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Abstract. We study the in�nite horizon quadratic cost minimization problem

for a linear time-invariant distributed parameter system with �nitely may inputs and
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factorization. The theory is illustrated with two examples involving pure time delays.
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1 Introduction

In the �rst half of this paper we solve the linear quadratic optimal control problem on

an in�nite horizon for linear systems whose impulse response is a locally �nite matrix

measure. It is an extension of our earlier work [15], where the same problem was

solved in the stable case, i.e., when the measure is �nite. Here the idea is to assume

the existence of a right coprime factorization of the impulse response (as a convolution

operator) in the ring of �nite measures. By making use of this coprime factorization we

�rst stabilize the system with a preliminary feedback, and then analyze the stabilized

system by means of a spectral factorization as in [15]. Similar arguments have been

presented in a more general setting in [19, 20], but in the special case considered here

we are able to provide more details and to avoid some of the technical di�culties

encountered in [19, 20].

The second half of the paper is devoted to the presentation of two examples illumi-

nating the theory. Both of these have an impulse response which contains a pure time

delay, and for this reason they cannot be analyzed with the classical theory based on

the solution of a standard Riccati equation.

In order to provide some motivation for the approach that we use, let us be-

gin by discussing the standard quadratic cost minimization problem for an in�nite-

dimensional time-invariant exponentially stabilizable and detectable system with

1
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bounded control and observation operators. Suppose that we have such a system

� = (A;B;C;D) with �nite-dimensional input space U = R

m

, (possibly) in�nite-

dimensional state space H , and �nite-dimensional output space Y = R

n

, given by

x

0

(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t); t � 0;

x(s) = x

0

:

(1)

The spaces U , H , and Y are Hilbert spaces, A is the generator of a strongly continuous

semigroup S on H , and B 2 L(U ;H), C 2 L(H ;Y ), and D 2 L(U ;Y ) are bounded

linear operators. The object is to �nd the optimal control u

opt

2 L

2

(R

+

;U) that

minimizes the cost function

J(u) =

Z

1

0

�

jy(t)j

2

+ jR

1=2

u(t)j

2

�

dt; (2)

where R is positive semi-de�nite. In particular, this means that u must be chosen

in such a way that y 2 L

2

(R

+

;R

n

). To avoid the so called singular case we assume

throughout that D

�

D +R is strictly positive de�nite.

We approach the problem described above in the following way. Since � is stabi-

lizable, we can choose some stabilizing state feedback operator F , i.e., we can choose

some bounded operator F 2 L(H ;U) such that A + BF generates an exponentially

stable semigroup S

F

. We de�ne a new auxiliary variable x by

x(t) = u(t)� Fz(t); t � 0; (3)

and rewrite (1) in the form

z

0

(t) = (A+BF )z(t) +Bx(t); t � 0;

y(t) = (C +DF )z(t) +Dx(t); t � 0;

u(t) = Fz(t) + x(t); t � 0;

z(0) = z

0

:

(4)

See Figure 1 for a diagram of this system (the arrows labelled f , g, � and � refer to

formula (8) below). According to the standard variation of constants formula,

z(t) = S

F

(t)z

0

+

Z

t

0

S

F

(t� s)Bx(s) ds; t � 0; (5)

hence

y(t) = C

F

S

F

(t)z

0

+

Z

t

0

C

F

S

F

(t� s)Bx(s) ds+Dx(t); t � 0;

u(t) = FS

F

(t)z

0

+

Z

t

0

FS

F

(t� s)Bx(s) ds+ x(t); t � 0;

(6)

where C

F

= C +DF . De�ne

�( ds) = D�

0

( ds) + C

F

S

F

(s)B ds;

�( ds) = I�

0

( ds) + FS

F

(s)B ds; s � 0;

f(t) = C

F

S

F

(t)z

0

;

g(t) = FS

F

(t)z

0

; t � 0;

(7)
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Figure 1: Preliminary stabilizing feedback

where �

0

represents a unit atom at zero and I is the identity matrix. Then � and �

are matrix-valued measures that consist of an atom at zero plus a function in L

1

(R

+

),

and f and g are L

2

-functions (of appropriate dimensions). Moreover, equations (6)

can be written in the form (cf. Figure 1)

y = � � x+ f;

u = � � x+ g:

(8)

The convolutions are de�ned in the usual way, i.e.,

(� � x)(t) =

Z

[0;t]

�( ds)x(t� s);

(� � x)(t) =

Z

[0;t]

�( ds)x(t� s); t 2 [0;1):

In this work we study more general equations of the type (8), allowing f and g to

be arbitrary L

2

-functions on (0;1), without assuming anything about the existence

of an underlying system � = (A;B;C;D) of the type presented in (1). In all the

major proofs we work exclusively with the data given in (8), i.e., �, �, f , and g, under

assumptions that will be explained in a moment. The functions u and y are considered

to be the control and observation, respectively, and the object is to �nd the control

u 2 L

2

(R

+

;R

m

) that minimizes the cost function J de�ned in (2), given the initial

data f , and g. The results that we obtain can be used to derive both the standard

results for the system � = (A;B;C;D) in (1), and to derive some new results for

systems with unbounded control operator B and observation operator C.

Our major results are presented in Section 2. These results are applied to two

examples in Sections 3 and 4. One of them is the system that we get by adding an

input delay to (1), and the other is a distortion free transmission line, with the control

and observation located at opposite ends.

Acknowledgment. We thank Prof. George Weiss and the referees for their nu-

merous suggestions given over the last four years which helped us improve the original

manuscript signi�cantly.
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Notations.

R; R

+

; R

+

; R

�

; R

�

: R = (�1;1), R

+

= (0;1), R

+

= [0;1), R

�

= (�1; 0),

and R

�

= (�1; 0].

L(U); L(U ;V ): The Banach space of bounded linear operators mapping U into itself

or U into V , respectively, with the operator norm.

L

p

(E;R

n

): The Banach space of R

n

-valued L

p

-functions, 1 � p � 1, on the interval

E, with the usual norm.

B

1

(E;R

n

): The Banach space of R

n

-valued bounded Borel measurable functions on

the interval E, with the sup-norm.

B

1

0

(E;R

n

): The subspace of B

1

(E;R

n

) of functions tending to zero at in�nity.

BC(E;R

n

); BC

right

(E;R

n

): The Banach spaces of bounded and continuous or right-

continuous R

n

-valued functions on the interval E, with the sup-norm.

BUC(E;R

n

): The Banach space of bounded and uniformly continuous R

n

-valued

functions on the interval E, with the sup-norm.

BUC

0

(E;R

n

): The subspace of BUC(E;R

n

) of functions tending to zero at in�nity.

M(E;R

n�m

): The set of n � m-dimensional matrix-valued measures of bounded

variation on the interval E, with the total variation norm.

F ; G: F = L

2

(R

+

;R

n

), and G = L

2

(R

+

;R

m

).

��: The measure obtained from the measure � through a re
ection of the

time axis, combined with the passing to the matrix adjoint, i.e., ��(E) =

�(�E)

�

for each Borel set E. The convolution operator ��� is the adjoint

of the convolution operator ��.

�̂: The Laplace (Stieltjes) transform of the measure � 2M(R

+

;R

n�m

).

�

0

: The unit atom at zero (the Dirac delta).

�

�1

: The convolution inverse of the measure �, i.e., � � �

�1

= �

�1

� � = I�

0

.

�

t

: The translation operator �

t

f(s) = f(t+s) (this is a left-shift when t > 0).

�

E

: The characteristic function of E � R.

�

E

: The (projection) operator that maps a function f de�ned on R into

�

E

f = �

E

f .

�

+

; �

+

: �

+

= �

(0;1)

and �

+

= �

[0;1)

. These operators are the same in L

p

, but

they di�er from each other in B

1

.

�

�

; �

�

: �

�

= �

(�1;0)

and �

�

= �

(�1;0]

. These operators are the same in L

p

,

but they di�er from each other in B

1

.

2 Summary of Results

We make the following basic assumptions on the data in (8). The functions f and g

are supposed to belong to F = L

2

(R

+

;R

n

), and G = L

2

(R

+

;R

m

), respectively. The

matrix-valued measures � and � (of dimensions n �m and m �m, respectively) are

required to be of bounded variation on R

+

, and they should be right coprime in the

following sense.
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De�nition 1 The measures � 2 M(R

+

;R

n�m

) and � 2 M(R

+

;R

m�m

) are right

coprime in M(R

+

) i� the Bezout identity

�

1

� � + �

1

� � = I�

0

(9)

has a solution �

1

2 M(R

+

;R

m�n

) and �

1

2 M(R

+

;R

m�m

). Here I is the identity

matrix, and �

0

is the Dirac delta.

The measure � is supposed to have an invertible feed-through operator:

De�nition 2 [15, De�nition 2.4] Write � 2 M(R

+

;R

n�m

) in the form �( ds) =

D

�

�

0

( ds) + �

+

( ds), where �

0

is the Dirac delta, D

�

is a matrix, and �

+

has no atom

at zero. Then D

�

�

0

is called the (instantaneous) feed-through part of �, D

�

is called

the (instantaneous) feed-through matrix of �, and �

+

is called the strictly causal part

of �.

If, for example, the Laplace transforms of � and � belong to the matrix-valued

Callier-Desoer algebraM

^

A

�

(0) and D

�

is invertible, then the coprimeness of � and �

can be tested by the standard rank test in the right half plane; see [6, Lemma 7.2.11].

According to [14, Theorem 1.2], in order for the observation y in (8) to be well-

de�ned and to depend continuously on u in L

2

loc

(R

+

), it is necessary and su�cient

that � has an invertible feed-through matrix. We assume that this is the case, and,

without loss of generality, we take this feed-through matrix to be the identity matrix.

1

Thus � has a convolution inverse �

�1

, a measure supported on R

+

, which is otherwise

of the same type as � except that its total variation may be in�nite, cf. [11, Theorem

1.5, p. 114]. Eliminating the auxiliary variable x from (8) we get the input/output

relation

y = � � �

�1

� (u� g) + f: (10)

In particular, by taking the \transient" terms f , and g to be zero, we �nd that the

impulse response of the system is given by


 = � � �

�1

: (11)

The formula above de�nes a right coprime factorization of 
 in M(R

+

) in the sense

of [25, De�nition 1, p. 331]. Thus, the class of impulse responses that we are able

to handle is characterized by the fact that they have a right coprime factorization in

M(R

+

).

2

In order to solve the minimization problem presented in the introduction we have

to assume that the pair (�; �) is coercive:

De�nition 3 The pair (�; �) 2M(R

+

;R

n�m

)�M(R

+

;R

m�m

) is coercive i�

(�̂(i!))

�

�̂(i!) + (�̂(i!))

�

R�̂(i!) � �

2

I; ! 2 R; (12)

for some � > 0, here �̂ and �̂ are the Laplace (Stieltjes) transforms of � and �.

1

Multiply the second equation in (8) by D

�1

�

, and replace D

�1

�

�, D

�1

�

u, and D

�1

�

g by �, u, and

g.

2

In addition we need the Spectral Factorization Hypothesis 6.
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Under these assumptions the minimization problem presented in the introduction

has a unique solution:

Lemma 4 Let � 2 M(R

+

;R

n�m

) and � 2 M(R

+

;R

m�m

) be right coprime, let

f 2 L

2

(R

+

;R

n

), g 2 L

2

(R

+

;R

m

), and suppose that (�; �) is coercive. Then the

function J(u) de�ned in (2), with y given by (8), achieves its minimum at some u

opt

2

L

2

(R;R

m

). The minimizing function u

opt

is unique, and at the minimum, the optimal

output y

opt

and optimal control u

opt

are given by

y

opt

= � � x

opt

+ f;

u

opt

= � � x

opt

+ g;

(13)

where x

opt

is the solution of the symmetric Wiener-Hopf equation

((�� � � + �� �R�) � x

opt

)(t) = �(�� � f)(t)� (�� �Rg)(t); t � 0:
(14)

To prove this lemma it su�ces to observe that because of the coprimeness assump-

tion, x can be regarded as a free parameter in L

2

(R;R

m

) (see [20, Lemma 3.3]); hence

we can carry out the minimization exactly in the same way as in [15, Lemma 3.2] with

the replacements

Y ! Y � U; y !

�

y

R

1=2

u

�

; 
 !

�

�

R

1=2

�

�

; f !

�

f

R

1=2

g

�

; '! 0: (15)

At this stage we observe that we have arrived at exactly the same Wiener-Hopf

equation as in [15] (with the replacements listed above), and we can apply the theory

given in [15, Sections 2{3] to solve this equation. For completeness, we cite a number

of results from there. The key step in the solution of the Wiener-Hopf equation (14)

is to �nd an invertible solution � 2M(R

+

;R

m�m

) of the equation

�

� � � = �� � � + �� �R � �: (16)

Such a solution is called a spectral factor :

De�nition 5 [15, De�nition 2.1] A measure � 2 M(R

+

;R

m�m

) is called a (canon-

ical) spectral factor of the measure �� � � + �� � R � � if � has a convolution inverse

�

�1

2M(R

+

;R

m�m

) and � satis�es (16).

Throughout this work we make the following hypothesis:

Hypothesis 6 [15, Hypothesis 2.3] The measure �� � �+ ���R �� has a spectral factor

� 2M(R

+

;R

m�m

).

In particular, this hypothesis is true if � and � are of the following type:

Lemma 7 [15, Lemma 2.1] Let � 2M(R

+

;R

n�m

) and � 2M(R

+

;R

m�m

). Suppose

that (�; �) is coercive and that neither � nor � has a singular non-atomic part (in

particular, this implies that the atomic part of (�; �) is coercive). Then �� ��+ ���R��

has a spectral factor � 2M(R

+

;R

m�m

) in (at least) the two following cases:
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1. m = 1 (the control is scalar);

2. the atoms of � and � are rationally dependent, in the sense that they are located

at points that are integer multiples of one �xed time T (in particular, this is true

in case 4 below).

Moreover, in these cases,

3. � and �

�1

have no singular non-atomic part.

4. If � and � are the sum of an atom at zero plus a function in L

1

\ L

p

(R

+

) for

some p 2 [1;1], then � and �

�1

are of the same type.

5. If

R

R

+
e

�

1

s

�

j�j( ds) + j�j( ds)

�

< 1 for some �

1

> 0, then

R

R

+
e

�

2

s

j�j( ds) < 1

and

R

R

+
e

�

2

s

j�

�1

j( ds) <1 for some �

2

> 0 (i.e, if � and � are of Callier-Desoer

type, then so are � and �

�1

; cf. [2, De�nition 2.3]).

With the aid of the spectral factorization we are able to rewrite (14) as follows.

We replace �� � � + �� �R �� in (14) by

�

� � �, and then convolve the second equation by

�

�

�1

(which is supported on R

�

) to get the following delay equation satis�ed by x

opt

:

Lemma 8 [15, Formula (30)] Let � 2 M(R

+

;R

n�m

), � 2 M(R

+

;R

m�m

), and let

Hypothesis 6 hold. Then equation (14) can be rewritten in the following form:

(� � x

opt

)(t) = �(

�

�

�1

� (�� � f + �� �Rg))(t); t � 0:
(17)

This is a delay equation for the unknown x

opt

, with a kernel � and a forcing term

�

�

�

�1

� (�� � f + �� � Rg). This equation can be solved in a standard way (through an

inversion of the kernel �), and we recall the following result:

Theorem 9 [15, Theorem 3.3] Let � 2 M(R

+

;R

n�m

), � 2 M(R

+

;R

m�m

), let Hy-

pothesis 6 hold, and let B be any one of the spaces (see the list of notations)

L

p

with p 2 [1;1], B

1

, B

1

0

, or BC

right

: (18)

Then for each f 2 B(R

+

;R

n

) and g 2 B(R

+

;R

m

), equation (17) has a unique solution

x

opt

2 B(R;R

m

), given by

x

opt

= ��

�1

� �

+

�

�

�

�1

� (�� � f + �� �Rg)

�

:
(19)

If, in addition, f 2 B(R

+

;R

n

) and g 2 B(R

+

;R

m

), where B is any one of the spaces

BC, BUC, or BUC

0

; (20)

and if

�

�

�

�1

� (�� � f + �� �Rg)

�

(0) = 0; (21)

then x

opt

2 B(R;R

m

) and x

opt

(0) = 0. If f 2 B(R

+

;R

n

) and g 2 B(R

+

;R

m

), where

B is any one of the spaces listed in (20), and if we instead of (21) suppose that � and

� have no singular part (apart from a feed-through part), then x

opt

2 B(R

+

;R

m

) (but

x

opt

(0) may be nonzero). In all cases listed above, the optimal output y

opt

and optimal

control u

opt

de�ned in (13) belong to B(R

+

;R

n

) and B(R

+

;R

m

), respectively.
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In the case of the system � = (A;B;C;D) in (1) it is well-known that the optimal

control u

opt

is of feedback form, i.e, u

opt

(t) = Kx

opt

(t) for some bounded feedback

operator K. In particular, taking t = 0 we get u

opt

(0) = Kx

0

. This equation can

be used to de�ne the operator K if we have an independent method of computing

u

opt

(0). Indeed, we have just developed such an independent method. Let us denote

the operator that maps the initial data (f; g) into u

opt

(0) by K

�

, i.e.,

K

�

�

f

g

�

= u

opt

(0): (22)

Then, by replacing �, �, f and g by the measures and functions de�ned in (7), we

can compute the feedback operator K from K

�

. In this sense K

�

plays the role of a

\universal feedback operator". This operator has the following properties:

Theorem 10 The operator K

�

de�ned in (22) is a continuous linear operator from

BC

right

(R

+

;R

n

)�BC

right

(R

+

;R

m

) into R

n

, and it is given by the following formula

(cf. De�nition 2; here we assume that the feed-through operator of � is the identity):

K

�

�

f

g

�

= u

opt

(0) = x

opt

(0) + g(0)

= g(0)�D

�1

�

�

�

�1

�

�

�� ��R

�

�

�

f

g

�

(0):

(23)

This theorem is a straightforward extension of [15, Proposition 4.1].

In the same way it is possible to de�ne a \universal Riccati operator", from which

the Riccati operator of the system � = (A;B;C;D) can be computed. It is not di�cult

to show that the optimal cost J(u

opt

) is a quadratic function of the initial data, i.e.,

it is possible to �nd a positive self-adjoint operator �

�

such that the optimal cost is

given by

��

f

g

�

;�

�

�

f

g

��

= J(u

opt

); (24)

where the inner product is the usual inner product in F � G. This operator has the

following properties:

Theorem 11 Let � 2M(R

+

;R

n�m

) satisfy Hypothesis 6. Then the Riccati operator

�

�

de�ned in (24) is given by

�

�

�

f

g

�

=

�

f

Rg

�

�

�

�

R�

�

� �

�1

� �

+

�

�

�1

�

�

�� ��R

�

�

�

f

g

�

: (25)

In particular, it maps B(R

+

;R

n

) � B(R

+

;R

m

) continuously into itself, where B is

any one of the spaces listed in (18). Moreover, if � has no singular part (apart from

a feed-through part), then �

�

maps B(R

+

;R

n

)�B(R

+

;R

m

) continuously into itself,

where B is any one of the spaces listed in (20).

This theorem is a straightforward extension of [15, Theorem 5.1].

By using Theorems 10 and 11 one can easily prove the following result:
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Theorem 12 Let � = (A;B;C;D) be a coercive exponentially stabilizable and de-

tectable system with bounded control and observation operators.

1. There is a unique u

opt

that minimizes the cost function (2), where y is the output

of the system (1).

2. The optimal u

opt

can be written in feedback form u

opt

= Kz

opt

.

3. Let � be the \optimal cost operator" satisfying hx

0

;�x

0

i = J(u

opt

). Then K

can be computed from � through the formula

K = � (D

�

D +R)

�1

(B

�

�+D

�

C) ; (26)

and � can be computed from K through

hAx

1

;�x

0

i

H

+ hx

1

;�Ax

0

i

H

+ hx

1

; C

�

Cx

0

i

H

;

= hx

1

;K

�

(D

�

D +R)Kx

0

i

H

; x

0

; x

1

2 dom(A):

(27)

By combining these two equations we get the algebraic Riccati equation

hAx

1

;�x

0

i

H

+ hx

1

;�Ax

0

i

H

+ hx

1

; C

�

Cx

0

i

H

;

=

D

x

1

; (�B + C

�

D) (D

�

D +R)

�1

(B

�

�+D

�

C)x

0

E

H

;

x

0

; x

1

2 dom(A):

(28)

Of course, this theorem is well-known, but our proof based on Theorems 10 and 11

might be new (see [15, 17] for details).

The spectral factorization method for the solution of the quadratic cost minimiza-

tion problem presented above does not depend explicitly on the boundedness of the

operators B and C. For the spectral factorization itself it su�ces if the impulse re-

sponse is of the right type, and even the derivation of the Riccati equation is valid for

unbounded B and C, as long as x

0

can be chosen in such a way that the functions

f and g de�ned in (7) are continuous (in the proofs we need to evaluate u

opt

(0) and

�

�

�

f

g

�

(0); see [15]). This makes it possible to extend Theorem 12 to a more general

class of systems. We refer the reader to [15, 16, 17, 18, 20] for the exact statements

and proofs. One of the most striking features of this extension is that the formulas

in Theorem 12 need to be modi�ed in a nontrivial way. More precisely, the operator

D

�

D + R must be replaced throughout by the D

�

�

D

�

, where D

�

is the feed-through

operator of the spectral factor � of �

�

� + �

�

R�. We shall see examples in Sections 3

and 4 where these two operators di�er from each other.

Finally, let us comment on how our results relate to the literature.

Some recent publications of Grabowski [9, 10] contain results that are quite close to

some of ours. He uses spectral factorization to solve quadratic minimization problems,

but he has not developed a general Riccati equation theory for systems with unbounded

control and observation operators. We discuss Grabowski's example [10] in detail in

Section 4.

Our results for systems with bounded control and observation operators extend

those of Callier and Winkin [3, 4], in particular, Theorem 12 extends [4, Theorem 3] in

several ways. There it is not proved that the optimal solution u

opt

is of feedback type;

that result is borrowed from the standard Riccati equation theory. Likewise, Callier
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and Winkin borrow (26) from the standard Riccati equation theory instead of proving

this equation.

In his thesis [29], Martin Weiss studies a spectral factorization problem of a more

general type in the Pritchard-Salamon setting. In the Pritchard-Salamon case (that

we did not include) our Theorem 12 becomes related to the su�ciency part of [29,

Theorem 4.20].

The recent book [1] of Bensoussan, Da Prato, Delfour, and Mitter uses the classical

Riccati equation approach to the quadratic cost minimization problem for di�erential

systems with delays (and also for partial di�erential equations). The delay systems

considered there are of retarded type and have a �nite delay, and they do not cover the

two examples that we give below.

3

The exact relationship between the theory presented

here and in [15, 16, 18, 20, 21, 22, 23, 30] on one hand and in, e.g., [1, 12, 13] on the

other hand, is still not clear. (These books do not mention spectral factorization.)

In [8] Flandoli, Lasiecka, and Triggiani verify that the optimal cost operator �

satis�es a standard (as opposed to our nonstandard) algebraic Riccati equation in a

particular case. The assumptions in [8] are quite di�erent from ours: No assumption

is made on the impulse response directly; instead it is assumed that the observation

operator C is bounded, and that the control operator B is \trace regular". A recent

example [28] by Weiss and Zwart shows that the same phenomenon that we encounter

here can also occur under the assumptions used in [8]. The di�erent conclusions here

and in [8] are explained by the fact that in order to formulate the exact result it is

necessary the extend B

�

to a larger domain, and our extension di�ers from the one in

[8]. See [8, 12, 16, 18, 19, 20] for details.

3 Example: A system with an input delay

Below we present two examples to which our theory applies. They are particularly

interesting because of the fact that the anomaly that we mentioned above (the change

in one of the coe�cients in the Riccati equation) occurs; yet they are simple enough

so that we can �nd exact analytic solutions.

We begin by considering the example (1) with one additional input delay.

4

The

de�ning equations become in this case

z

0

(t) = Az(t) +Bu(t� T );

y(t) = Cz(t) +Du(t� T ); t 2 [0;1);

z(0) = z

0

;

u(t) =  (t); t 2 [�T; 0);

(29)

where T > 0 is a constant delay,  2 L

2

((�T; 0);R

m

), and the rest of the setting is

the same as in (1). This example has been studied extensively in di�erent connections,

see, e.g., [5], [24], and the references mentioned therein, but we have not encountered

the complete state space solution before.

3

More general systems are discussed in [7], but independently of how the realization is chosen the

input and output operators in our two examples are too unbounded for the Riccati equation theory

presented in [1] to apply. This can be seen from the fact that the impulse response contains a pure

delay term (except for our �rst example with D = 0).

4

An output delay is even simpler to handle.
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This system has a simple realization 	 = (A

	

; B

	

; C

	

; D

	

) as a regular linear

system. It is the serial connection of a delay line (a left-shift on (�T; 0) of u), with

unbounded control and observation operators, connected in series with the system � in

(1). We refer the reader to [5, Example 4.1] for a closer description of this realization.

For our purposes it su�ces to know that its state space H

	

is H�L

2

((�T; 0);R

m

), its

input space is U = R

m

, its output space is Y = R

n

, the controlled state at time t � 0

is given by

�

z(t)

u

t

�

; where u

t

(s) = u(t + s) for �T � s � 0, and that the generating

operators are

dom(A

	

) = dom(A) �

�

 2 W

1;2

([�T; 0];R

m

) j  (0) = 0

	

;

A

	

�

z

0

 

�

=

�

Az

0

+B (�T )

 

0

�

; B

	

u =

�

0

�

0

u

�

;

C

	

�

z

0

 

�

= Cz

0

+D (�T ); D

	

= 0:

(30)

It is possible to derive a system of the type (8) in the following way. We start

by choosing some stabilizing state feedback operator F for the system (1), i.e., we

choose an operator F 2 L(H ;U) such that A+BF generates an exponentially stable

semigroup S

F

. For the moment it does not really matter how this operator F is chosen,

but looking ahead, it will simplify the �nal formulae if we choose F to be the optimal

feedback operator K for the system (1) with the cost function (2). In other words, we

take F = K, where K is given by (26){(28). This time we de�ne the auxiliary variable

x by

x(t) = u(t)�Kz(t+ T ); t � �T: (31)

Then (29) can be rewritten in the form

z

0

(t) = (A+BK)z(t) +Bx(t� T ); t 2 [0;1);

y(t) = (C +DK)z(t) +Dx(t� T ); t 2 [0;1);

u(t) = Kz(t+ T ) + x(t); t 2 [�T;1);

z(0) = z

0

;

x(t) = '(t); t 2 [�T; 0);

(32)

provided ' is chosen as explained below. The restriction of the function z to the

interval [0; T ] depends only on z

0

and the initial functions  and ', and the further

evolution of the two systems depends only on z(T ) and the restrictions of x and u to

[0;1). Solving z from (29) we get

z(t) = S(t)z

0

+

Z

t�T

�T

S(t� T � s)B (s) ds; t 2 [0; T ]: (33)

If, instead, we solve z from (32), then we get

z(t) = S

K

(t)z

0

+

Z

t�T

�T

S

K

(t� T � s)B'(s) ds; t 2 [0; T ]: (34)
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By using either (33) or (34) in (31) we �nd that the systems (29) and (32) become

identical if we choose  and ' to satisfy

'(t) =  (t) �K

�

S(t+ T )z

0

+

Z

t

�T

S(t� s)B (s) ds

�

; t 2 [�T; 0];

 (t) = '(t) +K

�

S

K

(t+ T )z

0

+

Z

t

�T

S

K

(t� s)B (s) ds

�

; t 2 [�T; 0]:

(35)

In particular, taking t = T in (33) and (34) we get

z(T ) = S(T )z

0

+

Z

0

�T

S(�s)B (s) ds

= S

K

(T )z

0

+

Z

0

�T

S

K

(�s)B'(s) ds:

(36)

Whereas it was fairly obvious how to rewrite (29) into the form (8), it is less obvious

how to do this for (32) (the third equation is the di�cult one.) However, this can be

done. A computation similar to the one in the introduction shows that, by de�ning

(with C

K

= C +DK)

�( ds) = D�

0

( ds) + C

K

S

K

(s)B ds;

�( ds) = I�

0

( ds) +KS

K

(s)B ds; s 2 R

+

;

�

T

= �

T

� �;

f(t) =

(

C

K

z(t) +D'(t� t); 0 � t < T;

C

K

S

K

(t� T )z(T ); t � T;

g(t) = KS

K

(t)z(T ); t 2 R

+

;

(37)

we can turn (32) into a system of the type (8), namely

y(t) = (�

T

� x)(t) + f(t); t 2 R

+

;

u(t) = (� � x)(t) + g(t); t 2 R

+

:

(38)

It is well-known that �

T

and � are right coprime.

5

The objective is to minimize the

cost function (2).

The crucial part in our solution was to �nd a spectral factor of the measure ��

T

�

�

T

+ �� �R�. The Laplace transform of this measure, restricted to the imaginary axis

(with s = i!) is

�̂(i!)

�

e

i!T

e

�i!T

�̂(i!) + �̂(i!)

�

R�̂(i!) = �̂(i!)

�

�̂(i!) + �̂(i!)

�

R�̂(i!):

But this is exactly the same function that we have to factor in the case where there

is no delay, and we are in the case (1) discussed earlier. For this factorization we may

use the formulae in Section 2. In particular, we conclude that

D

�

�

D

�

= D

�

D +R: (39)

5

See, for example, [5, Example 4.1] or [24, p. 932].
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It turns out that for this particular choice of F (and this is the reason for why we

chose F = K in the �rst place) that the strictly causal part �

+

of � is zero, and

� = (D

�

D +R)

1=2

�

0

; �

�1

= (D

�

D +R)

�1=2

�

0

:

Comparing (39) to D

�

	

D

	

+R = R we observe that D

�

�

D

�

6= D

�

	

D

	

+R except when

D = 0.

The rest of the computations are straightforward, so let us only list the �nal results.

It turns out that for the data in (37),

�

+

�

��

T

� f + �� �Rg

�

= 0;

hence

x

opt

(t) = 0; t 2 [0;1);

u

opt

= Kz

opt

(t+ T ); t 2 [0;1);

z

opt

(t) = S

K

(t� T )z(T ); t 2 [T;1);

z

opt

(t+ T ) = S

K

(T )z

opt

(t); t 2 [T;1);

where z(T ) is given by (36).

By rewriting the optimal feedback operator K

�

in terms of the original data z

0

and  in (29) and calling the rewritten operator K

	

we get

K

	

�

z

0

 

�

= K

�

�

f

g

�

= Kz(T ); (40)

or, equivalently,

K

	

�

z

0

 

�

= K

�

S(T )z

0

+

Z

T

0

S(s)B (�s) ds

�

:

(41)

Evidently, the operator K

	

in (41) is bounded on the state space H

	

= H �

L

2

((�T; 0);R

m

) of 	.

By replacing the open loop control u in (30) by the closed loop control

u(t) = K

	

�

z(t)

u

t

�

+ v(t) = Kz(t+ T ) + v(t)

= KS(T )z(t) +K

Z

T

0

S(s)Bu(t� s) ds+ v(t);

we get a closed loop system described by the delay-integrodi�erential equation

z

0

(t) = Az(t) +Bu(t� T );

y(t) = Cz(t) +Du(t� T );

u(t) = KS(T )z(t) +K

Z

T

0

S(s)Bu(t� s) ds+ v(t); t 2 [0;1);

z(0) = z

0

;

u(t) =  (t); t 2 [�T; 0);

(42)
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+

+

+

z0

+

)

++

+

CB (sI-A) -1

S(T)

e-sT

B

K

( I - e -sT S(T) (sI-A) -1

u z yv

w

D

Figure 2: Optimal compensator for system 	

The action of the closed loop generator is formally the same as the action of the open

loop generator, i.e.,

A

K

	

�

z

0

 

�

=

�

Az

0

+B (�T )

 

0

�

;

but it has a di�erent domain, namely

dom(A

K

	

) =

��

z

0

 

�

2 dom(A)�W

1;2

([�T; 0];R

m

)

�

�

�

�

 (0) = K

	

�

z

0

 

��

: (43)

The easiest way to describe the optimal cost �

	

is to write it in the form

��

 

z

0

�

;�

	

�

 

z

0

��

=

Z

T

0

ky(t)k

2

dt+ hz(T );�z(T )i;

where y(t) = Cz(t)+D (t�T ) and z(T ) is given by (36), and where � is the Riccati

operator for the non-delayed system (1) with cost function (2).

Figure 2 describes the optimal feedback system. This �gure should be interpreted

as follows. For t < 0 we choose v(t) =  (t) and keep the feedback switch open. This

initializes the delay line in the correct way, and also provides the feedback with the

needed information about the initial function  of u. At time t = 0 the system � that

is part of 	 is initialized to the value z

0

, and the feedback switch is closed, activating

the feedback.

The optimal feedback operator has a very interesting separation structure as in-

dicated in Figure 2: It is a composition of two operators, namely the operator which

maps the present state

�

z(t)

u

t

�

into w(t) = S(T )z(t) +

R

t

t�T

S(t � s)Bu(s) ds, and the

optimal feedback K for the non-delayed system (1). The signal w is simply a predic-

tion of the future state z(t+T ), and K is applied to this predicted state. As a matter
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of fact, this prediction is exact! To see this, it su�ces to rewrite (42) in the form

w

0

(t) = Aw(t) +Bu(t);

y(t+ T ) = Cw(t) +Du(t);

u(t) = Kw(t) + v(t); t 2 [0;1);

w(0) = z(T );

(44)

where w(t) = z(t + T ) = S(T )z(t) +

R

t

t�T

S(t � s)Bu(s) ds. This has the form of a

closed loop system with an output delay. In particular, this means that the closed

loop impulse response from v to y is simply a delayed version of the optimal closed

loop impulse response for the non-delayed case (1). We remark that this is the same

optimal system that we get if we replace the input delay in (31) by an output delay,

except for the fact that in the latter case z(T ) is the given initial value of w, instead

of being derived from the initial data through (36).

As the discussion above shows, the solution is \robust" with respect to the delay T

in the sense that the norm of the optimal impulse response from v to y is independent

of the time delay (the extra delay in the optimal impulse response does not a�ect its

norm). However, this is not the whole truth. If � is unstable and T large, then the

norm of the feedback operatorK

	

can be very large, making it di�cult to approximate

this operator with a �nite rank operator. Moverover, in this case the initialization

phase in Figure 2 can be quite critical, too, since there is no control on the growth of y

and z during initialization. This is re
ected in the fact that the the \uncontrollable"

part of the optimal cost caused by the delay (the L

2

-norm of y over (0; T ) and a

possible large value of kz(T )k) can be large.

There is a simpli�cation to Figure 2 which suggests itself: the transfer function from

Bu to w�S(T )z is the product of (I�e

�sT

S(T )) and (sI�A)

�1

(in arbitrary order).

However, since this is the Laplace transform of a function with compact support, it

is analytic in the whole plane, and this means that the product contains a zero-pole

cancelation at every spectral point of A. These zero-pole cancelation can be tolerated

if the original system is stable, but in the unstable case a separation of the two factors

will lead to a closed loop system which contains either uncontrollable or unobservable

unstable modes (depending on the order of the factors). Thus, in this case the feedback

must be implemented as a numerical approximation of the integral in (41).

4 Example: a transmission line

Our second example is the same example that Grabowski presents in [10]. It is a

controlled RLCG transmission line of length one without distortion, i.e., R=L = G=C,

driven by a control voltage u at one end, and loaded by a resistance R

1

at the opposite

end.

6

If we let i(x; t) represent the current and v(x; t) the voltage of the line at the

6

The following derivation of the state equations is essentially the same as in [10]. When comparing

our formulae with those in [10], one should replace our notations u, T , e(t), Z, and � by Grabowski's

w, r, 2x

2

(t), z, and 1=�, respectively. The physical explanation of the signal e that we present is not

found in [10].
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point x 2 [0; 1] at time t 2 [0;1), then these satisfy the equations

C

@v(x; t)

@t

= �

@i(x; t)

@x

�Gv(x; t);

L

@i(x; t)

@t

= �

@v(x; t)

@x

�R i(x; t); x 2 [0; 1]; t 2 [0;1);

i(1; t)R

1

= v(1; t);

v(0; t) = u(t);

y(t) = v(1; t); t 2 [0;1):

(45)

The objective is to minimize the cost function J in (2) with R = 1. The pair of

d'Alembert solutions of (45) are

i(x; t) =

e

��t

2Z

[�(x � t=T )�  (x+ t=T )] ;

v(x; t) =

e

��t

2

[�(x � t=T ) +  (x+ t=T )] ; x 2 [0; 1]; t 2 [0;1);

(46)

where � = R=L = G=C is the decay rate, T =

p

LC is the time that it takes a

wave to travel from one end of the line to the other (1=T is the wave speed), and

Z =

p

L=C =

p

R=G is the wave impedance of the line. Observe that �(s) is de�ned

for s � 1 and  (s) is de�ned for s � 0. Substitute the boundary conditions in (45)

into these equations to get

u(t) =

e

��t

2

[�(�t=T ) +  (t=T )];

 (1 + t=T ) = ��(1� t=T );

y(t) =

e

��t

2

[�(1� t=T ) +  (1 + t=T )]

=

e

��t

2

(1 + �)�(1� t=T ); t � 0

(47)

where � is the re
ection coe�cient at the output end, i.e., � = (R

1

� Z)=(R

1

+ Z).

We introduce the two new variables

e(t) = e

��t

�(�t=T ); t � �T;

w(t) = e

��t

 (t=T ) t � 0:

(48)

Then

e(t) = v(0; t) + Zi(0; t) = u(t) + Zi(0; t);

w(t) = v(0; t)� Zi(0; t) = u(t)� Zi(0; t); t � 0;

(49)

hence

e(t) + w(t) = 2u(t);

e(t)� w(t) = 2Zi(0; t); t � 0:

(50)

It follows from the �rst equation in (47) and from (48) that w(t) = ��

2

e(t � 2T )

for t � T , where � = e

��T

is the attenuation of the line. This identity can be
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extended to the interval 0 � t < T if we choose e(t) in the interval [�2T; T ) to satisfy

�e(t) = e

��t

 (2 + t=T ).

7

We denote the restriction of e to the interval [�2T; 0] by �,

and arrive at the delay equation

e(t) = �(t); t = [�2T; 0];

y(t) =

1

2

(1 + �)�e(t� T ); t 2 [0;1);

e(t) = 2u(t)� w(t); t 2 [0;1);

w(t) = ��

2

e(t� 2T ); t 2 [0;1):

(51)

This system is almost of the type (8). The initial function � can be absorbed in the

forcing terms f and g, but there is an extra factor 2 in front of u(t) (which means that

if we write this system directly into the form (8) then the feed-through part of � will

not be one). To get rid of this factor we can, for example, de�ne

x =

1

2

e; ' =

1

2

�; (52)

and get the system

x(t) = '(t); t = [�2T; 0);

y(t) = (1 + �)�x(t� T ); t 2 [0;1);

u(t) = x(t) + ��

2

x(t� 2T ); t 2 [0;1):

(53)

This system is of the type (8) with

� = (1 + �)��

T

;

� = �

0

+ ��

2

�

2T

;

f =

(

(1 + �)�'(t � T ); 0 � t < T;

0; t � T;

g =

(

��

2

'(t� 2T ); 0 � t < 2T;

0; t � 2T;

(54)

The system (51) is (exponentially) stable, unless ��

2

= �1.

8

The trivial solution

for the case � = �1 is u = 0, so let us exclude this case from the following discussion,

and in the sequel take � > �1. Let us immediately observe that our basic assumption

about the coprimeness of � and � is satis�ed in the stable case, due to the fact that

in this case �

�1

2 M(R

+

;R). It is also true that � and � are coprime in the case

� = � = 1, as can be easily seen (but not in the case � = �1 and � = 1).

The measure to be factorized is this time �� � �+ ����. A short computation shows

that

j�̂(i!)j

2

+ j�̂(i!)j

2

= a+ 2b cos(2T!); ! 2 (�1;1);

where

a =

�

1 + (1 + �)

2

�

2

+ �

2

�

4

�

; b = ��

2

:

7

We get this identity for free if the original wave equation holds for all t � �T .

8

This corresponds to the case where there is no internal damping in the line (R = G = 0 and

� = 1) and the output end is either open (R

1

=1 and � = 1) or shunted (R

1

= 0 and � = �1).
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Observe, in particular, that a > 1 + jbj

2

, hence a > 2jbj. The spectral factor � of

�� � � + �� � � can be found by direct inspection: it su�ces to take

� = p�

0

+ q�

2T

;

with p > jqj (in order to guarantee the invertibility of �), and to choose the coe�cients

p and q to satisfy

p

2

+ q

2

= a; pq = b; p > jqj:

This set of equations have a unique solution, namely

p =

1

2

�

p

a+ 2b+

p

a� 2b

�

; jqj =

1

2

�

p

a+ 2b�

p

a� 2b

�

: (55)

We remark that both p and jqj are nonnegative solutions of the equation

p

2

+ b

2

=p

2

= a;

with p > jqj. For p = 1 the left hand side becomes 1 + b

2

, which is less that a. Thus,

p > 1; jqj < jbj = j�j�

2

� 1: (56)

There exist several realizations of the the system (51). The simplest one is the

exactly controllable realization described in, e.g., [15, section 6.1] (see, in particular,

the discussion of the the closed loop system (52) in that paper). The feed-through

operator is independent of the realization; it is simply equal to D

�

(if we normalize

D

�

= I). In this case D = D

�

= 0. On the other hand, D

�

= p. Thus, we have found

another example where D

�

D +R = 1 6= p

2

= D

�

�

D

�

.

Equation (23) rewritten in terms of the initial function ' in (53) becomes

u

opt

(0+) =

�

��

2

� q=p

�

'(�2T ): (57)

and the optimal cost is given by

Z

0

�2

h'(t);�'(t)i dt (58)

where

(�') (t) =

(

(p

2

� 1)'(t); �T < t � 0;

q

2

(p

2

� 1)'(t); �2T < t � �T:

(59)

We leave the veri�cations of (57){(59) to the reader.

The formulae that we have developed above can be interpreted as shown in Figure 3.

To get a physical interpretation of the variable e it su�ces to take a closer look at

the �rst equation in (49). For t < 0, e can be interpreted as the voltage of a signal

generator with internal resistance Z matching the wave impedance of the line used

to transmit a signal into the line. During this stage the switch in Figure 3 is kept

in its top position. Because of the matching terminating resistance at the left end of

the line, there are no re
ections at this end (although the signal may be re
ected at

the output end), and the output voltage y follows the input e with no distortion, but
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RLGC
Transmission line

i(1,t)

y(t)

e(t)

u(t)Z

i(0,t)

Zi(0,t)
R0

R1

Figure 3: Optimal controller for the transmission line

with the attenuation of

1

2

(1 + �)� and a time delay of T time units. At time zero

the signal generator is switched o�, and it is desired to minimize the spill-over energy

�
R

1

0

�

ku(t)k

2

+ ky(t)k

2

�

dt

�

1=2

.

We can use (51), (52), and (57) to write the optimal control u in the form

u(t) =

p

2

� 1

2p

2

w(t) =

p

2

� 1

2p

2

�

u(t)� Zi(0; t)

�

;

which gives

u(t) = �R

0

i(0; t); (60)

with R

0

=

p

2

�1

p

2

+1

Z. Clearly, this is the formula for the voltage over a resistor of size

R

0

carrying a current i(0; t). Thus, the optimal controller is simply a terminating

resistance of size R

0

at the left end, as drawn in Figure 3, where the switch is moved

to its lower position at time t = 0. We remark that R

0

< Z, and that the re
ection

coe�cient at the input end is �1=p

2

. Note that the intuitive choice R

0

= Z, which

leads to the extinction of the signals u and y in the �nite time 2T , is not the optimal

one. It would have been optimal if we had not put any cost on the input voltage u,

only on the output voltage y.

The optimal cost of the input signal is (cf. (59))

J(u

opt

) =

1

2

�

q

2

(p

2

� 1)

Z

T

�2T

ke(t)k

2

dt+ (p

2

� 1)

Z

0

�T

ke(t)k

2

dt

�

1=2

: (61)

There is an obvious explanation for the di�erent weights of the two time intervals

(�2T; T ) and (�T; 0): at time t = 0 the signal that entered the transmission line

during the time interval (�2T; T ) has been re
ected and travels to the left, whereas

the signal that entered during the time interval (�T; 0) is still traveling to the right.

The part of the signal that entered before time t = �2T is no longer present in the

system, so the cost of this part is zero. If � = 0 (hence q = 0), then there is no

re
ection at the output end of the line, and the cost of the part of e that entered

during the time interval (�2T;�T ) is zero, too.

Let us �nally remark that, although the structure of the optimal solution is very

simple, the formula (55) for the crucial number p is nontrivial. In particular, this for-

mula could not have been deduced from the standard continuous time Riccati equation

theory.

9

9

However, it can be derived from the discrete time Riccati equation theory. See [16].
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