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Boundary Control I/S/O System

A boundary control input/state/output system can be written in
the form

Σi/s/o :


ẋ(t) = Lx(t),

u(t) = Γ0x(t),

y(t) = Γ1x(t),

t ≥ 0

x(0) = x0.

(1)

X is the state space, x(t) ∈ X , x0 ∈ X ,
U is the input space, u(t) ∈ U ,
Y is the output space, y(t) ∈ Y (these are Hilbert spaces),
L is the main operator (always unbounded),
Γ0 is the boundary control operator (surjective and unbounded),
Γ1 is the observation operator (can be bounded or unbounded).
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Boundary Control State/Signal System

A boundary control state/signal system is similar to a boundary
control i/s/o system, but we no longer specify which part of the

“boundary signal” w(t) :=
[

u(t)
y(t)

]
is the input, and which part is

the output. After replacing
[

Γ0
Γ1

]
by Γ we get an equation of the

type

Σ :

{
ẋ(t) = Lx(t),

w(t) = Γx(t),
t ≥ 0; x(0) = x0. (2)

X is the state space, x(t) ∈ X , x0 ∈ X , X is a Hilbert space,
W is the signal space, w(t) ∈ W, W is a Krĕın space,
L is the main operator (always unbounded),
Γ is the boundary operator (also unbounded),
L and Γ have the same domain
Dom (L) = Dom (Γ) = Dom

([
L
Γ

])
⊂ X .
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Boundary Control Systems ↔ Boundary Triplets

There is an almost one-to-one correspondence between
conservative boundary control s/s systems ↔
(conservative) boundary triplets
However, today I want to talk about the dynamics of boundary
relations and not the dynamics of boundary triplets. To do this I
have to go beyond the class of boundary s/s systems.
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The Generating Subspace

Given a boundary control s/s system

Σ :

{
ẋ(t) = Lx(t),

w(t) = Γx(t),
t ≥ 0; x(0) = x0. (2)

we can rewrite it in the graph form

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0, (3)

where
V :=

{[
Lx
x

Γx

]
∈ K

∣∣∣ x ∈ Dom
([

L
Γ

])}
. (4)

Here V is the generating subspace, which is a subspace of the

node space
[ X
X
W

]
.
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State/Signal System

A general state/signal system Σ = (V ;X ,W) is of the form

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0, ((3))

where X is the state space (a Hilbert space), and
W is the signal space (a Krĕın space).
The generating subspace V is a closed subspace of the

node space K :=
[ X
X
W

]
.

x(t) ∈ X is the state at time t ∈ R+,
x0 ∈ X is the initial state at time zero,
w(t) ∈ W is the signal at time t ∈ R+.
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Example: A System Node

A system node is a construction used in the theory of well-posed
(and non-wellposed) linear systems. It has a
state space X (a Hilbert space),
input space U (a Hilbert space),
output space Y (a Hilbert space).
It is a closed operator S :

[ X
U
]
→
[ X
Y
]
. The dynamics of a system

node is described by

Σ :

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R+, x(0) = x0. (5)

We can rewrite this as a state/signal system by taking W =
[ Y
U
]

and defining

V :=

{[
z
x

[ y
u ]

]
⊂
[ X
X
W

] ∣∣∣∣∣ [ z
y ] = S [ x

u ]

}
. (6)
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Example: Classical I/S/O System

Consider the classical input/state/output system

Σ :

{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
t ∈ R+, x(0) = x0. (7)

Here A, B, C , and D are bounded linear operators.
We can rewrite this as a state/signal system by taking
W =

[ Y
U
]

(= Y × U) and defining

V :=

{[
z
x

[ y
u ]

]
⊂
[ X
X
W

] ∣∣∣∣∣ z = Ax + Bu

y = Cx + Du

}
. (8)
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State/Signal Systems ↔ Boundary Relations

Thus, state/signal systems need not have anything to do with
boundary control!
However, there is an almost one-to-one correspondence between
conservative state/signal systems ↔ (conservative) boundary
relations!
Thus, boundary relations do not necessarily have anything to do
with boundary control!
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Classical and Generalized Trajectories

We recall the equation describing the dynamics:

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0. (3)

[ x
w ] is a classical trajectory of Σ if [ x

w ] ∈
[

C1(R+;X )
C(R+;X )

]
and (3)

holds for all t ∈ R+.

[ x
w ] is a generalized trajectory of Σ if [ x

w ] ∈
[

C(R+;X )

L2
loc(R+;W)

]
and

there exists a sequence of classical trajectories [ xn
wn ] such that

xn → x uniformly on bounded intervals and wn → w in
L2

loc(R+;W).
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Simplifying Assumption

In this talk I focus on state/signal systems which are conservative,
as studied in (Kur10).
They are well-posed in the sense of (KS09).
Simplifying Assumption: In the equation describing the dynamics

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0. (3)

I throughout make the simplifying assumption that the present
state x(t) and the present signal w(t) determine the value of ẋ(t)
uniquely. To guarantee this I assume (for simplicity) that[

z
0
0

]
∈ V ⇒ z = 0. (9)

The assumption can always be made “without loss of generality”
(by factoring out an unreachable and unobservable part of the
state space).
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Power Balance Equation

A conservative s/s system

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0, (3)

preserves energy, and so does the dual system. Preservation of
energy means that

d
dt
‖x(t)‖2

X = [w(t),w(t)]W . (10)

Here 1
2‖x(t)‖2

X is the internal energy stored state at time t (= the
Hamiltonian), and 1

2 [w(t),w(t)]W represents the power entering
into the system from the outside world. Thus, if we want to allow
the energy to flow in both directions, then we must allow the
right-hand side to take both positive and negative values, and we
cannot replace the indefinite inner product [·, ·]W in W by a
positive definite Hilbert space inner product (·, ·)W in W.
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The Node Space K

By carrying out the differentiation in the power balance equation

d
dt
‖x(t)‖2

X = [w(t),w(t)]W (10)

we get the Lagrangian identity

− (ẋ(t), x(t))X − (x(t), ẋ(t))X + [w(t),w(t)]W = 0. (11)

At t = 0 the vector

[
ẋ(0)
x(0)
w(0)

]
can be an arbitrary vector in V , and

hence (11) with t = 0 implies

− (z , x)X − (x , z)X + [w ,w ]W = 0,
[

z
x
w

]
∈ V . (12)

This inequality says that V is a neutral subspace of the node space
K with respect to a suitable indefinite inner product!
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The Node Space K

Define[[
z1
x1
w1

]
,
[

z2
x2
w2

]]
K

=
([

z1
x1
w1

]
, JK

[
z2
x2
w2

])
K
, JK :=

[
0 −1X 0
−1X 0 0

0 0 1W

]
.

(13)
Then

−(z , x)X − (x , z)X + [w ,w ]W = 0,
[

z
x
w

]
∈ V (12)

says that [[
z
x
w

]
,
[

z
x
w

]]
K

= 0,
[

z
x
w

]
∈ V . (14)

In other words, V is a neutral subspace of the node space K with
respect to the inner product (13).
Equivalently, V ⊂ V [⊥]!
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Conservative State/Signal Systems

We get the dual system by replacing V by V [⊥]. The duals system
preserves energy if V [⊥] is neutral, i.e., if V [⊥] ⊂ V .

Definition

The state/signal system

Σ :


 ẋ(t)

x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0, (3)

is conservative if V is Lagrangian, i.e., if V = V [⊥].
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Lagrangian Decompositions of the Signal Space

By a Lagrangian decomposition of the Krĕın signal space W we
mean a direct sum decomposition W = U u Y where both U and
Y are Lagrangian subspaces of W, i.e., U = U [⊥] and Y = Y [⊥].
With suitable choices of norms in U and Y we can write the inner
product in W in the form

[y1 + u1, y2 + u2]W = (Ψy1, u2)U + (u1,Ψy2)U , (15)

for all u1, u2 ∈ U , and y1, y2 ∈ Y, and for some unitary operator

Ψ: U → Y. We then write W = U
Ψ

+ Y.
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Boundary Relation = Generating Subspace

Answer to question “Where do they come from”?:
A boundary relation ' the generating subspace V of a
conservative s/s system which has been reinterpreted as a relation.

Theorem

Let (V ;X ,W) be a conservative s/s node and assume that there

exists a Lagrangian decomposition W = U
Ψ

+ Y. Interpret V as the
(slightly modified) graph of a relation Γ:

[ X
X
]
→
[ U
U
]
:

V =

{[
iz
xh
u

iΨ∗y

i ] ∈ [ XX
W

] ∣∣∣∣ {[ x
z ] , [ u

y ]} ∈ Γ

}
, (16)

and set R := Ker (Γ). Then R is a closed symmetric operator in
X , R∗ is the closure of dom (Γ) in

[ X
X
]
, and Γ is a conservative

boundary relation for R∗.

Boundary control s/s system ⇒ Γ is an operator.
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The Characteristic Manifold

Taking Laplace transforms in the formula

[
ẋ(t)
x(t)
w(t)

]
∈ V for all t > 0,

we get [
λx̂(λ)−x(0)

x̂(λ)bw(λ)

]
∈ V , λ ∈ C+. (17)

Definition

The characteristic manifold of the s/s system Σ = (V ;X ,W) is
the family of subspaces V̂(λ) defined by

V̂(λ) =
{[

x
x0
w

]
∈
[ X
X
W

] ∣∣∣ [ λx−x0
x
w

]
∈ V

}
. (18)

The domain of V̂(λ) consists of all those points λ ∈ C where this
manifold is analytic.

Here V̂ is analytic at a point λ0 if V̂(λ) has a graph representation
in some neighborhood of λ0 with an analytic angle operator.
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The Weyl Family and the Gamma Field

Theorem

1 The characteristic manifold V̂ is defined and analytic (at
least) in the open right-half plane.

2 The Weyl family and the Gamma field can be obtained from
the characteristic manifold by first intersecting V̂(λ) with[ X

0
W

]
, then projecting it onto either

[
0
X
W

]
or
[ X

0
U

]
, and finally

interpreting the result as a relation.

Here U is one of the two components in the Lagrangian

decomposition W = U
Ψ

+ Y.
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Non-Conservative State/Signal Systems

Above I only discussed conservative state/signal systems.
Question: What happens when the state/signal system is
well-posed but not conservative?
Answer:

We will then have to deal with two different generating
subspaces V and V [⊥] 6= V , and two different s/s systems
Σ = (V ;X ,W) and Σ[⊥] = (V [⊥];X ,W).

To each of these s/s systems corresponds a “non-conservative
boundary relation”.

Thus, we end up with pairs of boundary relations instead of
just one boundary relation.

In this case the “Lagrangian identity” simply says that the
two systems are dual to each other.

Details will be worked out later.
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Conclusion

Boundary relations = generating subspaces of conservative
state/signal systems, reinterpreted as relations.

The Weyl family and the Gamma fields are obtained from the
characteristic manifold of the state/signal system by
intersections and projections.

Pairs of boundary relations are related to non-conservative
state/signal systems.

Boundary relations do not in reality have much to do with
boundary control, only historically.
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