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Abstract. Let S(U ;Y ) be the class of all Schur functions (analytic contractive
functions) whose values are bounded linear operators mapping one separable
Hilbert space U into another separable Hilbert space Y , and which are defined
on a domain Ω ⊂ C, which is either the open unit disk D or the open right
half-plane C+. In the development of the Darlington method for passive linear
time-invariant input/state/output systems (by Arov, Dewilde, Douglas and
Helton) the following question arose: do there exist simple necessary and
sufficient conditions under which a function θ ∈ S(U ;Y ) has a bi-inner dilation

Θ =
[

θ11 θ
θ21 θ22

]
mapping U1 ⊕ U into Y ⊕ Y1; here U1 and Y1 are two more

separable Hilbert spaces, and the requirement that Θ is bi-inner means that Θ
is analytic and contractive on Ω and has unitary nontangential limits a.e. on
∂Ω. There is an obvious well-known necessary condition: there must exist two
functions ψr ∈ S(U ;Y1) and ψl ∈ S(U1;Y ) (namely ψr = θ22 and ψl = θ11)
satisfying ψ∗r (z)ψr(z) = I − θ∗(z)θ(z) and ψl(z)ψ

∗
l (z) = I − θ(z)θ∗(z) for

almost all z ∈ ∂Ω. We prove that this necessary condition is also sufficient. Our
proof is based on the following facts. 1) A solution ψr of the first factorization
problem mentioned above exists if and only if the minimal optimal passive
realization of θ is strongly stable. 2) A solution ψl of the second factorization
problem exists if and only if the minimal ∗-optimal passive realization of θ is
strongly co-stable (the adjoint is strongly stable). 3) The full problem has a
solution if and only if the balanced minimal passive realization of θ is strongly
bi-stable (both strongly stable and strongly co-stable). This result seems to
be new even in the case where θ is scalar-valued.
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1. Introduction

The well-known Darlington method in passive circuit theory can be used to syn-
thesize a lossy finite passive circuit network with a given frequency characteristic
in an impedance, (input) scattering, or transmission (chain scattering) setting.
Typically the given frequency characteristic function is a rational matrix function
of the appropriate class (positive real, contractive, or J-contractive in the open
right half-plane C+), and the Darlington synthesis is carried out by first construct-
ing a lossless network and then loading it with a number of resistors. This number
is required to be as small as possible. Darlington [16] introduced this method in
the context of a one-pole with a given scalar rational positive real characteristic
function, which was realized as the impedance of a network. This approach was
extended to multi-poles in a scattering setting by Belevitch [14, Chapter 12].

Let Sp×q be the class of all contractive holomorphic matrix-valued function
of size p × q defined on C+. In the scattering setting the Darlington method is
related to the representation of a rational (usually real) θ ∈ Sp×q as one block of
a rational bi-inner matrix-valued function

Θ =
[
θ11 θ
θ21 θ22

]
(1)

of size m ×m, where m is required to be as small as possible. If θ is real, the Θ
should also be real. If p = q (which is usually the case), then r = m − p is the
minimal number of resistors in a circuit whose input scattering matrix is θ. Thus,
we obtain a lossy network with input scattering matrix θ by dropping a total of r
exterior branches in a lossless network with scattering matrix Θ.

Later the Darlington method was extend from finite to infinite networks
(with both lumped and distributed parameters). In this setting the given frequency
characteristic is no longer rational (see [5, 9]). In order to use the same method
to realize a given holomorphic contractive non-rational matrix-valued function θ
defined on C+ as the scattering matrix (transfer function) of a conservative or
passive linear time-invariant input/state/output system one again needs to solve
an extension problem, where θ is embedded as a block of a bi-inner non-rational
matrix-valued function Θ of dimension m ×m (see [2, 17]). As in [8, 9] we again
require m to be as small as possible.

Arov [2] and Dewilde [17] discovered that θ ∈ Sp×q has a representation (1)
with some inner matrix function Θ of size m×m if and only if θ has a meromor-
phic pseudo-continuation θ− into the left half-plane C− with bounded Nevanlinna
characteristic in C−. Recall that a meromorphic function θ− is said to have a
bounded Nevanlinna characteristic (or that it is of bounded type) in C− if θ− can
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be represented as a quotient θ−(z) = a(z)−1b(z), where a and b are bounded
holomorphic functions on C−, a being scalar-valued and b matrix-valued. The
statement that θ− is a pseudo-continuation of θ means that for almost all y ∈ R
the limits θ(iy) := limx↓0 θ(x+ iy) and θ−(iy) := limx↑0 θ−(x+ iy) are equal. See,
e.g., [18, Section 1] or [23, Sections 4.2 and 6.3] for more detailed discussions of
these two notions.

At the next stage of generality we replace the matrix-valued function θ ∈ Sp×q

by an operator-valued function. Let U (the input space) and Y (the output space)
be separable Hilbert spaces, and let S(U ;Y ) be the class of all Schur functions
(analytic contractive functions) whose values are bounded linear operators map-
ping U into Y , defined on C+. Given a function θ ∈ S(U ;Y ) we look for a bi-inner
dilation Θ ∈ S(Ũ ; Ỹ ) of θ of the following type. The spaces Ũ and Ỹ are dilations
of U and Y , i.e., Ũ = U1 ⊕ U and Ỹ = Y ⊕ Y1 where U1 and Y1 are two auxiliary
separable Hilbert spaces, and Θ has the block matrix form (1), where this time
θ11 ∈ S(U1;Y ), θ21 ∈ S(U1;Y1), and θ22 ∈ S(U ;Y1), and

θ(z) = PY Θ(z)|U , (2)

where PY is the orthogonal projection in Ỹ onto Y . We recall that a function
Θ ∈ S(Ũ ; Ỹ ) is called inner, co-inner, or bi-inner if its almost everywhere defined
boundary values Θ(iy) := limx↓0 Θ(x+ iy) are isometric, co-isometric, or unitary,
respectively, a.e. on iR. A representation (2) of θ with a bi-inner function Θ is
called a D̃-representation of θ, and the function Θ is called a bi-inner dilation of
θ; see [8] and [18].

As we saw above, a function θ ∈ Sp×q has a matrix-valued bi-inner dilation
if and only if θ has a meromorphic pseudo-continuation θ− into the left half-plane
C− with bounded Nevanlinna characteristic. In the case where θ ∈ S(U ;Y ) (with
possibly infinite-dimensional U and Y ) the property of θ of having a meromorphic
pseudo-continuation θ− into the left half-plane C− with bounded Nevanlinna char-
acteristic is still a sufficient condition for the existence of a bi-inner dilation; see
[2, 4, 8], and [18] (we define pseudo-continuation and bounded Nevanlinna char-
acteristic in the same way as above; in particular, we require the denominator a
to be a scalar function). However, this condition is no longer necessary, as we will
prove below. Neither is it necessary in the case where θ ∈ Sp×q, but we allow the
dilated spaces Ũ and Ỹ to be infinite-dimensional.

If U or Y is infinite-dimensional, then the additional condition that the di-
lated spaces Ũ and Ỹ should have a minimal dimension is no longer meaningful.
The appropriate notion is instead that the dilated function should have minimal
losses, a notion which was introduced by Arov in [4, 8]. A bi-inner dilation Θ of θ
has minimal losses if the multiplication operator by θ11 is injective on L2(iR;U), or
equivalently, if the multiplication operator by θ22, acting on L2(iR;U1), has a dense
range. A D̃-representation with minimal losses is called a D-representation, and in
the matrix-valued case this is a standard Darlington representation with minimal
dimension described earlier. For a more detailed description of how this condition
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on minimal losses should be interpreted we refer the reader to [8]. Arov [8] also
obtains a necessary and sufficient condition for the existence of a D-representation.

An obvious (and well-known) necessary condition for the existence of a bi-
inner dilation of θ ∈ S(U ;U) is that there must exist two functions ψr ∈ S(U ;Y1)
and ψl ∈ S(U1;Y ) (namely ψr = θ22 and ψl = θ11) satisfying

ψ∗r (z)ψr(z) = I − θ∗(z)θ(z), ψl(z)ψ∗l (z) = I − θ(z)θ∗(z), a.e. on ∂Ω. (3)

The main result of this paper is that the converse is also true: the solvability of the
two factorization problems (3) in the Schur class of functions is not only necessary,
but also sufficient for the existence of a bi-inner dilation. This answers a question
posed more than 30 years ago by Douglas and Helton [18, p. 66].

Above we have concentrated on the case where the function θ is defined on
the open half-plane C+. A similar theory is valid when θ is defined on the open
unit disc D instead. The latter case is technically slightly simpler, and we shall
therefore in the sequel mainly concentrate on the case where θ is defined on D, and
only at the very end return to the case where θ is defined on C+. In particular,
below we let Sp×q and S(U ;Y ) stand for the class of Schur functions defined on
D (instead of being defined on C+).

Darlington synthesis for time-dependent systems has been studied by Pick
[22].

2. Preliminaries

Let U , X, and Y be separable Hilbert spaces, and let [ A B
C D ] be a quadruple of

bounded linear operators mapping X ⊕ U into X ⊕ Y . With these operators we
associate the following discrete-time system:

Σ:
x(n+ 1) = Ax(n) +Bu(n),

y(n) = Cx(n) +Du(n).
(4)

We call A the main operator, B the control operator, C the observation operator,
and D the feedthrough operator of Σ = [[ A B

C D ] ; (Y,X,U)]. The transfer function of
Σ is given by

θΣ(z) = zC(I − zA)−1B +D, 1/z ∈ ρ(A)
(where ρ(A) is the resolvent set of A). The system Σ is (scattering) passive if [ A B

C D ]
is a contraction from X ⊕ U to X ⊕ Y , and conservative if [ A B

C D ] is unitary. In
these cases the transfer function is defined on all of D, and it belongs to S(U ;Y )
(it is a Schur function on D). Conversely, given a function θ ∈ S(U ;Y ), we call
the system Σ in (4) a passive or conservative realization of θ if Σ is passive or
conservative, and the transfer function of Σ is θ in the sense that

θ(z) = θΣ(z) = zC(I − zA)−1B +D, z ∈ D.
The system Σ (and its main operator A) is strongly stable if Akx → 0 as

k → ∞ for all x ∈ X, and it is strongly co-stable if (A∗)kx → 0 as k → ∞ for all
x ∈ X (where both limits are taken in the strong sense).
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Let Z+ = 0, 1, 2, . . . and Z− = −1,−2,−3, . . .. We define the reachability map
of Σ to be the operator B which maps a sequence {u(−k)}∞k=1 with only finitely
many nonzero elements into

Bu =
∞∑

k=1

Ak−1Bu(−k).

The observability map of Σ is the operator which maps x ∈ X into the sequence

Cx = {CAkx}∞k=0.

(In the case of a (scattering) passive system the operator B can be extended to
a bounded linear operator on `2(Z−;U), and C is bounded from X to `2(Z+;Y ).)
The reachable subspace R is the closure of the range of B, and the unobservable
subspace U is the kernel of C. We call Σ controllable if R = X, it is observable if
U = {0}, it is minimal if it is both controllable and observable, and it is simple if
U ∩R⊥ = {0}.

As first shown by Sz.-Nagy and Foiaş [25] and Brodskĭı [15], every B(U ;Y )-
valued Schur function θ has a simple conservative realization, which is unique up
to unitary similarity. It also has a minimal passive realization (as was noticed by
Arov [3]). The latter realization is not unique. Any two minimal passive realizations
Σ = [[ A B

C D ] ; (Y,X,U)] and Σ̃ =
[[

Ã B̃
C̃ D̃

]
; (Y, X̃, U)

]
of θ are pseudo-similar to each

other in the sense that there is a closed (possibly unbounded) injective linear
operator Q with dense domain D(Q) ⊂ X and dense range R (Q) ⊂ X̃ such that[

Ã B̃

C̃ D̃

] [
Qx
u

]
=

[
QA QB
C D

] [
x
u

]
, x ∈ D(Q), u ∈ U.

In particular, R (B) ⊂ D(Q), and A maps D(Q) into itself. We refer the reader to
[12] or [24, Section 9.2] for details.1

Among all minimal passive realizations of θ there is one whose norm is the
weakest possible one (in the sense that the pseudo-similarity which maps the state
space of any other minimal passive realization into the state space of this particular
realization is a contraction). It is clearly unique up to unitary similarity. We call
this realization a minimal optimal passive realization, and denote it by Σ◦ =[[

A◦ B◦
C◦ D◦

]
; (Y,X◦, U)

]
. There is also another minimal passive realization of θ whose

norm is the strongest possible one. We call this realization a minimal ∗-optimal
one and denote it by Σ• =

[[
A• B•
C• D•

]
; (Y,X•, U)

]
. See [7, 8, 11] for more details

on these two realizations (and also for non-minimal versions2 of these two types
of realizations, as well as passive realizations in general).

1The domain of such a pseudo-similarity Q is not unique in general. However, if Q is bounded

(or Q−1 is bounded), then the domain (or the range) of Q is the whole space, and in this case it
is unique.
2Every (non-minimal) optimal system is a passive dilation of a minimal optimal system, and
every ∗-optimal system is a passive dilation of a minimal ∗-optimal system.
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3. The Balanced Passive Realization

From the minimal optimal and ∗-optimal realizations of θ ∈ S(U ;Y ) we can con-
struct still another one, the balanced passive realization, by using interpolation.
In the control literature this realization is often called the bounded real balanced
realization (see, e.g., [20, Section 5]), and it was originally introduced by Opde-
nacker and Jonckheere [21] in a continuous time impedance setting. The most
common among all balanced realization is the Hankel balanced realization, whose
infinite-dimensional version was first developed by Young [26].

Let Σ◦ =
[[

A◦ B◦
C◦ D◦

]
; (Y,X◦, U)

]
be a minimal optimal realization of θ, and let

Σ′
• =

[[ A′
• B′

•
C′
• D′

•

]
; (Y,X ′

•, U)
]
be a minimal ∗-optimal realization of θ. These two sys-

tems are pseudo-similar. Let Q′ be the pseudo-similarity mapping X ′
• ⊃ D(Q′) →

R (Q′) ⊂ X◦. Since Σ◦ has the weakest possible norm and Σ′
• has the strongest

possible norm among all minimal passive realizations of θ, Q′ is a contraction. In
particular, as Q′ is closed, D(Q′) = X ′

•. Let X• = R (Q′) ⊂ X◦. Then X• is dense
in X◦. We make X• into a Hilbert space by defining ‖x‖X• = ‖(Q′)−1x‖X′

•
. Let Q

be the operator that we get from Q′ by interpreting Q as an operator X ′
• → X•

(i.e., it is otherwise the same operator as Q, but its range space is X• instead of
X◦). Clearly Q is unitary X ′

• → X•. Let Σ• =
[[

A• B•
C• D•

]
; (Y,X•, U)

]
be the system

defined by [
A• B•
C• D•

]
=

[
QA′•Q

−1 QB′
•

C ′
•Q

−1 D′
•

]
.

Then Σ• and Σ′
• are unitarily similar. In particular Σ• is minimal and ∗-optimal.

This system can be interpreted as a restriction of Σ◦ in the sense that[
A• B•
C• D•

] [
x
u

]
=

[
A◦ B◦
C◦ D◦

] [
x
u

]
,

[
x
u

]
∈ X• ⊕ U.

The pseudo-similarity Q• : X• = D(Q•) → R (Q•) ⊂ X◦ between these two sys-
tems is simply the contractive embedding operator X• → X◦, i.e., for all x ∈ X•
we have Q•x = x ∈ X◦ and ‖Q•x‖X◦ = ‖x‖X◦ ≤ ‖x‖X• .

Let E• ∈ B(X•) be the Gram operator corresponding to the embedding
X• ⊂ X◦, i.e., E• is the positive self-adjoint injective contraction on X• which is
determined by the fact that 〈x, y〉X◦ = 〈x,E•y〉X• for all x, y ∈ X•. This operator
can be extended to an operator E◦ ∈ B(X◦) in the following way. Since E• is a
self-adjoint contraction in X•, we have E3

• ≤ E•, and therefore, for all x ∈ X•,

‖E•x‖2X◦
= 〈E•x,E•x〉X◦ = 〈E•x,E2

•x〉X• = 〈x,E3
•x〉X•

≤ 〈x,E•x〉X• = ‖x‖2X◦
.

Thus, we may interpret E• as a densely defined contraction X◦ → X◦. By continu-
ity, it can be extended to a contraction E◦ ∈ B(X◦). To see that E◦ is self-adjoint
in X◦ we argue as follows. For all x, y ∈ X• we have

〈y,E◦x〉X◦ = 〈y,E•x〉X◦ = 〈y,E2
•x〉X• = 〈E•y,E•x〉X•

= 〈E•y, x〉X◦ = 〈E◦y, x〉X◦ .
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By continuity, the identity 〈y,E◦x〉X◦ = 〈E◦y, x〉X◦ must hold for all x, y ∈ X◦.
Thus, E◦ is self-adjoint. We remark thatX• = R

(
E

1/2
◦

)
(where E1/2

◦ is the positive
square root of E◦ in X◦), and that

〈x, y〉• = 〈E−1/2
◦ x,E

−1/2
◦ y〉X◦ , x, y ∈ X•.

Let X� = R
(
E

1/4
◦

)
(here E1/4

◦ is the positive 4th root of E◦ in X◦). This
subspace of X◦ becomes a Hilbert space if we equip it with the inner product

〈x, y〉� = 〈E−1/4
◦ x,E

−1/4
◦ y〉X◦ = 〈E1/4

◦ x,E
1/4
◦ y〉X• , x, y ∈ X�.

With this inner product, we have X• ⊂ X� ⊂ X◦, with contractive and dense
embeddings. (The space X� is known as the Riesz interpolation space between X◦
and X• with exponent 1

2 . A full scale of Hilbert spaces parameterized by α ∈ (0, 1)
is constructed in [19, p. 142].)

Theorem 3.1. Let X• ⊂ X� ⊂ X◦ be the spaces defined above. Define the operators
A�, B�, C�, and D� by[

A� B�
C� D�

] [
x
u

]
=

[
A◦ B◦
C◦ D◦

] [
x
u

]
,

[
x
u

]
∈ X� ⊕ U. (5)

Then
[

A� B�
C� D�

]
∈ B(X� ⊕ U ;X� ⊕ U), and

[[ A� B�
C� D�

]
; (Y,X�, U)

]
is a minimal

passive realization of θ.

We call Σ� (and any other system which is unitarily similar to Σ�) a balanced
passive realization of θ.

The proof of this theorem is based on the following result on Riesz interpo-
lation.

Lemma 3.2. Let X•, X◦, Y•, and Y◦ be four Hilbert spaces, with X• ⊂ X◦ and
Y• ⊂ Y◦ (with continuous embeddings). Let X� and Y� be the Riesz interpolation
spaces with exponent 1

2 between X• and X◦ respectively Y• and Y◦ (constructed as
explained above). If A◦ is a contraction from X◦ into Y◦ with the property that
A• := A◦|X• is a contraction from X• into Y•, then A� := A◦|X� is a contraction
from X� into Y� (in particular, the range of A� lies in Y�).

This lemma is contained in [19, Theorem 9.1, p. 144] (take the exponent to
be 1

2 in that theorem). The case where X◦ = Y◦ and X• = Y• is also found in [24,
Lemma 9.5.8]. An even more general version is given in [1, Theorem C.4, p. 283].
There also exponents α ∈ (0, 1) different from 1

2 are allowed, and our requirements
X• ⊂ X◦ and Y• ⊂ Y◦ have been relaxed to the requirement that these subspaces
should be compatible in the sense of interpolation theory. If A◦ and A• are just
bounded operators rather than contractions, then the conclusion is that A� is a
bounded operator with ‖A�‖ ≤ ‖A•‖α‖A◦‖1−α.

Proof of Theorem 3.1. We begin by showing that that the ranges of A� and B�
(with domains X� respective U) are contained in X�. The latter inclusion follows
trivially from the fact that R (B�) = R (B•) ⊂ X• ⊂ X�. The former inclusion
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is a consequence of Lemma 3.2 with Y◦ = X◦ and Y• = X•. (In addition, we find
that A� is a contraction on X�.)

We next show that Σ� is passive. To do this we use Lemma 3.2 with the
following substitutions:

X◦ → X◦ ⊕ U, X• → X• ⊕ U, Y◦ → X◦ ⊕ Y, Y• → X• ⊕ Y, A◦ →
[

A◦ B◦
C◦ D◦

]
.

According to Lemma 3.2,
[

A� B�
C� D�

]
is contractive, hence Σ� is passive.

To see that Σ� is controllable we argue as follows. By construction, the
reachability maps B• and B� of Σ• respectively Σ� have the same range. By
assumption, Σ• is controllable, i.e., R (B•) is dense in X•. Since X• is dense in
X�, also R (B�) = R (B•) is dense in X�. Thus Σ� is controllable. That Σ� is
observable follows from the fact that the null space of the observability map C� of
Σ� is a subset of the null space of the observability map C◦ of Σ◦, and the latter
is trivial since Σ◦ is observable.

That the transfer function of Σ� is θ follows from the fact that for all z with
|z| > 0 and all u ∈ U (recall that R (B�) = R (B•) ⊂ X•)

[C�(z −A�)−1B� +D�]u = [C•(z −A•)−1B•u+D•]u = θ(z)u. �

4. Inner Dilations

A function θ ∈ S(U ;Y ) (on the unit disk D) has almost everywhere defined lim-
its θ(eiϕ) := limr↑1 θ(reiϕ) on the unit circle T in the strong sense. By an in-
ner B(U ;Y )-valued function on D we mean a function θ ∈ S(U ;Y ) satisfying
θ(z)∗θ(z) = I for almost all z with |z| = 1. The function θ ∈ S(U ;Y ) is co-inner
is θ(z)∗ is inner, and it is bi-inner if it is both inner and co-inner.

Definition 4.1. Let θ ∈ S(U ;Y ).
1) By an inner dilation of θ we mean an inner function Θ of the form Θ =

[
θ
θr

]
,

where θr ∈ S(U ;Y1) for some Hilbert space Y1.
2) By a co-inner dilation of θ we mean a co-inner function Θ of the form Θ =[

θl θ
]
, where θl ∈ S(U1;Y ) for some Hilbert space U1.

3) By a bi-inner dilation of θ we mean a bi-inner function Θ =
[

θ11 θ
θ21 θ22

]
∈

S(U1 ⊕ U ;Y ⊕ Y1) for some Hilbert spaces U1 and Y1.

Not every θ ∈ S(U ;Y ) has an inner, or co-inner, or bi-inner dilation. But
obviously, if θ has a bi-inner dilation, then it has both an inner dilation and a co-
inner dilation. Our main theorem, stated below, says that the converse statement
is also true.

Theorem 4.2. Let θ ∈ S(U ;Y ). Then θ has a bi-inner dilation if and only if it has
both an inner dilation and a co-inner dilation.

This is a part of Corollary 4.6 below, which in turn follows from Lemmas
4.3–4.5 below.
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Lemma 4.3 (see [8, Proposition 3]).

1) θ has an inner dilation if and only if θ has a minimal passive strongly stable
realization.

2) θ has a co-inner dilation if and only if θ has a minimal passive strongly
co-stable realization.

3) θ has a bi-inner dilation if and only if θ has a minimal passive realization
with is both strongly stable and strongly co-stable.

Proof. If we ignore the word “minimal”, then this is [8, Proposition 3]. However,
from any non-minimal realization we can always get a minimal one by first re-
placing the state space by the reachable subspace, restricting A and C to this
subspace, and then projecting the state space onto the orthogonal complement of
the unobservable subspace. (See [8, 11] for details.) �

Lemma 4.4.

1) θ has an inner dilation if and only if the minimal optimal passive realization
of θ is strongly stable.

2) θ has a co-inner dilation if and only if the minimal ∗-optimal passive realiza-
tion of θ is strongly co-stable.

This lemma could be derived from [6, Theorem 3]. For the convenience of the
reader we include a proof.

Proof. We prove only 1) and leave the analogous proof of 2) to the reader.
Suppose that θ has an inner dilation. Then it has a minimal strongly sta-

ble realization Σ. The norm of the minimal optimal passive realization Σ◦ is the
weakest one among all passive realizations, and therefore the pseudo-similarity Q
which maps the state space X of Σ into the state space X◦ of Σ◦ is a contraction.
The image of X under Q is dense in X◦, and each (autonomous) trajectory which
starts in this set is the image of a trajectory of Σ, hence it tends to zero. Since
all trajectories in Σ◦ are bounded, this implies that all trajectories of Σ◦ tend to
zero. Thus, Σ◦ is strongly stable.

The converse statement is trivial. �

Lemma 4.5. The balanced passive realization of θ is strongly stable if and only if the
minimal optimal realization of θ is strongly stable. The balanced passive realization
of θ is strongly co-stable if and only if the minimal ∗-optimal realization of θ is
strongly co-stable.

Proof. It follows from Lemmas 4.3 and 4.4 that the minimal optimal realization
Σ◦ is strongly stable whenever the balanced realization Σ� is strongly stable, and
that the minimal ∗-optimal realization Σ• is strongly co-stable whenever Σ� is
strongly co-stable.
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Suppose that Σ◦ is strongly stable. Let x ∈ X•. Then for all n = 0, 1, 2, . . ., by
the relationships between the different inner products and the Schwartz inequality,

‖Anx‖2X�
= ‖E1/4Anx‖2X•

= 〈E1/4Anx,E1/4Anx〉X•

= 〈Anx,E1/2Anx〉X• ≤ ‖Anx‖X•‖E1/2Anx‖X•

= ‖Anx‖X•‖Anx‖X◦ .

Let n → ∞. Then ‖Anx‖X◦ → 0 whereas ‖Anx‖X• stays bounded. Thus
‖Anx‖X� → 0. This being true on a dense subset (and since AX� is a contraction),
the same statement must be true for all x ∈ X�. Thus, Σ� is strongly stable, as
claimed.

That Σ� is strongly co-stable whenever Σ• is strongly co-stable is proved in
a similar way. �

Corollary 4.6. Let θ be a B(U ;Y )-valued Schur function on the open unit disk D.
Then the following conditions are equivalent.

1) θ has a bi-inner dilation.
2) θ has both an inner dilation and a co-inner dilation.
3) The balanced passive realization of θ is both strongly stable and strongly co-

stable.
4) The minimal optimal passive realization of θ is strongly stable and the mini-

mal ∗-optimal passive realization of θ is strongly co-stable.
5) θ has a minimal passive realization with is both strongly stable and strongly

co-stable.

This follows from Lemmas 4.3, 4.4, and 4.5 (and from [8, Proposition 3] for
the non-minimal version of 5)).

By Definition 4.1, θ ∈ S(U ;Y ) has an inner dilation if and only if the factor-
ization problem

ψ∗r (z)ψr(z) = I − θ∗(z)θ(z), a.e. on T, (6)

has a solution θr ∈ S(U ;Y1) for some Hilbert space Y1, and θ ∈ S(U ;Y ) has a
co-inner dilation if and only if the factorization problem

ψl(z)ψ∗l (z) = I − θ(z)θ∗(z), a.e. on T, (7)

has a solution θl ∈ S(U1;Y ) for some Hilbert space U1. Both of these problems are
special cases of the right or left spectral factorization that we get by replacing the
right-hand sides of (6) or (7) by an operator-valued function f which is integrable
and strictly positive a.e. on T. In the case of a nonnegative scalar function f
the Szegö theorem gives necessary and sufficient conditions for the existence of
H2-solutions of these spectral factorization problems. Analogous conditions for
matrix-valued functions f satisfying f(z) > 0 for almost all z ∈ T are given by the
Zasuhin–Krein theorem. Finally, for operator-valued functions f the factorization
theorem of Devinatz gives sufficient conditions. All of these conditions have the
property that if they hold when we replace f by I − θ∗θ, then they also hold if we
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replace f by I− θθ∗. By combining these criteria with Corollary 4.6 we obtain the
following result.

Corollary 4.7.

1) A scalar-valued Schur function θ, which is not inner, has a bi-inner dilation
if and only if ∫

T
− ln

(
1− |θ(z)|

)
d|z| <∞.

2) An n × n matrix-valued Schur function θ which satisfies θ∗(z)θ(z) < I for
almost all z ∈ T has a bi-inner dilation if and only if∫

T
− ln det

(
I − θ∗(z)θ(z)

)
d|z| <∞.

3) A function θ ∈ S(U ;Y ) (where U and Y are allowed to be infinite-dimensional)
has a bi-inner dilation if∫

T
− ln

(
1− ‖θ(z)‖2

)
d|z| <∞.

Proof. Assertion 1) follows from Corollary 4.6 together with Szegö’s theorem (see
[23, p. 110]), which says the following: given a nonnegative function f ∈ L1(T),
the factorization problem

|ψ(z)|2 = f(z) a.e. on T,
has a solution ψ in the Hardy class H2(D) if and only if

∫
T− ln f(z)d|z| <∞. We

take f(z) = 1−|θ(z)|2, and notice that ln
(
1−|θ(z)|

)2 = ln(1−|θ(z)|)+ln(1+|θ(z)|),
where the latter function is essentially bounded, hence

∫
T− ln

(
1−|θ(z)|

)
d|z| <∞

if and only if
∫

T− ln f(z)d|z| < ∞. Cauchy’s formula and the boundedness of ψ
on T imply that ψ must actually be a Schur function.

Assertion 2) is proved in a similar way. We replace Szegö’s theorem by the
Zasuhin–Krein theorem (see [25, part c) of Proposition 7.1, p. 227] and also the
discussion on [25, p. 236]). According to this theorem, if θ∗(z)θ(z) < I for almost all
z ∈ T, or equivalently, if θ(z)θ∗(z) < I for almost all z ∈ T, then the factorization
problem (6) has a H2-solution if and only if

∫
T− ln det

(
I − θ∗(z)θ(z)

)
d|z| < ∞,

whereas (7) has a H2-solution if and only if
∫

T− ln det
(
I − θ(z)θ∗(z)

)
d|z| < ∞.

However, det
(
I − θ∗(z)θ(z)

)
= det

(
I − θ(z)θ∗(z)

)
, so if one of the two problems

has a solution, then so has the other. Again Cauchy’s formula implies that the
factors ψr and ψl in (3) will be Schur functions.

The proof of assertion 3) is similar to the proof of assertion 2), but this time
we use the Devinatz factorization theorem (see, [25, part b) of Proposition 7.1, p.
227]). �

Example 4.8. Let θ(z) = (3 + z)−1/2, where we take the branch of the square root
which is analytic on C\ (−∞,−3]). This function is analytic on D. It is easy to see
that it is contractive, with an absolute value which is bounded away from both zero
and 1. Therefore, by part 1) of Corollary 4.7, this function has an operator-valued
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bi-inner dilation (with infinite-dimensional input and output spaces). However,
according to Arov [2] and Dewilde [17], it cannot have a matrix-valued bi-inner
dilation since it is does not have a pseudo-continuation to C \ D with bounded
Nevanlinna characteristic (it has a branch point at −3).

The above example also sheds some additional light on the theory about the
existence of a D-realization3 of a given Schur function θ and how this property
is related to the existence of other passive realizations of θ with some special
properties. According to Arov [8], θ has a D-representation if an only if θ has
a realization with minimal losses which is both strongly stable and strongly co-
stable. On the other hand, by [2], [17], a scalar-valued or matrix-valued Schur
function θ has a D-representation if and only if θ has a pseudo-continuation to
C\D with bounded Nevanlinna characteristic. Thus, the balanced realization of the
Schur function in Example 4.8 is both strongly stable and strongly co-stable, but it
does not have minimal losses. The function θ in Example 4.8 is a typical example
of a scalar Schur function which has a bi-inner dilation but no D-representation.

5. Continuous Time Bi-Inner Dilations

Results analogous to those presented in the last two sections are valid also in
the case where the given Schur function θ is defined on the open right-half plane
C+ (instead of on the open unit disk D). In this case we use the L2-well-posed
continuous time realizations described in, e.g., [13] and [24]. All the proofs remain
essentially the same, except for the fact that references to known discrete time
results are replaced by references to the analogous continuous time results, all of
which are found in [24] (and many of them also in [13]). In particular, the minimal
optimal, ∗-optimal and balanced passive realizations are described in [24, Section
11.8]. Alternatively, the continuous time case can be reduced to the discrete time
case by means of the Cayley transform.
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