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Abstract

This work is devoted to the construction of canonical passive and
conservative state/signal shift realizations of arbitrary passive contin-
uous time behaviors. By definition, a passive future continuous time
behavior is a maximal nonnegative right-shift invariant subspace of the
Krein space L?([0,00); W), where W is a Krein space, and the inner
product in L?([0, 00); W) is the one inherited from W. A state/signal
system ¥ = (V; X, W), with a Hilbert state space X and a Krein sig-
nal space W, is a dynamical system whose classical trajectories (x, w)
on [0, 00) satisfy x € C1([0,00); X), w € C([0,00); W), and

(z(t), z(t),w(t)) €V, t €[0,00),

where the generating subspace V' is a given subspace of the node space
R:= X x X x W. Passivity of this systems means that V' is maximal
nonnegative with respect to a certain Krein space inner product on K,
and that (z,0,0) € V implies z = 0.

We present three canonical passive shift models: a) an observable
and co-energy preserving model, b) a controllable and energy preserv-
ing model, and c) a simple conservative model. In order to construct
these models we first introduce the notions of the input map, the out-
put map, and the past/future map of a passive state/signal system.
Our canonical passive state/signal shift realizations are analogous to
the corresponding de Branges—Rovnyak type input/state/output real-
izations of a given Schur function.

Keywords
Passive, conservative, behavior, state/signal system, de Branges—

Rovnyak model, input/state/output system, input map, output map,
past/future map, transfer function, Krein space.
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1 Introduction

A linear continuous time invariant s/s (state/signal) system ¥ = (V; X, W)
has a Hilbert (state) space, a Krein (signal) space, and a closed (generating)

subspace V' of the (node) space R = [%] that satisfies some additional
conditions, among them the condition

[8] eV =z=0. (1.1)

Condition means that V' is the graph of some linear operator G: [i},] —
X with domain dom(G) C [;}]. Since V is assumed to be closed, the operator
G is closed. The reason for taking W to be a Krein space instead of a Hilbert
space will be explained later when we come to the notion of a passive s/s
system.

Let I C R be a time interval with positive length. By a classical trajectory
cHI;x)

of ¥ on I we mean a pair of functions [§,] € [C(Ilw)

] satisfying

Yo lz@) | eV, tel, (1.2)
w(t)
or equivalently,
¥ [Z((?)] € dom(G) and @(t) = G [Z((?)] : tel. (1.3)

By a generalized trajectory of ¥ on I we mean a pair of functions [§]| €

[ Lg(EIXV)V)} which is the limit in this space of a sequence [ ] of classical

loc

trajectories of ¥ on I.

We call ¥ passive if its generating subspace V' satisfies two additional con-
ditions. The first condition is related to the fact that its classical trajectories
should satisfy the (power) inequality

Sl < o) wihy,  tel (14)

or equivalently,
— (&(t),z(t))x — (&(t), z(t))x + [w(t), w(t)]w >0, tel (1.5)

Above ||z(t)||% stands for the internal energy stored in the state z at time ¢
and [w(t),w(t)]y represents the power flow (energy flow per time unit) into
the system at time ¢ through the signal w(t). Incidentally, this explains why
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we need to allow the inner product in W to be indefinite: If the inner product

in W is positive, then no energy can leave the system through the signal, and

if the inner product in W is negative, then no energy can enter the system.

The inequality says that the system has no internal energy sources.
By (L.2), a sufficient condition for (L.4) and (L.F]) to hold is that

—(z,2)x — (z,2)x + [w,w]y >0, Lﬂ eV. (1.6)

This makes it natural to introduce the following (strictly indefinite) Krein
space inner product in the node space R:

Hﬁ] ’ [%HR = —(21,22) — (21, 22) + [w1, walw. (1.7)

Then (1.6 says that V' is a nonnegative subspace of & with respect to the
inner product (1.7, and (|1.5)) can be rewritten in the form

w(t) w(t)

Hiﬁiﬁ] , FEQ ]L _— % le@®|2 + [wt), wEt)w >0,  tel (18)

The first condition that we require of the system ¥ = (V; W, W), in addition
to , in order to call it passive is that V' is a nonnegative subspace of the
node space & with respect to the inner product in (L.7)).

The second condition that we require of ¥ in order to be passive is a
maximality condition. It is not enough to require V' to be nonnegative in K,
but it should be even maximal nonnegative, i.e., it should not be properly
contained in any other nonnegative subspace of K. This condition is analo-
gous to the condition that one needs to impose on an operator A in order
for A to generate a Cyy contraction semigroup on a Hilbert space X: It is not
enough that A is dissipative, but it must, in fact, be mazimal dissipative.

Thus, summarizing the preceding discussion, ¥ = (V; X, W) is a pas-
sive s/s system if V is a mazimal nonnegative subspace of & with respect
to the inner product in and holds. Note, in particular, that the
maximality of V' implies that V is closed.

One often encounters passive s/s systems where f hold as equal-
ities instead of inequalities. Such systems are called energy preserving. Thus,
a passive energy preserving system is characterized by the fact that V' is max-
imal nonnegative and neutral, i.e., V C VI, where VI is the orthogonal
companion to V in K. If instead V is maximal nonnegative and co-neutral,
ie., VIH c V, then ¥ is called co-energy preserving. Finally, if V is La-
grangian, i.e., if V = VI then V is called conservative.



By integrating (1.4)) over the interval [s,t] one can rewrite (|1.4) in the
equivalent form

lz (@)l = ll2(s)]1% < / [w(v), ww)wdv, — stel, s<t  (19)

By continuity of the integral, remains valid for all generalized trajec-
tories of ¥ on I. The right-hand side of can be interpreted as the
inner product of the function w restricted to the interval [s,t] with itself in
a certain Krein space. For each interval I with positive length we define the
Krein space K2(I; W) to be the space which coincides with L*(I; W) as a
topological vector space, equipped with the inner product

(w1, wa k2 (1) = /I[wl(s),wg(s)]w ds. (1.10)

The quadratic form [w, w]g2(r,1) measures the amount of energy that enters
the s/s system ¥ = (V; X, W) through the signal w during the time interval
I when its evolution is described by a generalized trajectory [§ | with w €
L3(I; W). We shall be especially interested in the cases where I = R*, [ = R,
or I = R™, and denote

K2(W) = KA(R; W), K2(W):= K*R*W). (1.11)

In view of (L.9), the family R =

which the indefinite inner products

[Kg([(?(t]-W)]’ t € R*, of Krein spaces

w1 w2

8] 2] =G+ e + oy wlepow  (112)
0,t

enters naturally into the theory of passive s/s systems. Indeed, inequality

(1.9) says that if we denote

a(t)
o = {[ 2(0) }
F[O’t]’w

then 75, is a nonnegative subspace of £, for all t € R*. As will be shown
in Theorem below, it is even maximal nonnegative, and this fact is an
important ingredient in the complete characterization given in that theorem
of a passive s/s system in terms of its trajectories [{] on RT satisfying w €
K2(W). Moreover, the generating subspace V can be recovered from the
family 7y, in a way that is analogous to the definition of the generator of a

Cy semigroup.

[&] is a generalized trajectory of ¥ on [0, t]} ,



Intuitively, the state space X of X plays the role of an internal memory,
and at each time t the state vector x(t) contains the part of the past history
of the system which may have some influence on the future dynamics. All
the exchange of information with the environment takes place via the signal
part w of a trajectory [§]. Two s/s systems 3; and 35 with the same signal
space W are externally equivalent if they cannot be distinguished from each
other by observing only the signal parts w of the trajectories [ ] of the two
systems on the time interval I = R* := [0, 00) whose initial states are zero
(i.e., the two systems start “from rest” at time ¢t = 0). Trajectories of this
type are called externally generated on RT. We call an externally generated
trajectory [£] on R stable if w € L*(R™; W), and by the (stable) future
behavior A% of ¥ we mean the set of all the signal parts w of the externally
generated stable trajectories [ 5] of ¥ on RT.

The future behavior 20% of a passive s/s system ¥ = (V; X, W) has two
characteristic properties. One of them is fairly obvious, namely that QILEF
is right-shift invariant in the Krein space K2(W). This follows from the
fact that if [[] is an externally generated trajectory of ¥ on R*, and if we

w] = 18]

for 0 < s < t, then we obtain another externally generated trajectory on
R*. This means that if we denote the right-shift semigroup in K2 (W) by
75 (ie., (t7'w)(s) = w(s —t) if s > ¢ and (77'w)(s) = 0 otherwise), then
THU% C W% for all t € RT.

According to the above discussion, 20 is also a nonnegative subspace of
K2(W). As we shall show in Section , 20% is even mazimal nonnegative.
This is the second characteristic property of QHE that we mentioned above.
In particular, 20% is closed in K2 (W).

The above facts lead us to the following definition. By a passive future
behavior on the Krein signal space V¥V we mean a maximal nonnegative, right-
shift invariant subspace of K2 (W). According to the above discussion, the
future behavior of a passive s/s system with signal space W is a passive
future behavior on W.

This paper ends with a study of the inverse problem, in which we con-
struct three different canonical shift realizations of an arbitrary passive fu-
ture behavior 2. By this we mean the following. A passive s/s system
Y = (V; X, W) is a realization of 20, if the future behavior W% of ¥ is
equal to ;. By a canonical realization we mean a realization that is com-
pletely determined by the given data 20,. By a shift realization we mean a
realization whose dynamics can be interpreted (in a generalized sense) as a
compressed shift in some space of functions with values in the given signal
space W.

shift this trajectory to the right by the amount ¢ and define [



Our three canonical realizations have the following characteristic proper-
ties: (a) the first realization is observable and co-energy preserving, (b) the
second is controllable and energy preserving, and (c) the third is simple and
conservative (see Section [3| for the precise definitions). It will be shown that
every other passive s/s realization that has one of the properties (a), (b),
or (c) is unitarily similar to the corresponding canonical realization that we
have constructed, and for this reason we also call them canonical models of
passive s/s systems with one of the properties (a), (b), or (¢).

The canonical models mentioned above are analogous to the three canon-
ical de Branges—Rovnyak shift models of types (a), (b), and (¢) with a given
scattering matrix that belongs to the Schur class over the right half-plane,
i.e., it is an analytic function whose values are contractive operators from
one Hilbert space U to another Hilbert space ). They were originally pre-
sented in [dBR66al, dBR66D] (in discrete time), and they can also be found
in, e.g., [ADRAS97] and in [NV89, NV98]. Indeed, there is a two-sided con-
nection between our canonical models and the de Branges—Rovnyak models
analogous to the one described in [AS10] in the discrete time case. Since
the continuous time result looks more or less the same as the discrete time
results (with the unit disc replaced by the right half-plane), and since this
article is already quite long, we have chosen to here give only a very short
outline of this connection. A future passive behavior 20, can be mapped into
the frequency domain by use of the Laplace transform, and we denote the
image by 20, . This is a maximal nonnegative shift-invariant subspace of the
Krem-Hardy space H? (W) over the right-half plane with values in W (the
inner product in H? (W) is the one inherited from W). Each fundamental
decomposition W = —W_ B W, gives rise to a fundamental decomposition
fl\i(W) = —H2(W_) B H(W,), and with respect to this decomposition
20, has a graph representation

W, = { |50 || @ e B2V},

where S is a multiplication operator whose symbol ¢ is a Schur function
mapping W, into W_. This symbol ¢ is called a scattering matrix. It
is uniquely determined by Q/ﬁr and the decomposition W = —W_H W,
but of course, different fundamental decompositions of W lead to different
scattering matrices. From our canonical s/s models of a passive s/s system
with a given future behavior 20, we can derive the corresponding de Branges—
Rovnyak canonical models with the given scattering matrix ¢ by first passing
to the i/s/o representation of the given s/s system corresponding to the
fundamental decomposition W = —W_ H W, and then applying certain
unitary maps. It is also in principle possible to proceed in the opposite



direction, i.e., to start with one of the de Branges—Rovnyak models and to
define a state signal system in terms of an i/s/o scattering representation,
but this does not lead to a canonical s/s model, since the result depends on
some arbitrarily chosen fundamental decomposition of the signal space. See
[AS10] for details. By replacing the fundamental decompositions of W used
above by Lagrangian decompositions or orthogonal decompositions (these
are defined in Section [2| below) one can also derive canonical models whose
transfer functions belong to certain subclasses of Nevanlinna functions or
Potapov functions. We shall return to this elsewhere.

We end this introduction with a short overview of the remaining sections.
In Section 2| we review the notion of a Krein space and present some Krein
space results that will be needed later. Some background on passive s/s
systems is presented in Section . In addition to the future behaviors 20% of
a passive s/s system Y we also introduce the past behavior 20% and the full
behavior 0% of X. They are in principle constructed in the same way as Z%rn,
but with I = R™ replaced by I = R~ = (—00,0] or I = R, respectively. We
also introduce the general notions of a passive past behaviors and a passive full
behaviors on a given signal space W (without reference to any s/s system).
It will always be true that if 20 is a passive full behavior on W, then

W_ = {w € K2 (W) | w is the restriction to R™ of a function in 27}
is a passive past behavior on W, and
W, ={weW|w(t)=0fort <0}

is a passive future behavior on W. As shown in Proposition below,
either one of WW_ and W, determines U uniquely. It is also true that the
past and full behaviors of a passive s/s system ¥ are passive past and full
behaviors.

Many of the results in Section [3| are either taken from [KS09] and [Kurl0]
or are straightforward extensions of results in [AS09b]. However, it also
contains some significant new results, the most important of which is Theo-
rem which gives necessary and sufficient conditions on a subspace T, of

[BUK%(?VC;)X)] to be the family all stable future generalized trajectories of some

passive s/s system. Adjoint systems and behaviors, as well as anti-passive
time reflected s ﬁsystems are studied in Section .

In Sections [5.2] we present two Hilbert spaces H (20 ) and H(20™) that
play fundamental roles in the rest of this article. Here H (20, ) is the subspace
of the quotient K% (W)/20, consisting of all those equivalence classes whose

(20, )-norm, defined in (5.8) below, is finite. The Hilbert space H (205 ]) is
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constructed in a similar way, with 20, replaced by the orthogonal compan-
ion to a passive past behavior 20_, interpreted as a maximal nonnegative
subspace of —K?(W). Both of these spaces are special cases of the spaces
H(Z) introduced and studied in [AS09a], where Z is a maximal nonnegative
subspace of a Krein space X. A short review of the spaces H(Z) is included
in Section 2

In Section we introduce the past/future map 'y of a passive full be-
havior 2. This map plays a decisive role in our study of the construction of
our three canonical realizations. It is a contraction from H(25") to H/(20..),
and it is uniquely determined by the property that if w € 2QJ and if w_ and w,
are the restrictions of w to R~ and R™, respectively, then the image under
Ty of the equivalence class in K2 (W)/20" containing w_ is the equiva-
lence class in K2 (W)/20, containing w,. This map is used to construct

H(mﬂ“)] .

a third Hilbert space D(20), which is continuously contained in [ )
+

piig

H(‘IB[_H) and

T, = [1”F(Z+)] map H(20)) and H(20.,) isometrically onto subspaces £_
and L, of D(2V), respectively, where £L_ + £, is dense in D(20) and the
angle operator P, |  (the orthogonal projection onto £, restricted to £_)
is given by Prl,_ = T, ToT~"'. Thus, the angle operator Pr|c_ between the
subspaces £_ and £, in D(2) is a unitary image of T'yy.

In Section |§| we develop the passive s/s systems theory further and intro-
duce the input map By and the output map €y of a passive s/s system .

The space D(2J) has the property that the operators T := [1

Here By, is a contraction from H(QU[}]) to X, and it is the unique extension

to 'H(QU[,H) of the map from the equivalence class in K2 (W)/ 25 containing
the signal part w of an externally generated stable trajectory [ ] on R~ to
x(0). The operator €y is a contraction from X to H (20, ), and it is equal
to the map from the initial state z(0) of a stable trajectory [ ] on Z* to its
signal part w factored over the future behavior 20, . As shown in Section
[y = €xBy, whenever ¥ is a passive s/s system with full behavior 20.
Finally, in Sections we present our canonical observable co-energy
preserving s/s shift model, controllable energy preserving s/s shift model,
and simple conservative s/s shift model, respectively, whose future, past,
and full behaviors coincide with the given triple of passive behaviors 2,
20, and 2, respectively. These models are canonical in the sense that they
are uniquely determined by the given data 20, 20_, or 20 (any one of these
three behaviors determines the other two uniquely). The state spaces in
the co-energy preserving canonical model, the energy preserving canonical
model, and the simple conservative canonical model are H (20, ), H(Qﬂ[f ]),
and D(20), respectively. In all cases the dynamics of the models are described

10



by means of a generalized compression of a shift acting in the state space.

This article may be regarded as an blend of [AS09a], [AS09D], and [AS10]
on one hand and of [KS09] and [Kurl0] on the other hand. In the first three
of these canonical models of passive s/s systems were obtained in a discrete
time setting, and in the last two a s/s theory is developed for the continuous
time setting, including the passive case. Some preliminary steps towards the
development of a s/s theory in continuous time were taken already in [BS06]
by J. Ball and O. J. Staffans. See, in particular, [BS06| for a discussion of the
connection with the theory of passive and conservative behaviors presented
in the papers [Wil72al, [Wil72b, [WT98| WT02] and the monograph [PW9§].
As explained in [AS05], part of the motivation comes from classical passive
time-invariant circuit theory found in, e.g., [Bel68] and [Woh69].

List of Notations.

R,R*, R~ R := (—00,00), RT := [0, 00), R~ = (—o0, 0].

AN/ Z={0,£1,£2,...}, 2" ={0,1,2,...},Z~ = {-1,-2,...}.
Q The closure of €.

BU;Y) The space of bounded linear operators from U to ).

dom (A),im (A),ker (A): The domain, range, and kernel of the operator A.

Alz The restriction of the operator A to Z.

1y The identity operator on X.

(4, )x The inner product in the Hilbert space X.

[ lw The inner product in the Krein space W.

-K The anti-space of the Krein space K. This is the same topo-
logical vector space as IC, but it has a different inner product
ok = Lk

Tt (T'w)(s) = w(s+1), s, t € R (this is a left shift if ¢ > 0).

T (Thw)(s) =w(s+1t), s, t € RY (this is a left shift if ¢ > 0).

Tt (Ttw)(s) =w(s+t)if s+t <0, (Ttw)(s) =0if s+t > 0.
Here s € R™, t € RT.

T (7*w)(s) = (t7'w)(s) = w(s —t), s, t € R (this is a right
shift if ¢ > 0).

T (Ti'w)(s) = w(s—t) if s—t > 0 and (77'w)(s) = 0if s—t < 0.
Here s, t € RT.

T*t (**'w)(s) = w(s —t) for all s e R™, t € R*.

Tp, Ty T (rrw)(s) = w(s) if s € I, (rrw)(s) = 0if s ¢ 1. We

abbreviate 7_ = mg- and 7, = 7TR+.
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C(I;X),BUC(I; X),CMI; X):

LQ

loc

(I;W)

K1 X), K2 (W), K2 (W), K2 (W):

H(Z),H(Z)  See Section 2.2}

20,205, 07 A passive full, future, or past behavior, respectively, on the
Krein signal space W.

Ho HW,)  Hy:=H(W,) is defined in Theorem [5.1]

Q4 Q+: w — w+W, is the quotient map K2 (W) — K2 (W) /2.,

HO,HO(W,)  HO = HOW,) = QW

K(20,) K(,) = Q7' H(W,).

Ho 1Y) 1 =120 is defined in Theorem

Q- Q-+ w— w2 is the quotient map K2(W) — K2(W)/25.

HOHO (W) HY =H(W ) =Q W .

KEu_) KQU_) = Q- 1 (W),

Ly The past /future map of 20. See Deﬁnition and Section

D(20) D(W) is defined before Lemma [5.9]

Q The quotient map K2(W) — K2(W)/ (20, + 20,

D°(20) D°(2W) = Q2 + WH).

L(20) L) := Q™ 'D(W).

P, The projection of K2(W)/(20, + 267 onto KX(W)/20,

P_ The projection of K2(W)/ (25, +20™) onto K2(W)/20

Ly See Lemma [5.9]

114 The orthogonal projection of H_ & H, onto H.

By, Cx The input and output maps are defined in Section [6]

&% See .

The spaces of continuous, bounded uniformly
continuous, or continuously differentiable functions, respec-
tively, on I with values in X', with the standard norms.

The space of functions from I to VYW which belong locally to
L2

See (L.10) and ({L.11]).

An (inner) direct sum decomposition of a Hilbert or Krein space W into

two closed subspaces ) and U will be denoted by W = Y + U, and the
corresponding complementary projections onto ) and U will be denoted by
P§f and Pg . If, in addition, ) and U are orthogonal to each other, then we
write WW = ) @ U in the case of a Hilbert space and W = Y HU in the
case of a Krein space. In the orthogonal case the subspaces Y and U become
Hilbert or Krein spaces when we let them inherit the inner product from W,

12



and we denote the (orthogonal) projections of W onto ) and U by P and
By, respectively.

We denote the (external) direct sum of two Hilbert or Krein spaces )
and U by [2” By this we mean the Cartesian product of Y and U equipped
with the standard algebraic operations and standard product topology. We
sometimes equip [Z} with the induced Krein space inner product (in the
Krein space notation)

Hyl} ’ [yZHWM = [y vely + [u, ualu (1.13)

Uy Uz

After identifying [¥] with Y and [}] with &/ we can in this case identify [} ]
with YHU. However, we shall often instead use a different Krein space inner
product in [} ] of the type

) Bl gy = (B ),

where J is a given signature operator in ) HU. With respect to this inner
product Y and U may or may not be orthogonal. Analogous notations are
used for direct sums with three or more components.

2 Krein Spaces

2.1 Some Krein space results

Throughout this work both the signal space VW and the node space K will be
Krein spaces. We therefore begin with a review of some Krein space notions
and results that will be needed here.

A Krein space W is a vector space with an inner product [-, -]y, that
satisfies all the standard properties required by an inner product, except for
the condition [w,w]y, > 0 for nonzero w, with the additional property that
W can be decomposed into a direct sum W = —) + U in such a way that
the following conditions are satisfied:

(i) U and —) are orthogonal to each other with respect to the inner prod-
uct [+, -Jw, i.e., [y,ulyy =0 for all u € Y and all y € =Y.

(ii) U is a Hilbert space with the inner product (u,u’)y := [u,u|w, u,
u’ € U, inherited from W.

13



(iii) —) is an anti-Hilbert space with the inner product [y, y']_y := [y, ¥'|w,
y, ¥ € =), inherited from W.

Here and later we shall use the notation —) for the anti-space of a vector
space ) equipped with a (possibly indefinite) inner product. This is the
same topological vector space as ), but the inner product [-,-]y in ) has
been replaced by the inner productly,y'] -y := —[y,¥]y, y, ¥ € =Y. The
condition that —) is an anti-Hilbert space with the inner product inherited
from W is equivalent to saying that ) is a Hilbert space with the inner
product (y,9")y = —[y,¥]w, y, ¥ € =), inherited from —W. Since Y and U
are orthogonal to each other we shall denote the direct sum by W = —YHU.

Any decomposition W = —) H U with the properties listed above is
called a fundamental decomposition of W. If the space W itself is neither a
Hilbert space nor an anti-Hilbert space, then it has infinite many fundamental
decompositions. If W = —YHU is a fundamental decomposition of W, then

[w, w]y = —||y||§,+||u|\l24, w=u+y, ueU, ye. (2.1)

The dimensions of the positive space U and the negative space —) do not
depend on the particular fundamental decomposition. These dimensions are
called the positive and negative indices of W, respectively, and they are
denoted by ind ;W and ind_W.

An arbitrary choice of fundamental decomposition W = —)Y HU deter-
mines a Hilbert space norm on W by

lwl S = yl5 + llully, w=u+y, weld, yed. (2.2)

While the norm ||-||yay itself depends on the choice of fundamental decompo-
sition W = —)Y H U, all these norms are equivalent and the resulting strong
and weak topologies are each independent of the choice of the fundamental
decomposition. Thus, we can define topological notions, such as convergence,
or closedness, with respect to any one of these norms. Any norm on WV aris-
ing in this way from some choice of fundamental decomposition W = —YHU
for W we shall call an admissible norm on W, and we shall refer to the cor-
responding positive inner product on Y @& U as an admissible Hilbert space
inner product on W.

A subspace Z of W is nonnegative if every vector w € Z is nonnegative
([w,w]y > 0), it is neutral if every vector w € Z is neutral ([w,w]y = 0),
and nonpositive if every vector w € Z is nonpositive ([w,w]y < 0). A non-
negative subspace which is not strictly contained in any other nonnegative
subspace is called mazximal nonnegative, and the notion of a mazimal nonpos-
itive subspace is defined in an analogous way. Every nonnegative subspace
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is contained in some maximal nonnegative subspace, and every nonpositive
subspace is contained in some maximal nonpositive subspace. Maximal non-
negative or nonpositive subspaces are always closed.

The orthogonal companion Z™ of an arbitrary subset Z C W with re-
spect to the Krein space inner product [-, -],y consists of all vectors in W that
are orthogonal to all vectors in Z, i.e.,

ZH = {w e W | [w',w]y =0 for all w € Z}.

This is always a closed subspace of W, and Z = (ZIH if and only if Z
is a closed subspace. If W is a Hilbert space, then we write Z+ instead of
Z[H A subspace Z is neutral if and only if Z ¢ ZM. If instead 2 Cc 2
(i.e., ZH is neutral), then we call Z co-neutral. A subspace Z C W is called
Lagrangian if Z = ZH,

A direct sum decomposition W = F + & of W where both F and &£ are
neutral is called a Lagrangian decomposition of VW. The subspaces F and
£ are automatically Lagrangian in this case. Such a decomposition exists if
and only if indy W = ind_W (this index may be finite or infinite).

If we fix a fundamental decomposition W = —)Y HU, then we may view
elements of W as consisting of column vectors

o-[}<[2]

where we view ) and U as Hilbert spaces, and the Krein space inner product
on W is given by

[ M A 1) N

= _<y7 y/)y + (U, u/)lxl-
In this representation, nonnegative, neutral, nonpositive, and Lagrangian
subspaces are characterized as follows.

Proposition 2.1. Let W be a Krein space represented in the form VW = [—uy]
with Krein space inner product equal to the quadratic form [-,-]; induced
by the operator J = [_(1)3’ 12{} in the Hilbert space inner product of [Z} as
explained above, and let Z be a subspace of W. Then the following claims

are true:

(i) Z is nonnegative if and only if there is a linear Hilbert space contraction
Ay Zo =Y from some domain Z, C U into Y such that

Z= ﬁﬂ Z, = { {A;fﬂ z € z+} . (2.4)

Z is maximal nonnegative if and only if, in addition, Z, =U.
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(i)

(i)

(v)

Z is nonpositive if and only if there is a linear contraction A_: Z_ +— U
from some domain Z_ C Y into U such that

e

Z is maximal nonpositive if and only if, in addition, Z_ =)).

Z_ € Z} . (2.5)

Z 1s neutral if and only if there is an isometry A, mapping a subspace
Z, of U onto a subspace Z_ of Y, or equivalently, an isometry A_
mapping Z_ C Y isometrically onto Z, C U, such that

Z = hﬂ Z, = Eﬂ Z_. (2.6)

Z s Lagrangian if and only if, in addition, Z, =U and Z_ = ).

Z is mazimal nonnegative if and only if Z is closed and Z™ is mazimal
nonpositive. More precisely, if Z has the representation (2.4) with
Z. =U, then ZM has the representation

w_ |y
Z { ATJ Y, (2.7)
where A% is computed with respect to the Hilbert space inner product
in' Y (instead of the anti-Hilbert space inner product in —) inherited

from W).

Z is maximal nonnegative if and only if Z is closed and nonnegative
and ZM is nonpositive. In particular, Z is Lagrangian if and only if
Z is both maximal nonnegative and mazximal nonpositive.

Proof. See [AI89, Section 1.8, pp. 48-64] or the following theorems in [Bog74]:
Theorem 11.7 on p. 54, Theorems 4.2 and 4.4 on pp. 105-106, and Lemma
4.5 on p. 106. [

The fundamental decompositions that we have considered above are a
special case of orthogonal decompositions W = —Y HU of W, where ) and
U are orthogonal with respect to [-, ]y, and both ) and U are Krein spaces
with the inner products inherited from —W and W, respectively. Thus, if
w=y+u with y € Y and u € U, then

[w, whw = [y, ylw + [u, ulw = =y, yly + [u, ulu. (2.8)
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This orthogonal decomposition is fundamental if and only if ) and U are
Hilbert spaces, i.e., if they are both nonnegative Krein spaces.

The next lemma, proved in [ASI0], will be used later to find out if cer-
tain subspaces of a Krein space with a special orthogonal decomposition are
maximal nonnegative, or maximal nonpositive, or Lagrangian.

Lemma 2.2 ([AS10, Lemma 2.2]). Let X and Y be two Hilbert spaces and
K a Krein space, and let R be the Krein space R = [?}\g} =—-YHXHBK.

(i) A nonnegative subspace Z of R is mazximal nonnegative if and only if

conditions (a) and (b) below hold:

(a) For each x € X there exists some y € Y and w € K such that
Hpe
(b) The set of all w € KC for which there exists some y € Y such that

y . : S
[0] € Z is maximal nonnegative in K.
w

(ii) A nonpositive subspace Z of R is mazimal nonpositive if and only if

conditions (c¢) and (d) below hold:

(¢) For each y € Y there exists some x € X and w € K such that
1<
(d) The set of all w € IC for which there exists some x € X such that

0 ‘ . L
|:ac:| € Z is maximal nonpositive in IC.
w

(iii) A neutral subspace Z of R is Lagrangian if and only if conditions (a)-
(d) above hold.

Lemma 2.3. Let R be a Krein space with the orthogonal decomposition R =
K1 H Ry, and let Z be a subspace of R. Then

(P, 2)H = ZH N &y and (ZH N &y)H = Py, Z, (2.9)

where the orthogonal companions on the left-hand sides are computed with
respect to Ry. In particular, if Pg,Z is closed, then Pg,Z = (ZM N ﬁg)m.

Proof. That (Pg,2)* = ZH N &, follows from the following chain of equiv-

alences:
2t e (Pg, 2)H

&2l € Ry and [2f, Pyzlg =0 forall z € Z
el e fyand [, 2]g =0forall z € Z
ezl e 2N R,
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This implies that Pg, Z = ((Pg, Z2)H)H = (ZH 0 gy)H. O

Lemma 2.4. Let 8 be a Krein space with the orthogonal decomposition
R = R H Ry, and let Z be a mazimal nonnegative subspace of K. Then
the following conditions are equivalent:

(i
(ii

) Pg,Z is a nonnegative subspace of Ra;
)

(iii) Z N Ry is a mazimal nonnegative subspace of Ky;
)

Pg, Z is a maximal nonnegative subspace of Ko,

(iv) Pg,|z is a contraction Z — Ry, i.e.,

[z, z]g < [Pg, 2, Pg 2|, forall z € Z.

Pg, ZM is a nonpositive subspace of R ;

Pg, ZM is a maximal nonpositive subspace of £ ;
ZH N Ry is a mazimal nonpositive subspace of Ra;
Pg,|z111 is an expansion ZH — Ry, d.e.,

(2%, 21 > [Pa, 2", Pa,2M]s, for all 2t € 2.

When these equivalent conditions holds we have (Z N &) = Py, ZH and
Py, Z = (ZH N Ro)H, where the orthogonal companions on the right-hand
sides are computed in R and Ko, respectively.

Proof. We first show that (i), (ii), (iv), and (vii) are equivalent to each other,
and that (analogously) (v), (vi), (viii), and (iii) are equivalent to each other,
and then complete the proof of the equivalence of the conditions (i)—(viii) by
showing that (iii) = (i) and (vii) = (v). The final claim follows from Lemma
2.3

(i) < (ii): Trivially (ii) = (i). If Pg,Z is not maximal nonnegative in
Ry, then Pg,Z is properly contained in some nonnegative subspace Z; of
Ro. This implies that Z is properly contained in the nonnegative subspace

2V [{202}} of R, and hence Z cannot be maximal. Thus (i) = (ii).
(i) < (iv): Since & = R, B K, we have

[Z,Z]_ﬁ = [Pﬁlz, Pﬁlz]ﬁl + [PQQZ,P_QQZ}_QQ for all z € Z.
Thus, (i) & (iv).
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(ii) < (vii): This follows from Proposition 2.1iv) and Lemma [2.3|

(v) < (vi): This follows from the equivalence (i) < (ii) if we replace & by
its anti-space —8, interchange &, and R,, and also interchange Z and ZMH.

(v) < (viii): This follows from the equivalence (i) < (iv) if we replace
R by its anti-space —R, interchange £, and Ky, and also interchange Z and
ZH.

(vi) < (iii): This follows from Proposition 2.1iv) and Lemma [2.3|

(i) = (i): Suppose that (i) does not hold. Then there exists a vector
2o € Z such that [Pg,z0, Pg,%0]s, < 0. In particular, since Z is nonnegative,
this implies that Pg,z0 ¢ Z, and consequently, Pg zo = 20 — Pg,20 ¢ 2.
Thus, Z N K is a proper subset of Pg zo V (£ N K;). We claim that this
subspace is nonnegative. This is true because for all z € Z and all A\ € C,
we have Az + 2z € Z, and hence

[APg, 20 + 2, \Pg, 20 + 2| = [N20 + 2, A20 + 2]g — ’)\|2[Pﬁ220, Pg,z0lg, > 0.

Thus, if (i) is false, then so is (iii).

(vii) = (v): This follows from the implication (iii) = (i) if we replace
R by its anti-space —R, interchange K; and Ks, and also interchange Z and
ZH, O

2.2 The Hilbert space H(Z2)

In [AS094a] a Hilbert space H(Z) was constructed, starting from an arbitrary
maximal nonnegative subspace Z of a Krein space. Below we give a short
review of this construction. It will be used later in the construction of the
state spaces of our canonical s/s signal realizations.

Let Z be a maximal nonnegative subspace of the Krein space K, and let

K/ Z be the quotient of K modulo Z. We define H(Z) by
H(Z)={h e K/Z|sup{—|z,z|x | z € h} < o0}. (2.10)

It turns out that sup{—|z,z|x | z € h} > 0 for all h € H(Z), that H(Z) is
a subspace of K/Z, that H(Z) is a Hilbert space with the norm

17l = (sup{—[z2lc |z € ]2 hen(2), (2.11)

and that H(Z) is continuously contained in /Z (where we use the standard

quotient topology in K/Z, induced by some arbitrarily chosen admissible
Hilbert space norm in ). We denote the equivalence class h € K/Z that
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contains a particular vector x € IC by h = x + Z. Thus, with this notation,

(2.10) and (2.11) can be rewritten in the form
HZ)={z+ZecK/Z]||z+ ZH%{(g) < 00}, (2.12)
||$+ZHi(Z) =sup{—[z+z,2+ z]c | z € Z}, z € K. (2.13)

A very important (and easily proved fact) is that if we define
HO(Z) = {"+ 2| T e 2H, (2.14)
then H°(Z) is a subspace of H(Z). However, even more is true: H°(Z) is a
dense subspace of H(Z), and
[+ 2, 2"+ Zlpz) = —[0, 21k, o+ ZeH(Z), ez (215)
2 + 2|8z = [, M, f € 21 (2.16)

Thus, H(Z) may be interpreted as a completion of H°(Z). See [AS09a] for
more details.

3 Passive and Conservative State/Signal Sys-
tems

3.1 Basic properties of trajectories of passive s/s sys-
tems

We already gave a short introduction to passive s/s (state/signal) systems,
and now describe this notion in more detail.

In the following definition and throughout the remainder of this paper,
the interval I is assumed to be closed and nontrivial, i.e., it should have a
nonempty interior. Thus, it is either a finite interval I = [to,?;], or a semi-
finite interval I = (—o0,t1] or I = [ty,00), or the full real line / = R =
(—00, 00).

Definition 3.1. Let X be a Hilbert space and W a Krein space.

(i) By a passive s/s node in continuous time we mean a triple ¥ = (V; X', W)
where V' is a maximal nonnegative subspace of the Krein node space

X . . . e
K= [ X } equipped with the inner product (|1.7]) satisfying (1.1]).

(ii) A classical trajectory generated by a subspace V' of & on an interval [
is a pair of functions [} ] € [gl((llv“’\f)) } satisfying (1.2).
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(iii) A (generalized) trajectory generated by a subspace V' of £ on an interval

I is a pair of functions [§ ] € [ LIQC(@XVL)} which can be approximated

by a sequence of classical trajectories [ | in such a way that =, — x
in X locally uniformly on 7, and w,, — w in L _(I;W).

loc

(iv) The passive s/s node X together with its families of classical and gen-
eralized trajectories is called a passive s/s system, and it is denoted by
the same symbols as the node.

(v) By a past, full, or future trajectory of ¥ we mean a trajectory of ¥ on
R~, R, or RT, respectively.

(vi) A (generalized) trajectory [&] of a passive s/s system ¥ = (V; X, W)
on an interval I is externally generated if the following condition holds:
If I has a finite left end-point ¢y, then we require that z(¢y) = 0, and if

the left end-point of [ is —oo, then we require that lim;, , . z(t) =0
and that w € L?((—oo, T]; W) for every finite T' € I.

(vii) A (generalized) trajectory [ ] of a passive s/s system ¥ = (V; X, W)
is stable if z is bounded on I and w € L*(I; W).

As the following lemma shows, the boundedness condition on z in Defi-
nition [3.1|(vii) is often redundant.

Lemma 3.2. Let ¥ = (V; X, W) be a passive s/s system, let I be an interval,
and let [ ] be a (generalized) trajectory of ¥ on the closed interval I. Assume
further that at least one of the conditions (i) or (ii) below holds:

(i) The interval I is bounded to the left.
(i) [&] is externally generated.

Then [ L] is stable if and only if w € L*(I; W), or equivalently, if and only
if Pyw € L*(I;U) for some fundamental decomposition W = —Y BU of W.
In the case where || is externally generated we have, in addition,

le (@)% < / fw(s), w(s)]w ds
sel; s<t (31)

— [ (PG - e ) ds. tel
sel; s<t

In particular, if I = R~ and [§,] is an externally generated stable past trajec-
tory, then

l2(O)% < [w, w]kz o) = [1Bawllz2 gy — 1 Pywllzz (3 (3.2)
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Proof. In Section [1| we outlined a proof of (1.9)), and the results mentioned
above follow from (1.9)). [

In the following lemma we list some elementary properties of the set of
all trajectories of a passive s/s system X = (V; X, W). The notations 7" and
i were explained at the end of Section .

Lemma 3.3. The stable trajectories of a passive s/s system ¥ = (V; X, W)
have the following properties:

(i) If [&] 1s a classical or generalized stable trajectory on some interval I
and t € R, then [:flﬂ 18 a classical or generalized stable trajectory,
respectively, of 3 on the interval [ —t := {s € R | s+t € I}, and [}] is
externally generated on I if and only if [:fff}]) is externally generated
onl —1.

(ii) The restriction of a classical or generalized stable trajectory on some
interval I' to a subinterval I C I' is a classical or generalized stable
trajectory of X on I, respectively, and if I and I' have the same left
end-point, then the restricted trajectory is externally generated if and
only if the original trajectory is externally generated.

Tt
i) If |21 is a classical or generalized stable trajectory on R then :r
( ) w g ] Y ’ 7t w

+

is a classical or generalized stable trajectory on R for allt € RT.

(iv) The set of all stable (generalized) trajectories and the set of all exter-
nally generated stable (generalized) trajectories of ¥ on some interval
I (finite or infinite) are closed subspaces of [BLZ(C]%V);)]

Proof. Claims (i)—(iii) follow immediately from Definition
In order to prove (iv) we let [4" ]| be a sequence of stable trajectories of

¥ on [ converging to [5] in [BLZ(CI(;{/%)]. Both C(I; X) and L% _(I; W) are

Fréchet spaces, and by the definition of a generalized trajectory of ¥ on I,
we can find a sequence of classical trajectories [ o } of ¥ on [ such that the

distance from [Z"] to [§2] in [LQC(@)%)} tends to zero as n — oo. Then

loc
[ 2n ] also tends to [4] in [LS(“X)

Wn loc

(I,W)] as n — oo. Thus, [4 ] is a trajectory of

BUC(I;X)
L2(I;)
tend to zero at the left end-point of I, then so does = (because of the uniform
convergence), and hence [ ;] is externally generated if all the trajectories [ " |
are externally generated. ]

¥ on I. By assumption, [}] € [ }, and hence [ 7] is stable. If all x,,
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In the proof of Lemma [3.3] we made only marginal use of the passivity
of ¥ (i.e., we did not use any other properties of V' than the closedness).
However, in the proof of the following lemma we shall make significant use
of the passivity of ¥ (or more precisely, of the fact that every passive s/s
system is well-posed in the sense of [KS09]).

Lemma 3.4. The set of (generalized) trajectories of a passive s/s system
Y = (V; X, W) has the following properties:

(i) Let W = =Y BU be a fundamental decomposition of W. Then, for
each xy € X, each closed interval I with a finite left end-point ty, and
each u € L*(I;U), there exists a unique stable trajectory L] of ¥ on I
satisfying x(ty) = xo and Pyw = u.

(ii) Let [x'] be a stable trajectory of ¥ on the finite interval Iy = [to,t1],
and let [42] be a stable trajectory of ¥ on a closed interval Iy with left
end-point ty. Then the concatenation [g,] defined by

[W)] - i) e (3.3)
e8] tenvi |

is a stable trajectory of ¥ on I := I, U Iy if and only if x1(t1) = x2(t1).

(iii) Every stable trajectory on some finite interval I = [to,t1] can be ex-
tended to a stable trajectory of % on [tg,00). This extension can be
chosen so that my, o) Pyw = u for an arbitrary u € L*([t1,00);U), and
it 1s uniquely determined by w.

(iv) A pair of functions [§,] on an interval [to, 00) is a stable trajectory of X2
on [tg, 00) if and only if the restriction of [ ] to every finite subinterval
[to, t1] of [to, 00) is a trajectory of X on [ty,t1] and, in addition, Pyw €
L*([to, 00),U) for some fundamental decomposition W = —Y BU of
W.

Proof. (i) By Lemma [3.3]1), it suffices to prove the case where o = 0. By
[Kur1(, Prop. 5.8], the i/o pair (U,)) is L*-well-posed for . Theorem 6.6
of [KS09] then yields that for every zp € X and u € L% _(R*;U) the system
Y has a unique future trajectory [ ], such that z(0) = zo and Pyw = u.
According to Lemma a sufficient condition for the stability of [ ] is that

w € K%(RT;W). Indeed, this condition is satisfied due to the fact that, by

(L.9).

HwaH%Q(Rﬁy) < Hx(O)H?’( + Hu‘|%Q(R+§U)'
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(ii) Claim (ii) is proved in [KS09, Prop. 3.8]

(iii) Claim (iii) follows from (i) and (ii).

(iv) According to [KS09, Proposition 3.9], [§] is a trajectory of ¥ on
[to, 00) if and only if the restriction of [ ] to every finite subinterval [to, ]
is a trajectory of ¥ on [ty, t1]. By Lemma this trajectory is stable if and
only if Py € L*([to, 0);U). O

The following theorem plays a key role in our extension of many of the
discrete time results developed in [ASO09b] and [ASI0] to a continuous time
setting (see Remark below). In this theorem we need the family Ky, :=

[ 2 ([Sfﬂ,w)} ,t € RT of Krein spaces with the indefinite inner products ((1.12)

as well as the Krein space £ := [ K2 (Hgi;w)} with the natural inner product
(1.13). It follows immediately that Rp; and £y are Krein spaces with
fundamental decompositions £y, = —Ro,;— H Ko+ and Lo = — Lo 00— B
£0,00,4+5 Where

{0} X
Rojt4 = X , Kot = {0} . t>0,
| L2([0, t;U) | 22([0,]; V) (3.4)
N I ¢ _[ {0}

and W = —)Y HU is an arbitrary fundamental decomposition of W.

Theorem 3.5. Let X be a Hilbert space, let VW be a Krein space, and let T
be a subspace of [BUC(R+;X)]. Define

K2(R+W)
= teR"
Tou {l } e T*} =h (3.5)
SOoo = { x G Tl-}

Then the subspace T, is the family of all stable future trajectories of some
passive s/s system ¥ = (V; X, W) if and only if the following three conditions
hold:

(1) T, is left-shift invariant, i.e.,
AT =[5 [Bl €T C T teRY  (36)
(i) For allt € RT, Ty, is a mazimal nonnegative subspace of Ko ;.

(iii) Speo s @ mazimal nonnegative subspace of Lo .
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Proof. This proof is based on [KS09, Lemma 4.7], and we refer the reader to
[KS09] for the precise definitions of some of the s/s and i/s/o notions that
we use in this proof. The monograph [Sta05] can be used as an alternative
source for basic results on well-posed i/s/o systems.

Throughout this proof we let W = —U/ H Y be a fundamental decompo-
sition of W, and let Ry = —Ro— B Ko+ and Lo oo = —Loco— B Lo 0o+ be
the corresponding fundamental decompositions defined in ((3.4]).

Step 1: Necessity of properties (i) —(iii). Let Ty be the space of stable
future trajectories of the passive s/s system ¥. Then the left-shift invariance
of T, follows from Lemma (iii). The nonnegativity of 7, in Ko and the
nonnegativity of Sp oo in £ o follow from ([1.9)) with ¢, = 0 and ¢ = t. To see
that 7y, is maximal nonnegative we argue as follows. It follows from Lemma
3.4(1) that the projection of 7o onto Ko+ is all of R+ and the projection
of Sp.00 ONto Ly oo+ is all of £y o +, and consequently, by Proposition (i),
7o+ and Sy oo are maximal nonnegative.

Step 2: Characterization of the closure of T, in [ Lg%@ﬂ,)] For the
loc ’

BUC(R*;X)
K2(RT;W)
with properties (i)—(iii). Since this part of our proof is based on Lemma

[KS09, Lemma 4.7] we must show that the closure 7, of T, in [?;?C(Jg+v€))}
has the following three properties:

proof of the sufficiency of (i)—(iii) we let 7, be a subspace of [

(i) T, is left-shift invariant;

ii") For all [2] € T, and all t € RT we have
( ) w +

H:v(t)lliﬁfo 1Pyw(s)Il3 ds < IIJJ(O)H?ﬁr/O 1P (s)llz s (3.7)

(iii") For all zyp € X and u € L2 _(R*;U) there exit a unique [3] € T,

loc
satisfying x(0) = zo and Pyw = u.

Clearly (i’) follows from the left-shift invariance of 7. Moreover, the
uniqueness in (iii’) follows from (ii’), so it suffices to prove existence in (iii’)
in addition to (ii’).

Fix zp € X and v € L} (RT;W), and let n € Z*. By the maximal
nonnegativity of Tjp ., in R, the definition of T}y ), and Proposition (i),
there exists some [y | € Ty such that 2(0) = x¢ and 7 n Pyw, = o, u. By
the nonnegativity of 7o, for all t € RT, holds with [ ] replaced by [ 4 ].

C(RT;X)

We claim that [y | tends to a limit in [ 12 ] as n — oo. Indeed, for all

1OC(R+§W)
T > 0andallm,n > T, we get from ({3.7)) applied to [iZZfUTn } , combined with
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the conditions z,(0) = x,,(0) = x¢ and 7o Pyw, = Toru = o1 Py,
that

sup [z, (t) = zm ()3 < 20 (0) = 2, (0)]%
0<t<T

1P ) = ) vs < [ 1 Pulan(s) = () ds =

Thus, if we define [ ] by [Z((Z))} = [izii” for s € [n—1,n), n € Z", then

. +.
Ton) [wn] = Tom) 6], » € ZT, and hence [4r] — [§] in [L%EHfR;m)} as

n — o0o. Since each [£r] € T, the limit [2] belongs to 75, and holds
since we know that holds with [ ] replaced by [4r] for all n. This
proves (ii’) and (iii’).

Step 3: Existence of L*-well-posed scattering passive i/s/o representation.
By Step 2 and [KS09, Lemma 4.7], there exists a L?-well-posed i/s/o system
[% %], such that

f—{[ﬂe[é(%ﬁ%ﬂv 4

loc

z(t) | 91

P yw B P uw
That this system is scattering passive follows from ({3.7)) and [Sta05, Lemma
11.1.4].

Step 4: Existence of passive s/s system. By Step 2 and [KS09, Theorem
6.6], there exists a L?-well-posed s/s system ¥ = (V; X, W) such that T, is
the set of all future (generalized) trajectories of . The same theorem says
that the decomposition —) B U is admissible, and it follows from (3.8]) that
the system [2 3] is an i/s/o representation of ¥. Every L?-well-posed s/s
system has a unique (maximal) generating subspace V' in the sense of [KS09,

Theorem 6.4], and by that theorem, this subspace V is given by

(3.8)

V {‘&ﬁ d ALB 3.9
= 10
o Jaom ez, 39)
where [AEB] : [] D dom ([A&B]) — [5] is the system node of [2 3] (see,
e.g., [Sta05sl Section 4.6] or [KS09, Sect. 5] for the definition of the system
node of a well-posed linear i/s/o system). By [Sta05, Theorem 11.1.5] and
[Kurl0l Proposition 5.6, V' is maximal nonnegative in the node space £ (note
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that condition (iii) in [Sta05, Theorem 11.1.5] is identical to condition (ii) in
[Kurl0, Proposition 5.6]). Consequently, X is passive.
Step 5: T, is the space of stable future trajectories of ¥.. By construction

T, C T, N [%%ﬁ;;‘;)}, and every [%] € T, is a future trajectory of ¥.
Consequently, every [§] € T, is a stable future trajectory of 3. Conversely,
let [§ ] be a stable future trajectory of ¥. Since Sy o is maximal nonnegative
in Lo and £ooo = —Loco— B Lo+ is a fundamental decomposition of
R4, there exists some [Z] € T, with #(0) = z(0) and Pyw = BPyw. Since
[2] —[Z] € T+, we can apply to [f):f:%}, and conclude that x = z and

Pyw = Pyw. Thus, [§] =[%] € T;, and we have proved that every stable
future trajectory of X belongs to 7. n

3.2 Classical trajectories and the generating subspace

We originally defined the notion of a trajectory of a passive s/s system ¥ =
(V; X, W) by means of the generating subspace V. Below we shall study the
converse problem: how to recreate the generating subspace from the family of
all classical trajectories. (We have already encountered one result of this type
in the proof of Theorem ) For simplicity we primarily restrict ourselves
to future trajectories, i.e., trajectories defined on R*.

We begin with a preliminary lemma which gives a universal method to
construct a sequence of classical approximations of an arbitrary future tra-
jectory.

Lemma 3.6. Let [] be a future trajectory of the passive s/s system ¥ =
(V; X, W). For each n € Z*, define [ 5] by

R A

Then [ w:] is a classical future trajectory of &2, and [y ] — [ 5] in [Lg(%j?v)}
loc ’

asn — oo. If [5] is stable, then so is [y ], and [y ] — [5] in [BLIQ(CHSE%?}
as n — oo.

This result is essentially contained in [KSI11, Corollary 2.4]. For the
convenience of the reader we have included a proof.

Proof of Lemma[3.0. Clearly, each [4"] € [CCI(](R%+V)\5))} Let [i’;] be a se-
C(RT;X)
L2 (RT;W) |-

loc

quence of classical future trajectories of ¥ converging to [ ] € [
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]
El

(s)
Since the trajectories [xﬂ are classical, they satisfy |::vk(s):| e V for all
Y K(s)

S

s € R*, and since V is closed, also

t+1/n xk(s)
n/ 2k(s) | ds e V.
! w*(s)

Lo ] - ]

t+1/n
n/t i*(s)ds = n[z"(t + 1/n) — 2"(t)] = nfz(t + 1/n) — 2(t)] = ©,(t).

S

8
I3
—~~
~ T+
~ —
—_

and

Iy 56:(8) dn(t) ) ,
aF(s) | ds — | za(t) | as K — o0, and since V is
wh(

¢ L) wn ()

(®)
closed, we find that |:xn(t):| € V for all t € RT. Thus, [4"] is a classical
(t)

Consequently, n

future trajectory of X.

All the additional claims in Lemma follow from standard properties
of approximate identities (the scalar versions of these results are found in
many places, such as [GLS90, p. 67], and the vector-valued versions can be
proved in the same way). O

Proposition 3.7. Let ¥ = (V; X, W) be a passive s/s system. Then the
following claims are true:

(i) If [#] is a (generalized) trajectory of X on some interval [to,to + h],
and if both zp := limy_4, 4 %(x(t) —x(ty) and wy := limy_4, 4 % ftz w(s)ds

exist, then [J»’(Z;o)} eV.
wo

(ii) For each [1%%} € V there exists a stable future classical trajectory []

(0) P

satisfying {x((o))] = [5%] with the additional property that w s locally
w(0

absolutely continuous and [%] is a stable future trajectory of . In

particular,

#(0)
V= { {I(O)] ’ [i] is a future classical trajectory of E} . (3.11)
w(0)
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(iii) A (generalized) trajectory %] of ¥ on some interval I is classical if

. T Cl :
and only if [ 5] € [C((I"x))]
(iv) There is a one-to-one correspondence between the passive s/s system
Y = (V; X, W) and the set of all classical future trajectories of ¥, and
also between ¥ and the set of all generalized future trajectories of 3.

Parts of this proposition are also found in [KS11, Theorem 3.1 and Corol-
lary 3.2].

Proof of Proposition[3.7. (i) By the shift-invariance expressed in Lemma (1)
it suffices to treat the case ty = 0. If h < oo, then we first extend [, ] to a
trajectory defined on all of RT in an arbitrary way; cf. Lemma [3.4iii). Let
[« ] be the family of classical approximations of [ | defined in Lemma
Then, for all n € Z*,

& (0)] 4 [2(/n) = 2(0)
z,(0) | = — Ol/nx(s)ds eV.

w,(0) " Ol/n w(s)ds

This tends to [xz(%)] as n — oo, and since V' is closed, it follows that [w?%)} €
wo wo
V.

(ii) Let W = =Y HU be a fundamental decomposition of W, and let
[% 2] be the i/s/o representation of ¥ constructed in the proof of Theorem

. 20 . x
Since [5}%} € V, it follows from (3.9) that [43] € dom ([A£2]), and that

bl = e [+ 2]

Let u be an arbitrary function in C*°(R™; 1) with compact support and with
u(0) = ug, define

0)-[2 ][] e

and take w = u+y. By Theorem and its proof, [ ;] is a future trajectory of

Y, and it follows from (3.7)) that this trajectory is stable. Moreover, [i((%))] =

[2]. By [Sta05, Theorem 4.6.11], [%] € [gl(gjj))], (0) = 2, and y is

locally absolutely continuous with a distribution derivative y € L% _(R*; ).

In particular, by part (i), [§] is a classical trajectory of X, and w is locally
absolutely continuous with w € LZ_(R*; W).

loc
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For each n € Z*, we define the sequence [ | by

T R ] e ) B

The set of all classical future trajectory of ¥ is a left-shift invariant subspace,
and consequently each [ | is a classical future trajectory of . In the same
way as in the proof of Lemma (with [ ] replaced by [£]) we find that
z, — & in C(RT; X) and w,, — w in L _(R™; W) as n — oo. It then follows
from Lemma [3.3|(iv) that the restriction of [ %] to each finite interval [0, £5] is
trajectory of ¥ on [0, 2], and from Lemma 3.4(iv) that [ ] is a stable future
trajectory of X.

(iii) In the case where the right end-point of I is +oo claim (iii) fol-
lows from (i) (combined with the obvious fact that every classical trajectory

is also a generalized trajectory). If I has a finite right end-point t;, then
&(t1—1/n) _ (t1—1/n) (th)
z(ti—-1/n) | € V for all sufficiently large n and | =(ti—1/n) | — |=z(t1) | as
w(t1—1/n) w(ti—1/n) w(ty)
i(t1)
n — oo. Since V' is closed, this implies that x(ti)] € V. Thus, also in this
w(t1)
case [ 4] is a classical trajectory on the full interval I.

(iv) Clearly, the generating subspace V' of ¥ determines the sets of all
future smooth and generalized trajectories of X uniquely. Conversely, formula
defines V' uniquely in terms of the set of all classical future trajectories
of ¥, and (iii) defines the set of all classical future trajectories of ¥ uniquely
in terms of the set of all generalized future trajectories of X. n

Proposition 3.8. Let ¥ = (V; X, W) be a passive s/s system, and let [5]
be a future trajectory of ¥ for which w s locally absolutely continuous and
w € L (RY;W). Then [L] is a classical trajectory if and only if ©(0) :=
limy o4 1(2(t) — (0)) eaists.

Proof. The existence of 4(0) is necessary for [ ] to be a classical solu-

tion. Conversely, if #(0) exists, then it follows from Proposition [3.7(i) that

z(0)
[I(O)] € V. That x € C'(R"; X) then follows from [Sta05, Theorem 4.6.11]
w(0)

in the same way as in the preceding proof, and by Proposition[3.7] this implies
that [ ] is a classical solution. O

3.3 More on externally generated stable trajectories

Here we continue our study of externally generated trajectories begun in
Section In particular, we now allow the left end-point of the interval I
on which the trajectories are defined to be —oc.
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Lemma 3.9. Let ¥ = (V; X, W) be a passive s/s system.

(i) Let[§] be an externally generated stable trajectory [ ] of ¥ on [tg, 00).
Then there exists a sequence of stable classical trajectories [ ] of ¥

n

on [to, 00) which satisfies [ii((iﬂ))] = [3] for all n and tends to [}] in

[BUCGMxm%X)

LQ([to,OO);W) :| as n — oQ.

(i) If [3] is an externally generated stable trajectory of ¥ on the interval
[to, 00), and if we define x(t) = 0 and w(t) = 0 for t < to, then
this extended pair of functions is an externally generated stable full
trajectory of 3.

(iii) Let W = =Y BU be a fundamental decomposition of W, and let I be
a nontrivial closed interval. Then, for each u € L*(I;U) there exists a
unique externally generated stable full trajectory [ 5] of X on I satisfying
Byw = u.

(iv) Let [} ] be a stable externally generated trajectory of ¥ on the interval
I = (—o0,t1], and let [42] be a stable trajectory of 3 on an interval Iy
with left end-point t;. Then the concatenation [, ] defined by s a
stable tragectory of X on I := Iy U Iy if and only if x1(t1) = z2(t1).

(v) FEvery stable trajectory on the interval interval I = (—oo,t;| can be
extended to a stable full trajectory of . This extension can be chosen
s0 that my, ooy Pyw = u for an arbitrary w € L*([t1,00);U), and it is
uniquely determined by wu.

Proof. (i) By Lemma [3.3[(i), it suffices to prove the case where t5 = 0. Let
W = =Y B U be a fundamental decomposition of W, and let {u,} be a
sequence of U-valued C* functions with compact support such that w,(0) = 0
for each n and u,, — Pyw in L*(RT,U) as n — oo. Let [y ] be the stable

future trajectory of ¥ with z,(0) = 0 given by Lemma (1) By [Sta05,
Theorem 4.6.11], [5] € [gl(l(lgr;\f))] and w,(0) = 0. By Proposition (iii),
each [, ] is a classical future trajectory of 3. It follows from Lemma
: . o1 +

that [ ] is stable, and that [4" ] — [Z] in [BL[Q?HSE;W);)

(i) Let [4"] be a sequence of classical stable future trajectories of %
with the properties listed in (i). If we define [ZZ((?)} = [9] for t < 0, then
each [ ] is a classical stable full trajectory of ¥ (note that #,(0) = 0 since

(0)

[m"(t)] = [9] and [w(o)} € V.) This extended sequence converges to the

]asn—>oo.

vl w(0)
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extended version of [ ] in [BLZ(CHg/%)] as n — 0o, and by Lemma (iv), the
limit is a stable externally generated full trajectory of X.

(iii) In the case where I has a finite left end-point the claim (iii) follows
from Lemma [3.4(i). Thus, we may here assume that the left end-point of 1
is —oo. If the right end-point of I is finite, then we start by extending u to
all of R by defining u(t) =0 for ¢t ¢ I.

For each n € I, define u,, = P_,oyu. Then u, — u in L*(R;U) as
n — oo. Let [4] be the externally generated trajectory of 3 on [—n, 00)
satisfying Pyw, = u, given by Lemma [3.4[i), and use (ii) to extend this
trajectory to a full externallenerated trajectory, which we still denote by

[wn]. It follows from Lemmal3.2|that [ 4" | is a Cauchy sequence in [BLZ?YRSR;V/’?

as n — 0o, and hence it converges to a limit [ ] in this space. By Lemma
this limit is an externally generated full trajectory of Y. Clearly Py,w = wu.
The uniqueness of this trajectory follows from Lemma [3.2]

(iv) The necessity of the condition x;(t1) = x2(t) for [ ] to be a trajectory
is obvious, since x is required to be continuous at ;.

Let W = =Y HU be a fundamental decomposition of W, and let [fj’,]
be the unique externally generated full trajectory of ¥ given by (iii) which
satisfies Pyw’ = Pyw. Then the restriction of [i’,} to I; is an externally
generated trajectory of ¥ on I, and by (iii), this restriction is equal to [ |.
On the other hand, the restriction of [;f}',} to I is a trajectory of ¥ on Iy,
and by Lemma (i), this restriction is equal to [42]. Thus, [§] =[], and
so [#] is an externally generated trajectory of 3 on I.

(v) That (v) is true follows from (iv) and Lemma [3.4{1). O

3.4 Passive past, full, and future behaviors

We recall the following definition from Section [}

Definition 3.10. By the (stable) behavior 20%(I) of the passive s/s system
> on the closed and nontrivial interval I we mean the set of all the signal
parts w of all externally generated stable trajectories [] of ¥ on I.

In the special cases I = R™, I = R, and I = R we denote these behaviors
by 20%, 20%, and Qﬁﬁ, and refer to them as the past, full, and future behaviors

of X, respectively.

Lemma 3.11. To each w € 0% there exists a unique v € C(R™; X) such
that [L] is an externally generated stable trajectory of ¥ on RY, and this
function satisfies x € BUC(RT; X). The same statement remains true if we
replace QUE by W or by W= and at the same time replace RT by R or R,
respectively.
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Proof. This follows from the definitions of 20%, 20>, and 20> and Lemmas

B-4(i) and 39|(iii). O

The shift (semi)groups 7*, 7', and 7% used in the following lemma were
defined at the end of Section [l

Lemma 3.12. The past, full, and future behaviors 20, 20%, and QHE of a
passive s/s system ¥ = (V; X, W) have the following properties:

(i) W are right-shift invariant and Q0% is bilaterally shift-invariant, i.e.,

Y C 0%, t e RT,

TN (3.12)

T =00, t eR.

(i) Q% can be recovered from W by the formulas

W =7 W* = {w_ € K2(W) | w_ =n_w for some w € W>},

W =W NEKIW):={we W |w(t)=0 fort <0}
(3.13)

iii) Q0% is a mazimal nonnegative subspace of K2 (W) and 20% is a mazimal
+ +
nonnegative subspace of K*(W).

Proof. (i) By Lemma [3.3(i), 7/20% = 20> for all t € R. By Lemma [3.3(i)—
(ii), 770* C W* (and actually even 7*90* = 20%) for all t € R*. That
THU% C % for all t € RT follows from Lemmas (i)—(ii) and [3.9(ii).

(ii) If w € W*, then by Lemma (ii), w_ = m_w € W*. Conversely,
according to Lemma , every w_ € 20% can be extended to a function
w € W*. Analogously, by Lemma [3.3](ii), if w € >N K? (W) then w € 2%,
and if w € W and we extend w to K?(W) by defining w(t) = 0 for ¢ < 0,
then by Lemma [3.9(ii), the extended function belongs to 20%.

(iii) That 0%, 0%, and 0% are nonnegative follows from Lemma
To see that they are mazimal nonnegative it suffices to take an arbitrary
fundamental decomposition W = —Y BU of WW and use Lemmas [3.4(i) and

[3-9(iii) and Proposition [2.1f(i). O

At this point we must warn the reader that if 20 is an arbitrary maximal
nonnegative bilaterally shift-invariant subspace of K2(W) and if we define
W_ = 7_W and W, = WN KI(W) (as in (3.12)) then it need not be
true that 20_ is maximal nonnegative in K2(W) or that 20, is maximal
nonnegative in K% (W). A discrete time counter example is given in [AS09D),
Examples 2.7 and 2.14], and the same example can easily be modified to
become a continuous time counter example. The following lemma clarifies
the situation.
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Lemma 3.13. Let 20 be a mazimal nonnegative subspace 20 of K*(W), and
define V_ and W, by

W_ =7 9, W, =WNKI(W), (3.14)
Then the following conditions are equivalent:

(i) 2_ is a mazimal nonnegative subspace of K2 (W).
(ii) 20 is a mazimal nonnegative subspace of K2(W).

(iii) For some fundamental decomposition W = —Y BHU the following im-
plication is valid: If w € W and 7_myw = 0, then m_myw = 0.

(iv) For every fundamental decomposition W = =Y BU the following im-
plication is valid: If w € 2 and 7_myw = 0, then m_myw = 0.

Proof. This follows from Lemma with the substitutions & — K?(W),
R = K2(W), & — K2W), Z2 = W, Vo — L2(Y), and Uy — L2(U).
Note that conditions (i) and (ii) in Lemma [2.4] do not depend on the partic-
ular fundamental decomposition used in part (iii) of that lemma, so if (iii)
holds for one fundamental decomposition, then it holds for every fundamental
decomposition. O

Motivated by Lemmas and we make the following definition:

Definition 3.14. Let W be a Krein space.

(i) A maximal nonnegative right-shift invariant subspace of K2 (W) is
called a passive past behavior on the (signal) space W.

(ii) A maximal nonnegative right-shift invariant subspace 2, of K2 (W)
is called a passive future behavior on the (signal) space W.

(iii) A maximal nonnegative bilaterally shift invariant subspace 20 of K?(W)
which satisfies the equivalent conditions (i)—(iv) listed in Lemma [3.13]
is called a passive full behavior on the Krein (signal) space W.

Proposition 3.15. Let ¥ = (V; X, W) be a passive s/s system. Then the
past, full, and future behaviors of ¥ are passive past, full, and future behav-
iors, respectively, on W in the sense of Definition|3.14].

Proof. This follows from Lemma [3.12] and Definition [3.14] O]
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As we shall see in Lemma below, each one of these behaviors deter-
mine the two others uniquely.

Passive past and future behaviors actually have slightly stronger shift-
invariance properties than what is explicitly required in Definition

Lemma 3.16. Let W be a Krein space.

(i) Fwvery passive past behavior 20_ on W satisfies 700 _ = 0 _ for all
t € RY.

(ii) Every passive future behavior 20, on W satisfies
70, = {w € Wy | w(s) =0 for almost all s € [0,]}
for allt € RY.

Before proving this lemma we make the following remark.

Remark 3.17. Many of our subsequent results (as well as Lemmas and
above) can be regarded as continuous time versions of the correspond-
ing discrete time results given in [AS09b] and [ASI0]. In many cases the
proofs given in [AS09b] and [AS10] can be adapted to the present setting by
performing some simple substitutions. As a general rule, all those notions
defined [AS09b] and [AS10] have a natural counterpart presented here, they
should be replaced by that counterpart. The discrete time right shifts S_,
S, and S, are replaced by 7, 7%, and 73, ¢t € RT, and the discrete time
left shifts S*, S~1, and S% are replaced by 7°, 7', and 7%, t € R*. The
discrete time trajectories in [ASQ9b] and [AS10] are throughout replaced by
generalized continuous time trajectories (i.e., no classical trajectories enter
in these translations). The main difference between the discrete time and
the continuous time cases is that in the proofs one should not replace the
discrete time generating subspace V' by the continuous time generating sub-
space V. Instead, in computations involving future trajectories one should
through replace V' by the subspaces Ty defined in , and the discrete
time node space K should be replaced by the Krein space Ko with the inner
product , and we throughout use Theorem to characterize the pas-
swity of a continuous time s/s system, and not the original Definition
In connection with past trajectories we replace the discrete time generating
subspace V' by a left-shifted versions T[_ g and £_; g of Ty, and Ko,. This
has the consequence that whenever a discrete time formula contains the term
[w(0),w(0)]y it should be replaced by fg[w(s),w(s)]w ds, and analogously
[w(—1),w(—=1)]» should be replaced by fft[w(s),w(s)]w ds. As a conse-
quence of these changes, the continuous time proofs are often slightly shorter
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than the discrete time proofs, since there is no need to build trajectories on a
finite time interval [0, T] from scratch, as sometimes happens in the discrete
time setting.

If the proof of some particular result given below can be obtained from
the corresponding result in [AS09b] or [ASI0] by performing the substitu-
tions listed above, then we sometimes omit the proof, and refer the reader
to [AS09Dh] or [AS10]. We do this, in particular, if the conversion is straight-
forward and the proof is of significant length. If the proof is short, or if the
conversion is less straightforward, or if the proof is important for the general
understanding of the theory we write it out in full detail.

As an example on how to convert discrete time results to continuous time
results, let us look at the graph representation of passive behaviors used
in the proof of [AS09b, Theorem 2.11]. (These graph representations are
needed, among others, for the proof of Lemma ) Let W= -YHBU
be a fundamental decomposition of W. Then K?*(W) = —L*(Y) B8 L*(U)
and K3 (W) = —LA(Y) B L% (U) are fundamental decompositions of of the
Krein spaces K2(W) and KZ2(W), respectively. By assertion (i) and (iv) of
Proposition [2.1], every passive past, full, and future behavior 2J_, 20, and
20, on W and their orthogonal companions have graph representations with
respect to the above fundamental decompositions of the type

We = {(llue By, W= {2ue L},

Wl = ([ ]y 200}, W= {[A][ver2@),

where ©; and ® are linear contractions between the respective L2-spaces.
It follows from Lemma and Definition w hat 7|2y = 0 and
T4D%| 2 @y = 0, i.e., D and D* are causal and anti-causal, respectively. Since
T, C Wy for all t € RY and 7'20 = 2 for all ¢ € R, it follows from
(3.15) that ©4 are right-shift invariant and © is bilaterally shift invariant,
ie.,

iDL =07 forall t € RT and 7D = D7' for all t € R. (3.16)

Furthermore, if the three behaviors 27 and 20 are related to each other by
the relations (3.14)—(3.19), then ©; and © are related to each other by

@: = ©|Liiu)a @; = 7T—*79|L2(u), (3.17)
DL =19 |L1(u)a L =9 |L%(u)-

Proof of Lemma[3.10. Let W = —YHU be a fundamental decomposition of
W.
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(i) By (3.15)), the right-shift invariance of ® _, and the fact that 7L (i) =
L% (U), we have

TH_ = {[7‘3;“] u € L%(u)} = {[Qigj“}
= {[?lue L2U)} =2 _.

ue L%(u)}

(i) If w € 7}'20,, then by the shift-invariance of 20, 77w € 20,, and of
course, w vanishes on [0,t]. Conversely, let w € 20, vanish on [0,¢]. Define
uy = 7% Pyw, and wy = [glﬁ“] Then

*t *t
*t _ | ™+ Dyur _ ©+T+ ur | _ [D4Pywl _
T = [ it ] a [ Hu | T [ Fuw ] -
Consequently, w € 7720, . O

The following lemma complements Lemmas and [3.13
Lemma 3.18. Let W be a Krein space.
(i) If W_ is a passive past behavior on W, and if we define 25 by
W= () {weK*W)|r_rwew_}, (3.18)
teR+

then 20 is a passive full behavior on W and 0 = 7_20.

(i) If W, is a passive future behavior on W, and if we define 20 by

w=\/ 7w, (3.19)

teRT
then 20 is a passive full behavior on W, and 20, = 0N K2(W).

(iii) Let W be a passive full behavior on the Krein signal space VW, and
define W_ and W, by (3.14). Then WW_ is a passive past behavior on

W, 0, s a passiwe future behavior on W, and 23 can be recovered

from W, and from W_ by means of formulas (3.18) and (3.19)).

Proof. (i) Let 20_ be a passive past behavior on W, and define 20 by (3.19).
Denote
W = {we K*W) ’W,TthQU,}, teR,

so that 20 = (,cg+ W". Then W' = 77'20Y since

weW orx tweW < rweW ower M.
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Thus 7°20¢ = 757190°% = 90" % for all 5, t € R. If w € W, or equivalently,
m_tlw € W_, then the right-shift invariance of 20_ implies that for all
s € RT,

T_Tw = T _thw € W_.

and consequently 20¢ C 20°° for all t € R and s € R*. In particular, this
implies that for all ¢t € R,

W= (w = () rw = (W =W =)W =W

seR+ seR+ seR+ r>—t reRt

Thus, 20 is bilaterally shift-invariant.
We next show that 20 is nonnegative in K2(W). If w € 3¢ for some ¢ €

R, then it follows from the definition of 20* and the maximal nonnegativity
of 2J_ that

t
0 S/ [(T'w)(s), (T"w)(s)]w ds =/ [w(s), w(s)hy ds.

Ifw e W =,cp+ W, then we can let t — oo to get [w, w]x2pyy > 0. Thus,

27 is a nonnegative subspace of K?*(W).

To prove that 20 is maximal nonnegative in K*(W) we let K*(W) =
—L*(Y) B L*(U) be a fundamental decomposition of K?(W), where W =
—YHBU is a fundamental decomposition of W. Let u be an arbitrary func-
tion in L?(U). By the definition of 20! , the maximal nonnegativity of 20_,
and Proposition (i), for each n € Z* there exists some w, € 2" such
that m_Fym"w, = m_u, or equivalently, m_q njFyw, = T(_sonju. Moreover,
T (—o0,n Pywy, is uniquely determined by m(_o nyu. Since 20™ C 207 for all m,
n € Z*, n > m, this implies that m(_ o mjWn = T(—com|Wn, for all n > m. If we
use the Hilbert space norm in WV induced by the decomposition W = —YHU,
then

||7T(700,n]wn||L2(—oo,n];W) < 2||7T(foo,n]u||L2(—oo,n];L{) < 2||u”L2(Z/{)

Define w(t) = wy(t) for t <0, and w(t) = w,(t) fort € (n—1,n|,n > 1. Then
TM(—oom]T W = T(—oomT W, € W_, and consequently w € ﬂn€Z+ W = 20.
By Proposition [2.1i), 20 is maximal nonnegative.

Trivially, 7_20 C 7_20° = 20_. Conversely, take some arbitrary w_ €
. Let W = —YHU be a fundamental decomposition of W, and define
u(t) = Pyw_(t) for t € R~ and u(t) =0 for ¢ > 0. Let w be the correspond-
ing function in W constructed in the preceding paragraph. Then 7_w € 20_
and Pym_w = Pyw_. Consequently, since every function in 2J_ is uniquely
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determined by its U-component, we have m_w = w_. Thus, 0_ C 7_20. To-
gether with the inclusion 7_20 C 2U_ this gives 7_20 = 20_. By Definition
[3.14] 20 is a passive full behavior.
(ii) Let 20 be a passive future behavior on W, and define 20 by (3.19).
Denote
Qﬁﬁr =79, , t € R,

so that 20 = \/, g+ 20, Trivially 790, = 720, = 07" for all 5, t € R.
The right-shift invariance of 20, implies that 205 C 0% for all s < ¢. In
particular, for all t € R,

rw=r\/w =\ rw, =\ wit=\/w = \/ w =w
sERT seRT sERT r>t reERT
Thus, 20 is bilaterally shift-invariant.
We next show that 20 is nonnegative in K*(W). If w € 20", for some ¢ €
R, then it follows from the definition of 2% and the maximal nonnegativity
of 20, that

0< / 1)), () (s ds = / fw(s), w(s)lw ds.

Thus, each of the subspaces 20", is nonnegative, and hence so is the closed
linear hull 20 = \/, -+ 20,

To prove that 20 is maximal nonnegative in K*(W) we let K2(W) =
—L*(Y) B L*(U) be a fundamental decomposition of K2(W), where W =
—YHU is a fundamental decomposition of W. Let u be an arbitrary function
in L*(U). By the definition of 20", the maximal nonnegativity of 20, and
Proposition (i), for each n € Z* there exists some w,, € 20" such that
Pyw, = m_poyu. If we use the Hilbert space norm in W induced by the
decomposition W = =Y BHU, then for all m, n € Z*, m > n,

”wm - wn”LQ(R;W) < 2”“”1?2([—7”7—”];“)‘

Thus, w, is a Cauchy sequence in L?(W) which converges to a limit w in
L*(W). Since each w, € 2", we have w € \/,z+ W', = 2W. Thus, P, =
L(U), and by Proposition [2.1{i), 27 is maximal nonnegative.

By Lemma [3.16| for each ¢ € R" we have 20, = 20", N K3 (W). Thus
W, C (Vyeps W )NEK2 (W) = 2NK2(W). On the other hand, 20NK2 (W)
is a nonnegative subspace of K3 (W) whereas 20, is a mazimal nonnegative
subspace of K2 (W) contained in K2 (W) N2W. Thus, 2, = K2 (W) N 2.
By Definition [3.14] 20 is a passive full behavior.

(iii) Let 20 be a passive full behavior on W, and define 20_ and 20, by
(3.14). It follows from Definition that 27, is a maximal nonnegative
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subspace of K3 (W) and that 20_ is a maximal nonnegative subspace of
K2 (W). The right-shift invariance of 20 follows from the bilateral shift
invariance of 20 and . Thus, 20, and QJ_ are passive future and past
behaviors, respectively. This proves the first two claims in (i).

We continue with the proof of . Denote the right-hand side of
by 20. By (i), 20 is a (maximal) nonnegative subspace of K*(W), and it
follows from Definition that 20 C 20. Since 20 is maximal nonnegative,
we must have 20 = 20, and consequently holds. .

We finally prove (3.19). Denote the right-hand side of by 3. By
(ii), 20 is a maximal nonnegative subspace of K*(W), and it follows from
Definition [3.14] that 20 C 2. Since 20 is nonnegative, we must have 20 = 2,

and consequently (3.19) holds.
[l

Lemma 3.19. Let 23 be a passive past behavior on a Krein space VW. Then
the set of all w € W_ with compact support is a dense subspace of L _.

Proof. By Lemma [3.18(ii),

W_=7_W=m_ \/ T, = \/ D) (I

teR+ teR+
where each function in 7_7'90, has compact support. O

Lemma 3.20. Let 20, be a passive future behavior on W, and define the
[0, t]-sections Wiy of W by

Qﬂ[o’t] = 7T[()7t]m]+, t e R+. (320)

Then each Wiy is a mazimal nonnegative subspace of K*([0,t); W).

Proof. By Lemma , 0, N K3([t,00); W) = 7720, and therefore 20, N
K?([t, 00); W) is maximal nonnegative in K?([t,c0); W). This fact, combined
with Lemma [2.4] with the substitutions &8 — KI (W), & — K*([t,00); W),
Ry — K*([0,t)W), and Z — 20, implies that 779420, is maximal nonneg-
ative in K2([0,t]; W). O

3.5 Intertwined systems

Definition 3.21. Let X; = (V3; X1; W) and X5 = (Va; Xp; W) be two passive
s/s systems (with the same signal space W).
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(i)

(iii)

(iv)

(v)

A bounded linear operator E: X} — X, intertwines the two passive s/s
systems >; and Y, if the formula

(x1,w) — (Exy,w) (3.21)

defines a map from the set of all stable future trajectories [ ] of ¥

onto the set of all stable future trajectories [ 72| of ¥y satisfying x2(0) €
im (E).

Y1 and Xg are boundedly intertwined if there exists an operator FE €
B(X1; Xy) which intertwines ¥; and ¥,. The operator E is called an
intertwining operator between ¥; and .

Y1 and X9 are contractively intertwined if there exists a contraction
E € B(X;; X,) which intertwines ¥; and Y.

Y1 and Y5 are similar if there exists a boundedly invertible operator
E € B(X; X3) which intertwines 3; and 5. The operator F is called
a similarity operator between »; and .

Y1 and Xg are unitarily similar if there exists a unitary operator F €
B(X;; X>) which intertwines 3; and Y.

Note, in particular, that if ¥; and > are boundedly intertwined, then
they have the same future behavior.

Definition 3.22. (i) The s/s system & = (V; X, W) is called an orthogo-

4.1

nal outgoing dilation of the s/s system ¥ = (V; X, W) and X is called
an orthogonal outgoing compression onto X of 3, if X C X and the
orthogonal projection of X onto X intertwines ¥ and X.

The s/s system S is called an incoming dilation of ¥ and ¥ is called
an incoming compression of ¥ if X C X and the embedding operator
X — X intertwines X and X.

The Anti-Passive Adjoint State/Signal Sys-
tems

Anti-passive state/signal systems

According to Deﬁnition the generating subspace V of a passive s/s system

Y =

(V; X, W) is required to be maximal nonnegative. Consequently, by

Proposition (iv), its orthogonal companion V[ is maximal nonpositive.
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Definition 4.1. Let X be a Hilbert space and W a Krein space.

(i) By an anti-passive s/s node in continuous time we mean a triple X1 =
(VT; X, W) where VT is a maximal nonpositive subspace of the Krein

node space R := [;%} equipped with the inner product ((1.7)), with the
additional property that if [é] € VT, then z = 0.

(ii) Classical and generalized trajectories of an anti-passive s/s system T
are defined in the same way as in the case of a passive system (see

Definition [3.1)(1)—(ii)).

(iii) The anti-passive s/s node X1 together with its families of classical and
generalized trajectories is called an anti-passive s/s system, and it de-
noted by the same symbols as the node.

(iv) By a past, full, or future trajectory of an anti-passive system X' we
mean a trajectory of ¥ on R™, R, or R, respectively.

(v) A (generalized) trajectory [i” of an anti-passive s/s system X =
(VI; X, W) on an interval I is backward externally generated if the
following condition holds: If I has a finite right end-point ¢;, then we
require that z7(¢;) = 0, and if the right end-point of I is oo, then we
require that lim; ,., z7(¢) = 0 and that w' € L%([T,00); W) for every
finite T € 1.

(vi) A (generalized) trajectory [ZH of an anti-passive s/s system T =
(VT X, W) is stable if x is bounded on I and w € L*(I; W).

To distinguish between trajectories of a passive s/s system and an anti-
passive system we often denote the trajectories of an anti-passive system by

o]

Remark 4.2. Since the generating subspace VT of an anti-passive system is
maximal nonpositive in the node space K, it is maximal nonnegative in the
anti-space —R. The inner product in —R is given by

[[1%111] ’ [%H_ﬁ = —(=21,m2) — (21, —22) — [w1, wa)y. (4.1)

Recall that the z-component represents the time derivative i7(t) of a clas-
sical trajectory [;’ZJ; ], the z-component represents the state x'(¢) itself, and

the w-component represents the signal w'(¢). The change of sign in the z-
component in (4.1)) compared to ((1.7) can be interpreted as a reflection of
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the time direction, since $af(—t) = —&f(—t), and the change of sign in the
w-component amounts to the replacement of the signal space W by its anti-
space. This means that the theory of anti-passive s/s systems is identical to
the theory of passive s/s systems, apart from a reflection of the time axis,
and a change of sign in the signal component. Because of the reflection,
externally generated stable trajectories of a passive s/s system correspond
to backward externally generated trajectories of the corresponding reflected
system. All the results listed in Sections have anti-passive counter-
parts, where the past and future have changed places. Note, in particular,
that the basic inequalities , , and are reversed. We shall not
give a complete list here, but only formulate those results that we actually
use. See also Remark [4.12] below.

Lemma 4.3. ¥ = (V; X, W) is a passive s/s system if and only if X =
(VI X W) is an anti-passive s/s system.

Proof. Suppose that ¥ := (V; X, W) is a passive s/s system. By Proposition
2.1{(iv), VI is maximal nonpositive subspace of the node space £ since V is
maximal nonnegative in &. That VI also satisfies the additional condition

that if [zg ] € VT, then 2T = 0 follows from [Kurl0, Corollary 4.8]. That also
the converse claim is true follows from Remark (4.2 O

Definition 4.4. The anti-passive dual of a passive s/s system ¥ = (V; X', W)
is the anti-passive s/s system Y4 .= (VI x w).

Above we have defined the anti-passive dual of a s/s system by means
of its generating subspace. It can alternatively be characterized by means
of the orthogonality between the trajectories of the original system and its
dual, as described in the following theorem.

Theorem 4.5. Let ¥ = (V; X, W) be a passive s/s system, and let X =
(VIH: X W) be its anti-passive dual.

(i) For each interval I with finite right end-point to, the pair of functions

[iH € [ch((j})]fv))] is a stable trajectory of X in I if and only if

(' (t2), 2(t2)) 2 = ($T(t1)>$(t1))x+/tQ[wT(S)W(S)]wdS (4.2)

for allty € I and all stable trajectories [§,] of ¥ on [ty,ts].
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(ii) For each interval I with right end-point oo, the pair of functions [f}” €
C(I;x)
L2(I;W)

I if and only if x7(t) — 0 as t — co and

} is a backward externally generated stable trajectory of L1 in

0= (2'(ty), z(t))x + /Oo[wT(s), w(s)]y ds (4.3)

t1

for all ty € I and all stable trajectories [§,] of ¥ on [t1, 00).

Proof. The proofs of claims (i) and (ii) are almost identical to each other, so
we only prove (i), and leave the proof of (ii) to the reader.

The necessity of is quite obvious: if both of the trajectories are
classical, then one gets by integrating the equation

#(s)] [0 4
0=1]a | |2 = g el ), wls)hw
wi(s)] ()] ]

over the interval [ti,ts]. In the case of generalized trajectories we first ap-
proximate [ZH and [ ] by sequences of classical trajectories, and then pass

to the limit to get (4.2)) for generalized trajectories [Z?]H and [ ].
Conversely, let [ZH € [ L(’;(éf\z)} satisfy (4.2)) for all t; < t5, ¢t; € I and all
trajectories [ %] of ¥ on [t1, o). Fix tg € I. By Lemma[3.4{i) and Remark [1.2]
i
there exists a stable trajectory [:&] of S on [ty, to] with zi(ty) = xi(ty)
and Pyﬂ[toh]w{ = Pymyymw'. By the first part of the proof and by our
assumption on [ﬁ }, for all t; € [to, ta],

0= (ol (0) = af(t) ot + [ ! (5) = wl(). wlhwds

t1

= (2'(t2) — 2}(t2), 2(t2))x + / [Pulwt(s) = w](s)), Puwo(s)lw ds.

t1

By Lemma (i), the pair [ Pujﬁl(fllzﬂw] can be an arbitrary vector in X X

L2([t1, t5];U), and consequently zf(t;) = z!(t;) and T W' = W[tl,tﬂwi.

Thus, the restriction of [ﬁ] to any finite interval [to, t5] of I is a trajectory
of X on [tg, 2], and by Lemma (iv) and Remark , [fu” is a stable

trajectory of XM on I. O

Corollary 4.6. Let ¥ = (V; X, W) be a passive s/s system, and let L =
(VIH: X, W) be the anti-passive dual of 3.
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i) If[Z] is a stable past trajectory of ¥ and [ =\ a stable past trajectory
wt
of L then lim,_, oo (x(t), 21 (t))x exists, and
(}(0), 2(0))x = lim (a1(0), 2(0))x + [0 wlz gy (44)

t——o0

(i) If [5] is a stable future trajectory of > and [f)” a stable future trajec-
tory of X, then limy_oo (2(t), 27(t)) x exists, and
lim (27 (), 2()) 2 = (27(0), 2(0))x + [w', w] k2 @+)- (4.5)

t—o00

(i) If[&] is a stable full trajectory of ¥ and [ZEH is a stable full trajectory
of 1, then lim;_, oo (z(t), 27(t))x and lim;_,oo(2(t), 27(t))x exist, and

lim (2'(t), ()2 = lim (27(t),2(t))x + [0!, W] k2@w).- (4.6)

t—o00 t——o00

Proof. This follows immediately from Theorem O]

Definition 4.7. A passive s/s system 3 = (V; X, W) is energy preserving
if V. VIH it is co-energy preserving if VY c V., and it is conservative
if V' = VI, Analogously, an anti-passive s/s system ©f = (VI; X W) is
energy preserving, co-energy preserving, or comservative if Vi c (V)
(VHE c Vi or VT = (V1)L respectively.

Thus, in particular, a conservative s/s system is at the same time both
passive and anti-passive.

Lemma 4.8. Let ¥ = (V; X, W) be a passive s/s system, and let L =
(VI X W) be its anti-passive dual.

(i) X is energy preserving if and only if every trajectory of ¥ on every
nontrivial interval I is also a trajectory of X on 1.

(ii) X is co-energy preserving if and only if every trajectory of X on every
nontrivial interval I is also a trajectory of ¥ on I.

(iii) ¥ 4s conservative if and only if ¥ and XM have the same set of trajec-
tories on every nontrivial interval I.

The same claims remain true if we restrict I to belong to the family of all
nontrivial finite subintervals of R,
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Proof. This follows from Definitions and combined with Lemma
and Proposition [3.7, which imply that the generating subspace is uniquely
determined by the set of all trajectories on some arbitrarily small interval. [

Lemma 4.9. Let ¥ = (V; X, W) be a passive s/s node with the space T of
stable future trajectories, and define To, and Ko by (3.5) and (1.12)), respec-

tively. Then X is energy preserving, co-energy preserving or conservative if
and only if Ty is a neutral, co-neutral or Lagrangian subspace, respectively
of Roy for allt € RT.

Proof. 1f ¥ is energy preserving, then the argument leading up to ((1.9)) shows
that 75 is a neutral subspace of R, for all ¢ € R*. Conversely, suppose that
7o+ is a neutral subspace of £ for all ¢ € R*. Then it follows from Theorem
that every trajectory [&] of ¥ on some interval [0, ] is also a trajectory
of X on [0, ], and Lemma 4.8 then shows that ¥ is neutral.

Recall that ¥ is co-energy preserving if and only if its anti-passive dual
S is energy preserving. Let 7. be the family of all stable past trajectories
of ¥ and denote

=t (t)
T = {{ 24(0) H (7] eT_T}, teR™. (4.7)

it o'
By Remark [.2]and the part of Lemma[4.9 which we have already established,
Y is energy-preserving if and only if 7?0 is a neutral subspace of & for
all t € R, or equivalently, if and only if T*t’T_TtO is a Ry, for all t € RT.
We claim that T‘t’T_Tw = 76%]. It follows from Theorem 4.5 that T‘tT_Tw C
76%}. On the other hand, by Theorem §| and Remark 4.2| T_t’]-_th70 is max-
imal nonpositive, whereas by Theorem E and Proposition (iv), 0[,?] is

(maximal) nonpositive. Thus, T_t'Tjt’O = 76[71%], as claimed.

Since T*tT_Tt’O = 76%], we find that ¥ is energy-preserving if and only if
7o+ is a neutral subspace of Ry, for all ¢t € RT.

Finally, ¥ is conservative if and only if ¥ is at the same time both en-
ergy preserving and co-energy preserving, and by the above argument, this
is equivalent to the condition that 7y, is both a neutral and a co-neutral
subspace of 8. O

4.2 Anti-passive behaviors

Definition 4.10. Let W be a Krein space.

(i) A maximal nonpositive left-shift invariant subspace of K2 (W) is called
an anti-passive past behavior on the (signal) space W.
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(ii) A maximal nonpositive left-shift invariant subspace of K2 (W) is called
an anti-passive future behavior on the Krein (signal) space W.

(iii) A maximal nonpositive bilaterally shift-invariant subspace 20" of K2(W)
is called an anti-passive full behavior on the Krein (signal) space W if
QITL := 1,207 is a maximal nonpositive subspace of K 2 (W), or equiv-
alently, if W= winK 2(W) is a maximal nonpositive subspace of
K2 (W)

Indeed, by Lemma [3.13] and Remark the two conditions given in part
(iii) of the above definition are equivalent.

Lemma 4.11. (i) A closed subspace 2, of K3 (W) is a passive future

behavior on W if and only if QB[JFH 1s an anti-passive fulture behavior on

W.

(i) A closed subspace 23 of K%(W) is a passive past behavior on W if
and only if W s an anti-passive past behavior on V.

(iii) A closed subspace 20 of K*(W) is a passive full behavior on W if and
only if WM is an anti-passive full behavior on W.

Proof. (i) By definition, 20, is a passive future behavior if and only if 20,
is maximal nonnegative in K% (W) and right-shift invariant. Since 20 is

assumed to be closed, according to Proposition [2.1fiv), 27, is maximal non-

[JFH is maximal nonpositive. It is also easy to see that
20, is right-shift invariant if and only if QULFH is left-shift invariant. Thus,

negative if and only if 20

20, is a passive future behavior if and only if QH[JFH is an anti-passive future
behavior.

(ii) The proof of the claim about the past behaviors is analogous.

(iii) In the case of full behaviors, by arguing in the same way as above
we find that 20 is maximal nonnegative and bilaterally shift-invariant if and
only if 20 is maximal nonpositive and bilaterally shift-invariant. By the
continuous time version of [AS09D, Lemma 3.5] (cf. Remark [3.17)),

w N K2 (Q0) = (r_20)H,

Thus, by Lemma Remark and Definitions and [£.10, 20 is a

passive full behavior if and only if 20 is an anti-passive full behavior. [

Remark 4.12. It is easy to see that 2J,, 20, and 2U_ are passive future,
full, or past behaviors on the signal space W if and only if the time-reflected
versions of these behaviors are anti-passive past, full, or future behaviors,

47



respectively, on the signal space —VV. This implies that all the results in
Section have anti-passive counterparts, where the past and the future
have been interchanged with each other. We shall not give a complete list
here, but only formulate those results that we actually use. See also Remark

[4.2] above.

Lemma 4.13. Let 20, be a passive future behavior on a Krein space WW.
Then the set of all wi € ?ZU[JFH with compact support is a dense subspace of
2w,

Proof. This follows from Lemmas and and Remark [£.12] O

Definition 4.14. By the (stable) backward behavior induced by the anti-
passive s/s system X' on the closed and nontrivial interval I we mean the
set of all the signal parts w! of all backward externally generated stable
trajectories [ﬁ] of 3.

In the special cases I = R™, I = R, and I = R we denote these behaviors
by 0= 190%' and TQUET, and refer to them as the past, full, and future
backward behaviors of ¥, respectively.

Proposition 4.15. The past, full, and future backward behaviors of an anti-
passive s/s system are anti-passive past, full, and future behaviors, respec-

tively, in the sense of Definition[{.10.
Proof. This follows from Proposition [3.15 and Remark [4.2] O

Proposition 4.16. The past, full, and future backward behaviors Tm@“,
= and T%EM of the anti-causal dual XM = (VI X W) of the passive
s/s systems ¥ = (V; X, W) are given by

(1] (] (4]
™ — ()M, fp = (%)Y, and 10 = (), (4.8)
where 207, %, and ?21]% are the past, full, and future behaviors of X.

Proof. These three identities are in principle proved in the same way, so we
only prove one of them. If [{] and [ZH are stable externally and back-

ward externally generated trajectories of ¥ and L. respectively, then by
Corollary , [w, wl]j2qny = 0. This implies that 10> < (20%)). Since
90" is maximal nonpositive and (20%)™ is nonpositive, this implies that
D) {2 (07)H, O
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5 The Hilbert Spaces H(2J.), H(Qﬁ[_l]), and
D(2)

In this subsection we shall present three special Hilbert spaces that play a
central role throughout the rest of this article. These Hilbert spaces will
be used as the state spaces of three of our canonical passive s/s realizations
of a given passive behavior. These first two of them are special cases of
the Hilbert space H(Z) constructed in [AS09a] and described in Section
where Z is a maximal nonnegative subspace of a Krein space K, and the third
is constructed from the first two and an angle operator, called the past/future
map.

We begin by adapting the spaces H(Z) from Section [2.2to the case where
Z is either a passive future or an anti-passive past behavior.

5.1 The Hilbert space H(2J.)

Let 27, be a given passive future behavior on a Krein signal space W, i.e.,
20, is a maximal nonnegative right-shift invariant subspace of K% (W). We
take K = K2 (W) and Z = 20, in the discussion in Section Adapting
our earlier formulas to this case we get the following result.

Theorem 5.1. Let 2, be a passive future behavior on the Krein space
K2 (W). Denote the quotient map K3 (W) — KI(W)/20, by Q4, and define
H(W.) and ||y, by

Hh+|ﬁi(w+) = SUP{—[w+7w+]K1(W) ‘ wy €hy}, hye Ki(W)/204, (5.1)
HW,) = {hy € KI(W)/20, | 141 yan, ) < 00} (5.2)

(i) H(W,) equipped with the norm ||-||yqw,) is a Hilbert space that is con-
tinuously contained in K2 (W)/20,..

(ii) The image
HO(Qu,) == Q0! (5.3)

of QB[JFL] under Q4 is a dense subspace of H(WW,), and
L
1Quwl B,y = —lwh, whliz oy, whew (5.4)

(iii) Denote the inverse image of H(2W,) under Q4 by

KQ0,) = QllH(er)- (5.5)
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Then ; ;
(Q+w+> Q+w+)7{(m¥+) = _[w—f—a w+]K1(W),

(5.6)
if wh e QIT[JFH and wy € K(20,).

(iv) The restriction Q+|xp,) is closed and surjective as an operator K3 (W) —
H(W, ), and it has a bounded right-inverse.

(v) If wk € KQy) and Qiwt — Qiwy in H(W,) for some wy €
KC(0,), then there exists a sequence 2% € 2, such that wk + 2% — w

Proof. Claims (i)-(iii) follow from the discussion in Section 2.2} Claims (iv)
and (v) follow from the more detailed discussion of H(Z) given in [AS09a
p. 2597). 0

Lemma 5.2. Let 25, be a passive future behavior on the Krein space W.
Then the set

HI(2D,) = {Qer_TF ] wi € QIILL] has compact support}
(which is contained in H°(W,)) is a dense subspace of H(W. ).

Proof. Let wl € Qﬁ&f]. Then by Lemma [4.13] there exists a sequence wi €

QULL], where each w® has compact support, such that w? — wi in K2(W)

as k — oco. This implies that [wf — wi,wﬁ — qui(W) — 0as n — oo,

and according to ([5.4), this means that w? + 20, — wi + 20, in H(2W, ) as
k — oo. Since H°(20,) is dense in H (2, ), this proves the lemma. O

Lemma 5.3. Ifw, € K(2,), where W is a passive future behavior on the
Krein space W, then Tiw, € K(20,) for allt € RY, and

t
||Q+Tiw+||3{(<m+) < ||Q+w+“3{(an+) +/0 [w(s), ws(s)w ds. (5.7)

If w, € QU[JFH, then wy € () and (5.7) holds with equality.

Proof. We have for all w, € K(20,), all z € 20, and all t € R" (recall that
Titm]_F C m]+)

= [fhws + 2, s + 2]k oy = [T (wa + 72), T (wa + T2 k2 o)
t
= —[wy + 7z, 0wy + TfZ]Ki(W) + / [wy(s), we(s)wds
0
t
< Qv gy + [ [ (s)w ()l ds.
0
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From here we get (5.7)) by taking the supremum over all z € 20,. If w, €
0, then Q.w, € HO(2W,) C H(2W..), and by (1),

Q47w Fian, ) — 1Q w3,

t
= —[Tiw+77iw+]Ki(W) + [w+7w+]K§r(W) = / [w(s), wi(s)wds. O
0

5.2 The Hilbert space H(Qﬂ[ﬁ)

Let 20_ be a given passive past behavior on a Krein signal space W, i.e.,
20 _ is a maximal nonnegative right-shift invariant subspace of K% (W). Then

W is a maximal nonpositive left-shift invariant subspace of K 2(W), and
hence it can be interpreted as a maximal nonnegative left-shift invariant
subspace of the anti-space —K? (W) of K%(W). This time we take K =
—K2(W) and Z = W™ in the definition of H(Z). Adapting our earlier
formulas to this case we get the following result.

Theorem 5.4. Let 0 be a passive past behavior on the Krein space K2 (W),
[L]

and interpret W= as a mazimal nonnegative left-shift invariant subspace of
the anti-space —K2(W). Denote the quotient map —K2 (W) — —K2(W) /20
by Q- and define H(W™) and ||-|,y g, by

Hh_”?{(w[_“) = sup{[w_,w_]gz2 ) |w_€h_}, h_€ —K2(W)/2t,

HM) = {h_ e K2 (W) 2 | 1A= 12, g1, < 00} (5.9)

: [1] : :
(i) H(W) equipped with the norm ||‘||H(QH[_L])
continuously contained in —K2(W) /25,

1s a Hilbert space that is

(ii) The image
HO(WH) = @ 2w (5.10)

of W_ under Q_ is a dense subspace of H(QU[}]), and
HQ,U),Hi(;m[f]) = [w,,w,]Kz(W), w_ €W_. (511)
(iii) Denote the inverse image of H(QU[}]) under Q_ by
K@) = Q-1 (). (5.12)
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Then
(Q—w—7 Q—U—>H(m[_l]) - [w—a v—]Kz(W)a

| (5.13)
ifw_ € W_ and v_ € KM,

(iv) The restriction Q— ’lc(m[j])

HOM), and it has a bounded right-inverse.

V) If w* € KM and Q_w* — Q_w_ in HAH) for some w_ €
lC(QB[_H), then there exists a sequence z¥ € QU[_L] such that w* + zF —
w_ in K2(W).

Proof. The proof is analogous to the proof of Theorem O

Lemma 5.5. Let 20_ be a passive past behavior on the Krein space VW. Then
the set

Hg(QU[_L]) ={Q_w_ | w_ € W_ has compact support}

(which is contained in HO(A0™M)) is a dense subspace of H(AW) .
Proof. This follows from Lemma [5.2] and Remark [4.12] O
Lemma 5.6. If w_ € KK(20™)), then r*tw_ € K(28™) and

0

Q-7 w2 gy < 1@~ [ () w- (s, (519)
- - —t

[fw_ € W_, then w_ € K(W) and (5.14) holds with equality.
Proof. This follows from Lemma [5.3| and Remark 4.12] O]

5.3 The past/future map ['yy and the Hilbert space
D(2)

In Section [10] we shall also need the quotient space K2(W)/ (20, -+ 201,
Here 20 + 20" is a closed subspace of K 2(W) since the sum 2, + 2w s

direct in K2(W).
We denote the quotient map K2(W) — K2(W) /(0. +20")) by Q. Thus,
Q_w_ =w_+W w_e K2W),
Q+w+ =Wy + QU.F, W4 S K_QF(W), (515)
Qu :=w+ (W, +WH),  we K2W).
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To shorten the notations we furthermore define

Ho = HEY), H° = HOwH)),

(5.16)
HJr = H(QﬂJr), Hi = HO(QILF)

Each vector in the quotient space K2(W)/(20, 4+ 20™) is an equivalence
class of the type z = w + (20, + W) for some w € K2(W). Since
K*(W) = K2 (W) H K2 (W), and since 20, is a closed subspace of K3 (W)
and W is a closed subspace of K2 (W), it follows that we can identify

) ) K2 (W)/2m
K*W)/(20, + Qﬁ[f]) with the product space [K;(W)/m[;] ]

We denote the projections of K2(W)/ (20, +25™) onto KX (W)/20, and
K2(W) /QII[_H by P, and P_, respectively. Thus, Py is the operator which
for each w € K?(W) maps z = Qw into Qimrw. Since H, is continuously
contained in K2 (W) /20 and H_ is continuously contained in K2(W)/ !,

this means that [Zf] can be interpreted as a continuously contained sub-
space of K2(W)/(20, +251).

Lemma 5.7. Let 23 be a passive full behavior on W with the corresponding
passive past behavior W_ = w_A and passive future behavior W, = W N
K2 (W). Then there exists a unique contraction Uay: H_ — Hy satisfying

Ty Q_mw=Q m w, w € W, (5.17)

where Q_ is the quotient map K2 KE/QB[_L] and Q) 1is the quotient map
K% — K3/20,.
Proof. The proof is essentially the same as the proof of [AS09b, Lemma 6.1]

(see Remark [3.17]). O

Definition 5.8. The contraction Tgy: H(20™) — #(20,) in Lemma [5.7] is
called the past/future map of the full behavior 20.

Throughout the rest of this section we let 20 be a passive full behavior
on W, and define the corresponding passive past and future behaviors 20_

and 20, by (B.19).
Let

_ |1ny Tw
raee [l T oy
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This is a bounded linear operator on H, &H _. It is nonnegative since ['yy; is a
contraction H_ — H., and by the Schwarz inequality, for all [77] € H . ®&H_,

T_ XT_

T €T
([ ] A [ ]) ey B, + 2R (s Tana Yo, + o |
HLOH-
> lles B, — 2l lo s + o2 > 0.

We define D(20) to be the range of A%z, with the range norm, i.e.,

e =l ]

T
where (A;{f)[_ﬂ is the pseudo-inverse of Aé{f, ie., [iﬂ = (A;I/f)[—ll [27]1s

I

HLOH-

D(W)

the unique vector in im (Agy) = im (A;I/f) which satisfies [2*] = Ayl [ii ]
With respect to this inner product in the range space the operator A%Q

im(Agy)
is a unitary operator mapping im (Agy) onto D(2W). In particular, D(2J) is
a Hilbert space.

Lemma 5.9. Define Ay by (5.18)).

(i) im (Agy) is a dense subset of the Hilbert space D(20), D(20) is a dense
subspace of im (Agy), and D(20) is continuously contained in H & H_.

(ii) Agy is bounded as an operator H, & H_ — D(20).

(iii) If z € D(W) and y = Awy', then y € D), and (z,y)pay) =
(ZE, y/)’Hf@'HJr .

(iv) T = Awly_ = [ L } is an isometry H_ — D(2W).

1y

(V) Ty := Ay, = [1;”} is an isometry H, — D(2).

*
Q

Proof. The proof is essentially the same as the proof of [AS10, Lemma 3.1]

(see Remark [3.17)). O

Lemma 5.10. Denote L. :=im (T4), where Ty are the operators defined in
Lemma[5.9 Then L, + L_ is dense in D(2), and

Peile =T TwT?|, . (5.19)
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Proof. That £ + £_ = im (Agy) is dense in D(2) is contained in part (i) of
Lemma 5.9

Let © € D(W), x— € L_, and define h_ := T*z_. Then x_ = T_h_
(since T_: H_ — L_ is unitary). Define x, := P, @ and hy = T}z, so
that x, =T h,. Then

(z, Prox_)payy = (Pr @, 2 )pag) = (P£+377A217 [hO—DD(Qﬁ)

P, [ ])H+@H ([Fv§£+} ’ [h0}>7-1+@”ﬂ_

(

= (

= (I wh, h )7-[ = (thaFQITh*)H_,_

= (T{Pr.o, TwT 2 ), = (Peya, TiTwT a ),
($ T ToyT 2 )

This proves (5.19)). ]

Remark 5.11. Lemma [5.10] may be reformulated as follows. The space
D(2V) is equal to the closed linear span of its subspaces £, V £_, where L4
are the unitary images in D(20) of Hy under 74, and the angle operator
K := Pr,|;_ between £_ and L, is given by in terms of T4 and the
past/future map I'yy. In particular,

lp —K*K=1; —T TiylwT*|e. =T (1, — Tl T |2,
lp, — KK* =1z, = T\ Tyl T o, = Ty (g, — TonTip) T £, -

This leads to the following conclusions:
(i) The following conditions are equivalent:

(a) K is an isometry;
(b) D(W) = Ly;

(c) Ty is an isometry H_ — H.
(ii) The following conditions are equivalent:

(a) K is a co-isometry;
(b) D(W) = L;

(c) Tgy is a co-isometry H_ — H..
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In the sequel we shall throughout interpret Ay as a bounded linear oper-
ator Hy @H_ — D(20), instead of interpreting Agy as a self-adjoint operator
in H, ®H_. In particular, in this setting the operator Agy is not self-adjoint
unless D(W) = Hy & H_, i.e., unless ['yy = 0. When the duality in the
range space is taken with respect to the inner product in D(2J) instead of
the inner product in H, ®H_ then the operator A}, becomes a bounded linear
operator D(W) — Hy S H-_.

Recall that we denoted the projections of K2(W)/(20, + 2™ onto
K2(W)/20, and K2(W)/2™ by P, and P_, respectively. We denote the

restrictions of Py to [z;} by I, so that Ty [z ] =z for all [31] € [Zf ]

Lemma 5.12. Let Agy be the operator defined in (5.18)), interpreted as
bounded linear operator Hy & H_ — D(W), whose adjoint A}y is a bounded
linear operator D(W) — H & H_.

(1) Ay is equal to the embedding operator D(20) — [Zf}

(i) (Agwlw,)* = li|payy and (Awly_)* = H_|pay). (In the computation
of these adjoints we interpret Aggly. as operators Hy — D(20).)

Proof. By Lemma [5.9(iii), for all z € D(20) and all y € Hy ® H_,

(z, Amy/)D(ﬂn) = (x, y’)?t@?ﬂ-

This proves claim (i). If we in the same computation replace y' € H, & H_
by either v/ € H, or y € H_ we get claim (ii). ]

We let L(20) be the inverse image of D(20) under @Q, i.e.,
L) = Q') := {w € K2W) | Qu € D)}, (5.20)
and denote
DY) := QW + WH) := {Q(z + 2T | ze 2, 2T e w1 (5.21)
As we shall see in the following lemma, D°(20) is a dense subspace of D(207).

Lemma 5.13. (i) Ifz € 20 and 2F € W, then Q(2+421) = Ay [%ﬁ’;ﬁi}
In particular, D°(W) C im (Ag) and 25 + W C £L(2W).

(ii) D°(2V) is a dense subspace of D().
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(iii) If w € L(W), 2z € W, and =t € W, then
(Qw,Q2)pan = (Q-7m-w,Q_T_2)n_ = [T_w,T_2]g2 ) (5.22)
(QwanT)D(m}) = (Q+m 1w, Q+7T+ZT)H+ = —[W+w77T+ZT]K1(W)- (5.23)
In particular,

1Q=1oqany = 1Q-7—_z2I3,_ = [z, 7_2] 2 ow), 2 €W, (5.24)

||QzTH2D(QH) = |\Q+7r+zTH3{+ = —[n 2", 2t W) 2t e qpltl.
+
(5.25)

Proof. The proof is essentially the same as the proof of [AS10, Lemma 3.3]

(see Remark [3.17]). O
Lemma 5.14. (i) If w € L(20), then T'w € L(2) for all t € R, and

t
@7l = [ 0w ds + [Qulbey, tER (520
(i) If wy, wy € L(2V), then for allt € R,

(Qun, QTt’wg)D(Qg) = /0 [w (s — 1), wa(s)]w ds + (QT "wy, Qw2)p(a)-
(5.27)

Proof. The proof is essentially the same as the proof of [AS10, Lemma 3.4]

(see Remark [3.17)). O

6 The Output and Input maps

6.1 The output map ¢y

We begin by presenting the output map €y of a passive s/s system ¥ =
(V; X, W) with future behavior 20,. This is an operator from the state
space X into the Hilbert space H(20,) which was defined in (5.2). As in
Theorem we denote the quotient map K3 (W) — K2 (W)/20, by Q4,
and the inverse image of H (20, ) under @ by (20, ).

Lemma 6.1. Let ¥ = (V; X; W) be a passive s/s system with future behavior
W, . If [5] is a stable future trajectory of 3, then

w e K@) and Qs wllua,) < Il2(0)]. (6.1)
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Proof. Let [§ ] be a stable future trajectory of ¥, let z € 20, , and let [% | be
the corresponding externally generated stable future trajectory of . Then
[“F71] is a stable future trajectory of ¥, and by (1.9)),

w—+z
—[w + 2w+ 2]z oy < [|2(0) + 21(0)5 = [|l=(0)][3-
Taking the supremum over all z € 20, we find that (6.1)) holds. [

Lemma 6.2. Let ¥ = (V; X; W) be a passive s/s system with future behavior
20 Then the formula

(6.2)

w is the signal part of some stable future
Coxp = { Qrw

trajectory [ 4] of ¥ with x(0) = zg
defines a linear contraction Cx: X — H(W,).

Proof. Let [ ] be a stable future trajectory of X. If [y} ] is another stable
future trajectory of ¥ with the same initial state x,(0) = 2(0), then w; —
w € W, , and conversely, if w; —w € W, , then there exist a stable future
trajectory [u: | with 21(0) = x(0). Thus, the set of all signal parts w of
the stable future trajectories [ ] of ¥ with fixed initial state z(0) = z is
an equivalence class in K2 (W)/20,. By (6.1)), the map €y from zq to this

equivalence class is a contraction X — H(20,). It is easy to see that this
map is linear, and by Lemma[3.4(i), the domain of €y is all of X. O

Definition 6.3. The contraction €y in Lemmal6.2] above is called the output
map of 3.

In our next lemma we need the inverse image of im(@Z) under (), which
we denote by
S = Q1 'im(<y). (6.3)
Thus, &% consists of the signal parts w of all stable future trajectories [ %]
of ¥. By Lemma , &% C K(20,), where K(204) is the space defined in
63).

Lemma 6.4. Let ¥ = (V; X; W) be a passive s/s system with future behavior
20, and output map Cx, and define 6§ by (6.3). Then every stable future
tragectory [ 4] of ¥ satisfies

we Gy, Thw e &%, and Csx(t) = Qiiw, teRT. (6.4)

Proof. That w € &% follows immediately from (6.3)). To get (6.4) we simply
shift the trajectory [ ] to the left by the amount ¢ and apply (6.2]) with xg
replaced by z(t). O
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Definition 6.5. By an unobservable future trajectory of a passive s/s system
Y we mean a future trajectory of ¥ of the type [§] (i.e., the signal part is
identically zero). The unobservable subspace iUs of ¥ consists of all the
initial states z(0) of all unobservable future trajectories of ¥. The system X

is observable if Us = {0}.

By Lemma , every unobservable future trajectory of a passive s/s sys-
tem is stable.

Lemma 6.6. The unobservable subspace s of a passive s/s system ¥ =
(V; X, W) is equal to the null space of its output map Cs..

Proof. 1t follows directly from Definition [6.5{and Lemma that if ¢ € Uy,
then Cxxy = W, , and hence Cxxy is the zero element in H (W, ). Conversely,
suppose that g € ker(QIg), ie., Cxuxg =2WW,. By Lemma (i), there exists
a stable future trajectory [} ] of ¥ with x1(0) = xy, and by Lemma
wy € Cxxg =W, Let [42] be the externally generated future trajectory of
Y whose signal part is w; (cf. Lemma , and define £ = 21 — 3. Then
[¢] is an unobservable future trajectory of ¥ with x(0) = xy, and hence
xo € Us. ]

Lemma 6.7. If the passive s/s system X = (V;X; W) is observable, then
[&] is a stable future trajectory of X if and only if (6.4)) holds.

Proof. The necessity of follows from Lemma and . Conversely,
suppose that holds. According to there exists at least one stable
future trajectory [ ] of 3, and by Lemma , holds with x replaced
by x;. By Lemma and the observability assumption on X, €y, is injective,
and hence implies that z(t) = x1(¢) for all ¢ € RT. This implies that
[#] is a stable future trajectory of . O

Lemma 6.8. Let ¥ = (V; X, W) be a passive s/s system with output map
Cs. Then []] is a stable future trajectory of 3 if and only if v = x1 + w3,
where [ ] is an unobservable future trajectory of ¥ and [%2] is a stable future
trajectory of ¥ with x5(0) € (ker(QZ))l. This decomposition is unique, and

(6.4) also holds with x replaced by .

Proof. Trivially, if x has a decomposition of the type described in the lemma,
then [ ] is a stable future trajectory of 3.

Conversely, let [ ] be a stable future trajectory of ¥. Define z;(0) =
Pyyz(0) and z5(0) = Pye2(0). Then z(0) = 1(0) + 22(0) and z,(0) € Us.
The latter condition implies that x1(0) is the initial state of some unobserv-
able trajectory [ ] of ¥. Define 9 = x — x;. Then [32] is a stable future
trajectory of ¥ and z = x; + x5. That also holds with x replaced by x5

follows from the fact that [72] is a stable future trajectory of . O
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6.2 The input map By,

We now proceed to the construction of the input map By, of a passive s/s

system . This is an operator from the Hilbert space 'H(QU[,H) defined in
(5.9) into the state space X. As in Theorem we denote the quotient map
K2(W) = K2(W)/2™ by Q_, the image of 20_ under Q_ by (8™,
and the inverse image of H(20™) under Q_ by K(20_).

Before giving the formal definition of the input map of a passive s/s
system, let us explain the underlying idea. Let ¥ = (V; X; W) be a passive
s/s system with past behavior 20_. By Lemma , to each w € Q_ there
exists a unique stable externally generated past trajectory [g;] of X. It is
easy to see that the map By from w € Q_ to z(0) is a linear operator.
By Lemma [3.2] this operator is a contraction with respect to the semi-norm
in QJ_ inherited from Ifﬁ (W). In particular, if w € 20_ is neutral, i.e., if
[w, w]g2 ) = 0, then Byw = 0. After factoring out the maximal neutral

subspace 2y :=W_ N W from 20_, the space 20_ /20, becomes a unitary
space (the noncomplete version of a Hilbert space), and the operator By
becomes a contraction 20_ /2, — X. It follows from Theorem [5.4[(ii) that

the space H(Qﬂ[f ]) has a natural interpretation as a completion of the unitary
space _/W,. Therefore, the contraction By, from W_ /W, to X has a

natural extension to a contraction HQM) — X In the following lemma
this extension of By has been denoted by By.

Lemma 6.9. Let ¥ = (V; X; W) be a passive s/s system with past behavior
2_. Then there exist a unique linear contraction By : H(Qﬂ[f]) — X whose
restriction to HO(QU[_L]) is given by

Br@Q_w=1x(0), weW_, (6.5)

where 3] is the unique stable externally generated past trajectory of ¥ whose
signal part is w (cf. Lemma m

Proof. Let w € 20_, and let [] ] be the externally generated stable past
trajectory of ¥ with signal part w. Then by (3.2)) and (5.11))

This implies that the mapping @_w — x(0) is a linear contraction HO(QU[,H) —

X. Since ’;'-[O(Qﬁ[_L ]) is dense in 3’-[(217[_l }), this mapping has a unique extension
to a linear contraction By : H (W) — X O
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Definition 6.10. The contraction By, in Lemma [6.9]is called the input map
of X.

In the construction of our three canonical realizations in Sections SHI(]
we shall make crucial use of the following lemma.

Lemma 6.11. Let X = (V; X; W) be a passive s/s system with past behavior
20, future behavior W, full behavior 2V, input map By, and output map
Cy.

(1) A pair of functions [ 5] is an externally generated stable past trajectory

of ¥ if and only if

weW_ and x(t) = BsQ_ 7 1w, teR". (6.6)

(ii) A pair of functions 3] is an externally generated stable full trajectory
of X if and only if

w e W and z(t) = BQ_7_7'w, teR. (6.7)

In this case
Cx(t) = Q m 7w, teR (6.8)

(iii) A pair of functions [] is an externally generated stable future trajec-

tory of X if and only if
we W, and x(t) = BsQ_ 7 1w, teR". (6.9)

In this case
Cox(t) = QimoT'w, t€RT. (6.10)

Proof. The proof of (i) is an easy modification of the proof of the first half
of (ii), and (iii) is a special case of (ii), so let us only give the proof of (ii).

Let [] be an externally generated stable full trajectory of . Then
w € 2, and implies that holds with ¢ = 0. By shifting the
trajectory to the left or right by the amount |¢| and applying to the
shifted trajectory we get for all values of t € R.

Conversely, let w € 20. By Lemma [3.11], there exists a unique stable
externally generated full trajectory [ ] of X, and by the first part of the
proof, the function x is given by .

That also holds follows from Lemma and the fact that the re-
striction to R™ of any left- or right-shifted externally generated stable full
trajectory of 3 is a stable future trajectory of 3. O

61



Definition 6.12. Let ¥ = (V; X, W) be a passive s/s system.

(i) The finite time reachable subspace of ¥ is the set

{l‘oEX

xo = z(0) for some (stable) past }

trajectory of X with compact support

(ii) The infinite time exactly reachable subspace of ¥ is the set

{l‘oEX

(iii) The H(Qﬂ[_“)—emctly reachable subspace of X is the range of the input
map By, of .

xo = x(0) for some stable externally}

generated past trajectory of X

(iv) X is ezactly reachable in one of the above senses if the corresponding
reachable subspace is all of X.

(v) The closure of the subspace in (i) is called the (approzimately) reachable
subspace.

(vi) The system X is controllable if the approximately reachable subspace
is all of X.

Lemma 6.13. All the different types of exactly reachable subspaces in Defi-
nition [6.19 have the same closure, equal to the approzimately reachable sub-
space.

Proof. The three different types of exactly reachable subspaces defined in
Definition are (in the order that they appear) the range of the restric-

tion of By, to the space HS(QU[_L]) defined in Lemma the range of the

restriction of By, to the space H°(20M), and the full range of By. That
these three subspaces have the same closure follows from the fact that when
one restricts the bounded linear operator By, to a dense subset of its domain,
then the closure of its range remains the same. O

Lemma 6.14. All the different types of exactly reachable subspaces in Def-
nition and also the approximately reachable subspace are strongly in-
variant in the sense that if [ 5] is a future trajectory of ¥ whose initial state
x(0) belongs to one of these subspaces, then x(t) stays in this subspace for all
teRT.
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Proof. In the case of the finite time reachable subspace and the infinite time
exactly reachable subspace the strong invariance follows from the general

properties of trajectories (see Lemmas and . In the case of the

the H(Qﬁ[f ])—exactly reachable subspace the strong invariance follows from
Lemma below. Finally, in the case of the approximately reachable sub-
space the strong invariance follows from the density and the strong invariance
of the finitely reachable subspace. [

Lemma 6.15. If 3 is a passive energy preserving s/s system, then the input
map By, of ¥ is an isometry. If, in addition, ¥ is controllable, then By, is
unitary.

Proof. That By, is an isometry follows from the fact that we have equality
in (3.2) whenever ¥ is energy preserving (because then (1.9) holds as an
equality). In particular, im(%g) is closed. If, in addition, ¥ is controllable,

then im(%g) is dense in X, and hence equal to X. O

A partial converse to Lemma |6.15is given in Corollary below.

6.3 The adjoints of ¢y and By,

The rest of this section is devoted to the study of the adjoints of the input
and output maps of a passive s/s system.

Lemma 6.16. Let X1 = (VI; X, W) be an anti-passive s/s system with
past and future behaviors W' and QUL respectively. Let 0 = (QUT,)M

and W, = (QUL)M be the corresponding passive past and future behaviors
(see Lemma , and let Q_ and Q. be the quotient maps K2 (W) —

K2W) /2™ and K2(W) — K2(W)/20,., respectively.

(i) There exists a unique contraction %;T: H(W,) — X such that [Z}H 5
an externally generated stable future trajectory of X1 if and only if

wh e W and 21(t) = %;TQ+7th, teR". (6.11)
(ii) There exists a unique contraction CTET: X — H(QUT,) satisfying
cliaf(—t) = Q_m"wt,  teRY, (6.12)
for every stable past trajectory [ﬁ] of X,

Proof. This follows from Lemmas and Lemma [6.4] and Remark [4.2] O
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Definition 6.17. The contractions ‘BTET and Q:TZT are called the backward
input and backward output maps of X, respectively.

Lemma 6.18. Let ¥ = (V; X, W) be a passive s/s system with input map
By, and output map Csx, and let L be the anti-passive dual of ¥, with the
backward input map %sz and backward output map Q:Tzu]' Then %;m =5

and €L, = B

Proof. The proof of this lemma is essentially the same as the proof of [AS09b),
Lemma 5.19] (see Remark [3.17]). O

Lemma 6.19. If ¥ is a co-energy preserving passive s/s system, then the
output map € of X s a co-isometry. If, in addition, X is observable, then
Cy 1s unitary.

Proof. The first claim follows from the fact that if ¥ is co-energy preserving,
then the anti-passive dual X[ is energy preserving (in the backward time
direction), and hence its input map By 1) = €% is an isometry (see Lemma

and Remark [4.2)). The second claim follows from the first claim since
¢y is injective iff 3 is observable. m

A partial converse to Lemma is given in Corollary below.

6.4 The backward reachable and unobservable subspaces

Our definitions of the reachable and unobservable subspaces Ry, and Uy, have
a built-in direction of time. If X7 = (VT; X, W) is an anti-passive system,
then we denote the backward counterparts of Ry and iUs by %;T and LlTET,
respectively. Thus, %TET is the closure in X of all states x(t) that appear in

backward externally generated past trajectories [i” of ¥f, and LLTET consists

of all acg € X with the property that there exists some future trajectory
[i” of = which with 2t(0) = 2§ for which w' vanishes identically. We call

%;f the (approximately) backward reachable subspace and ﬂ;f the backward
unobservable subspacel] By an backward unobservable trajectory we mean a
past trajectory [ZH of 31 for which w' vanishes identically.

If 3 is conservative, then it is both passive and anti-passive, and hence
both the forward reachable and unobservable subspaces Ry, and iUy, as well
as the backward reachable and unobservable subspaces %1, and 4, are well-
defined. A full trajectory [ %] of a conservative system ¥ whose signal part w

In stochastic realization theory R' is called the controllable subspace and $U the
unconstructable subspace.
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vanishes identically will be called a bilaterally unobservable trajectory. The
restriction of such a trajectory to R is unobservable, and the restriction to
R~ is backward unobservable.

Definition 6.20. A conservative system is simple if it does not have any
nontrivial bilaterally unobservable trajectories.

It follows from Lemmas [6.6 and and their anti-passive counterparts
combined with Lemma [6.18| that 9%;[ 0= 11[; land ﬂ;[ 0= %[EL ! Moreover, a
conservative system ¥ = (V; X, W) is simple if and only if 4 NU" = {0}, or
equivalently, if and only if RV R = X.

7 The Past/Future Map of a Passive System

We here take a closer look at the past/future map Iy introduced in Definition
in the case where 20 is the full behavior of a passive s/s system .

Definition 7.1. In the case where 20 is the full behavior of a passive s/s
system ¥, then we call the past/future map [y introduced in Definition
the past/future map of ¥, and denote it alternatively by I's.

Lemma 7.2. The past/future map I's; of a passive s/s system ¥ = (V; X, W)
factors into the product
I's, = €5xBy (71)

of the input map By, and the oulput map Csx of ¥. In particular, if 3;,
i = 1,2, are two passive s/s systems which have the same behaviors, and if
we denote the input and output maps of X; by By, and €, respectively, then
Cy, By, = €y, By, .

Proof. Let [ ] be an externally generated stable full trajectory of ¥. Then
the restriction of [§ ] to R~ is an externally generated stable past trajectory
and the restriction of [ ] to RT is a stable future trajectory of 3. Thus,
by (6.6), (0) = Ber_w and by (6.4), €xz(0) = mrw + W,. Thus, the
two operators I's; and €xBy coincide on the dense subspace 'HO(QB[_H) of
# (20, and hence on all of H(20M™)). If the systems 3, i = 1,2 have the
same full behavior 20, then they also have the same past/future map yy.
Thus 621%21 = Fgg = (’:22%22. O

We next turn to the corresponding operator induced by an anti-passive
full behavior 207,
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Lemma 7.3. Let 20" be an anti-passive full behavior with the corresponding
anti-passive past behavior W' =W n K2 (W) and future behavior Wt =
20t Let W_ = (W)W and 20, = (QUL)M be the passive past and future
behaviors, respectively, induced by the passive full behavior 20 = (QUT)M.
Then W_ =7 W and W, = WN K2, (W).

Let Q_ and Q. be the quotient maps K2(W) — K2(W)/W™ and
K2(W) — K3(W)/20., respectively. Then there is a unique contraction

Tont : H(W,) — HQ™M) satisfying
Doyt Qemiw’ = Q_m_w', wh e W, (7.2)

Proof. The first claim follows from Lemmas [2.3] [3.18[iii), and where
we consider the orthogonal decomposition K*(W) = K2(W) B K3(W) in
Lemmal[2.3] The second claim follows from Remark [£12land LemmaB.7. O

Definition 7.4. The contraction Ty : H(2,) — H(2W') in Lemma [7.3]is
called the future/past map of the anti-passive full behavior 207. If 207 is the
full behavior of a passive anti-causal s/s system T, then we also call Tyt the
future/past map of ¥ and denote it by I's;.

Lemma 7.5. The future/past map Usy of the anti-passive full behavior Q07
induced by an anti-passive reflected s/s system ST factors into the product

Iy = ¢l B, (7.3)

of the backward input map Bsi of L1 and the backward output map €si of
.

Proof. This follows from Lemma [7.2] and Remarks [4.2] and [4.12] O

Lemma 7.6. The adjoint of the past/future map Tay of the full behavior 20
is the future/past map Uogr) of the dual behavior 20,

Proof. This follows from Lemmas [7.2] [6.18], and [7.5] O

Lemma 7.7. Let 20 be a passive full behavior with the corresponding passive
past behavior W_ = w_20 and passive future behavior W, = W N K3 (W).

Let w € K2(W), and suppose that _w € K20, mow € K(20,), and that

Qimiw =Ty Q_7_w, (7.4)

where Ly is the past/future map of 2.
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(i) Forallt € R, 7_7'w € (WM, m,rtw € K(20,),
Qimpm'w =Ty Q_n_7'w, te€RT, (7.5)
t
Q-7 0 g, = Q-7 g + [ ) (v,
teRT. (7.6)

(ii) There exists a sequence w* € 20 such that

Qimitiw® = Qumitiw in H(W,), t e RY, (7.7)
Q_m_tw" = Q_n_1tw in H(Qﬁ[_ﬂ), teRT, (7.8)
Tt — wy in K2(W), (7.9)

as k — oo, where the convergence in (7.7) and (7.8) is uniform in t.

Proof. The proof is essentially the same as the proof of [AS09b, Lemma 6.8]
(see Remark [3.17)). O

Lemma 7.8. Let ¥ = (V; X, W) be a passive s/s system with input map
By, past behavior W_, future behavior W, and past/future map I's. Then
the following two conditions are equivalent:

(i) [wy] is a stable future trajectory of ¥ satisfying x(0) € im(‘Bz);
(i) wy € K(2W,), and there exists some w_ € IC(QITM) such that

Qiwy =Ty Q_w_ and
. N (7.10)
z(t) = BpQ_m_7(w_ +wy), teRT.

The function w_ wn ([7.10) can be chosen to be any w_ € /C(QH[_L]) satisfying
ZE(O) = %EQ_’LU_.

Proof. The proof of the implication (i) = (ii) and the proof of the final claim
are essentially the same as the first part of the proof of [AS09b, Lemma 6.9]

(see Remark [3.17)).
Conversely, suppose that (ii) holds. Then, in particular, z(0) = BsQ_w_ €

im (By) and Q wy = I's@_w_. By Lemma , Qiwy = Cxxg € im(@E).
By (6.2), there exists a stable future trajectory [w} | of ¥. By Lemma
Cyai(t) = Qiriw, for all ¢ € RT. On the other hand, by assumption,
z(t) = BsQ_m_7'(w_ +wy) for all ¢t € R, and hence by Lemma [7.7]

Csx(t) = B Q 7 7' (w_ +wy) =TsQ_m_7'(w_ + wy)

= Qym . T'w.
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Thus, €x(z(0) — 21(0)) = 0. By Lemma [6.6] there exists an unobservable
future trajectory [§] of ¥ with z2(0) = x(0) — 21(0). Define z3 = z1 + 2.
Then [ ] is a stable future trajectory of X, x3(0) = z(0) = BxQ_w_, and

by the implication (i) = (ii),
z3(t) = ByQ_7m_7(w_ +w,) = x(t), t e RY.

Thus, [, ] is a stable future trajectory of X. O

8 The Canonical Observable Co-Energy Pre-
serving Model

In this section we shall construct a canonical model X%+ = (V3+: H (20, ), W)
of a passive observable co-energy preserving s/s system with a given passive
future behavior 20, .

Theorem 8.1. Let I, be a passive future behavior on the Krein space VW
with the corresponding full behavior 2 defined by (3.19) and past behavior
_ := w_20. Define H(W,) as in Theorem [5.] and K(2) as in (5.12).

(i) Define
T, = {[uﬁ] € [C(R,z(;gg*))} ‘ z(t) = Qitiwg, t € R+}. (8.1)

Then T, is the set of all stable future trajectories of a passive observable
co-energy preserving s/s system Yot with state space H(20,) whose

future behavior is equal to W, and full behavior is equal to J.

(i) The input map of X8+ is the past/future map Uoy of 2T, and the output

oce

map of X+ is the identity on H(20,).

oce

(iii) A pair of functions [w_ | is an externally generated stable past trajectory
of 8+ if and only if

oce

w_ €W_ and x(—t) = TywQ_7"w_, teRT. (8.2)

Proof. We define the Krein spaces R and £y as in the paragraph before
Theorem with X replaced by H (20 ), and the subspaces 7o and Sp
by with 75 defined by (8.1)).

Step 1: Tot is a mazimal nonnegative subspace of Koy That 7o, is a
nonnegative subspace of Ko, follows from Lemma The maximality of
7o+ follows from Lemma and Lemma [2.2(i) with Y = X = H(20,).
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Step 2: (To ) € To,. Fix t € R* and define 7010715] by

. Qi
Tog = Q2
’ W[Oyt]ZT

Then ﬁ(),t] C Tou since HO(W,) C H(W,). We claim that (’ifo,t])m = Tos
Clearly, thios implies that (76,75)[“ C Tou since (767,5)[“ = ((’ifo,t])m)m is the
closure of Tjg 4.

A vector k = [%} belongs to 7&[)% if and only if xy, zo € H(W,),
w € K%([0,t]; W), and

e mﬂj]} . (8.3)

— (21, Q4 7t 2N wan ) + (o, Q42N mwy) + (W, 2 2oy =0, 2T € 2.
(8.4)

Since 20 is 7} -invariant, its orthogonal companion Qﬁ[j] is 7, -invariant, i.e.,
NS Qﬁ[ﬁ whenever 2 € Qﬂ[f] and ¢t € Rt. By (5.6)), for every v; € x4
and vy € g, (8.4) can therefore be rewritten in the form

[v1, TiZT]Ki(W) — [wo, ZT]Ki(W) + [w, zT]Ka([O,tD;W) =0, e QLULL]. (8.5)

Extend w to a function in K2 (W) by defining w(s) = 0 for s > ¢. Then (8.5)
can be rewritten as

[T 01 — vg 4+ w, ZT]K_%(W) =0, 2T e QULH.
Since (QU[JFL])M = 20, this is equivalent to
Titvl—voer:z
for some z € 2. Define v = vy + 2. Then v € xy, and
T_”;tvl —v+w=0.
This is equivalent to the pair of equations

w = T v and vy = Tiv.

Thus, [gf})} € (ﬁO,t})m if and only if 2o = Qv, 21 = Q4 7hv, and w = 7 v
for some v € IC(20,;), or equivalently, if and only if k£ € T .

Step 3: T, is the set of stable future trajectories of a passive co-energy
preserving s/s system Y2+ . By (8.1)) and Lemma , T, is left-shift invari-

oce
ant, and by Steps 1 and 2, 7y, is a maximal nonnegative co-neutral subspace
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of R, for all t € RT. By , So,00 18 nonnegative in £y, and by the
definition of (), the maximal nonnegativity of 20, and Lemma [2.2]i)
with Y = {0} and X = H(W,), Sp.~ is maximal nonnegative in £y . By
Theorem , T is the set of stable trajectories of a passive s/s system, and
by Lemma [£.9] this system is co-energy preserving.

Step 4: The future behavior of X%+ is equal to 2. This follows from
the definition of T,.

Step 5: B ow, = 'y and Qzﬁ: = 1@, By B1), if [£] is a sta-

oce

ble future trajectory of X%+, then Q,w = x(0). On the other hand, by

oce )

Lemma , Q.w = €2m+x(0). Thus, € @, = lyy,). By Lemma [7.2
Fw = Q:EQII_,_%

oce Eoce Eoce

Step 6: X%+ is observable. This follows from Step 5 and Lemma .

oce

Step 7: (8.2) holds. This follows from Step 5 and Lemma m O]

W, — W .

Theorem 8.2. The generating subspace of the s/s system X3+ in Theorem
8.1 is given by

wy € K(W) is locally absolutely

Vs {81%} c {Zggig} contz’;mous with w € KX (W), and
w W
" lim —Q4(Thwy —wy) exists in H(W).

t—0+ ¢t
(8.6)
Proof. Before proving we first show that is equivalent to the for-

mula

( wy € K(W,) is locally )
absolutely continuous with
lim 04 1Q4 (Tt wy—wy) (W) : 2
pa _ 10t tQ++1(u+)+ +-wy } . [H(%i)] (RS If+(W), and
w4 (0 . 1 t _
tLHg}r tQ+(T+7~U+ ws)
L exists in H(2W). )

(8.7)
Indeed, as t — 0+, the function 1 (7iw; —w,) tends to W, in K2 (W), and
since Q|i(an,) is closed as an operator K3 (W) — H(20,), this implies that
limy o1 +Q4 (Thwy — wy) = limyoq Q4 1 (Thwy — wy) = Q1iy. Thus,(B.6)
and are equivalent.
Let wy € K(2,)NWH2(RT; W), and suppose that limy_,o; Q4 (TLwy —
wy) exists in H(W,). Define z(t) := Qimiw, for t € RT. Then [, ]
is a generalized stable future trajectory of ¥¥+. By Proposition , this

0'Ce)
) | € VE+ where 2(0) =
0

z(0
trajectory is even classical. In particular, | oce s
)

0
w4 (
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limy 04 Q1 (7w, — wy). Thus the right-hand side of (8.7) is contained in
3.7((i1)

V2+_ The opposite inclusion follows from Proposition O

Corollary 8.3. The system Y%+ is approzimately null-controllable in the
sense that the set of all the initial states x(0) of all future trajectories of
S8 with compact support is dense in Xyeo = H(W ).

oce

Proof. This follows from Theorem and Lemma , since 7wy = 0 for
all sufficiently large ¢ whenever w, € HJ(27,). O

Theorem 8.4. Let ¥ = (V; X, W) be a passive s/s system with output map
Cx and future behavior .. Then ¥ and Y&+ = (VE+ H(W,), W) are

oce oce !
contractively intertwined by Cs.

Proof. Let [ ] be a stable future trajectory of 3. By Lemmas and [6.4] .
w e K(W,) and Cxz(t) = Qimiw, t € RY. Define z,(t) = Q+T+w t € Rt.
Then [%] is a stable future trajectory of %+ and z,(t) = €xx(t), t € RT.

Conversely, let [ %] be a stable future trajectory of Y2+ satisfying z,(0) €
im(€ys). Then Q4w = z,(0), and hence w € Q;'im(€x) = &%. By (6.2),
there exists a stable future trajectory [ ] of ¥ (whose signal part is equal to
the given signal w). By Lemma [6.4] Cxa(t) = Qriw = z,(t), t e RT. [

Theorem 8.5. Every observable and co-energy preserving passive s/s system
Y with future behavior W, is unitarily similar to the system Y2+. The
unitary similarity transformation is the output map Cx of 3.

Proof. By Lemma [6.19) - the output map €y is unitary, and by Theorem [8.4]

¢y intertwines > and Zoce ) O

Definition 8.6. We call the system Y22+ the canonical model of an observ-

able passive co-energy preserving s/s system with future behavior 20, .

Corollary 8.7. Any two observable and co-energy preserving realizations of
a given passive future behavior W, are unitarily similar to each other.

Proof. This follows from Theorem [8.5 O

Corollary 8.8. A passive s/s system X is observable and co-energy preserv-
ing if and only if its output map Cs, is unitary.

Proof. This follows from Lemma and Theorem [8.4] O

71



9 The Canonical Controllable Energy Preserv-
ing Model

In this section we shall construct a canonical model Eggg = (erlg;; Xgp* W)
of a passive controllable energy preserving s/s system with a given passive
past behavior 20_. The results for this model are analogous to the results on

the model £2%¢ obtained in the preceding section. The state space of X% is

the Hilbert space ’H(QI][_L]) presented in Theorem .

Theorem 9.1. Let 20_ be a passive past behavior on the Krein space VW
with the corresponding full behavior 20 defined by (3.18) and future behavior
0, :=WNK2(W). Define H(QU[}]) as in Theorem |5.4| and define K(20.)

and K™ as in (5.5) and (5.12), respectively.

(i) Define
Qiwy =Ty Q_w_ and
x o1 |5 = Qomrw w)
T=qlui]e [C;c%;’f)} L1y g atisfui
* for some w_ € K(2=") satisfying
£(0) = Q_w._,

(9.1)
Then T, is the set of all stable future trajectories of a a passive con-
trollable energy preserving s/s system Zggl; with state space H(Qﬁ[_ﬂ)
whose past behavior is equal to 2 _.

(ii) The input map of S%= is the identity on H(I™) and the output map

cep -

of X~ s the past/future map Ty of .

cep

(iii) A pair of functions [ ] is an externally generated stable past trajectory
of 8- if and only if

cep

weW_ and x(—t) =Q_7"w, t>0. (9.2)

Proof. We define the Krein spaces R and £y as in the paragraph before
Theorem with X replaced by ”H(QIT[,L ]), and the subspaces 7y and Sp o
by (3.5) with 7, defined by (9.1]).

Step 1: o is a maximal nonnegative neutral subspace of Ko,. That To,
is a neutral subspace of R, follows from (7.6). It follows from (9.1 that

to every 2o € H(2™) there exists some [2] € T such that 2(0) = .
Moreover, if [§] € T; with 2(0) = 0, then w € 2J,. These two facts
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together with Lemma with Y = X = H(20™) imply that 7T + 1s maximal
nonnegative.

Step 2: T, is the set of stable future trajectories of a passive energy pre-
serving s/s system Y2-. By (9.1]) and Lemma , T, is left-shift invariant,

cep *
and by Step 1, each 7y, is a maximal nonnegative and neutral subspace of

Ko, By letting t — oo and using the nonnegativity of 7y, we find that Sy
is nonnegative, and the maximality of Sy o is proved in the same way as the
maximality of 75;. By Theorem [3.5] 74 is the set of stable trajectories of a
passive s/s system, and by Lemma this system is energy preserving.
Step 3: The past, full, and future behaviors of X2- are equal to 20_,

cep

20, and W, respectively. That the future behavior of X%- is equal to 20,

cep

follows from the definition (9.1)) of 7, and the remaining claims then follow
from Proposition 3. 15

Step 4: %ng, = H(QU and QEZE; = I'yy. Take w_ =0 and w, € W,

in (9.1)), define w = w_ + w+, and define z(t) = Q_m_7'w for t € R. Then
by Step 2 and Lemma (ii), (2] is a full trajectory of Y%~ supported on

cep

R*. If we left-translate this trajectory by the amount s > 0, then we get
another stable full trajectory [&:] := [7.2] of ¥~ supported on [—s, 00).

Tiw cep

This trajectory satisfies (x5)(0) = Q_m_ws. On the other hand, by Lemma
ms():iBmQﬂws Thus, B w Q-m_ws, = Q_m_w,. By varying
wy and s we can in this way generate all the stable full trajectories of Zcep

whose support are bounded to the left, and consequently, the restriction of
B _w_ to the space H (QU[_L]) defined in Lemmais the identity. By Lemma

cep

HO(QU, ) is dense in ’H(QU[,L]), and thus %z?ig = 1, qpit)y- By Lemma
h [y = (’: w_ B = =C w_.

cep cep Ecep

Step 5: X305 is controllable. This follows from Step 4 and Lemma (6.13]
Step 6: A pair of functions 5] is an externally generated stable past

trajectory of X2= if and only if (9.2) holds. This follows from Step 4 and

cep

Lemma [6.11](1). O

Corollary 9.2. Every stable past trajectory [ %] of ¥
ternally generated) satisfies

wp (not necessarily ex-

w e KW and z(—t) = Q_7*"w, t > 0. (9.3)

cep

stable past trajectory [ ] of 2355 is also a stable past trajectory of the anti-

passive dual 2T of Ew— By applying the reflected version of Theorem |8 . to
the system 2T we ﬁnd that ( . ) holds.

Proof. Since ¥~ is energy preserving, it follows from Lemma that every
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Corollary 9.3. The system X% is both H(Qﬂ ) exactly controllable and
observable in backward time in the sense that if the signal part w of a stable

past trajectory [ 5] of 2231; is zero, then also the state part x is zero.

Proof. The first claim follows from the fact that the input map is the identity,
and the second claim follows from ((9.3)). m

Lemma 9.4. Let 25 be a passive past behavior on the Krein space W.
Then the generating subspace VQIL of the controllable and energy preserving
s/s system Y- in Theoreml zs a closed subspace of the subspace

cep

w_ € ”H(QU[,”) is locally absolutely

(VB = {SZJ;} c { gg g] continuous with w € K* (W) and
w w
lim Q (7w — w) ewists in H(W_).

t—0+ t
(9.4)

Proof. The above subspace is the generating subspace of the anti-causal dual

of E%gp That system is a co-energy preserving anti-passive s/s realization of

the anti-passive past behavior QI][}], and its generating subspace is obtained

from . 8.6) through a time reflection and the replacement of 20, by .

Since Egg; is energy-preserving, VC%I;— is a closed subspace of its orthogonal

companion. O

The exact description of V¥~ will be given in Theorem below.

cep

Theorem 9.5. Let ¥ = (V; X, W) be a passive s/s system with input map
By, and past behavior W_. Then LE- and X are intertwined by By..

cep

Proof. This follows from Lemma and Theorem [9.1] O]

Theorem 9.6. FEvery controllable and energy preserving passive s/s system
> with past behavior WW_ is unitarily similar to the system Zcep The unitary
similarity transformation is the inverse of the input map By, of 2.

Proof. By Lemma [6.15] the input map By, is unitary, and by Theorem [9.5]
B! intertwines ¥ and Zceg O

Definition 9.7. We call the system X200 the canonical model of a passive
controllable energy preserving s/s system with past behavior 20_.

Corollary 9.8. Any two controllable and energy preserving realizations of a
given passive past behavior W _ are unitarily similar to each other.
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Proof. This follows from Theorem [9.6] O

Corollary 9.9. A passive s/s system % is controllable and energy preserving
if and only if its input map By, is unitary.

Proof. This follows from Lemma [6.15] and Theorem [9.5] O

Theorem 9.10. The operator I'yy intertwines the two s/s systems Zglg and

W
Eoce °

Proof. This follows from Theorem [8.4] and also from Theorem [9.5] O

10 The Canonical Simple Conservative Model.

We finally develop a canonical model for a conservative simple state/signal
system with a given passive full behavior 20 (see Definition for the notion
of a simplicity of a conservative system).

Theorem 10.1. Let 20 be a passive full behavior on the Krein space W, and
let W =7m_W and W, =2WWN Ki (W) be the corresponding passive past and
future behaviors. Let D(20) be the range space of the operator A%Q, where
Agy is the nonnegative self-adjoint operator on H, @ H_ defined by ,
and define L£(20) by (5.20).

(i) Define
T = {[;g] € [BUZ?(Q;X)} ( 2(t) = Qr'w, t € R}. (10.1)

Then T is the set of all stable full trajectories of a simple conservative
s/s system XX with state space D(2V) whose full behavior is equal to
20.

(i) The input map of X% is Byw = [11;;‘711} with (BE)* = IL_|pay), the
output map of ¥ is Cya = I [ppy) with €y = [?g }

Proof. We define the Krein spaces Ry and £y as in the paragraph before

Theorem with X replaced by D(20), and the subspaces 7o, and Sy« by

(3.5), with T, := 7w, T, with T defined by ((10.1)).

Step 1: Tos is a Lagrangian subspace of Ko. By (5.26]), 7o, is a neutral
subspace of £;. To prove that 7y, is a Lagrangian we shall use Lemma
with ) = X = D(20). Clearly condition (a) in that lemma holds because
of the definition of £(20), and (c) holds because of Lemma [5.14 The set
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described in condition (b) is equal to the section Wy = 7o 42W, which
according to Lemma [3.20|is maximal nonnegative, and and the set described
in condition (d) is equal to 7}m_; 20—, which according to Lemma and
Remark is maximal nonpositive.

Step 2: Spo 15 a mazimal nonnegative subspace of £y . By dropping
the term ||QTt’LU||2D(QB) in and letting t — oo we find that Sy is
a nonnegative subspace of £y .. The proof of the maximality of Sy is
analogous to (but simpler than) the proof of the maximality of 7y given in
Step 1.

Step 3: T, := 7w T is the set of stable future trajectories of a conservative

s/s system XX . By (10.1])) and Lemma/|5.14} 7 is shift invariant in [Bfg((&j"] .

In particular, 7 := 7,7 is then left-shift invariant. By Steps 1 and 2, 7y, is a
Lagrangian subspace of R, for all t € RT and Sy » is a maximal nonnegative
subspace of £y . By Theorem [3.5] 7. is the set of stable trajectories of a
passive s/s system, and by Lem this system is conservative.

Step 4: T is the set of stable full trajectories of XX . This follows from
Step 3 and Remark [4.2]

Step 5: The behavior of X¥ is equal to 2. If w € W, then Quw €
D(20), and it follows from that [{], where x(t) = Q7'w, t € R*, is
an externally generated stable future trajectory of ¥*¥. This implies that

Q7 piig
W, C Qﬂi Since 20, is maximal nonnegative and Qﬂf is nonnegative,
this implies that 90, = QUE?J From this follows that also 20_ = 20°* and
W = W,

Step 6: The input map of X2 is [11;;"11 } . According to Lemma , the op-
erator By is the unique operator H_ — D(W) which satisfies By Q7w =
x(0) for every w € 20, where x is the state component of the unique exter-
nally generated trajectory [ | whose signal part is w. Let w € 20. By
(10.1),

z(0) = Qu = {81’?:;}0] = [E‘ZB} Q_m_w.

T3

Step 7: The output map of ¥ is I |py). According to Lemma Cya
is the operator which maps xy € D(20) into the equivalence class consisting
of all the signal parts w of all stable future trajectories [ ] of X% satisfying
x(0) = xo. Let xy € D(2), and choose some wy € L(2) such that Quy = xo.
It follows from that [, ], where z(t) = Q1'wg, t € RT, is a stable
future trajectory of ¥ satisfying z(0) = zo. If [} | is another stable future
trajectory of ¥ satisfying z;(0) = z(0) = zg, then [ i } is an externally

wo—w1
generated stable future trajectory of ¥, and hence w; — wo € 2. Thus,

Thus, Byw = [ Lo }
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the equivalence class of all the signal parts w of all stable future trajectories
[2] of B satisfying x(0) = g is equal to Q,m,wy = I, z¢. Consequently,
Cya = 1L [pay).

Step 8: X¥ is simple. According to Lemma [5.10, the linear span of the

ranges of By = [fwmi } and €y = [1W+ ] is dense in the state space D(20),

Loy

and hence Y¥ is simple. O

Theorem 10.2. The generating subspace of the s/s system X% in Theorem
10.1) is given by

w € L(W) is locally absolutely
VY _ [ Qu ] c [ggg)] continuous with w € K*(W), and (10.2)

lim 1Q(Ttw —w) ezists in D(2).

t—0

Proof. The proof is essentially the same as the proof of Theorem with
R* replaced by R, @4 replaced by @, and K(20,) replaced by £(20). For
the converse direction one needs the fact that for a conservative system part
(ii) of Proposition [3.7| holds in the following modified form:

0

(ii’) For each [gg ] € V there exists a stable full classical trajectory [ ]

#(0) 2
satisfying {x(o)} = [x%} with the additional property that w is lo-
w(0) v
cally absolutely continuous and [2] is a stable full trajectory of ¥. In
particular,
(0) x| . . .
V= 2(0) ELE full classical trajectory of X 5 . (10.3)
w(0)

That (ii’) holds for conservative systems follows from Proposition and
Remark (4.2 O

Let R be the reachable subspace, 4l the unobservable subspace, SRt the
backward reachable subspace, and ' the backward unobservable subspace
of ¥¥. As we noticed earlier, RT = 4+ and U’ = R+, By Lemma and
Theorem [10.1},

7= im (D) =im ([ 52 ]) = ([ ] | e ),
U = ker <%§m> = ker (Il |pan)) = {Quw | w € L(2W) N KZ (W)},

R —im (€ ) =im (|7 ]) = ([ ] [ 24 € 70},
U =ker (Cxm) = ker (I |pan)) = {Qu | w € L(AW) N K2(W)}.

(10.4)
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The orthogonal projections onto these subspaces are given by

% I
Pa= By Bl = [ 2],

e [ O4lpaw
Pt = Cop oy = [F;ﬁm\p@m ’

(10.5)

Py = 1pan) — Pat = I |pay) — Taplls o),

Theorem 10.3. Let ¥ = (V; X, W) be a conservative s/s system with be-
havior 23, input map By, output map Cx, reachable subspace | = im (By),
unobservable subspace Uy, = ker (€y), backward reachable subspace 9‘{; =
im (€%) and backward unobservable subspace UL = ker (B%).

(i) The operator
@il .= [g;] (10.6)

is a co-isometry from X onto D), with kernel Xy := ker (@%ﬂ) —
UNUT. Thus, ¥ is simple if and only if €Y is injective.

(ii) Define B := (€bN)*. Then BY is an isometry D(AT) — X with range
X" = R+ R, which is uniquely determined by the fact that

(€t By] = BY Ay, (10.7)

where Agy is the operator defined in (5.18)). In particular, B is sur-
jective if and only if ¥ is simple.

(iii) A full tragectory (%] of ¥ is stable if and only if w € K2(W).

(iv) If [&] is a stable full trajectory of ¥, then w € L(W), QT'w = ehily (),
and Pyix(t) = BY'Qr'w for all t € R.

v) Conwversely, let w € L(20), and define x(t) = BUQrtw, t € R. Then
(v) B
[&] s a stable full trajectory of X.

(vi) The state component x of a stable full trajectory [ 5] of ¥ is determined
uniquely by the signal component w if and only if ¥ is simple.

Proof. The proof of this theorem is essentially the same as the proof of parts
1)-6) of [AS10, Theorem 4.1] (see Remark [3.17)). O

Corollary 10.4. Let 20 be a full behavior on the Krein space VWW. Then the
pair of functions [ %] is a stable full trajectory of X2 if and only if

w € L(W) and z(t) = Qr'w, t € R.
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Proof. This follows from Theorem [10.3] O

Theorem 10.5. Every simple conservative s/s system % with full behavior 203
is unitarily similar to the system X%. The unitary similarity transformation

is the map €8 defined in ([10.6)).

Proof. Let [w'] be a stable future trajectory of ¥. By Lemma and
Remark 4.2 - this trajectory can be extended to a stable full traJectory (o] of
Y. For each t € R, define ;1 (t) = Q7'w. Then [ ] is a stable full trajectory
of ¥ and by Theorem @(iv), z1(t) = €lx(t) for all t € R, and hence,
in particular, for all ¢ € RT.

Conversely, let [ 77 ] be a stable future trajectory of %" . This trajectory
can be extended to a stable full trajectory [ %} ], after Wthh it satisfies x4 (t) =
Q7lw for all t € R. For each t € R we can define z(t) = B2 7'Qw. Then
by Theorem [10.3(v), [&] is a stable full trajectory of ¥ and z(t) = BYQrlw
for all t € R, and hence, in particular, for all t € R*.

Since €Y is unitary we conclude that ¥ is unitarily similar to 2" with
similarity operator G, O

Definition 10.6. We call the system X% the canonical model of a simple
conservative s/s system with full behavior 20.

Corollary 10.7. Any two simple conservative realizations of a given passive
full behavior 20 are unitarily similar to each other.

Proof. This follows from Theorem [10.5] O]

Definition 10.8. We call the operators €% and B! defined in Theorem
the bilateral output and input maps, respectively, of the conservative s/s
system 2.

As we shall show below, the two models in Sections [§ and [9] can be
obtained from YX¥ by first performing an orthogonal compression, and then
applying a unitary similarity transform.

By Theorem 8.4} the output map Cyuw intertwines 32 and the co-energy
preserving system Egg. Since ¥ is conservative, it follows from Lemma

that Cgw = II; |p(y) is a co-isometry, and the restriction of €y to R
is a unitary map of RT onto H(25, ). Clearly Y%+ is unitarily similar to the

oce

system Y°. := (V2;RT, W) that we get by applying sz = [1HF(?;+ )} to the

sc)

state of the state of X%+, The set of all future stable trajectories of X2, is
given by

{la)e G ] |20 = "2 ] Qurtw., teRY) (103)
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Since wy € (20, ) if and only if it can be written in the form w, = 7 w for
some w € L(2W), we can replace the parameter w, by 7, w with w € L(20),
after which (10.8)) can be written in the equivalent form

{[qfﬂ € [C,(Cﬂggi%;)} ‘ z(t) = PpiQrlw, wy = myw, w € L(W), t € R*}.
(10.9)
Comparing this to ((10.1) we find that »¢. is the orthogonal outgoing com-
pression of X% onto the backward reachable subspace R of X2

By Theorem 9.5 the input map Byw intertwines the energy preserving
system 2= with X2, Since X is conservative, it follows from Lemmam

cep S

that Byw = [1 leg,)] is an isometry whose range is the reachable subspace
R of XF. Clearly X2 is unitarily similar to the system X, := (V& %, W)

that we get by applying By to the state of 2221;. The set of all future stable
trajectories of X<, is given by

{[ui] € [C,C(g;ﬁ)} ‘ r=Qr'w, wy =7 w, wE Q_lfﬁ} . (10.10)

Comparing this to (10.1)) we find that X¢. is an orthogonal incoming com-
pression of X% onto the reachable subspace R of .

Theorem 10.9. Let 0J_ be a passive past behavior on the Krein space V.
Then the generating subspace VC%I:)— of the canonical model Z%gl; in Theorem
[9.1] is given by

w € Im ([ L D 15 locally absolutely

Ta
V- — [8_2_3] e [Zg:g} continuous with w € K*(W), and
.1 ’ L
tl_l}Igi_ ;Q_TF_<T w —w) exists in H(W_).
(10.11)

Proof. As we established above, 2351; is unitarily similar to the orthogonal
incoming compression Y¢, of Y2 onto its reachable subspace R. That sub-
space is strongly invariant in the sense that if [ %] is a future trajectory of X%
satisfying z(0) € %R, then z(t) € R for all t > 0 (see Lemmal6.14). In partic-
ular, [§] is a smooth future trajectory of ¢, if and only if [ ] is a smooth
future trajectory of ¥ and z(0) € R. This, combined with Proposition

and Theorem implies that the generating subspace V¢ of XS is given by
w € Q'R is locally absolutely

D(W ,
Ve =120 Eﬁ ) _ [ 83 ] c [?} continuous with w € K*(W), and
W ’LU(O) w . 1 ¢ ) .
lim —Q(7"w — w) exists in R.

t—0+ ¢
(10.12)



From here we get the generating subspace V.2~ of X%~ by applying the

cep cep

unitary operator (%3}3)* = II_ to the two state components. This leads to

formula ((10.11]). O

References

[ADRAS97] Daniel Alpay, Aad Dijksma, James Rovnyak, and Henrik

[AIR9)]

[ASO5]

[AS09a]

[ASO9b)]

[AS10]

[Bel68]

[Bog74]

[BSO6]

de Snoo, Schur functions, operator colligations, and reproducing
kernel Hilbert spaces, Operator Theory: Advances and Applica-
tions, vol. 96, Birkhauser-Verlag, Basel Boston Berlin, 1997.

Tomas Ya. Azizov and losif S. Iokhvidov, Linear operators in
spaces with an indefinite metric, John Wiley, New York, London,
1989.

Damir Z. Arov and Olof J. Staffans, State/signal linear time-
wmvariant systems theory. Part I: Discrete time systems, The
State Space Method, Generalizations and Applications (Basel
Boston Berlin), Operator Theory: Advances and Applications,
vol. 161, Birkhauser-Verlag, 2005, pp. 115-177.

, A Krein space coordinate free version of the de Branges
complementary space, J. Funct. Anal. 256 (2009), 3892-3915.

, Two canonical passive state/signal shift realizations of
passive discrete time behaviors, J. Funct. Anal. 257 (2009),
2573-2634.

, Canonical conservative state/signal shift realizations of
passive discrete time behaviors, J. Funct. Anal. 259 (2010),
3265-3327.

Vitold Belevitch, Classical network theory, Holden-Day, San
Francisco, Calif.-Cambridge-Amsterdam, 1968.

Janos Bognar, Indefinite inner product spaces, Ergebnisse der
Mathematik und ihrer Grenzgebiete, vol. 78, Springer-Verlag,
Berlin, Heidelberg, New York, 1974.

Joseph A. Ball and Olof J. Staffans, Conservative state-space
realizations of dissipative system behaviors, Integral Equations
Operator Theory 54 (2006), 151-213.

81



[dBR66a]

[ABR66D)

[GLS90]

[KS09]

[KS11]

[Kur10]

[NV89)

INVOg]

[PWOg]

[Sta05]

Louis de Branges and James Rovnyak, Canonical models in
quantum scattering theory, Perturbation Theory and its Appli-
cations in Quantum Mechanics (Proc. Adv. Sem. Math. Res.
Center, U.S. Army, Theoret. Chem. Inst., Univ. of Wisconsin,
Madison, Wis., 1965), Wiley, New York, 1966, pp. 295-392.

, Square summable power series, Holt, Rinehart and Win-
ston, New York, 1966.

Gustaf Gripenberg, Stig-Olof Londen, and Olof Staffans,
Volterra integral and functional equations, Encyclopedia of

Mathematics and its Applications, vol. 34, Cambridge Univer-
sity Press, Cambridge and New York, 1990.

Mikael Kurula and Olof J. Staffans, Well-posed state/signal sys-
tems in continuous time, Complex Anal. Oper. Theory 4 (2009),
319-390.

, Connections between smooth and generalized trajectories
of a state/signal system, Complex Anal. Oper. Theory (2011),
19 pages, accepted for publication.

Mikael Kurula, On passive and conservative state/signal sys-
tems in continuous time, Integral Equations Operator Theory
67 (2010), 377424, 449.

Nikolai K. Nikolskii and Vasily 1. Vasyunin, A unified approach
to function models, and the transcription problem, The Gohberg
anniversary collection, Vol. IT (Calgary, AB, 1988), Oper. The-
ory Adv. Appl., vol. 41, Birkhéuser, Basel, 1989, pp. 405-434.

, Elements of spectral theory in terms of the free func-
tion model. I. Basic constructions, Holomorphic spaces (Berke-
ley, CA, 1995), Math. Sci. Res. Inst. Publ.; vol. 33, Cambridge
Univ. Press, Cambridge, 1998, pp. 211-302.

Jan Willem Polderman and Jan C. Willems, Introduction to

mathematical systems theory: A behavioral approach, Springer-
Verlag, New York, 1998.

Olof J. Staffans, Well-posed linear systems, Cambridge Univer-
sity Press, Cambridge and New York, 2005.

82



[Wil72a]

[Wil72b)

[Woh69)

[WT98]

[WT02]

Jan C. Willems, Dissipative dynamical systems Part I: General
theory, Arch. Rational Mech. Anal. 45 (1972), 321-351.

, Dissipative dynamical systems Part II: Linear systems
with quadratic supply rates, Arch. Rational Mech. Anal. 45
(1972), 352-393.

M. Ronald Wohlers, Lumped and distributed passive networks,
Academic Press, New York and London, 1969.

J. C. Willems and H. L. Trentelman, On quadratic differential
forms, SIAM J. Control Optim. 36 (1998), no. 5, 1703-1749
(electronic).

Jan C. Willems and Harry L. Trentelman, Synthesis of dissipa-
tive systems using quadratic differential forms: Parts I-1I, IEEE
Trans. Autom. Control 47 (2002), 53-69, 70-86.

83



	Introduction
	Kreın Spaces
	Some Kreın space results
	The Hilbert space H(Z)

	Passive and Conservative S/S Systems
	Basic properties of trajectories of passive s/s systems
	Classical trajectories and the generating subspace
	More on externally generated stable trajectories
	Passive past, full, and future behaviors
	Intertwined systems

	Anti-Passive Adjoint State/Signal Systems
	Anti-passive state/signal systems
	Anti-passive behaviors

	The Hilbert Spaces H(W+), H(W-[]), and D(W)
	The Hilbert space H(W+)
	The Hilbert space H(W-[])
	The past/future map W and the Hilbert space D(W)

	The Output and Input maps
	The output map C
	The input map B
	The adjoints of C and B
	The backward reachable and unobservable subspaces

	The Past/Future Map of a Passive System
	The Canonical Co-Energy Preserving Model
	The Canonical Energy Preserving Model
	The Canonical Simple Conservative Model.

