 Minimax Properties of the Closed Loop Sys-

tem

Lemma 4.10 contains the free parameter E. According to Theorem 4.5 and

Lemma 4.10, all possible choices of E lead to equivalent control strategies

in the sense that as long as neither of the two players deviate from their

\critical" strategy (i.e., v

	

= 0 in Figures 8 and 9) the actual control u

crit

(x

0

)

and disturbance w

crit

(x

0

) will remain the same, and they are equal to the

minimax pair de�ned in Lemma 3.5. However, if either of the players deviates

from the critical strategy, then the behavior of the closed loop system depends

strongly on the parameter E. This parameter must be chosen in such a way

that the closed loop system has the appropriate minimax property.

De�nition 5.1 Let Q : H�L

2

(R

+

;U)�L

2

(R

+

;W )! R. We call the point

(x

0

; u

0

; w

0

) 2 H � L

2

(R

+

;U)� L

2

(R

+

;W )

(i) a saddle point of Q (with respect to the last two variables) if

Q(x

0

; u; w

0

) � Q(x

0

; u

0

; w

0

) and

Q(x

0

; u

0

; w) � Q(x

0

; u

0

; w

0

)

for all u 2 L

2

(R

+

;U) and w 2 L

2

(R

+

;W );

(ii) a uniform saddle point of Q if

Q(x

0

; u; w

0

) � Q(x

0

; u

0

; w

0

) + � ku� u

0

k

L

2

(R

+

;U)

and

Q(x

0

; u

0

; w) � Q(x

0

; u

0

; w

0

)� � kw � w

0

k

L

2

(R

+

;W )

for some � > 0 and all u 2 L

2

(R

+

;U) and w 2 L

2

(R

+

;W );

(iii) a saddle point of Q with principal axes U and W if

Q(x

0

; u; w) � Q(x

0

; u

0

; w) and

Q(x

0

; u; w) � Q(x

0

; u; w

0

)

for all u 2 L

2

(R

+

;U) and w 2 L

2

(R

+

;W );

(iv) a uniform saddle point of Q with principal axes U and W if

Q(x

0

; u; w) � Q(x

0

; u

0

; w) + � ku� u

0

k

L

2

(R

+

;U)

and

Q(x

0

; u; w) � Q(x

0

; u; w

0

)� � kw � w

0

k

L

2

(R

+

;W )

for some � > 0 and all u 2 L

2

(R

+

;U) and w 2 L

2

(R

+

;W ).
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Theorem 5.2 Let 	 = [

A B

C D

] =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

be a stable J-coercive well-posed

linear system on (U �W;H; Y ), and suppose that D has a (J; S)-inner-outer

factorization D = NX . Write S in block form S =

�

S

11

S

12

S

21

S

22

�

corresponding

to the natural splitting of the space U �W into its components U and W .

Let Q

	

be the closed loop cost function de�ned in (4.1).

(i) Q

	

(x

0

; u

	

; w

	

) is [uniformly] convex with respect to u

	

if and only if

S

11

is [uniformly] positive.

(ii) Q

	

(x

0

; u

	

; w

	

) is [uniformly] concave with respect to w

	

if and only if

S

22

is [uniformly] negative.

(iii) For each x

0

2 H, the point (x

0

; 0; 0) is a [uniform] saddle point of Q

	

if and only if S

11

is [uniformly] positive and S

22

is [uniformly] negative.

(iv) For each x

0

2 H, the following conditions are equivalent:

(a) (x

0

; 0; 0) is a saddle point of Q

	

with principal axes U and W ;

(b) (x

0

; 0; 0) is a uniform saddle point of Q

	

with principal axes U

and W ;

(c) S

11

� 0, S

22

� 0, S

12

= 0, and S

21

= 0;

(d) S

11

>> 0, S

22

<< 0, S

12

= 0, and S

21

= 0.

(v) If S

11

>> 0 then, for each �xed w

	

2 L

2

(R

+

;W ), the minimum of

Q

	

(x

0

; u

	

; w

	

) with respect to u 2 L

2

(R

+

;U) is achieved for u

	

=

�S

�1

11

S

12

w

	

. If we replace the variable u

	

by the new independent

variable ~u = u

	

+ S

�1

11

S

12

w

	

, then

�

u

	

w

	

�

= E

1

�

~u

w

	

�

=

�

I �S

�1

11

S

12

0 I

� �

~u

w

	

�

;

and we get a new closed loop system of the type described Theorem 4.5

with S replaced by the congruent operator

E

�

1

SE

1

=

�

I 0

�S

21

S

�1

11

I

� �

S

11

S

12

S

21

S

22

� �

I �S

�1

11

S

12

0 I

�

=

�

S

11

0

0 S

22

� S

21

S

�1

11

S

12

�

;
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and N and M replaced by NE

1

and ME

1

, respectively. If S

22

�

S

21

S

�1

11

S

12

� 0, or equivalently, if S

22

� S

21

S

�1

11

S

12

<< 0, then this

results in a new closed loop system with a uniform saddle point with

principal axes U and W .

(vi) If S

22

<< 0 then, for each �xed u

	

2 L

2

(R

+

;U), the maximum of

Q

	

(x

0

; u

	

; w

	

) with respect to w

	

2 L

2

(R

+

;W ) is achieved for w

	

=

�S

�1

22

S

21

u

	

. If we replace the variable w

	

by the new independent

variable ~w = w

	

+ S

�1

22

S

21

u

	

, then

�

u

	

w

	

�

= E

2

�

u

	

~w

�

=

�

I 0

�S

�1

22

S

21

I

� �

u

	

~w

�

;

and we get a new closed loop system of the type described in Theorem

4.5 with S replaced by the congruent operator

E

�

2

SE

2

=

�

I �S

12

S

�1

22

0 I

� �

S

11

S

12

S

21

S

22

� �

I 0

�S

�1

22

S

21

I

�

=

�

S

11

� S

12

S

�1

22

S

21

0

0 S

22

�

;

and N and M replaced by NE

2

and ME

2

, respectively. If S

11

�

S

12

S

�1

22

S

21

� 0, or equivalently, S

11

�S

12

S

�1

22

S

21

>> 0, then this results

in a new closed loop system with a uniform saddle point with principal

axes U and W .

(vii) If (x

0

; 0; 0) is a uniform saddle point of Q

	

, then both part (v) and part

(vi) apply, and both the resulting closed loop systems have a uniform

saddle point with principal axes U and W .

Proof. (i){(iv) These four claims follow directly from part (iii) of Theorem

4.5. (Observe that parts (c) and (d) of (iv) are equivalent because of the

invertibility of S.)

(v) To prove (v) we use part (iii) of Theorem 4.5, and rearrange the terms

(complete the square with respect to u

	

) to get

Q

	

(x

0

; u

	

; w

	

) = hx

0

;�x

0

i

H

+ hu

	

; S

11

u

	

+ S

12

w

	

i

L

2

(R

+

;U)

+ hw

	

; S

21

u

	

+ S

22

w

	

i

L

2

(R

+

;W )

= hx

0

;�x

0

i

H

+


�

u

	

+ S

�1

11

S

12

w

	

�

; S

11

�

u

	

+ S

�1

11

S

12

w

	

��

L

2

(R

+

;U)

+




w

	

;

�

S

22

� S

21

S

�1

11

S

12

�

w

	

�

L

2

(R

+

;W )

:
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This expression is minimized by the function u

	

= �S

�1

11

S

12

w

	

. The proof of

the fact that the change of variable ~u = u

	

+S

�1

11

S

12

w

	

leads to a new closed

loop system with the listed properties is the same as the proof of Proposition

4.11. If S

22

� S

21

S

�1

11

S

12

� 0, then it must be uniformly negative since S is

invertible.

(vi) The proof of (vi) is similar to the proof of (v).

(vii) This follows from (iii).

Remark 5.3 It follows from Theorem 5.2 that not all choices of the parame-

ter E in Lemma 4.10 lead to an acceptable closed loop system. In particular,

we observe the following facts:

(i) It is not in the interest of the minimizing player (the control engineer)

to take part in a feedback/feedforward scheme where S

22

is anything but

negative, because in such a scheme the maximizing player can make the

closed loop cost arbitrarily large by choosing the closed loop disturbance

w

	

appropriately.

(ii) It is not in the interest of the maximizing player (nature) to take part

in a feedback/feedforward scheme where S

11

is anything but positive,

because in such a scheme the minimizing player can make the cost of

the closed loop system arbitrarily negative by choosing the closed loop

control u

	

appropriately. In this case the feedback/feedforward policy

for the second player even leads to a worse result than the open loop

policy, because for each �xed open loop disturbance w the cost is bounded

from below; cf. (2.5).

(iii) If S

11

>> 0 and S

12

6= 0, then the minimizing player can improve the

outcome of the game (i.e., decrease the value of the cost function) for

nonzero closed loop disturbances w

	

by using the policy described in

part (v) of Theorem 5.2. This change does not a�ect the disturbance

feedback/feedforward equation

w = K

2

x

0

+ F

21

u+ F

22

w + �

+

w

	

;

but it does change the control feedback/feedforward equation from

u = K

1

x

0

+ F

11

u+ F

12

w + �

+

u

	

31



into

u =

�

K

1

+ S

�1

11

S

12

K

2

�

x

0

+

�

F

11

+ S

�1

11

S

12

F

21

�

u

+

�

F

12

+ S

�1

11

S

12

(F

22

� I)

�

w + �

+

u

	

:

(iv) If S

22

<< 0 and S

21

6= 0, then the maximizing player can improve the

outcome of the game (i.e., increase the value of the cost function) for

nonzero closed loop controls u

	

by using the policy described in part (vi)

of Theorem 5.2. This change does not a�ect the control feedback/feed-

forward equation

u = K

1

x

0

+ F

11

u+ F

12

w + �

+

u

	

but it does change the disturbance feedback/feedforward equation from

w = K

2

x

0

+ F

21

u+ F

22

w + �

+

w

	

into

u =

�

K

2

+ S

�1

22

S

21

K

1

�

x

0

+

�

F

21

+ S

�1

22

S

21

(F

11

� I)

�

u

+

�

F

22

+ S

�1

22

S

21

F

12

�

w + �

+

w

	

:

Because of the facts listed in Remark 5.3, we shall in the sequel only

study factorizations for which S

22

<< 0 and S

11

� S

12

S

�1

22

S

21

>> 0. Much

of the time we shall, in addition, assume that the o�-diagonal terms S

12

and

S

21

= S

�

12

vanish and that S

11

>> 0. In the latter case the closed loop cost

function Q

	

has a uniform saddle point with principal axes U and W .

Is it then always possible to take S

11

>> 0 and S

22

<< 0? The answer is

\yes" if 	 is minimax J-coercive (rather than just plain J-coercive).

Lemma 5.4 Let 	 = [

A B

C D

] =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

be minimax J-coercive, and sup-

pose that D

�

JD has an S-spectral factor X . Then S is a congruence transfor-

mation of the operator T =

�

I 0

0 �I

�

(where the block form is the one induced by

the natural splitting of U�W into its components U andW ), i.e., S = E

�

TE

for some invertible operator E 2 L(U �W ). Moreover, it is possible to �nd

a T -spectral factor X

T

, and the set of all possible S-spectral factorizations

of D

�

JD can be parameterized as S = E

�

TE and X = E

�1

X

T

, where E

varies over the set of all invertible operators in L(U �W ). In all cases the

dimension of the positive eigenspace of S is equal to the dimension of U , and

the dimension of the negative eigenspace of S is equal to the dimension of

W . (These dimensions are called the inertia of S.)
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Proof. (i) Use the Schur decomposition (cf. the proof of Lemma 3.3) to

rewrite S in the form

S = (X

�

)

�1

�

D

�

1

D

�

2

�

J

�

D

1

D

2

�

X

�1

= (X

�

)

�1

�

I 0

D

�

2

JD

1

(D

�

1

JD

1

)

�1

I

�

�

�

D

�

1

JD

1

0

0 D

�

2

(J � JD

1

(D

�

1

JD

1

)

�1

D

�

1

J)D

2

�

�

�

I (D

�

1

JD

1

)

�1

D

�

1

JD

2

0 I

�

X

�1

;

where, according to Lemma 3.3(iii), D

�

1

JD

1

>> 0 on L

2

(R;U), and

D

�

2

�

J � JD

1

(D

�

1

JD

1

)

�1

D

�

1

J

�

D

2

<< 0

on L

2

(R;Y ). Use [Sta�ans 1998c, Lemma 4.3(iv)] to factor these two oper-

ators as

D

�

1

JD

1

= X

�

1

X

1

; D

�

2

�

J � JD

1

(D

�

1

JD

1

)

�1

D

�

1

J

�

D

2

= �X

�

2

X

2

;

and to conclude that S can be written in the form

S = U

�

�

I 0

0 �I

�

U ;

where

U =

�

X

1

0

0 X

2

� �

I (D

�

1

JD

1

)

�1

D

�

1

JD

2

0 I

�

X

�1

has a bounded inverse in TI(U �W ).

The equation above induces an analogous equation in the frequency do-

main. The operator U induces a strongly measurable L(U �W )-valued L

1

function

b

U de�ned on the imaginary axis jR, called the symbol of U ; see, e.g.,

[Four�es and Segal 1955, Theorem 1] or [Thomas 1997, Theorem 5.2] (this is

where we need the assumption that U and W are separable). This symbol

is determined by the fact that if we use a hat b to represent the bilateral

Laplace (Plancherel) transform, then

\

�

U

�

u

w

��

(j!) =

b

U(j!)

�

û(j!)

ŵ(j!)

�
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for all u 2 L

2

(R;U), w 2 L

2

(R;W ), and for almost all ! 2 R. The algebraic

structure of TI(U �W ) is preserved under the passage to the symbols, so

we �nd that

S =

b

U

�

(j!)

�

I 0

0 �I

�

b

U(j!);

for almost all ! 2 R. Fix any ! for which this equation holds. We conclude

that S is a congruence transformation of the operator T =

�

I 0

0 �I

�

. The

claims about the dimensions of the positive and negative eigenspaces of S

then follow from the standard properties of congruence transformations, and

the remaining claims from Lemma 4.2 and Lemma 4.10.

Lemma 5.4 implies the following result.

Lemma 5.5 Let 	 = [

A B

C D

] =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

be minimax J-coercive, and sup-

pose that D

�

JD has an S-spectral factor X . Split S into S =

�

S

11

S

12

S

21

S

22

�

, and

suppose that the o� diagonal terms S

12

and S

21

vanish. Then

(i) if either U or W is �nite-dimensional and S

11

� 0, then S

11

>> 0 and

S

22

<< 0,

(ii) if either U or W is �nite-dimensional and S

22

� 0, then S

11

>> 0 and

S

22

<< 0.

Proof. This follows from the fact that the dimension of the positive

eigenspace of S equals the dimension of U , and that the dimension of the

negative eigenspace of S equals the dimension of W .

Remark 5.6 The claims (i) and (ii) in Lemma 5.5 are not true if both U and

W are in�nite-dimensional, as the following counterexample shows. Suppose

that D

�

JD has a T -spectral factor X

T

, where T =

�

I 0

0 �I

�

; cf. Lemma 5.4.

Choose an arbitrary orthonormal basis fe

n

g

0

n=�1

in U , and another arbitrary

orthonormal basis fe

n

g

1

n=1

in W . Let E 2 L(U �W ) be the shift operator

that maps e

n

into e

n�1

for all n. This operator is invertible in L(U �W ),

so if we de�ne X = E

�1

X

T

and S = E

�

TE, then X is a S-spectral factor of

D

�

JD; cf. Lemma 5.4. Moreover, S

11

= I >> 0, S

12

= 0, S

21

= 0, but it is

not true that S

22

<< 0, because he

1

; Se

1

i = 1 > 0.
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Figure 10: Final semi-closed feedback connection

6 Cutting the Disturbance Feedback Loop

Up to now we have considered feedback representations of the minimax equi-

librium where the feedback enters both through the control variable u and

through the disturbance variable w. We have also investigated the saddle

point properties of the closed loop system. We have found that if the pa-

rameter E is chosen appropriately, then the closed loop system has a saddle

point with principal axes U and W , and the optimal strategies for both the

minimizing player (the control engineer) and the maximizing player (nature)

is to take the inputs u

	

and w

	

to the closed loop system 	

	

to be zero.

The statement above applies as long as we impose the given \double"

feedback structure on the solution. However, in the original formulation

the maximizing player is allowed to choose the original disturbance variable

w 2 L

2

(R

+

;W ) in an arbitrary manner. In particular, nothing forces him

to employ the given feedback formula; he may choose to cut the disturbance

feedback loop and to apply an arbitrary open loop disturbance w instead, as

drawn in Figure 10. If this is done, then we get a system where the control u

is generated by a feedback loop, whereas the disturbance is open loop. This

is the structure of feedback/feedforward solution that we were looking for in

the �rst place; cf. De�nition 2.2 and conditions (III){(IV) in Theorem 1.3.

The following theorem describes what happens when the disturbance feed-

back loop is opened:
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Theorem 6.1 Let 	 = [

A B

C D

] =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

be a stable J-coercive well-posed

linear system on (U �W;H; Y ), and suppose that D has a (J; S)-inner-outer

factorization D = NX . Introduce the same notations as in Theorem 4.5.

Then the following conditions are equivalent:

(i) The operator [

0 I 0

0 0 0

] is an admissible stable output feedback operator for

the extended open loop system (see [Sta�ans 1997, De�nition 19])

	

ext

=

2

6

6

4

A

�

B

1

B

2

�

2

4

C

K

1

K

2

3

5

2

4

D

1

D

2

I � X

11

�X

12

�X

21

I �X

22

3

5

3

7

7

5

:

(ii) The operator [

0 0 0

0 0 �I

] is an admissible stable output feedback operator

for the extended closed loop system

	

	

=

2

6

6

4

A

	

�

B

	

1

B

	

2

�

2

4

C

	

K

	

1

K

	

2

3

5

2

4

N

1

N

2

M

11

� I M

12

M

21

M

22

� I

3

5

3

7

7

5

:

(iii) X

11

has an inverse in TIC(U).

(iv) M

22

has an inverse in TIC(W ).

Moreover, the two closed loop systems that we get in (i) and (ii) are the same,

and they are given by

	

x

=

2

6

6

4

A

x

�

B

x

1

� B

x

2

�

�

2

4

C

x

K

x

1

K

x

2

3

5

2

4

D

x

1

D

x

2

F

x

11

F

x

12

F

x

21

F

x

22

3

5

3

7

7

5

=

2

6

6

4

A+ B

1

�X

�1

11

K

1

�

B

1

X

�1

11

� B

2

� � B

1

X

�1

11

X

12

�

�

2

4

C +D

1

X

�1

11

K

1

X

�1

11

K

1

K

2

� X

21

X

�1

11

K

1

3

5

2

4

D

1

X

�1

11

D

2

�D

1

X

�1

11

X

12

X

�1

11

� I �X

�1

11

X

12

�X

21

X

�1

11

I �X

22

+ X

21

X

�1

11

X

12

3

5

3

7

7

5

=

2

6

6

4

A

	

� B

	

2

�M

�1

22

K

	

2

�

B

	

1

� � B

	

2

M

�1

22

M

21

� B

	

2

M

�1

22

�

�

2

4

C

	

�N

2

M

�1

22

K

	

2

K

	

1

�M

12

M

�1

22

K

	

2

M

�1

22

K

	

2

3

5

2

4

N

1

�N

2

M

�1

22

M

21

N

2

M

�1

22

M

11

� I �M

12

M

�1

22

M

21

M

12

M

�1

22

M

�1

22

M

21

I �M

�1

22

3

5

3

7

7

5

:
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Proof. This follows from a standard result on repeated feedbacks; see

[Sta�ans 1998a, De�nition 3.1 and Propositions 3.2{3.3].

Lemma 6.2 The four equivalent conditions in Theorem 6.1 are satis�ed if

and only if X and M can be factored (boundedly) as

X =M

�1

X ; M = X

�1

M;

in TIC(U �W ); here

X =

�

X

11

X

12

0 I

�

;

M =

�

I 0

M

21

M

22

�

;

X

�1

=

�

I + F

x

11

F

x

12

0 I

�

=

�

X

�1

11

�X

�1

11

X

12

0 I

�

=

�

M

11

�M

12

M

�1

22

M

21

M

12

M

�1

22

0 I

�

;

M

�1

=

�

I 0

�F

x

21

I �F

x

22

�

=

�

I 0

�M

�1

22

M

21

M

�1

22

�

=

�

I 0

X

21

X

�1

11

X

22

�X

21

X

�1

11

X

12

�

:

Moreover, if we replace either the last row or the second last row of the system

	

x

by a zero row, then the two systems that we get in this way are given by

2

6

6

4

A

x

�

B

x

1

� B

x

2

�

�

2

4

C

x

K

x

1

0

3

5

2

4

D

x

1

D

x

2

F

x

11

F

x

12

0 0

3

5

3

7

7

5

=

2

6

4

A+ B�X

�1

K BX

�1

�

"

C +DX

�1

K

X

�1

K

# "

DX

�1

X

�1

� I

#

3

7

5

;

2

6

6

4

A

x

�

B

x

1

� B

x

2

�

�

2

4

C

x

0

K

x

2

3

5

2

4

D

x

1

D

x

2

0 0

F

x

21

F

x

22

3

5

3

7

7

5

=

2

4

A

	

� B

	

�M

�1

K

	

B

	

M

�1

�

�

C

	

�NM

�1

K

	

M

�1

K

	

� �

NM

�1

I �M

�1

�

3

5

;
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where

K =

�

K

1

0

�

; K

	

=

�

0

K

	

2

�

:

In particular,

C

x

= C +DX

�1

K = C

	

�NM

�1

K

	

;

D

x

= DX

�1

= NM

�1

;

K

x

= X

�1

K +M

�1

K

	

;

F

x

= X

�1

�M

�1

:

Proof. We leave the straightforward algebraic proof to the reader.

De�nition 6.3 A (J; S)-inner-outer factorization D = NX of D 2 TIC(U�

W ;Y ) is feasible if S = S

�

is invertible in L(U �W ), X =

�

X

11

X

12

X

21

X

22

�

is in-

vertible in TIC(U �W ) and X

11

is invertible in TIC(U).

Compare this de�nition to conditions(III) in 1.3 and Theorems 4.5(i) and

6.1(iii).

Theorem 6.4 Let J 2 L(Y ) and let 	 = [

A B

C D

] =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

be a stable

minimax J-coercive well-posed linear system on (U �W;H; Y ), and suppose

that D has a (J; S)-inner-outer factorization D = NX . If we choose this

factorization in such a way that S = T =

�

I 0

0 �I

�

(this is possible according

to Lemma 5.4), then it is feasible.

This theorem shows that condition (II) in Theorem 1.3 together with

Hypothesis 4.6 implies (III).

Proof of Theorem 6.4. According to Lemma 3.3(i) and Theorems 4.5(i)

and 6.1, to prove Theorem 6.4 it su�ces to show that M

22

has a causal in-

verse, where M =

�

M

11

M

12

M

21

M

22

�

= X

�1

. We shall do this by applying [Sta�ans

1998c, Lemma 4.11(iii)] to M

22

. The main assumption of that lemma con-

sists of the two conditions

M

�

22

M

22

>> 0 on L

2

(R;W ); (6.1)

M

22

�

+

M

�

22

>> 0 on L

2

(R

+

;W ): (6.2)
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Let us start with the veri�cation of condition (6.1). By Theorem 4.5(iii),

the closed loop cost with initial value x

0

= 0 and control u

	

= 0 is

Q

	

(0; 0; w

	

) = hw

	

; S

22

w

	

i � ��kw

	

k

2

L

2

(R

+

;W )

for some � > 0, since we assume S

22

<< 0. On the other hand, by Corol-

lary 4.9 and Lemma 2.6 (see, in particular, (2.5)),

Q

	

(0; 0; w

	

) = Q(0;M

12

�

+

w

	

;M

22

�

+

w

	

)

� Q

min

(0;M

22

�

+

w

	

)

� �K kM

22

�

+

w

	

k

2

L

2

(R

+

;Y )

;

for some K <1. Thus,

�

+

M

�

22

M

22

�

+

>> 0 on L

2

(R

+

;W );

which by [Sta�ans 1998c, Lemma 4.4(ii)] is equivalent to (6.1). (So far we

have used only the assumptions S

22

<< 0 and �

+

D

�

1

JD

1

�

+

>> 0.)

Next we verify condition (6.2). Since X is an T -spectral factor of D

�

JD,

by [Sta�ans 1998c, Lemma 4.3(iii)], the inverse of the Toeplitz operator

�

+

D

�

JD�

+

is X

�1

�

+

T

�1

(X

�

)

�1

= M�

+

TM

�

(note that T

�1

= T ). Thus,

by Lemma 3.4(iii),

�M

22

�

+

M

�

22

<< �M

21

�

+

M

�

21

� 0;

which proves (6.2).

By [Sta�ans 1998c, Lemma 4.11(iii)],M

22

is invertible in TIC(W ), hence

X

11

is invertible in TIC(U) (cf. Theorem 6.1).

Let us end this section with some remarks which simplify the passage

between between the open loop system 	, the semi-closed loop system 	

x

,

and the closed loop system 	

	

.

Remark 6.5 It is possible to pass between the open loop system 	, the semi-

closed loop system 	

x

, and the closed loop system 	

	

essentially in the same

way as we passed from 	 to 	

	

and back in Lemma 4.8. It involves three

diagrams built around 	 with di�erent directions of the lines on the top and

the bottom, three diagrams built around 	

x

(out of which Figure 11 is one),

and three more diagrams built around 	

	

. We leave the exact formulation of
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A

x

�

B

x

1

� B

x

2

�

�

2

4

C

x

K

x

1

K

x

2

3

5

2

4

D

x

1

D

x

2

F

x

11

F

x

12

F

x

21

F

x

22

3

5

?

x

0

�

x

�

y

-

z

1

s

6

d

+

+

-

u

	

?

-

u

�

z

2

s

?

d

�

+

�

w

	

s

6

�

w

Figure 11: Semi-closed system written in open loop form

this result to the reader. The key observation is that we have three equivalent

expressions for z

1

, namely

z

1

= K

1

x

0

+ F

11

�

+

u+ F

12

�

+

w

= K

x

1

x

0

+ F

x

11

�

+

u

	

+ F

x

12

�

+

w

= K

	

1

x

0

+ F

	

11

�

+

u

	

+ F

	

12

�

+

w

	

;

and likewise, there are three equivalent expressions for z

2

, namely

z

2

= K

2

x

0

+ F

21

�

+

u+ F

22

�

+

w

= K

x

2

x

0

+ F

x

21

�

+

u

	

+ F

x

22

�

+

w

= K

	

2

x

0

+ F

	

21

�

+

u

	

+ F

	

22

�

+

w

	

:

In particular, it follows from Figure 11 that we can pass from the semi-

closed loop system 	

x

to the open loop system 	 by keeping the open loop

disturbance w intact and replacing the closed loop control u

	

by the open loop

control

u = z

1

+ �

+

u

	

= K

x

1

x

0

+ (I + F

x

11

)�

+

u

	

+ F

x

12

�

+

w;

= K

x

1

x

0

+ X

�1

11

�

+

u

	

�X

�1

11

X

�1

12

�

+

w;

and that we can pass from the same system to the fully closed loop system

	

	

by keeping the closed loop control u

	

intact, but replacing the open loop
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disturbance w by the closed loop disturbance

w

	

= �z

2

+ �

+

w = �K

x

2

x

0

�F

x

21

�

+

u

	

+ (I �F

x

22

)�

+

w

= �K

x

2

x

0

�M

�1

22

M

21

�

+

u

	

+M

�1

22

�

+

w:

7 Central Suboptimal Controllers

Only two of the implications in Theorem 1.3 remains to be proved, namely

(III)) (IV)) (V). Out of these the latter implication is trivial, once we have

de�ned what we mean by a central state feedback/feedforward controller.

Let us recall the de�nition of a stabilizing state feedback/feedforward

controller for 	 presented in De�nition 2.2. Clearly, if we ignore the bottom

part of Figure 10 which produces the signals z

2

and w

	

, then this �gure

becomes functionally equivalent to Figure 2 with (K;F

1

;F

2

) replaced by

(K

1

;F

11

;F

12

). This means that De�nition 2.2 can be applied to the semi-

closed loop system 	

x

. Recall that F in Figure 10 is given by F = I � X ,

hence F

1

and F

2

can alternatively be written as F

1

= I�X

11

and F

2

= �X

12

.

De�nition 7.1 A central state feedback/feedforward controller (K;F

1

;F

2

)

for 	 = [

A B

C D

] =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

is a stabilizing state feedback/feedforward con-

troller which can be obtained from a semi-closed loop system 	

x

of the type

drawn in Figure 10, i.e., D has a feasible (J; S)-inner-outer factorization

D = NX =

�

N

1

N

2

� �

X

11

X

12

X

21

X

22

�

such that F

1

= I �X

11

, F

2

= �X

12

, and K is the

�rst component of �S

�1

�

+

N

�

JC.

Indeed, comparing this de�nition to De�nition 2.2 we realize that the

implication (IV) ) (V) in Theorem 1.3 is trivial. See Theorem 9.1 for an

explanation of in which sense this controller is \central".

To prove the �nal implication (III) ) (IV) in Theorem 1.3 we need to

study the minimax properties of the semi-closed loop system 	

x

.

Theorem 7.2 Let J 2 L(Y ) and let 	 = [

A B

C D

] =

h

A [
B

1

B

2

]

C [
D

1

D

2

]

i

be a stable

well-posed linear system on (U �W;H; Y ), and suppose that D has a feasible

(J; S)-inner-outer factorization D = NX . Let Q

x

(x

0

; u

	

; w) be the cost

function associated with the semi-closed loop system 	

x

, i.e,

Q

x

(x

0

; u

	

; w) =

Z

R

+

hy(s); Jy(s)i

Y

ds;
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where y = C

x

x

0

+D

x

1

�

+

u

	

+D

x

2

�

+

w is the output of the semi-closed loop

system 	

x

with initial state x

0

2 H, control u

	

2 L

2

(R

+

;U), and distur-

bance w 2 L

2

(R

+

;W ). Then the following claims are true.

(i) The semi-closed loop cost function Q

x

(x

0

; u

	

; w) can be written in the

form

Q

x

(x

0

; u

	

; w)� hx

0

;�x

0

i

H

=

�

DX

�

�

+

u

	

�

+

w � K

	

2

x

0

�

; JDX

�

�

+

u

	

�

+

w � K

	

2

x

0

��

L

2

(R

+

;Y )

=

�

M

�1

�

�

+

u

	

�

+

w �K

	

2

x

0

�

; SM

�1

�

�

+

u

	

�

+

w � K

	

2

x

0

��

L

2

(R

+

;Y )

;

where X and M are de�ned as in Lemma 6.2.

(ii) For each x

0

2 H and w 2 L

2

(R

+

;W ), the function u 7! Q

x

(x

0

; u; w)

is convex on L

2

(R

+

;U) i� �

+

D

�

1

JD

1

�

+

� 0 on L

2

(R

+

;U), and it is

uniformly convex on L

2

(R

+

;U) i� �

+

D

�

1

JD

1

�

+

>> 0 on L

2

(R

+

;U).

(iii) For each x

0

2 H and u 2 L

2

(R

+

;U), the function w 7! Q

x

(x

0

; u; w)

is concave on L

2

(R

+

;W ) i� S

22

� 0, and it is uniformly concave on

L

2

(R

+

;W ) i� S

22

<< 0.

(iv) For each x

0

2 H, (x

0

; 0;K

	

2

x

0

) is a saddle point of Q

x

i� �

+

D

�

1

JD

1

�

+

�

0 and S

22

� 0, and it is a uniform saddle point i� �

+

D

�

1

JD

1

�

+

>> 0

and S

22

<< 0.

Proof. (i) We leave the straightforward proof of (i) to the reader. It is

based on Theorem 6.1, Lemma 6.2, and (3.7).

(ii) By (i) and Lemma 6.2, the quadratic term of Q

x

(x

0

; u

	

; w) with

respect to u

	

is

Q

x

(0; u

	

; 0) = hD

x

1

�

+

u

	

; JD

x

1

�

+

u

	

i

L

2

(R

+

;Y )

=




X

�1

11

�

+

u

	

;D

�

1

JD

1

X

�1

11

�

+

u

	

�

L

2

(R

+

;Y )

:

As X

�1

11

is invertible in TIC(U), this function if convex i� �

+

D

�

1

JD

1

�

+

� 0

on L

2

(R

+

;U), and it is uniformly convex i� �

+

D

�

1

JD

1

�

+

>> 0 on L

2

(R

+

;U).
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(iii) By (i) and Lemma 6.2, the quadratic term of Q

x

(x

0

; u

	

; w) with

respect to w is

Q

x

(0; 0; w) = hD

x

2

�

+

w; JD

x

2

�

+

wi

L

2

(R

+

;Y )

=




M

�1

22

�

+

w; S

22

M

�1

22

�

+

w

�

L

2

(R

+

;Y )

:

As M

�1

22

is invertible in TIC(W ), this function if concave i� S

22

� 0, and it

is uniformly concave i� S

22

<< 0.

(iv) This follows from (i){(iii).

Corollary 7.3 The central state feedback/feedforward controller induced by

a feasible (J; S)-inner-outer factorization NX of D is [uniformly] suboptimal

if and only if S

22

is [uniformly] negative.

Proof. This follows from De�nitions 2.2 and 7.1 and Theorem 7.2.

Theorem 6.4 and Corollary 7.3 give us the �nal implication (III) ) (IV)

in Theorem 1.3. Thus, our proof of Theorem 1.3 is now complete.

8 Parameterization of All Suboptimal Cen-

tral Controllers

Our next task is to develop a parameterization of the set of all uniformly sub-

optimal compensators. As a �rst step in this parameterization we investigate

the set of all central suboptimal state feedback/feedforward controllers. To

simplify the discussion we introduce the following additional de�nition.

De�nition 8.1 A (J; S)-inner-outer factorization NX of D is [uniformly]

suboptimal if it is feasible (see De�nition 6.3) and the induced central state

feedback/feedforward controller (see De�nition 7.1) is [uniformly] suboptimal

(see De�nition 2.2).

Thus, a feasible (J; S)-inner-outer factorization is [uniformly] suboptimal

i� S

22

� 0 [S

22

<< 0]; see Corollary 7.3.

We begin by giving some necessary and some su�cient conditions on an

(J; S)-inner-outer factorization in order for this factorization to be uniformly

suboptimal.
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Lemma 8.2 Suppose that D has a uniformly suboptimal (J; S)-inner-outer

factorization D = NX and that �

+

D

�

1

JD

1

�

+

>> 0 on L

2

(R

+

;U). Then the

following claims hold:

(i) S

22

<< 0 and S

11

� S

12

S

�1

22

S

21

>> 0.

(ii) If the cross terms S

12

and S

21

= S

�

12

vanish, then S

11

>> 0, and F

x

21

satis�es

k(�S

22

)

1=2

F

x

21

S

�1=2

11

k = k(�S

22

)

1=2

X

21

X

�1

11

S

�1=2

11

k

= k(�S

22

)

1=2

M

�1

22

M

21

S

�1=2

11

k

< 1;

where we use the same notations as in Theorem 6.1.

(iii) D has a uniformly suboptimal (J; T )-inner-outer factorization, where

T =

�

I 0

0 �I

�

(iv) An arbitrary (J;

e

S)-inner-outer factorization

e

N

e

X of D is uniformly

suboptimal (in particular, it is feasible) if and only if

e

S

22

<< 0 and

e

S

11

�

e

S

12

e

S

�1

22

e

S

21

� 0, or equivalently, if and only if

e

S

22

<< 0 and

e

S

11

�

e

S

12

e

S

�1

22

e

S

21

>> 0.

Proof. (i) By Corollary 7.3, S

22

<< 0. We claim that we may, without

loss of generality, assume that the cross terms S

12

and S

21

= S

�

12

vanish. If

not, then we use the construction described in part (iv) of Remark 5.3 to

replace S

12

by zero. This does not change X

11

= I � F

11

and S

22

, hence

it does not a�ect the uniform suboptimality of the factorization. However,

it does replace S

11

by S

11

� S

12

S

�1

22

S

21

. Thus, the uniform positivity of

S

11

� S

12

S

�1

22

S

21

follows from (ii).

(ii) Recall that X is an S-spectral factor of D

�

JD, i.e., X

�

SX = D

�

JD.

If the cross terms vanish, then the top left corner of this equation gives

X

�

11

S

11

X

11

+ X

�

21

S

22

X

21

= D

�

1

JD

1

:

Since X

11

is invertible in TIC(U), we may rewrite this equation as

S

11

= (X

�

11

)

�1

X

�

21

(�S

22

)X

21

X

�1

11

+ (X

�

11

)

�1

D

�

1

JD

1

X

�1

11

:
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The assumptions �

+

D

�

1

JD

1

�

+

>> 0 and S

22

<< 0 imply that the right-hand

side is uniformly positive, hence S

11

>> 0. Multiply the equation above by

S

�1=2

11

both to the left and to the right to get

I = S

�1=2

11

(X

�

11

)

�1

X

�

21

(�S

22

)X

21

X

�1

11

S

�1=2

11

+ S

�1=2

11

(X

�

11

)

�1

D

�

1

JD

1

X

�1

11

S

�1=2

11

;

where the last term is uniformly positive. This implies that

k(�S

22

)

1=2

X

21

X

�1

11

S

�1=2

11

k < 1:

(iii) As in the proof of (i), we may assume without loss of generality that

the o�-diagonal terms of S vanish. If S

11

6= I or S

22

6= I, then we factor S

as

S =

�

S

1=2

11

0

0 (�S

22

)

1=2

� �

I 0

0 �I

� �

S

1=2

11

0

0 (�S

22

)

1=2

�

and absorb the two factors to the left and right intoX

�

and X ; see Lemma 4.10.

(iv) The necessity of the two conditions

e

S

22

<< 0 and

e

S

11

�

e

S

12

e

S

�1

22

e

S

21

>>

0 follows from (i). Conversely, suppose that

e

S

22

<< 0 and

e

S

11

�

e

S

12

e

S

�1

22

e

S

21

�

0. We may remove the cross terms

e

S

12

and

e

S

21

=

e

S

�

12

in the same way as we

did in the proof of (i), without a�ecting the feasibility of the factorization.

After this transformation we must have

e

S

11

>> 0 since

e

S is invertible, or

in terms of the original data,

e

S

11

�

e

S

12

e

S

�1

22

e

S

21

>> 0. Next we transform

e

S

into T as we did in the proof of (iii), still without a�ecting the feasibility

and uniform suboptimality of the given factorization (that we still denote

by

e

N

e

X ). Thus, at this point we know that

e

N

e

X is a (J; T )-inner-outer

factorization of D, but we do know know if it if feasible, i.e., we do not know

if

e

X

11

is invertible.

By (iii), D has a uniformly suboptimal (J; T )-inner-outer factorization.

Let us for simplicity denote this factorization by NX . By Lemma 4.10,

e

X = EX for some operator E satisfying E

�

TE = T . Inverting this equation

we get T

�1

= E

�1

T

�1

(E

�1

)

�

, or equivalently, ETE

�

= T . The top left

component of the equation E

�

TE = T gives

E

�

11

E

11

� E

�

21

E

21

= I;

and the top left component of the equation ETE

�

= T gives

E

11

E

�

11

� E

12

E

�

12

= I:
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Together these two equations show that E

11

is invertible (both E

�

11

E

11

>> 0

and E

11

E

�

11

>> 0), and that kE

�1

11

E

12

k < 1 and kE

21

E

�1

11

k < 1.

Since

e

X = EX , we have

e

X

11

= E

11

X

11

+ E

12

X

21

= E

11

�

I + E

�1

11

E

12

X

21

X

�1

11

�

X

11

:

This operator is invertible in TIC(U) since

kE

�1

11

E

12

X

21

X

�1

11

k � kE

�1

11

E

12

kkX

21

X

�1

11

k < 1;

cf. (ii).

Next we investigate the correspondence between a feasible (J; S)-inner-

outer factorization and the corresponding central compensator:

De�nition 8.3 We call the operator

F

x

12

= �X

�1

11

X

12

=M

12

M

�1

22

de�ned in Theorem 6.1 the central compensator induced by the feasible (J; S)-

inner-outer factorization NX , and we call the factorization NX a represen-

tation of this compensator (cf. De�nition 2.4).

Every central compensator has more than one representation:

Lemma 8.4 Let D = NX be a feasible (J; S)-inner-outer factorization of

D, and let D =

e

N

e

X be another feasible (J;

e

S)-inner-outer factorization of

D. These factorizations induce the same central compensator if and only if

e

X = EX for some (invertible) E 2 L(U �W ) of the form

E =

�

E

11

0

E

21

E

22

�

;

where E

11

is invertible in L(U) and E

22

is invertible in L(W ).

Proof. If

e

X = EX for some E of the form given above, then

e

X

11

= E

11

X

11

and

e

X

12

= E

11

X

12

, hence

e

X

�1

11

e

X

12

= X

�1

11

X

12

, and the two factorizations

induce the same central compensator.

To prove the converse part we �rst observe that, by Lemma 4.10,

e

X = EX

for some invertible E 2 L(U �W ). Thus,

e

X

11

= E

11

X

11

+ E

12

X

21

;

e

X

12

= E

11

X

12

+ E

12

X

22

:
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The two factorizations induce the same central compensator i�

e

X

12

=

e

X

11

X

�1

11

X

12

,

i.e., i�

e

X

12

= E

11

X

12

+ E

12

X

22

=

e

X

11

X

�1

11

X

12

= (E

11

X

11

+ E

12

X

21

)X

�1

11

X

12

= E

11

X

12

+ E

12

X

21

X

�1

11

X

12

:

This is equivalent to

0 = E

12

�

X

22

�X

21

X

�1

11

X

12

�

= E

12

M

�1

22

;

where the last equality follows from the formula for F

x

22

given in Theorem

6.1. However, this is equivalent to the condition E

12

= 0.

Substitute E

12

= 0 into the preceding formula for

e

X

11

to get

e

X

11

=

E

11

X

11

. Since both

e

X

11

and X

11

are invertible, E

11

must be invertible. This,

together with the invertibility of E implies that E

22

is invertible.

Motivated by the preceding lemma, we make the following de�nition:

De�nition 8.5 The (J; S)-inner-outer factorization NX of D is equivalent

to the (J;

e

S)-inner-outer factorization

e

N

e

X of D if

e

X = EX for some E 2

L(U �W ) of the form

E =

�

E

11

0

E

21

E

22

�

;

with E

11

is invertible in L(U) and E

22

is invertible in L(W ). These factor-

izations are strictly equivalent if, in addition, E

11

= I.

The following lemma lists some of the properties of equivalent factoriza-

tions.

Lemma 8.6 Suppose that the (J; S)-inner-outer factorization NX of D is

equivalent to the (J;

e

S)-inner-outer factorization

e

N

e

X of D, and let E =

e

XX

�1

be the operator in De�nition 8.5. Then the following statements are

true:

(i) The two sensitivity operators

e

S and S satisfy

S

11

� S

12

S

�1

22

S

21

= E

�

11

�

e

S

11

�

e

S

12

e

S

�1

22

e

S

21

�

E

11

;

S

22

= E

�

22

e

S

22

E

22

:
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(ii) The �rst factorization is feasible i� the second factorization is feasible.

(iii) The �rst factorization is [uniformly] suboptimal i� the second factor-

ization is [uniformly] suboptimal.

(iv) The two factorizations induce the same central compensator, and if

they are strictly equivalent, then the two semi-closed loop systems in-

duced by these factorization are identical, if we ignore their last row

corresponding to the output labeled z

2

in Figure 11.

Proof. (i) This proof is a mechanical computation based on Lemma 4.10.

(ii) Clearly,

e

X = EX is invertible i� X is invertible, S = E

�

e

SE is

invertible i� S if invertible, and

e

X

11

= E

11

X

11

is invertible i� X

11

is invertible.

(iii) This follows from (i), (ii) and Corollary 7.3.

(iv) The �rst claim follows from Lemma 8.4. If E

11

= I, then,

e

X

11

= X

11

,

e

X

12

= X

12

, and Theorem 6.1(iv) shows that the �rst three rows of the semi-

closed system 	

x

are identical for the two factorizations.

Lemma 8.7 Every uniformly suboptimal (J;

e

S)-inner-outer factorization

e

N

e

X

of D is strictly equivalent to a uniformly suboptimal (J; S)-inner-outer fac-

torization for which the o�-diagonal terms S

12

and S

21

= S

�

12

vanish, and,

if �

+

D

�

1

JD

1

�

+

>> 0, then it is equivalent to a uniformly suboptimal (J; T )-

inner-outer factorization with sensitivity operator T =

�

I 0

0 �I

�

.

Proof. The proof of this lemma is contained in the proof of Lemma 8.2.

Theorem 8.8 Suppose that �

+

D

�

1

JD

1

�

+

>> 0 on L

2

(R

+

;U), and that D =

NX is a uniformly suboptimal (J; S)-inner-outer factorization of D for which

the cross terms S

12

and S

21

= S

�

12

vanish. If E

12

2 L(W ;U) satis�es







S

1=2

11

E

12

(�S

22

)

�1=2







< 1; (8.1)

and if we de�ne E by

E =

�

I E

12

0 I

�

;

then the factorization

e

N

e

X = (NE)(E

�1

X ) is also uniformly suboptimal;

hence it induces a uniformly suboptimal central compensator. Every possible

uniformly suboptimal central compensator has a representation of this form,
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Figure 12: Parameterization of all suboptimal central compensators

i.e., by choosing the operator E

12

appropriately we can generate every pos-

sible uniformly suboptimal central compensator. Moreover, di�erent choices

of E

12

give rise to di�erent central compensators, i.e., there is a one-to-one

correspondence between the operator E

12

and the corresponding central com-

pensator.

Before proving this theorem, let us warn the reader that this parameter-

ization does not generate all possible semi-closed loop systems 	

x

. Instead

it generates exactly one representative for each equivalence class, if we con-

sider two semi-closed systems to be equivalent whenever they induced the

same central compensator. (To get a parameterization of all possible feasible

semi-closed loop systems it su�ces to combine this theorem with Lemma

8.4.) Figure 12 contains a picture of the parameterization in Theorem 8.8.

Proof of Theorem 8.8. Choose some E

12

2 L(W ;U), and de�ne E as in

the theorem. A direct computation shows that the sensitivity operator

e

S of

the factorization

e

N

e

X = (NE)(E

�1

X ) is given by (cf. Lemma 4.10)

e

S =

�

e

S

11

e

S

12

e

S

21

e

S

22

�

=

�

S

11

S

11

E

12

E

�

12

S

11

S

22

+ E

�

12

S

11

E

12

�

:

In particular,

e

S

11

is always uniformly positive, and

e

S

22

<< 0 if and only

(8.1) holds. This together with Lemma 8.2(iv) implies that the factorization

e

N

e

X is uniformly suboptimal i� (8.1) holds.
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Conversely, suppose that

e

N

e

X is a uniformly suboptimal (J;

e

S)-inner-

outer factorization of D. Without loss of generality (see Lemma 8.7) we

can suppose that the cross terms

e

S

12

and

e

S

21

=

e

S

�

12

vanish. An inspec-

tion of the proof of Lemma 8.2(iv) shows that there is an invertible operator

F 2 L(U �W ) with invertible F

11

such that

e

X = FX :

Since F

11

is invertible, F has the LU-decomposition

�

F

11

F

12

F

21

F

22

�

=

�

F

11

0

F

21

F

22

� F

21

F

�1

11

F

12

� �

I F

�1

11

F

12

0 I

�

:

The �rst factor represents an equivalence transformation in the sense of Def-

inition 8.5, so we can discard this factor if we at the same time replace the

factorization

e

N

e

X by an equivalent one (for which we still use the same no-

tation

e

N

e

X ). But this means that

e

N

e

X = (NE)(E

�1

X ), where E is of the

form given in Theorem 8.8 with E = �F

�1

11

F

12

.

The uniqueness claim follows from Lemma 8.4.

Remark 8.9 A closer inspection of the proofs of Lemma 8.2(iv) and The-

orem 8.8 show that if we relax (8.1) to kS

1=2

11

E

12

(�S

22

)

�1=2

k � 1, then the

resulting factorization is still suboptimal (but not uniformly). It is even possi-

ble to allow a norm slightly bigger than one without loosing feasibility, but in

this case the suboptimality is lost. In particular, in this way we can construct

an example of a feasible factorization that is not suboptimal.

9 Parameterization of All Suboptimal Con-

trollers

In the previous section we gave a parameterization of all uniformly sub-

optimal central compensators. The same parameterization can be used to

generate all possible suboptimal or uniformly suboptimal compensators: it

su�ces to replace the static parameter E

12

in Theorem 8.8 by a dynamic

parameter V, as indicated in Figure 13.

Theorem 9.1 Suppose that �

+

D

�

1

JD

1

�

+

>> 0 on L

2

(R

+

;U), and that D =

NX is a uniformly suboptimal (J; S)-inner-outer factorization of D for which
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Figure 13: Parameterization of all suboptimal compensators

the cross terms S

12

and S

21

= S

�

12

vanish. De�ne M = X

�1

. Then, for each

V 2 TIC(W ;U) satisfying

kS

1=2

11

V(�S

22

)

�1=2

k � 1; (9.1)

the operator X

11

�VX

21

has an inverse in TIC(U), the operatorM

21

V+M

22

has an inverse in TIC(W ), and the operator U de�ned by

U = (I �F

11

+ VF

21

)

�1

(F

12

+ V � VF

22

)

= (X

11

� VX

21

)

�1

(�X

12

+ VX

22

)

= (V + F

	

11

V + F

	

12

) (F

	

21

V + I + F

	

22

)

�1

= (M

11

V +M

12

) (M

21

V +M

22

)

�1

(9.2)

is a suboptimal compensator for 	. The operator U is uniformly suboptimal

for 	 i�

kS

1=2

11

V(�S

22

)

�1=2

k < 1: (9.3)

Every possible suboptimal compensator U has a representation of the form

(9.2) for some V satisfying (9.1), i.e., by appropriate choice of the parame-

ter V we can generate every possible suboptimal compensator U . Moreover,

di�erent choices of V give rise to di�erent compensators, i.e., there is a one-

to-one correspondence between the parameter V and the corresponding sub-

optimal compensator U . (We get the central compensator by taking V = 0.)
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Figure 14: Suboptimal parameterization based on closed loop system

See Figures 13 and 14 for diagrams describing the parameterization in

Theorem 9.1. If we in those diagram take x

0

= 0, then U is the mapping

from w to u, and V is the mapping from u

	

to w

	

.

Proof of Theorem 9.1. Consider the connection drawn in Figure 13. From

that diagram we get

u = K

1

x

0

+ F

11

u+ F

12

�

+

w + V (�

+

w � K

2

x

0

� F

21

u�F

22

�

+

w) :

Formally, with x

0

= 0, this leads to the formula u = U�

+

w, where U is the

operator de�ned in the �rst two lines of the formula in Theorem 9.1.

Let us prove the claim about the invertibility of the operator X

11

�VX

21

.

The feasibility of the factorization implies that X

11

is invertible in TIC(U).

Factor out S

1=2

11

X

11

to the right and S

�1=2

11

to the left to get

X

11

� VX

21

=

�

S

�1=2

11

� VX

21

X

�1

11

S

�1=2

11

�

S

1=2

11

X

11

= S

�1=2

11

�

I � S

1=2

11

V(�S

22

)

�1=2

(�S

22

)

1=2

X

21

X

�1

11

S

�1=2

11

�

S

1=2

11

X

11

:

From this factorization and from Lemma 8.2 we �nd that X

11

� VX

21

is,

indeed, invertible. Hence we can use the �rst part of (9.2) to de�ne U 2

TIC(U).

To derive the second part of (9.2) we rewrite Figure 13 into Figure 14,

which is based on the closed loop system 	

	

instead of on the extended open
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Figure 15: Recovery of the parameter of a suboptimal compensator

loop system 	. From this diagram we get

w

	

= �

+

w � K

	

2

x

0

� F

	

21

Vw

	

�F

	

22

w

	

;

u = Vw

	

+K

	

1

x

0

+ F

	

11

Vw

	

+ F

	

12

w

	

:

Formally, with x

0

= 0, this leads to the de�nition of U to be given by the last

two lines of (9.2). To show that the operatorM

21

V +M

22

has an inverse in

TIC(W ) one argues essentially in the same way as above, using Lemma 8.2

and the invertibility of M

22

.

The cost of �

+

w in Figures 13 and 14 with x

0

= 0 can be written alter-

natively as (cf. Theorem 4.5 and Corollary 4.9)

Q(0;U�

+

w;w) = Q

	

(0;V�

+

w

	

; w

	

)

= hV�

+

w

	

; S

11

V�

+

w

	

i

L

2

(R

+

;U)

+ hw

	

; S

22

w

	

i

L

2

(R

+

;W )

:

From this the claims about the suboptimality and uniform suboptimality

follow easily (cf. the proof of Lemma 8.2(iv)).

That the parameterization given in Theorem 9.1 generates all possible

suboptimal compensators follows from Theorem 9.2 below.

The proof of the fact that the parameterization in Theorem 9.1 captures

all possible suboptimal compensators and that there is a one-to-one corre-

spondence between the compensator U and the parameter V requires some

preliminary considerations:
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Theorem 9.2 Make the same assumptions as in Theorem 9.1.

(i) The suboptimal compensators U obtained in Theorem 9.1 satisfy the

following two invertibility conditions:

(a) M

11

� UM

21

has an inverse in TIC(U),

(b) X

22

+ X

21

U has an inverse in TIC(W ).

Moreover, the inverses above are given by

(M

11

� UM

21

)

�1

= X

11

� VX

21

;

(X

22

+ X

21

U)

�1

=M

21

V +M

22

:

(9.4)

(ii) The two invertibility conditions in part (i) are equivalent, and every

suboptimal compensator U that satis�es (one of) these conditions is of

the type described in Theorem 9.1. The corresponding operator V is

given by

V = (I + F

	

11

� UF

	

21

)

�1

(�F

	

12

+ U + UF

	

22

)

= (M

11

� UM

21

)

�1

(�M

12

+ UM

22

)

= (U � F

11

U � F

12

) (�F

21

U + I � F

22

)

�1

= (X

11

U + X

12

) (X

21

U + X

22

)

�1

:

(9.5)

(iii) The set of compensators U obtained in Theorem 9.1 is bounded in

TIC(W ;U).

(iv) Every suboptimal compensator U has a parameterization of the type

given by Theorem 9.1. Thus, all suboptimal compensators satisfy (i){

(iii).

Proof. The proof of (i) is a direct computation based on the fact that

M = X

�1

. We leave this computation to the reader.

(ii) Suppose that U satis�es condition (a) in part (i), i.e., that M

11

�

UM

21

has an inverse in TIC(U). Then the diagram drawn in Figure 15

de�nes a well-posed system (in the L

2

-sense), and

u

	

= u� K

	

1

x

0

� F

	

11

u

	

� F

	

12

�

+

w

	

= U (w

	

+K

	

2

x

0

+ F

	

21

u

	

+ F

	

22

�

+

w

	

)� K

	

1

x

0

� F

	

11

u

	

� F

	

12

�

+

w

	

:
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C
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1
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3

5

2

4

D

1

D

2

F

11

F

12

F

21

F

22

3

5

U

?

x

0

-

x

-

y

z

1

6

d

+

�

u

	

� s -�

u

?

z

2

?

d

+

+w

	

- s

6

s

w

-s

6

Figure 16: Alternative recovery of the parameter

If we here take x

0

= 0 and solve for u

	

, then we get the �rst two formulas in

(9.5). The suboptimality of U implies that V must satisfy the norm condition

kS

1=2

11

V(�S

22

)

�1=2

k � 1 (cf. the proof of Theorem 9.1). By part (i), U also

satis�es condition (b) in part (i).

If, on the other hand, U satis�es condition (b) in part (ii), i.e., if X

22

+

X

21

U has an inverse in TIC(W ), then we argue essentially in the same way,

but replace Figure 15 by the equivalent Figure 16. We leave the details to

the reader.

(iii) We get a uniform bound on the norm of U by using (9.1), (9.2), and

the fact that Lemma 8.2(ii) gives us a uniform bound on k(X

�1

11

� VX

21

)

�1

k

(cf. the proof of Theorem 9.1).

(iv) We claim that the set of all suboptimal compensators U obtained

in Theorem 9.1 is both open and closed in the set of all suboptimal com-

pensators. To see that it is open it su�ces to observe that the set of com-

pensators satisfying the two equivalent invertibility conditions in part (i) is

open in TIC(W ;U); hence open in the set of suboptimal compensators. To

see that it is closed it su�ces to observe that (9.4) give us an priori bounds

on the norms of (M

11

� UM

21

)

�1

and (X

22

+ X

21

U)

�1

, hence if we take a

sequence of suboptimal compensators U

k

of the type described in Theorem

9.1 converging to an arbitrary suboptimal compensator U , then this limiting

compensator must also satisfy conditions (a) and (b) in part (i). Thus, we

conclude that the set of all compensators U parameterized by Theorem 9.1

is a bounded component of the set of all suboptimal compensators (more
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precisely, the component that contains the central compensator F

x

12

).

To complete the proof of (iv) it su�ces to show that the set of all subop-

timal compensators is convex, hence connected. However, this follows from

the positivity of �

+

D

�

JD�

+

which implies that, for each �xed x

0

2 H and

w 2 L

2

(R

+

;W ), the cost function Q(0; u; w) is convex in u.

10 Separation of Feedback and Feed-Forward

Terms

In the primary state feedback/feedforward representation of the minimax

solution given in Theorem 4.5 there is no direct reference to possible feed-

forward terms, and it is in fact impossible to include such a reference, due to

the fact that for an arbitrary well-posed system it is not possible to separate

a possible feedforward term from the feedback term. To do this we need an

extra regularity assumption on the system introduced by George Weiss. In

[Weiss 1994a, Theorem 5.8] he gives eight equivalent characterizations of the

needed regularity notion, one of which is the following:

De�nition 10.1 (i) A causal time-invariant operator D : L

2

(R;V )! L

2

(R;Y )

is called regular if, for every v

0

2 V , the strong Abel mean

Dv

0

= lim

�!+1

b

D(�)v

0

exists for every v

0

2 V ; here � tends to in�nity along the real axis and

b

D is the transfer function (the distribution Laplace transform) of D.

(ii) The operator D : V ! Y de�ned in (i) is called the feedthrough operator

of D.

(iii) A regular map D : L

2

(R;V ) ! L

2

(R;Y ) is called strictly proper if its

feedthrough operator vanishes.

(iv) We say that D is regular together with its adjoint if, in addition to (i),

the strong Abel mean lim

�!+1

b

D

�

(�)y

0

exists for every y

0

2 Y . (This

limit is equal to D

�

v

0

whenever it exists.)

(v) A well-posed linear time-invariant system 	 is regular [together with its

adjoint] if its input/output map is regular [together with its adjoint].
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We borrow the following result (due to Weiss [1994a]) from [Sta�ans 1997,

Proposition 39] (and at the same time extend it slightly to cover also the

situation described in Theorem 6.1):

Proposition 10.2 Suppose that D is J-coercive and that D a (J; S)-inner-

outer factorization D = NX . In addition, suppose that the extended system

	

ext

=

h

A B

[

C

K

] [

D

F

]

i

constructed in Theorem 4.5 is regular together with its

adjoint, i.e., D and F are regular together with their adjoints.

(i) Then all the input/output maps appearing in Theorem 4.5 are regular

together with their adjoints. If we denote the feedthrough operators of

D, N , X , M, F , and F

	

by D, N , X, M , F , and F

	

, respectively,

then

D = NX; X =M

�1

; F = I �X; F

	

=M � I:

In particular, X and M are invertible.

(ii) If, in addition, the factorization NX is feasible, then all the input/output

maps appearing in Theorem 6.1 and Lemma 6.2 are regular together

with their adjoints. If we denote the feedthrough operators of D

x

and

F

x

by D

x

and F

x

, respectively, then

2

4

D

x

1

D

x

2

F

x

11

F

x

12

F

x

21

F

x

22

3

5

=

2

4

D

1

X

�1

11

D

2

�D

1

X

�1

11

X

12

X

�1

11

� I �X

�1

11

X

12

�X

21

X

�1

11

I �X

22

+X

21

X

�1

11

X

12

3

5

=

2

4

N

1

�N

2

M

�1

22

M

21

N

2

M

�1

22

M

11

� I �M

12

M

�1

22

M

21

M

12

M

�1

22

M

�1

22

M

21

I �M

�1

22

3

5

:

In particular, X

11

and M

22

are invertible.

(iii) There is a unique (J; S)-inner-outer factorization NX in Theorem 4.5

for which the feedthrough operator of F is zero (i.e., there is \no feed-

forward term inside the feedback loop"), namely the one where M =

X = I and D = N . The formulas in part (ii) then simplify into

D

x

= D = N; F

x

= 0:
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Observe that these relations between the feedthrough maps simply reect

the same relations valid between the corresponding input/output maps; cf.

the formulas in Theorems 4.5 and 6.1. Part (iii) corresponds to the \stan-

dard" classical normalization described in, for example, [Green and Limebeer

1995, Chapter 6].

It is possible to parameterize the set of all central compensators using

their feedforward operator as a parameter:

Lemma 10.3 Under the assumptions of Proposition 10.2(ii) every central

compensator is determined uniquely by its feedthrough operator F

x

12

, and

it has a (unique) representation induced by a factorization for which the

feedthrough operator of the spectral factor X is given by

X =

�

I �F

x

12

0 I

�

:

Proof Take an arbitrary parameterization of the central compensator.

Then, by Proposition 10.2, the feedthrough operator X of the spectral factor

X has an invertible upper left corner X

11

. This means that we can factor X

into the LU-form

�

X

11

X

12

X

21

X

22

�

=

�

X

11

0

X

21

X

22

�X

21

X

�1

11

X

12

� �

I X

�1

11

X

12

0 I

�

:

If we multiply X by

h

X

11

0

X

21

X

22

�X

21

X

�1

11

X

12

i

�1

to the left, then we get a new

equivalent spectral factor whose feedthrough operator is of the required form

�

I �F

x

12

0 I

�

. This spectral factor is unique (since a spectral factor is determined

uniquely by its feedthrough operator), hence the corresponding central com-

pensator is also determined uniquely by its feedthrough operator.

Theorem 10.4 In addition to the assumptions of Proposition 10.2, suppose

that �

+

D

�

1

JD

1

>> 0. Let

e

N

e

X be the special (J;

e

S)-inner-outer factorization

(with zero feedthrough operator) of D described in Proposition 10.2(iii).

(i) There exists at most one strictly proper central compensator. Such a

compensator exists if and only if the factorization

e

N

e

X is feasible, in

which case it is induced by this factorization. It is [uniformly] subopti-

mal i�

e

S

22

is [uniformly] negative.
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(ii) If

e

S

11

>> 0, then there exists a uniformly suboptimal central compen-

sator if and only if the factorization with feedthrough operator

X =

�

I

e

S

�1

11

e

S

12

0 I

�

is uniformly suboptimal, i.e., if and only if this factorization is feasible

and

e

S

22

�

e

S

21

e

S

�1

11

e

S

12

<< 0. The sensitivity operator of this factoriza-

tion is

h

e

S

11

0

0

e

S

22

�

e

S

21

e

S

�1

11

e

S

12

i

.

Proof (i) This follows from Corollary 7.3 and Lemma 10.3.

(ii) Suppose that a uniformly suboptimal central compensator U does

exist (in particular, this is true if the special factorization given in (ii) is

uniformly suboptimal). Since the feedthrough operator of

e

X is the identity,

the corresponding outer factor produced by the parameterization in Lemma

10.3 is equal to

X =

�

I �G

0 I

�

e

X ;

where G is the feedthrough operator of U . Comparing this formula to the

formula in Lemma 4.10 we �nd that the sensitivity of this factorization is

given by (note that

�

I �G

0 I

�

�1

= [

I G

0 I

])

�

S

11

S

12

S

21

S

22

�

=

�

I 0

G

�

I

� �

e

S

11

e

S

12

e

S

21

e

S

22

� �

I G

0 I

�

=

�

e

S

11

e

S

11

G+

e

S

12

G

�

e

S

11

+

e

S

21

G

�

e

S

11

G+G

�

e

S

12

+

e

S

21

G+

e

S

22

�

:

In particular, S

11

=

e

S

11

>> 0, and G

�

e

S

11

G+G

�

e

S

12

+

e

S

21

G+

e

S

22

= S

22

<<

0. By rearranging the terms (completing the square) we can rewrite this

operator in the form

S

22

=

e

S

22

�

e

S

21

e

S

�1

11

e

S

12

+

�

G+

e

S

�1

11

e

S

12

�

�

e

S

11

�

G+

e

S

�1

11

e

S

12

�

<< 0:

Thus

e

S

22

�

e

S

21

e

S

�1

11

e

S

12

<< 0. By Lemma 8.2(iv), the factorization with

sensitivity operator

h

e

S

11

0

0

e

S

22

�

e

S

21

e

S

�1

11

e

S

12

i

is feasible. But this is exactly the

factorization that we get by taking G = �

e

S

�1

11

e

S

12

.

Theorem 10.4 stresses the importance of the particular sensitivity oper-

ator

e

S corresponding to the factorization in Theorem 10.2(iii). What do
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we know about this sensitivity operator? Not very much in general, except

that it is bounded from below by D

�

JD whenever the Riccati operator � is

nonnegative on the reachable subspace:

Lemma 10.5 In addition to the assumptions of Proposition 10.2, suppose

that � � 0 on the reachable subspace. Then the special sensitivity operator

e

S that corresponds to the case of a zero feedthrough term in the feedback loop

described in Theorem 10.4 satis�es

e

S � D

�

JD. In particular,

e

S

11

� D

�

1

JD

1

,

hence

e

S

11

>> 0 whenever D

�

1

JD

1

>> 0.

Proof. The inequality

e

S � D

�

JD follows from [Sta�ans 1998c, Theorem

6.13]. Trivially, this implies that

e

S

11

� D

�

1

JD

1

.

Remark 10.6 In particular, Lemma 10.5 applies to the full information

problem (1.4){(1.5), because for the cost function (1.5) we have Q(x

0

; u; 0) �

0, hence for all x

0

2 H,

hx

0

;�x

0

i

H

= Q

crit

(x

0

) = max

w2L

2

(R

+

;W )

Q

min

(x

0

; w) � Q

min

(x

0

; 0) � 0:

Thus, in this case

e

S

11

>> 0 whenever D

�

1

D

1

>> 0.

For the convenience of the reader, let us end this section by recalling from

Sta�ans [1998bc] that the Riccati operator � satis�es an algebraic Riccati

equation. To formulate this result we need a few more facts about the general

theory about well-posed linear systems. More precisely, it is known (see,

e.g., Weiss [1994ab] or [Sta�ans 1997, Propositions 29 and 36]) that, in the

case where u 2 W

1;2

(R

+

;U), w 2 W

1;2

(R

+

;W ), and Ax(0) + B

1

u(0) +

B

2

w(0) 2 H (where A is the generator of A and B

1

and B

2

are the two

control operators; see the formula below), the input-state-output relations

of the extended system appearing in Theorem 10.4(ii) can be written in the

form (for all t 2 R

+

)

x

0

(t) = Ax(t) +B

1

u(t) +B

2

w(t);

y(t) = Cx(t) +D

1

u(t) +D

2

w(t);

z

1

(t) = K

1

x(t) + F

12

w(t);

z

2

(t) = K

2

x(t);
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where F

12

= �

e

S

�1

11

e

S

12

. The operators C, K

1

, and K

2

are the Weiss ex-

tensions of the observation operators C, K

1

, and K

2

de�ned on dom(A),

i.e.,

C = lim

�!+1

�C(�I � A)

�1

; K

i

= lim

�!+1

�K

i

(�I � A)

�1

; i = 1; 2:

The adjoints B

�

1

and B

�

2

of the operators B

1

and B

2

are de�ned on dom(A

�

),

and they are extended in a similar way into B

�

i

= lim

�!+1

�B

�

i

(�I �A

�

)

�1

,

i = 1; 2. Moreover, we de�ne

K =

�

K

1

K

2

�

; B

�

=

h

B

�

1

B

�

2

i

; F =

�

0 F

12

0 0

�

; S =

h

e

S

11

0

0

e

S

22

�

e

S

21

e

S

�1

11

e

S

12

i

:

With these notations we have the following result:

Theorem 10.7 The Riccati operator � and the feedback operator K satisfy

the following two equations for all x

0

2 dom(A) and x

1

2 dom(A):

hAx

0

;�x

1

i

H

+ hx

0

;�Ax

1

i

H

= �hCx

0

; JCx

1

i

Y

+ hKx

0

; SKx

1

i

U

;

Kx

0

= �S

�1

(I � F

�

)

�1

(B

�

�+D

�

JC)x

0

:

(10.1)

Proof. This follows from [Sta�ans 1998b, Theorem 6.1] and [Sta�ans

1998c, Remark 5.2].

By combining the two equations in (10.1) we get an algebraic Riccati

equation for �.

It is possible to write out the two components K

1

and K

2

of K explicitly

in terms of the data: a substitution into (10.1) gives

K

1

= �

e

S

�1

11

(B

�

1

�+D

�

11

C

1

) ;

K

2

= �

�

e

S

22

�

e

S

21

e

S

�1

11

e

S

12

�

�1

(B

�

2

� +D

�

12

C

1

�

e

S

21

K

1

) :

Note that both of these operators appear in the algebraic Riccati equation

for � that we get from Theorem 10.7, but that only K

1

is used in the actual

central control, i.e., in the feedback/feedforward formula

u(t) = K

1

x(t) + F

12

w(t)

for u. The role of K

2

is to reproduce the \worst possible" disturbance w(t) =

K

2

x(t) in feedback form.
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We observe that the Riccati equation that we get di�ers from the usual

one in the sense that there is an extra unknown parameter

e

S that does

not normally occur in the continuous time case (although it is standard in

the discrete time case).

1

This parameter can be computed from the Riccati

operator:

Theorem 10.8 The sensitivity operator

e

S can be computed as the strong

limit

e

Sv

0

= D

�

JDv

0

+ lim

�!1

B

�

�(�I � A)

�1

Bv

0

for each v

0

2 U �W ; here � tends to +1 along the positive real axis.

Proof. This follows from [Sta�ans 1998b, Corollary 7.2] and [Sta�ans

1998c, Remark 5.2].

11 (J; S)-Lossless Factorizations

The purpose of this �nal short section is to relate our central notion of

a \uniformly suboptimal (J; S)-inner-outer factorization" NX of D to the

more commonly known notion of a (J; S)-lossless-outer factorization used in,

e.g., Green [1992] and Curtain and Green [1997]. A formal de�nition of a

(J; S)-lossless-outer factorization in the spirit of the present work is given

in [Sta�ans 1998c, De�nition 6.1]. This de�nition does not refer to any

minimax properties of the problem. It is stated in terms of the inner factor

N as opposed to the outer factor X used by De�nitions 8.1, and it does not

depend on how S is chosen. The notion of a lossless factorization is also easy

to connect to the Riccati operator: according to [Sta�ans 1998c, Theorem

6.5], an (J; S)-inner-outer factorization of D is lossless if and only if the

corresponding Riccati operator � is nonnegative on the reachable subspace.

We have implicitly used this fact in the proof Lemma 10.5; cf. [Sta�ans 1998c,

Theorem 6.13].

Although the two notions are related, they are not identical. For example,

it is not true that every uniformly suboptimal (J; T )-inner-outer factorization

is (J; T )-lossless. To see this it su�ces to take the dimension ofW to be zero,

1

The reader may compare the formulas for K

1

and K

2

given above to those valid in the

discrete case; see, e.g., [Green and Limebeer 1995, Appendix B]. It is natural to expect a

feedforward term from w to u in our case, too, since the class of discrete systems can be

imbedded in the class of well-posed linear systems. See Sta�ans [1996].
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which reduces the minimax problem to the minimization problem studied in

Sta�ans [1998b]. For example, the Riccati operators corresponding to the

bounded and positive real lemmas presented in [Sta�ans 1998b, Section 8]

are negative de�nite, and this prevents the corresponding factorizations from

being lossless. (To get an example where the dimension of W is nonzero we

can simply combine this example with another independent example of full

information type.)

On the other hand, if we replace the general problem (1.1){(1.2) by the

special full information problem (1.4){(1.5), then every (J; S)-inner-outer fac-

torization is lossless; this follows from [Sta�ans 1998c, Theorem 6.5] and Re-

mark 10.6. (The factorization is not uniformly suboptimal unless S

22

<< 0;

cf. Corollary 7.3.) As a matter of fact, one of the key conditions used in

our proof of Theorem 6.4, namely (6.2), can be interpreted as a \lossless-

ness" condition; cf. [Sta�ans 1998c, Lemma 4.11 and De�nition 6.1], and our

�rst proof of Theorem 1.3 (which was inspired by Green [1992] and Curtain

and Green [1997]) was based on the fact that certain (J; S)-lossless factor-

izations are uniformly suboptimal. (That proof was more complicated than

the present one and it produced a weaker result: it applied only to the full

information problem (1.4){(1.5), and it requiredW to be �nite dimensional.)

Recently we have together with Kalle Mikkola studied the suboptimal

Nehari problem in Mikkola and Sta�ans [1998]. Here, too, the notion of a

uniformly suboptimal factorization seems to simpler and more useful than the

notion of a lossless factorization. This has to do with the fact that, whereas

the outer factor is still causal in the Nehari problem, the inner factor is

neither causal nor anticausal, and the de�nition of a lossless factorization

becomes more complicated.
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