The Dynamics Induced by a Boundary Relation

Olof Staffans,
Åbo Akademi University, Finland

Henk de Snoo Seminar, Dec 17, 2010

Based on joint work with
Damir Z. Arov and Mikael Kurula olof.staffans@abo.fi
http://users.abo.fi/staffans

Grandpa, where do they come from?

Olof Staffans,
Åbo Akademi University, Finland

Henk de Snoo Seminar, Dec 17, 2010

Based on joint work with
Damir Z. Arov and Mikael Kurula olof.staffans@abo.fi
http://users.abo.fi/staffans

Boundary Control I/S/O System

A boundary control input/state/output system can be written in the form

$$
\Sigma_{i / s / 0}:\left\{\begin{array}{l}
\dot{x}(t)=L x(t) \tag{1}\\
u(t)=\Gamma_{0} x(t), \quad t \geq 0 \\
y(t)=\Gamma_{1} x(t) \\
x(0)=x_{0}
\end{array}\right.
$$

\mathcal{X} is the state space, $x(t) \in \mathcal{X}, x_{0} \in \mathcal{X}$, \mathcal{U} is the input space, $u(t) \in \mathcal{U}$, \mathcal{Y} is the output space, $y(t) \in \mathcal{Y}$ (these are Hilbert spaces), L is the main operator (always unbounded), Γ_{0} is the boundary control operator (surjective and unbounded),
Γ_{1} is the observation operator (can be bounded or unbounded).

Boundary Control State/Signal System

A boundary control state/signal system is similar to a boundary control $\mathrm{i} / \mathrm{s} / \mathrm{o}$ system, but we no longer specify which part of the "boundary signal" $w(t):=\left[\begin{array}{l}u(t) \\ y(t)\end{array}\right]$ is the input, and which part is the output. After replacing $\left[\begin{array}{c}\Gamma_{0} \\ \Gamma_{1}\end{array}\right]$ by Γ we get an equation of the type

$$
\Sigma:\left\{\begin{array}{rl}
\dot{x}(t) & =L x(t), \tag{2}\\
w(t) & =\Gamma x(t),
\end{array} \quad t \geq 0 ; \quad x(0)=x_{0} .\right.
$$

\mathcal{X} is the state space, $x(t) \in \mathcal{X}, x_{0} \in \mathcal{X}, \mathcal{X}$ is a Hilbert space, \mathcal{W} is the signal space, $w(t) \in \mathcal{W}, \mathcal{W}$ is a Krĕn space,
L is the main operator (always unbounded),
Γ is the boundary operator (also unbounded),
L and Γ have the same domain
$\operatorname{Dom}(L)=\operatorname{Dom}(\Gamma)=\operatorname{Dom}\left(\left[\begin{array}{l}L \\ \Gamma\end{array}\right]\right) \subset \mathcal{X}$.

Boundary Control Systems \leftrightarrow Boundary Triplets

There is an almost one-to-one correspondence between conservative boundary control s/s systems \leftrightarrow (conservative) boundary triplets
However, today I want to talk about the dynamics of boundary relations and not the dynamics of boundary triplets. To do this I have to go beyond the class of boundary s / s systems.

The Generating Subspace

Given a boundary control s/s system

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t)=L x(t), \tag{2}\\
w(t)=\Gamma x(t),
\end{array} \quad t \geq 0 ; \quad x(0)=x_{0}\right.
$$

we can rewrite it in the graph form

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t) \tag{3}\\
x(t) \\
w(t)
\end{array}\right] \in V, \quad t \in \mathbb{R}^{+}, \quad x(0)=x_{0}
$$

where

$$
V:=\left\{\left.\left[\begin{array}{c}
L \times \tag{4}\\
\times \\
\Gamma \times
\end{array}\right] \in \mathfrak{K} \right\rvert\, x \in \operatorname{Dom}\left(\left[\begin{array}{l}
L \\
\Gamma
\end{array}\right]\right)\right\} .
$$

Here V is the generating subspace, which is a subspace of the node space $\left[\begin{array}{c}\mathcal{X} \\ \mathcal{X} \\ \mathcal{W}\end{array}\right]$.

State/Signal System

A general state/signal system $\Sigma=(V ; \mathcal{X}, \mathcal{W})$ is of the form

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t) \tag{3}\\
x(t) \\
w(t)
\end{array}\right] \in V, \quad t \in \mathbb{R}^{+}, \quad x(0)=x_{0}
$$

where \mathcal{X} is the state space (a Hilbert space), and \mathcal{W} is the signal space (a Kreĭn space).
The generating subspace V is a closed subspace of the node space $\mathfrak{K}:=\left[\begin{array}{c}\mathcal{X} \\ \mathcal{X} \\ \mathcal{W}\end{array}\right]$.
$x(t) \in \mathcal{X}$ is the state at time $t \in \mathbb{R}^{+}$,
$x_{0} \in \mathcal{X}$ is the initial state at time zero, $w(t) \in \mathcal{W}$ is the signal at time $t \in \mathbb{R}^{+}$.

Example: A System Node

A system node is a construction used in the theory of well-posed (and non-wellposed) linear systems. It has a
state space \mathcal{X} (a Hilbert space),
input space \mathcal{U} (a Hilbert space),
output space \mathcal{Y} (a Hilbert space).
It is a closed operator $S:\left[\begin{array}{l}\mathcal{X} \\ \mathcal{U}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathcal{X} \\ \mathcal{Y}\end{array}\right]$. The dynamics of a system node is described by

$$
\Sigma:\left[\begin{array}{l}
\dot{x}(t) \tag{5}\\
y(t)
\end{array}\right]=S\left[\begin{array}{l}
x(t) \\
u(t)
\end{array}\right], \quad t \in \mathbb{R}^{+}, \quad x(0)=x_{0} .
$$

We can rewrite this as a state/signal system by taking $\mathcal{W}=\left[\begin{array}{l}\mathcal{Y} \\ \mathcal{U}\end{array}\right]$ and defining

$$
V:=\left\{\left.\left[\begin{array}{c}
z \tag{6}\\
x \\
y \\
u
\end{array}\right] \subset \subset\left[\begin{array}{c}
\mathcal{X} \\
\mathcal{W} \\
\mathcal{W}
\end{array}\right] \right\rvert\,\left[\begin{array}{c}
z \\
y
\end{array}\right]=S\left[\begin{array}{l}
x \\
u
\end{array}\right]\right\} .
$$

Example: Classical I/S/O System

Consider the classical input/state/output system

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t), \tag{7}\\
y(t)=C x(t)+D u(t),
\end{array} \quad t \in \mathbb{R}^{+}, \quad x(0)=x_{0} .\right.
$$

Here A, B, C, and D are bounded linear operators.
We can rewrite this as a state/signal system by taking $\mathcal{W}=\left[\begin{array}{l}\mathcal{Y} \\ \mathcal{U}\end{array}\right](=\mathcal{Y} \times \mathcal{U})$ and defining

$$
V:=\left\{\left.\left[\begin{array}{c}
z \tag{8}\\
{\left[\begin{array}{c}
x \\
y
\end{array}\right]}
\end{array}\right] \subset\left[\begin{array}{c}
\mathcal{X} \\
\mathcal{W}
\end{array}\right] \right\rvert\, \begin{array}{l}
z=A x+B u \\
y=C x+D u
\end{array}\right\} .
$$

State/Signal Systems \leftrightarrow Boundary Relations

Thus, state/signal systems need not have anything to do with boundary control!
However, there is an almost one-to-one correspondence between conservative state/signal systems \leftrightarrow (conservative) boundary relations!
Thus, boundary relations do not necessarily have anything to do with boundary control!

Classical and Generalized Trajectories

We recall the equation describing the dynamics:

$$
\Sigma:\left\{\left[\begin{array}{l}
\dot{x}(t) \tag{3}\\
x(t) \\
w(t)
\end{array}\right] \in V, \quad t \in \mathbb{R}^{+}, \quad x(0)=x_{0} .\right.
$$

- $\left[\begin{array}{l}x \\ w\end{array}\right]$ is a classical trajectory of \sum if $\left[\begin{array}{c}x \\ w\end{array}\right] \in\left[\begin{array}{c}C^{1}\left(\mathbb{R}^{+} ; \mathcal{X}\right) \\ C\left(\mathbb{R}^{+} ; \mathcal{X}\right)\end{array}\right]$ and (3) holds for all $t \in \mathbb{R}^{+}$.
- $\left[\begin{array}{c}x \\ w\end{array}\right]$ is a generalized trajectory of Σ if $\left[\begin{array}{c}x \\ w\end{array}\right] \in\left[\begin{array}{c}C\left(\mathbb{R}^{+} ; \mathcal{X}\right) \\ L_{\text {loc }}^{2}\left(\mathbb{R}^{+} ; \mathcal{W}\right)\end{array}\right]$ and there exists a sequence of classical trajectories $\left[\begin{array}{c}x_{n} \\ w_{n}\end{array}\right]$ such that $x_{n} \rightarrow x$ uniformly on bounded intervals and $w_{n} \rightarrow w$ in $L_{\text {loc }}^{2}\left(\mathbb{R}^{+} ; \mathcal{W}\right)$.

Simplifying Assumption

In this talk I focus on state/signal systems which are conservative, as studied in (Kur10).
They are well-posed in the sense of (KS09).
Simplifying Assumption: In the equation describing the dynamics

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t) \tag{3}\\
x(t) \\
w(t)
\end{array}\right] \in V, \quad t \in \mathbb{R}^{+}, \quad x(0)=x_{0}
$$

I throughout make the simplifying assumption that the present state $x(t)$ and the present signal $w(t)$ determine the value of $\dot{x}(t)$ uniquely. To guarantee this I assume (for simplicity) that

$$
\left[\begin{array}{l}
z \tag{9}\\
0 \\
0
\end{array}\right] \in V \Rightarrow z=0 .
$$

The assumption can always be made "without loss of generality" (by factoring out an unreachable and unobservable part of the state space).

A conservative s / s system

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t) \tag{3}\\
x(t) \\
w(t)
\end{array}\right] \in V, \quad t \in \mathbb{R}^{+}, \quad x(0)=x_{0}
$$

preserves energy, and so does the dual system. Preservation of energy means that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\|x(t)\|_{\mathcal{X}}^{2}=[w(t), w(t)]_{\mathcal{W}} \tag{10}
\end{equation*}
$$

Here $\frac{1}{2}\|x(t)\|_{\mathcal{X}}^{2}$ is the internal energy stored state at time t ($=$ the Hamiltonian), and $\frac{1}{2}[w(t), w(t)]_{\mathcal{W}}$ represents the power entering into the system from the outside world. Thus, if we want to allow the energy to flow in both directions, then we must allow the right-hand side to take both positive and negative values, and we cannot replace the indefinite inner product $[\cdot, \cdot]_{\mathcal{W}}$ in \mathcal{W} by a positive definite Hilbert space inner product $(\cdot, \cdot) \mathcal{W}$ in \mathcal{W}.

By carrying out the differentiation in the power balance equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\|x(t)\|_{\mathcal{X}}^{2}=[w(t), w(t)]_{\mathcal{W}} \tag{10}
\end{equation*}
$$

we get the Lagrangian identity

$$
\begin{equation*}
-(\dot{x}(t), x(t)) \mathcal{X}-(x(t), \dot{x}(t)) \mathcal{X}+[w(t), w(t)]_{\mathcal{W}}=0 \tag{11}
\end{equation*}
$$

At $t=0$ the vector $\left[\begin{array}{l}\dot{x}(0) \\ \times(0) \\ w(0)\end{array}\right]$ can be an arbitrary vector in V, and hence (11) with $t=0$ implies

$$
-(z, x)_{\mathcal{X}}-(x, z)_{\mathcal{X}}+[w, w]_{\mathcal{W}}=0, \quad\left[\begin{array}{c}
z \tag{12}\\
x \\
w
\end{array}\right] \in V
$$

This inequality says that V is a neutral subspace of the node space \mathfrak{K} with respect to a suitable indefinite inner product!

The Node Space \mathfrak{K}

Define

$$
\left[\left[\begin{array}{l}
z_{1} \tag{13}\\
x_{1} \\
w_{1}
\end{array}\right],\left[\begin{array}{l}
z_{2} \\
x_{2} \\
w_{2}
\end{array}\right]\right]_{\mathfrak{K}}=\left(\left[\begin{array}{l}
z_{1} \\
x_{1} \\
w_{1}
\end{array}\right], J_{\mathfrak{K}}\left[\begin{array}{l}
z_{2} \\
x_{2} \\
w_{2}
\end{array}\right]\right)_{\mathfrak{K}}, \quad J_{\mathfrak{K}}:=\left[\begin{array}{ccc}
0 & -1_{\mathcal{X}} & 0 \\
-1_{\mathcal{X}} & 0 & 0 \\
0 & 0 & 1_{\mathcal{W}}
\end{array}\right]_{10} .
$$

Then

$$
-(z, x)_{\mathcal{X}}-(x, z) \mathcal{X}+[w, w]_{\mathcal{W}}=0, \quad\left[\begin{array}{c}
z \tag{12}\\
x \\
w
\end{array}\right] \in V
$$

says that

$$
\left[\left[\begin{array}{l}
z \tag{14}\\
x \\
w
\end{array}\right],\left[\begin{array}{l}
z \\
x \\
w
\end{array}\right]\right]_{\mathfrak{K}}=0, \quad\left[\begin{array}{c}
z \\
x \\
w
\end{array}\right] \in V
$$

In other words, V is a neutral subspace of the node space \mathfrak{K} with respect to the inner product (13).
Equivalently, $V \subset V^{[\perp]}$!

Conservative State/Signal Systems

We get the dual system by replacing V by $V^{[\perp]}$. The duals system preserves energy if $V^{[\perp]}$ is neutral, i.e., if $V^{[\perp]} \subset V$.

Definition

The state/signal system

$$
\Sigma:\left\{\begin{array}{l}
\dot{x}(t) \tag{3}\\
x(t) \\
w(t)
\end{array}\right] \in V, \quad t \in \mathbb{R}^{+}, \quad x(0)=x_{0}
$$

is conservative if V is Lagrangian, i.e., if $V=V^{[\perp]}$.

Lagrangian Decompositions of the Signal Space

By a Lagrangian decomposition of the Kreĭn signal space \mathcal{W} we mean a direct sum decomposition $\mathcal{W}=\mathcal{U}+\mathcal{Y}$ where both \mathcal{U} and \mathcal{Y} are Lagrangian subspaces of \mathcal{W}, i.e., $\mathcal{U}=\mathcal{U}^{[\perp]}$ and $\mathcal{Y}=\mathcal{Y}^{[\perp]}$. With suitable choices of norms in \mathcal{U} and \mathcal{Y} we can write the inner product in \mathcal{W} in the form

$$
\begin{equation*}
\left[y_{1}+u_{1}, y_{2}+u_{2}\right]_{\mathcal{W}}=\left(\Psi_{y_{1}}, u_{2}\right)_{\mathcal{U}}+\left(u_{1}, \Psi_{y_{2}}\right)_{\mathcal{U}} \tag{15}
\end{equation*}
$$

for all $u_{1}, u_{2} \in \mathcal{U}$, and $y_{1}, y_{2} \in \mathcal{Y}$, and for some unitary operator $\Psi: \mathcal{U} \rightarrow \mathcal{Y}$. We then write $\mathcal{W}=\mathcal{U} \stackrel{\psi}{+} \mathcal{Y}$.

Boundary Relation = Generating Subspace

Answer to question "Where do they come from"?:
A boundary relation \simeq the generating subspace V of a conservative s / s system which has been reinterpreted as a relation.

Theorem

Let $(V ; \mathcal{X}, \mathcal{W})$ be a conservative s / s node and assume that there exists a Lagrangian decomposition $\mathcal{W}=\mathcal{U} \stackrel{\psi}{+} \mathcal{Y}$. Interpret V as the (slightly modified) graph of a relation $\Gamma:\left[\begin{array}{l}\mathcal{X} \\ \mathcal{X}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathcal{U} \\ \mathcal{U}\end{array}\right]:$

$$
\left.\left.V=\left\{\left[\begin{array}{c}
i z \tag{16}\\
\underset{u}{u} \\
{\left[i \psi^{*} y\right.}
\end{array}\right]\right] \in\left[\begin{array}{c}
\mathcal{X} \\
\mathcal{X} \\
\mathcal{W}
\end{array}\right] \right\rvert\,\left\{\left[\begin{array}{c}
x \\
z
\end{array}\right],\left[\begin{array}{l}
u \\
y
\end{array}\right]\right\} \in \Gamma\right\},
$$

and set $R:=\operatorname{Ker}(\Gamma)$. Then R is a closed symmetric operator in \mathcal{X}, R^{*} is the closure of $\operatorname{dom}(\Gamma)$ in $\left[\begin{array}{l}\mathcal{X} \\ \mathcal{X}\end{array}\right]$, and Γ is a conservative boundary relation for R^{*}.

Boundary control s/s system $\Rightarrow \Gamma$ is an operator.

The Characteristic Manifold

Taking Laplace transforms in the formula $\left[\begin{array}{c}\dot{x}(t) \\ x(t) \\ w(t)\end{array}\right] \in V$ for all $t>0$, we get

$$
\left[\begin{array}{c}
\lambda \hat{x}(\lambda)-x(0) \tag{17}\\
\hat{x}(\lambda) \\
\widehat{w}(\lambda)
\end{array}\right] \in V, \quad \lambda \in \mathbb{C}^{+} .
$$

Definition

The characteristic manifold of the s / s system $\Sigma=(V ; \mathcal{X}, \mathcal{W})$ is the family of subspaces $\widehat{\mathfrak{V}}(\lambda)$ defined by

$$
\widehat{\mathfrak{V}}(\lambda)=\left\{\left.\left[\begin{array}{c}
x \tag{18}\\
x_{0} \\
w
\end{array}\right] \in\left[\begin{array}{c}
\mathcal{X} \\
\mathcal{X} \\
\mathcal{W}
\end{array}\right] \right\rvert\,\left[\begin{array}{c}
\lambda x-x_{0} \\
x \\
w
\end{array}\right] \in V\right\}
$$

The domain of $\widehat{\mathfrak{V}}(\lambda)$ consists of all those points $\lambda \in \mathbb{C}$ where this manifold is analytic.

Here $\widehat{\mathfrak{V}}$ is analytic at a point λ_{0} if $\widehat{\mathfrak{V}}(\lambda)$ has a graph representation in some neighborhood of λ_{0} with an analytic angle operator.

The Weyl Family and the Gamma Field

Theorem

(1) The characteristic manifold $\widehat{\mathfrak{V}}$ is defined and analytic (at least) in the open right-half plane.
(2) The Weyl family and the Gamma field can be obtained from the characteristic manifold by first intersecting $\widehat{\mathfrak{V}}(\lambda)$ with $\left[\begin{array}{c}\mathcal{X} \\ 0 \\ \mathcal{W}\end{array}\right]$, then projecting it onto either $\left[\begin{array}{c}0 \\ \mathcal{X} \\ \mathcal{W}\end{array}\right]$ or $\left[\begin{array}{l}\mathcal{X} \\ 0 \\ \mathcal{U}\end{array}\right]$, and finally interpreting the result as a relation.

Here \mathcal{U} is one of the two components in the Lagrangian decomposition $\mathcal{W}=\mathcal{U} \stackrel{\psi}{+} \mathcal{Y}$.

Non-Conservative State/Signal Systems

Above I only discussed conservative state/signal systems. Question: What happens when the state/signal system is well-posed but not conservative?

Answer:

- We will then have to deal with two different generating subspaces V and $V^{[\perp]} \neq V$, and two different s / s systems $\Sigma=(V ; \mathcal{X}, \mathcal{W})$ and $\Sigma^{[\perp]}=\left(V^{[\perp]} ; \mathcal{X}, \mathcal{W}\right)$.
- To each of these s / s systems corresponds a "non-conservative boundary relation".
- Thus, we end up with pairs of boundary relations instead of just one boundary relation.
- In this case the "Lagrangian identity" simply says that the two systems are dual to each other.
- Details will be worked out later.

Conclusion

－Boundary relations $=$ generating subspaces of conservative state／signal systems，reinterpreted as relations．
－The Weyl family and the Gamma fields are obtained from the characteristic manifold of the state／signal system by intersections and projections．
－Pairs of boundary relations are related to non－conservative state／signal systems．
－Boundary relations do not in reality have much to do with boundary control，only historically．

Damir Z. Arov, Mikael Kurula, and Olof J. Staffans, Canonical state/signal shift realizations of passive continuous time behaviors, Complex Anal. Oper. Theory (2010), accepted for publication.

Damir Z. Arov and Mark A. Nudelman, Passive linear stationary dynamical scattering systems with continuous time, Integral Equations Operator Theory 24 (1996), 1-45.

Damir Z. Arov and Olof J. Staffans, State/signal linear time-invariant systems theory. Part III: Transmission and impedance representations of discrete time systems, Operator Theory, Structured Matrices, and Dilations, Tiberiu Constantinescu Memorial Volume (Bucharest Romania), Theta Foundation, 2007, available from American Mathematical Society, pp. 101-140.

Damir Z. Arov and Olof J. Staffans, State/signal linear time-invariant systems theory. Part IV: Affine representations of discrete time systems, Complex Anal. Oper. Theory 1 (2007), 457-521.

Jussi Behrndt, Seppo Hassi, and Henk de Snoo, Boundary relations, unitary colligations, and functional models, Complex Anal. Oper. Theory 3 (2009), no. 1, 57-98.

Jussi Behrndt and Matthias Langer, Boundary value problems for elliptic partial differential operators on bounded domains, J. Funct. Anal. 243 (2007), no. 2, 536-565.

Joseph A. Ball and Olof J. Staffans, Conservative state-space realizations of dissipative system behaviors, Integral Equations Operator Theory 54 (2006), 151-213.

Ruth F. Curtain and George Weiss, Well posedness of triples of operators (in the sense of linear systems theory), Control and Optimization of Distributed Parameter Systems (Basel Boston Berlin), International Series of Numerical Mathematics, vol. 91, Birkhäuser-Verlag, 1989, pp. 41-59.

Ruth F. Curtain and Hans Zwart, An introduction to infinite-dimensional linear systems theory, Springer-Verlag, New York, 1995.

Vladimir Derkach, Seppo Hassi, Mark Malamud, and Henk de Snoo, Boundary relations and their Weyl families, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5351-5400 (electronic).
V. A. Derkach, S. Hassi, M. M. Malamud, and H. de Snoo, Boundary relations and generalized resolvents of symmetric operators, Russ. J. Math. Phys. 16 (2009), no. 1, 17-60.
V. A. Derkach and M. M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73 (1995), no. 2, 141-242, Analysis. 3.

Valentivna I. Gorbachuk and M. L. Gorbachuk, Boundary value problems for operator differential equations, Mathematics and its Applications (Soviet Series), vol. 48, Kluwer Academic Publishers Group, Dordrecht, 1991, translation and revised from the 1984 Russian original.

Seppo Hassi, Mark Malamud, and Vadim Mogilevskii, Generalized resolvents and boundary triplets for dual pairs of linear relations, Methods Funct. Anal. Topology 11 (2005), no. 2, 170-187.

Mikael Kurula and Olof J. Staffans, Well-posed state/signal systems in continuous time, Complex Anal. Oper. Theory 4 (2009), 319-390.

Mikael Kurula and Olof J. Staffans, Connections between smooth and generalized trajectories of a state/signal system, accepted for publication, 2010.

Mikael Kurula, On passive and conservative state/signal systems in continuous time, Integral Equations Operator Theory 67 (2010), 377-424, 449.

Mikael Kurula, Hans Zwart, Arjan van der Schaft, and Jussi Behrndt, Dirac structures and their composition on Hilbert spaces, J. Math. Anal. Appl. 372 (2010), 402-422.

Jarmo Malinen and Olof J. Staffans, Conservative boundary control systems, J. Differential Equations 231 (2006), 290-312.

Jarmo Malinen and Olof J. Staffans, Impedance passive and conservative boundary control systems, Complex Anal. Oper. Theory 1 (2007), 279-30.

Dietmar Salamon, Infinite dimensional linear systems with unbounded control and observation: a functional analytic approach, Trans. Amer. Math. Soc. 300 (1987), 383-431.

Yurii L. Šmuljan, Invariant subspaces of semigroups and the Lax-Phillips scheme, Deposited in VINITI, No. 8009-B86, Odessa, 49 pages, 1986.

Olof J. Staffans, Passive and conservative continuous-time impedance and scattering systems. Part I: Well-posed systems, Math. Control Signals Systems 15 (2002), 291-315.

Olof J. Staffans, Passive and conservative infinite-dimensional impedance and scattering systems (from a personal point of view), Mathematical Systems Theory in Biology, Communication, Computation, and Finance (New York), IMA Volumes in Mathematics and its Applications, vol. 134, Springer-Verlag, 2002, pp. 375-414.

Olof J. Staffans, Well-posed linear systems, Cambridge University Press, Cambridge and New York, 2005.

Eduard R. Tsekanovskii and Yurii. L. Smuljan, The theory of biextensions of operators in rigged Hilbert spaces. Unbounded operator colligations and characteristic functions, Uspehi Mathem. Nauk SSSR 32 (1977), 69-124.

