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Abstract. One of the basic axioms of a well-posed linear system says that

the Hankel operator of the input/output map of the system factors into the

product of the input map and the output map. Here we prove the converse:

every factorization of the Hankel operator of a bounded causal time-invariant

map from L

2

to L

2

which satis�es a certain admissibility condition induces

a stable well-posed linear system. In particular, there is a one-to-one cor-

respondence between the set of all minimal stable well-posed realizations of

a given stable causal time-invariant input/output map (or equivalently, of a

given H

1

transfer function) and all minimal stable admissible factorizations

of the Hankel operator of this input/output map.

AMS Subject Classi�cation 47A68, 47B35, 93A05.

Keywords Hankel operators, well-posed linear systems, continuous time,

discrete time.

1 The Main Result

Let U and Y be two Hilbert spaces, and let TIC(U ;Y ) denote the space

of all bounded linear time-invariant and causal operators from L

2

(R;U) to
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L

2

(R;Y ), where R = (�1;1). The purpose of this article is to show that

there is a one-to-one correspondence between the set of all minimal stable

realizations of a given input/output map D 2 TIC(U ;Y ) and the set of all

minimal bounded factorizations of the Hankel operator of D which satisfy

a certain admissibility condition. We begin by de�ning what we mean by a

stable well-posed linear system in continuous time.

Let R

�

= (�1; 0], R

+

= [0;1), and for any function u de�ned on R,

let

(�

t

u)(s) = u(t+ s); t; s 2 R;

(�

�

u)(s) =

(

u(s); s 2 R

�

;

0; s 2 R

+

;

(�

+

u)(s) =

(

u(s); s 2 R

+

;

0; s 2 R

�

;

:

In particular, we can apply these operators to functions u 2 L

2

(R;U) (the

space of U -valued L

2

-functions on R), where U is a Hilbert space. Then

t 7! �

t

is the (bilateral) left-shift group on L

2

(R;U), t 7! �

t

+

= �

+

�

t

is

the (unilateral) left-shift semigroup on L

2

(R

+

;U), and �

t

�

= �

t

�

�

is the

(unilateral) left-shift semigroup on L

2

(R

�

;U).

De�nition 1.1. Let U , H and Y be Hilbert spaces. A stable well-posed

linear system 	 on (Y;H; U) is a quadruple 	 = [

A B

C D

] of bounded linear

operators satisfying the following conditions:

(i) t 7! A

t

is a bounded strongly continuous semigroup on H;

(ii) B : L

2

(R

�

;U)! H satis�es B�

t

�

= A

t

B for all t 2 R

+

;

(iii) C : H ! L

2

(R

+

;Y ) satis�es CA

t

= �

t

+

C for all t 2 R

+

;

(iv) D : L

2

(R;U)! L

2

(R;Y ) satis�es �

t

D = D�

t

for all t 2 R, �

�

D�

+

=

0, and �

+

D�

�

= CB.

The di�erent components of 	 are called as follows: U is the input space, H

is the state space, Y is the output space, A is the semigroup, B is the input

map, C is the output map, and D is the input-output map.
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Thus, (ii) says that the input map B intertwines the left shift on R

�

with the basic state space semigroup A, and (iii) says that the output map C

intertwines A with the left shift on R

+

. The condition �

t

D = D�

t

says that

D is time-invariant, the condition �

�

D�

+

= 0 says that D is causal (thus,

D 2 TIC(U ;Y )), and the �nal condition �

+

D�

�

= CB in (iv) says that the

Hankel operator of the input/output map D factors into the product of the

input map B and the output map C. For more details of this particular for-

mulation of a well-posed linear system we refer the reader to Sta�ans [1995

1996 1997 1998 1999abcd]. Alternative (but more or less equivalent) formu-

lations are given in Arov and Nudelman [1996], Curtain and Weiss [1989],

Helton [1976], Jacob and Zwart [1998], Ober and Montgomery-Smith [1990],

Ober and Wu [1996], Salamon [1987 1989], Weiss [1989abc 1991 1994ab], and

Weiss and Weiss [1997].

Here we are primarily interested in the converse of part (iv) of De�ni-

tion 1.1. Suppose that D 2 TIC(U ;Y ), i.e., D : L

2

(R;U) ! L

2

(R;Y )

satis�es both the time invariance requirement �

t

D = D�

t

and the causal-

ity requirement �

�

D�

+

= 0 in (iv). Suppose also that in one way or

another we have succeeded to factor �

+

D�

�

into �

+

D�

�

= CB, where

B : L

2

(R

�

;U) ! H and C : H ! L

2

(R

+

;Y ) are bounded linear opera-

tors and H is an arbitrary Hilbert space. Is it then always possible to �nd

a semigroup A on H such that the quadruple [

A B

C D

] is a stable well-posed

linear system?

Our answer to the preceding question, given in Theorem 1.3 below, is a

quali�ed \yes". One necessary restriction is that the factors in the factor-

ization �

+

D�

�

= CB satsfy some \hidden" regularity assumptions imposed

on them by the fact that they also have to satisfy (ii) and (iii). To derive

these hidden regularity assumptions we argue as follows: If (ii) holds then

B�

t

�

= A

t

B, hence

kB�

t

�

uk

H

� KkBuk

H

; 8t 2 R

+

; 8u 2 L

2

(R

�

;U); (1)

where K = sup

t�0

kA

t

k. In particular, for all u 2 L

2

(R

�

;U),

Bu = 0) B�

t

�

u = 0; 8t 2 R

+

: (2)

The same computation applied to the adjoint of the output intertwining con-

dition CA

t

= �

t

+

C gives an analogous condition for the output map, namely

k(�

t

+

C)

�

yk

H

� KkC

�

yk

H

; 8t 2 R

+

; 8y 2 L

2

(R

+

;Y ): (3)
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Another important property of the factorization �

+

D�

�

= CB is related

to the controllability and observability of the resulting system.

De�nition 1.2.

(i) A stable well-posed linear system [

A B

C D

] on (Y;H; U) is controllable if B

has dense range, and exactly controllable in in�nite time if the range of

B is the whole state space H. The system is observable if C is one-to-

one and exactly observable in in�nite time if, in addition, the range of

C is closed in L

2

(R

+

;Y ). A system is minimal if it is both controllable

and observable.

(ii) By a stable factorization �

+

D�

�

= CB of the Hankel operator of

D 2 TIC(U ;Y ) we mean a factorization where H is a Hilbert space,

and B : L

2

(R

�

;U) ! H and C : H ! L

2

(R

+

;Y ) are bounded linear

operators. This factorization is minimal if, in addition, the range of B

is dense in H and C is one-to-one.

It is well known that every well-posed linear system can be turned into

a minimal system by factoring out the orthogonal complement of the range

of the input map and projecting onto the orthogonal complement of the null

space of the output map. See, for example, [Salamon 1989, p. 159] or [Arov

and Nudelman 1996, Theorem 7.1] (the corresponding discrete time version

if found in, e.g., [Helton 1974, Theorem 3a.1]).

The following is our main result:

Theorem 1.3. Let D 2 TIC(U ;Y ), and suppose that the Hankel operator

�

+

D�

�

of D factors into �

+

D�

�

= CB, where H is a Hilbert space, and

B : L

2

(R

�

;U) ! H and C : H ! L

2

(R

+

;Y ) are bounded linear operators

(i.e., CB is a stable factorization of �

+

D�

�

).

(i) If B has dense range then (1) implies (3), and if C is one-to-one, then

(3) implies (1).

(ii) Let H

B

be the closure of the range of B in H. Then the following

conditions are equivalent:

(a) condition (1) holds;
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(b) there is a (unique) semigroup A

B

on H

B

such that

�

A

B

B

C

B

D

�

is

a stable well-posed linear system on (Y;H

B

; U); here C

B

is the

restriction of C to H

B

.

(iii) Let H

C

be the orthogonal complement to the null space of C in H. Then

the following conditions are equivalent:

(a) condition (3) holds;

(b) there is a (unique) semigroup A

C

on H

C

such that

�

A

C

B

C

C D

�

is a

stable well-posed linear system on (Y;H

C

; U); here B

C

= P

C

B,

where P

C

is the orthogonal projection of H onto H

C

.

(iv) If the factorization �

+

D�

�

= CB is minimal (i.e., B has dense range

and C is one-to-one), then the following conditions are equivalent:

(a) condition (1) holds;

(b) condition (3) holds;

(c) there is a (unique) semigroup A on H such that [

A B

C D

] is a stable

well-posed linear system.

The proof of Theorem 1.3 is given in Section 6.

Corollary 1.4. There is a one-to-one correspondence between the set of all

minimal stable realizations of an input/output map D 2 TIC(U ;Y ) and the

set of all minimal stable factorizations of the Hankel operator of D satisfying

the admissibility conditions (1) and (3).

This follows from De�nitions 1.1 and 1.2 and Theorem 1.3(iv). We remark

that all the realizations in Corollary 1.4 are weakly similar (with a one-to-one,

closed, possibly unbounded, densly de�ned similarity operator with dense

range); see [Arov and Nudelman 1996, Proposition 7.10] or Sta�ans [1999d].

2 The History of the Problem

Theorem 1.3 is in the spirit [Kalman et al. 1969, Part 4] (although the set-

ting is di�erent). The importance of the Hankel operator of the input/output

map in realization theory has long been recognized. There is some formal
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resemblence between Theorem 1.3 and the factorizations results presented

in [Kalman 1963, Theorem 1], [Kalman et al. 1969, Theorem (13.19)], and

[Brockett 1970, Theorem 1, p. 93], but there is a a very signi�cant non-

technical di�erence: the realization presented there is intrincically time-

dependent (and time-reversible), and its state space dynamics is trivial. A

much more closely related result is found in [Kalman et al. 1969, Section

10.6] and [Fuhrmann 1981, pp. 31{32]: there we �nd the same algebraic

construction (in discrete time), but without any continuity considerations of

the type (1){(3). Even closer to Theorem 1.3 is [Baras and Brockett 1975,

Theorem 6], [Baras and Dewilde 1976, Theorem II.2.2] and [Fuhrmann 1981,

Theorem 6-3, p. 293], which give su�cient conditions for the existence of

a realization with bounded control and observation operators in the case of

�nite-dimensional U and Y . As a special case of a stable factorization we

can take either B or C to be the identity operator; this leads to the exactly

controllable (or restricted shift) and exactly observable (or restricted �-shift)

realizations, respectively, di�erent versions of which are found in, e.g., Baras

and Dewilde [1976], [Fuhrmann 1974, Theorem 2.6], [Fuhrmann 1981, Sec-

tion 3.2], [Helton 1974, p. 31], [Jacob and Zwart 1998, Theorem A.1], [Ober

and Wu 1996, Sections 5.2{5.3], and [Salamon 1989, Theorem 4.3].

Various types of in�nite-dimensional discrete and continuous time real-

izations have recently been studied in Ober and Montgomery-Smith [1990]

and Ober and Wu [1993 1996] (the restricted shift and �-shift, input normal,

output normal, and (par)balanced realizations, as well as their spectral and

stability properties) and in Jacob and Zwart [1998] (minimal realizations of

a scalar inner transfer function with an invertible or exponentially stable

semigroup).

3 The Corresponding Frequency Domain Re-

sult

To derive a frequency domain analogue of Theorem 1.3 we �rst recall that

the space TIC(U ;Y ) is isometrically isomorphic to the space H

1

(U ;Y ) of

L(U ;Y )-valued bounded analytic functions of the right half plane:

Proposition 3.1. There is a one-to-one correspondence between TIC(U ;Y )

and H

1

(U ;Y ) of the following type: To every D 2 TIC(U ;Y ) there is

a unique

b

D 2 H

1

(U ;Y ), and to every

b

D 2 H

1

(U ;Y ) there is a uniqe

6



D 2 TIC(U ;Y ) such that, for every u 2 L

2

(R

+

;Y ), the Laplace transform

c

Du of Du is given by

c

Du(z) =

b

D(z)û(z), <z > 0, where û is the Laplace

transform of u. Moreover, the operator norm of D in TIC(U ;Y ) is equal to

the H

1

(U ;Y )-norm of

b

D (= sup

<z>0

k

b

D(z)k).

This result is well known. See, for example [Weiss 1991, Theorem 1.3 and

Remark 1.6].

Thus, Theorem 1.3 may be interpreted as a realization result for the H

1

transfer function

b

D. Usually U , H and Y are taken to be separable, in

which case

b

D has a well-de�ned boundary function on the imaginary axis,

and the Hankel operator �

+

D�

�

has a standard frequency domain interpre-

tation (projection onto H

2

(U)

?

followed by multiplication by the boundary

function followed by projection onto H

2

(Y )). However, in its present form

Theorem 1.3 does not look like a \standard" realization result for an H

1

transfer function

b

D, which is typically expected to provide a representation

of

b

D of the form

b

D(z) = C(zI � A)

�1

B +D; <z > 0; (4)

where [

A B

C D

] are the generators of the system 	. To get such a representation

we have to write the system 	 in \di�erential" form

x

0

(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t); t � 0;

(5)

where A is the generator of the semigroup A, B and C are the (unbounded)

control and observation operator, determined by the fact that (in a well-

de�ned sense)

Bu =

Z

0

�1

A

�s

Bu(s) ds;

(Cx)(t) = CA

t

x; t � 0;

(6)

and D is the feedthrough operator. For this to be possible we need to restrict

the set of permitted H

1

functions slightly, and consider only functions

b

D for

which the (weak or strong) limit

Du = lim

�!+1

b

D(�)u u 2 U; (7)
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exists in Y ; here � ! +1 along the real axis. Following Weiss [1994ab]

and Weiss and Weiss [1997], we call such a transfer function (weakly or

strongly) regular. By a regular system we mean a system with a regular

transfer function. It has been known for roughly a decade how to construct

the generators [

A B

C D

] of a regular system from the system operators [

A B

C D

];

see Arov and Nudelman [1996], Salamon [1989], Weiss [1989ab 1994ab], and

Sta�ans [1999d]. Our Theorem 1.3, combined with the general theory of

regular systems, gives us a representation of the form (4) for a regular transfer

function via the factorization of its Hankel operator. We refer the reader to

the works cited above for details of how to construct the representation (4)

of

b

D from the system [

A B

C D

]. Even in the non-regular case it is possible to get

a representation similar to (4) but slightly more complicated; see the cited

references.

4 Discrete Time Realizations

Our Theorem 1.3 has an obvious discrete time counterpart. One way to

formulate and prove this result is to use the Cayley transform, which often

has been used to transfer results in the opposite direction from discrete to

continuous time (see, e.g., Arov and Nudelman [1996] and Ober and Wu

[1996]). However, it is easier to prove the corresponding discrete time result

directly.

A discrete time system is usually written in di�erence form

x

k+1

= Ax

k

+Bu

k

;

y

k

= Cx

k

+Du

k

; k 2 Z

+

= f0; 1; 2; : : :g ;

(8)

where A 2 L(H), B 2 L(U ;H), C 2 L(H;Y ), and D 2 L(U ;Y ); here U , H,

and Y are Hilbert spaces and L(U ;Y ) stands for the set of bounded linear

operators from U to Y ; etc. The discrete time input map B, output map C,

and input/output map D are given by

Bu =

1

X

k=0

A

k

u

�k�1

;

(Cx)

k

= CA

k

x; k 2 Z

+

;

(Du)

k

=

1

X

i=0

CA

i

Bu

k�i�1

+Du

k

; k 2 Z = f0;�1;�2; : : :g ;

(9)
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where u

k

represents an U -valued sequence with �nite support and x 2 H.

The system is stable if sup

k2Z

+

kA

k

k <1, C 2 L(H; l

2

(Z

+

;Y )), and the oper-

atorsB and D can be extended to (bounded) operatorsB 2 L(l

2

(Z

�

;U);H)

(where Z

�

= f�1;�2; : : :g) and D 2 L(l

2

(Z;U); l

2

(Z;Y )). To get the input-

output representation of the system in (8) we replace the operators [

A B

C D

] by

the operators [

A B

C D

]. This quadruple of operators satis�es a set of conditions

similar to those listed in De�nition 1.1. For each sequence u

k

, z 2 Z and

each j 2 Z we de�ne

(�

�

u)

k

=

(

u

k

; k 2 Z

�

;

0; k 2 Z

+

;

(�

+

u)

k

=

(

u

k

; k 2 Z

�

;

0; s 2 Z

+

;

;

(�u)

k

= u

k+1

; k 2 Z; e

j

k

=

(

1; k = j;

0; k 6= j:

Thus, �

+

and �

�

are complementary orthogonal projections operators in

l

2

(Z), � is the (bilateral) left shift in l

2

(Z), �

+

= �

+

� is the (unilateral)

left-shift on l

2

(Z

+

), and �

�

= ��

�

is the (unilateral) left-shift semigroup on

l

2

(Z

�

). The vectors e

j

form an orthonormal basis in l

2

(Z). The operators

[

A B

C D

] arising from a stable discrete time system on (Y;H; U) are characterized

by the fact that they satisfy the following four conditions:

(i) A 2 L(H), and sup

k2Z

+

kA

k

k <1;

(ii) B 2 L(l

2

(Z

�

;U);H) satis�es B�

�

= AB;

(iii) C 2 L(H; l

2

(Z

+

;Y )) satis�es CA = �

+

C;

(iv) D 2 L(l

2

(Z;U); l

2

(Z;Y )) satis�es �D = D�, �

�

D�

+

= 0, and �

+

D�

�

=

CB.

In particular, D is again time invariant and causal, and its Hankel operator

�

+

D�

�

factors into �

+

D�

�

= CB. We call a quadruple of operators [

A B

C D

]

which satisfy (i){(iv) a stable discrete time well-posed linear system in input-

output form on (Y;H; U). The corresponding operators B, C, and D can be

recovered from B, C and D through

Bu = B(ue

�1

); Cx = (Cx)

0

; Du = (D(ue

0

))

0

:
(10)

More details are given in Malinen [1997 1999]
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The discrete time analogues of (1) and (3) are

kB�

k

�

�

uk

H

� KkBuk

H

; 8k 2 Z

+

; 8u 2 l

2

(Z

�

;U); (11)

k(�

k

�

+

C)

�

yk

H

� KkC

�

yk

H

; 8k 2 Z

+

; 8y 2 l

2

(Z

+

;Y ); (12)

where K = sup

k2Z

+

kA

k

k. The discrete time version of Theorem 1.3 reads as

follows:

Theorem 4.1. Let D 2 L(l

2

(Z;U); l

2

(Z;Y )) be time invariant and causal

(i.e., �D = D� and �

�

D�

+

= 0), and suppose that the Hankel operator

�

+

D�

�

of D factors into �

+

D�

�

= CB, where H is a Hilbert space, and

B 2 L(L

2

(Z

�

;U);H) and C 2 L(H;L

2

(Z

+

;Y )).

(i) If B has dense range then (11) implies (12), and if C is one-to-one,

then (12) implies (11).

(ii) Let H

B

be the closure of the range of B in H. Then the following

conditions are equivalent:

(a) condition (11) holds;

(b) there is a (unique) operator A

B

2 L(H

B

) such that

�

A

B

B

C

B

D

�

is a

stable discrete time well-posed linear system on (Y;H

B

; U); here

C

B

is the restriction of C to H

B

.

(iii) Let H

C

be the orthogonal complement to the null space of C in H. Then

the following conditions are equivalent:

(a) condition (12) holds;

(b) there is a (unique) operator A

B

2 L(H

B

) such that

�

A

C

B

C

C D

�

is a

stable discrete time well-posed linear system on (Y;H

C

; U); here

B

C

= P

C

B, where P

C

is the orthogonal projection of H onto H

C

.

(iv) If the factorization �

+

D�

�

= CB is minimal (i.e., B has dense range

and C is one-to-one), then the following conditions are equivalent:

(a) condition (11) holds;

(b) condition (12) holds;

(c) there is a (unique) operator A 2 L(H) such that [

A B

C D

] is a stable

well-posed linear system.

We leave the straightforward proof of this theorem to the reader (it is

virtually identical to the proof of Theorem 1.3 given in Section 6).
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5 Applications and Extensions

One possible way of factoring the Hankel operator �

+

D�

�

is to factor the

time-invariant operatorD itself intoD = XY, whereY : L

2

(R;U)! L

2

(R;Z)

and X : L

2

(R;Z)! L

2

(R;Y ) are bounded and time-invariant (but not nec-

essarily causal), and Z is some auxiliary Hilbert space. We can then take

H = L

2

(R;Z), A

t

= �

t

, B = Y�

�

, and C = �

+

X. Strictly speaking, this is

not a special case of Theorem 1.3 since this realization is, in general, neither

controllable nor observable, but it is easy to see that this is a realization of

D (to get into the context of Theorem 1.3 we have to factor out the orthog-

onal complement to the reachable subspace H

B

, or project the state space

H onto the orthogonal complement of the unobservable subspace, i.e., onto

H

C

). In this realization all the information about the factor Y is contained

in the input map B, and all the information about the factor X is contained

in the output map C. In particular, we can let X and Y be the factors in an

inner-outer factorization of D, or the factors in a co-inner-outer factorization

of D, or the factors in a Douglas-Shapiro-Shields factorization in the case

where D is strictly noncyclic. (See, e.g., [Ober and Wu 1996, Theorem 4.8]

for a description of the last factorization.) We shall return to this question

elsewhere.

It is also easy to prove a version of Theorem 1.3 which applies to unstable

systems: Instead of using the standard L

2

-spaces we can use L

2

-spaces with

an exponential weight for the input and output functions. This method is

useful also in the construction of an exponentially stable realization (when-

ever such a realization exists). In the case where B, C, and D are stable,

if we are willing to accept an unbounded semigroup A

t

in Theorem 1.3 and

an unbounded state trajectory A

k

x in Theorem 4.1, then it su�ces to take

t 2 [0; 1] in (1){(3) and to take k = 1 in (11){(12). See Sta�ans [1999d] for

details. There it is also shown how to extend Theorem 1.3 to the class of

L

p

-well-posed linear systems on a triple on Banach spaces (Y;X; U), and an

alternative version of (3) is given which refers directly to C instead of C

�

.

6 Proof of Theorem 1.3

The proof of Theorem 1.3 is based on the following key identity, which is

often taken as the de�nition of a Hankel operator (cf. [Fuhrmann 1981, p.

249]:
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Lemma 6.1. The Hankel operator �

+

D�

�

of D satis�es

�

t

+

�

+

D�

�

= �

+

D�

�

�

t

�

; 8t 2 R

+

:

In particular, if �

+

D�

�

factors into �

+

D�

�

= CB, then

�

t

+

CB = CB�

t

�

; 8t 2 R

+

:

Proof. Use the time invariance of D to get

�

t

+

�

+

D�

�

= �

+

�

t

�

+

D�

�

= �

+

�

t

D�

�

= �

+

D�

t

�

�

= �

+

D�

�

�

t

�

�

= �

+

D�

�

�

t

�

:

Proof of Theorem 1.3. (i) We get from Lemma 6.1 for all t 2 R

+

, all u 2

L

2

(R

�

;U), and all y 2 L

2

(R

+

;Y ),

h(�

t

+

C)

�

y;Bui

H

= hy; �

t

+

CBui

H

= hC

�

y;B�

t

�

ui

H

:

In particular, if (1) holds, then

�

�

h(�

t

+

C)

�

y;Bui

H

�

�

=

�

�

hC

�

y;B�

t

�

ui

H

�

�

� kC

�

yk

H

kB�

t

�

uk

H

� KkC

�

yk

H

kBuk

H

;

which implies (3) whenever B has dense range. The other claim is proved in

a similar way (C

�

has dense range i� C is one-to-one).

(ii) The argument that we used above to derive (1) shows that (b)) (a).

Conversely, suppose that (a) holds. Without loss of generality, we may

assume that H

B

= H (otherwise we replace H by H

B

). The idea is to use

the intertwining condition A

t

B = B�

t

�

in part (ii) of De�nition 1.1 as a

de�nition of A

t

. Clearly, for this to be possible, the range of B must be

dense in H.

Thus, for each x = Bu 2 range(B) and t 2 R

+

, we de�ne

A

t

x = B�

t

�

u:

To see that this de�nition of A

t

x does not depend on the particular choice of

u we use the fact that (1) imples (2): if x = Bu

1

= Bu

2

thenB(u

1

�u

2

) = 0,

and B�

t

�

(u

1

� u

2

) = 0 for all t 2 R

+

.

We claim that A is a strongly continuous semigroup on range(B). Ob-

viously A

0

= I. Let x = Bu and A

t

x = B�

t

�

u. Then A

t

x 2 range(B)

and

A

s

A

t

x = B�

s

�

�

t

�

u = B�

s+t

�

u = A

s+t

x:
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The strong continuity of A

t

on range(B) is obvious (the left-shift semigroup

on L

2

(R

+

;U) is strongly continuous andB is bounded). Thus, A is a strongly

continuous semigroup on range(B).

Next we extend A to a strongly continuous semigroup onH. For each t, A

t

is densily de�ned, and condition (1) implies that kA

t

xk

H

� Kkxk

H

for each

x 2 range(B). By continuity, A has a unique extension to a bounded strongly

continuous semigroup on H which satis�es the intertwining condition A

t

B =

B�

t

�

.

It remains to show that this semigroup also satis�es the second intertwin-

ing condition CA

t

= �

t

+

C for all t 2 R

+

. By the density of range(B) in H, it

su�ces to show that CA

t

B = �

t

+

CB, and this is an immediate consequence

of Lemma 6.1: CA

t

B = CB�

t

�

= �

t

+

CB.

(iii) To prove (iii) it su�ces to apply (ii) to the dual system.

(iv) This follows from (i){(iii).
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