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Abstract

A passive linear discrete time invariant s/s (state/signal) system
Σ = (V ;X ,W) consists of a Hilbert (state) space X , a Krĕın (signal)
spaceW, a maximal nonnegative (generating) subspace V of the Krĕın
space K := −X [u] X [u] W, and the sets of trajectories (x(·);w(·))
generated by V on the discrete time intervals I ⊂ Z that are defined
by

(x(n + 1);x(n);w(n)) ∈ V, n ∈ I.

This system is forward conservative, or backward conservative, or con-
servative if V ⊂ V [⊥], V [⊥] ⊂ V , or V [⊥] = V , respectively. The set
WΣ

+ of all signal components w(·) of trajectories (x(·);w(·)) of Σ on
I = Z+ with x(0) = 0 and w(·) ∈ `2(Z+;W) is called the future time
domain behavior of Σ. The Fourier transform ŴΣ

+ of WΣ
+ is called the

future frequency domain behavior of Σ. This set is a maximal nonneg-
ative right-shift invariant subspace in the Krĕın space K2(D;W) that
as a topological vector space coincides with the usual Hardy space
H2(D;W), but has the indefinite Krĕın space inner product inherited
from W. A subspace of K2(D;W) with the above properties is called
a passive future frequency domain behavior on W. It has been shown
earlier by the present authors that every passive future frequency do-
main behavior Ŵ+ on W may be realized as the future frequency
domain behavior of some passive s/s system Σ, and that it is possible
to require, in addition, that Σ is (a) controllable and forward conser-
vative, (b) observable and backward conservative, or (c) simple and
conservative. These three types of realizations are determined by Ŵ+

up to unitary similarity. Canonical functional shift realizations of the
types (a) and (b) have been obtained earlier by the present authors,
and their connection to the classical deBranges–Rovnyak models have
been discussed. Here we present analogous results for a realization of
the type (c).
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1 Introduction

This article may be regarded as a continuation of [AS09a] and [AS09b],
which in turn continued the development of a passive time-invariant linear
s/s (state/signal) systems theory in discrete time that was begun in [AS05]–
[AS07c]. Some further comments on the earlier history are given at the end
of this introduction, and also in [AS09b].

A linear discrete time invariant s/s (state/signal) system Σ consists of a
Hilbert (state) space X , a Krĕın (signal) spaceW , and a family of trajectories
(x(·), w(·)) of Σ on each discrete time interval I defined by an equation of
the form

x(n + 1) = F (x(n), w(n)), n ∈ I, (1.1)

where F is a bounded linear operator from a closed domain D (F ) ⊂ X [u]W
into X with the extra property that for every x ∈ X there exists at least one
w ∈ W such that [ x

w ] ∈ D (F ). The three most important cases are I =
Z+ := {0, 1, 2, . . .}, I = Z = {0,±1,±2, . . .}, and I = Z− := {−1,−2, . . .}.
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By a past, full, and future trajectory of Σ we mean a trajectory of Σ on
Z−, Z, and Z+, respectively. The extra property of F mentioned above is
equivalent to the requirement that for each x0 ∈ X and for each interval I
with finite left end-point m there exists at least one trajectory (x(·), w(·))
of Σ on I satisfying x(m) = x0. However, instead of working directly with
equation (1.1) we shall use the graph form of (1.1), given by[

x(n+1)
x(n)
w(n)

]
∈ V, n ∈ I, (1.2)

where V is the graph of F defined by the formula

V :=
{[

F (x,w)
x
w

]
∈
[
−X
X
W

] ∣∣∣ [ x
w ] ∈ D (F )

}
. (1.3)

The subspace V is called the generating subspace of Σ, since it generates the
sets of all trajectories of Σ on the discrete intervals I by formula (1.2). We
denote the system by Σ = (V ;X ,W). The properties of F listed above can
be rewritten in terms of conditions on V , as was done in [AS05]. If V is a
maximal nonnegative subspace of the Krĕın node space K := −X [u]X [u]W
then these conditions are satisfied, and hence every maximal nonnegative
subspace V is the generating subspace of a s/s system. By a passive s/s sys-
tem we mean a system whose generating subspace V is maximal nonnegative.
In addition to passivity we shall often assume that Σ is forward conserva-
tive, backward conservative, or conservative, which means that V ⊂ V [⊥],
V [⊥] ⊂ V , or V [⊥] = V , respectively, where V [⊥] is the orthogonal companion
to V in K. Passivity implies that all trajectories (x(·), w(·)) of Σ on I satisfy

−‖x(n + 1)‖2
X + ‖x(n)‖2

X + [w(n), w(n)]W ≥ 0, n ∈ I, (1.4)

and forward conservativity means that (1.4) holds in form of an equality

−‖x(n + 1)‖2
X + ‖x(n)‖2

X + [w(n), w(n)]W = 0, n ∈ I. (1.5)

See Sections 2.1–2.2 for details.
The future behavior WΣ

+ of a passive s/s system Σ = (V ;X ;W) consists of
all the signal components w(·) of all trajectories (x(·), w(·)) of Σ on I = Z+

with x(0) = 0 and w(·) ∈ `2(Z+;W). This set is a maximal nonnegative
right-shift invariant subspace of the Krĕın space k2

+(W). As a topological
vector space this space coincides with the Hilbert space `2(Z+;W), but it
has the indefinite Krĕın space inner product inherited from W . A subspace
W+ of k2

+(W) with the above properties is called a passive future behavior
on W .
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By replacing the interval Z+ by either Z− or Z we get two more behaviors
induced by the passive s/s system Σ, namely the past behavior WΣ

− consisting
of sequences in k2

−(W), and the full behavior WΣ consisting of sequences in
k2(W), where k2

−(W) and k2(W) are topologically equal to `2(Z−;W) and
`2(Z;W), respectively, but carry the inner products inherited from W . In
the definition of these behaviors we replace the condition x(0) = 0 in the
definition of WΣ

+ by the condition x(k) → 0 as k → −∞. The set WΣ
− is a

maximal nonnegative right-shift invariant subspace of k2
−(W). A subspace

W− of k2
−(W) with the above properties is called a passive past behavior

on W . The set WΣ is a maximal nonnegative subspace of k2(W) which is
bilaterally shift-invariant, and it has an extra causality property which will
be explained in Section 2.3. A subspace W of k2(W) with these properties
is called passive full behavior on W . It turns out that any two of the three
behaviors WΣ

+, WΣ, and WΣ
− can be recovered from the third by formulas

(2.29)–(2.31). The same formulas can be used to uniquely define any two of
the above types of passive behaviors W−, W, and W+ by means of the third.
See Section 2.3 for more details.

It was shown in [AS07a] that every passive future behavior W+ on W
may be realized as the future behavior of some passive s/s system Σ, and
that it is possible to require, in addition, that Σ is (a) controllable and
forward conservative, (b) observable and backward conservative, or (c) simple
and conservative. These three types of realizations are determined by W+

(or equivalently, by W or W−) up to unitary similarity. In [AS09b] the
present authors obtained canonical functional shift realizations of the types
(a) and (b), and discussed their connections to the respective two classical
deBranges–Rovnyak models.

The main purpose of the present paper is to obtain analogous results for
a realization of the type (c), and to further study the properties of simple
conservative s/s systems.

This paper is organized as follows. In Section 2.1 we review the notion of
a Krĕın space and present some Krĕın space results that will be needed later.
Some background on passive s/s systems is presented in Section 2.2. Passive
future, past, and full behaviors on a Krĕın signal space and related results are
presented in Section 2.3. Two crucial Hilbert spaces H(W

[⊥]
− ) and H(W+)

are introduced in Section 2.4, constructed with the help of the passive past
behavior W− and the corresponding passive future behavior W+, as well as

the past/future map ΓW, which is a linear contraction H(W
[⊥]
− ) → H(W+)

with some special properties.
The Hilbert spaces H(W

[⊥]
− ) and H(W+) and the past/future map ΓW

are used in Section 3 in our construction of a canonical simple conservative
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realization of a given passive full behavior W. The state space D(W) of this

realization is a certain subspace of the quotient space k2(W)/(W
[⊥]
− [u]W+),

and the the dynamics of the system is defined in terms of a left-shift applied
to sequences in the equivalence class defined by the initial state.

Some new results on the dynamics of conservative s/s systems that follow
from our canonical model are discussed in Section 4. The significant notion
of incoming and outgoing inner channels of a simple conservative s/s system
are discussed in Section 5. Alternative characterizations of the state space
D(W) of our canonical simple conservative model are developed in Section
6, and at the same time we discuss the properties of the inverse image L(W)

of D(W) under the quotient map k2(Z;W) → k2(Z;W)/(W
[⊥]
− [u] W+).

The connection of the new canonical simple conservative s/s model to
the controllable forward conservative s/s model and the observable backward
conservative s/s model constructed in [AS09b] is explained in Sections 7 and
8. Finally, the connection between our canonical simple conservative s/s
model and the simple conservative input/state/output de Branges–Rovnyak
scattering model is discussed in Section 10. This model is formulated in
frequency domain terms, and for this reason we explain in Section 9 how
to convert the time domain results from Sections 2–8 into corresponding
frequency domain results.

As we mentioned earlier, this article may be regarded as a continu-
ation of [AS09a] and [AS09b], which in turn continued the development
of a passive time-invariant linear s/s (state/signal) systems theory in dis-
crete time that was begun in [AS05]–[AS07c]. Some preliminary steps in
this direction were taken already in [BS06] by J. Ball and the second au-
thor. See, in particular, [BS06] for a discussion of the connection with
the theory of passive and conservative behaviors presented in the papers
[Wil72a, Wil72b, WT98, WT02a, WT02b] and the monograph [PW98]. As
explained in [AS05], part of the motivation comes from classical passive time-
invariant circuit theory, see, e.g., [Bel68] and [Woh69]. Continuous time
passive s/s systems theory has been studied in [KS09] and [Kur10].

As we also mentioned above, as a corollary of our main result we recover
the simple conservative input/state/output deBranges–Rovnyak model, that
was originally presented in [dBR66a, dBR66b], and which can be found also,
e.g., in [ADRdS97] and in [NV89, NV98].

In [NV89, NV98] Nikolskĭı and Vasyunin present a “coordinate free”
model of a simple conservative i/s/o scattering system whose scattering ma-
trix coincides with a given Schur function. The philosophy behind the work
of Nikolskĭı and Vasyunin is very different from the philosophy underlying
our work. The coordinate free Nikolskĭı–Vasyunin model contains a “free”
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parameter Π, and by the appropriate choice of this parameter it is possible to
recover all the standard simple conservative shift models whose characteristic
function is equal to a given Schur function ϕ, including the Sz.-Nagy–Foiaş
model, the deBranges–Rovnyak model, and the Pavlov model. In this sense
the Nikolskĭı–Vasyunin model is “universal”. On the other hand, our canon-
ical simple conservative s/s shift model is completely determined by a given
future behavior, and in particular, it is “coordinate free” in the sense that
it does not depend on some arbitrarily chosen fundamental decomposition
W = −Y [u] U of the given signal space W . Different choices of such a
decomposition give rise to different graph representations of the frequency
domain version of the given future behavior as the graphs of the multiplica-
tion operators induced by different Schur functions ϕ (with varying input and
output spaces), and the corresponding i/s/o representations of our canonical
s/s model are equivalent to the i/s/o de Branges–Rovnyak realizations of ϕ.

On a conceptual level our construction of a simple conservative realization
is vaguely reminiscent of the abstract realization theory presented in [KFA69,
Part IV]. More precisely, the basic realization in [KFA69, Section 10.5] which
uses the set of past input sequences factored over the kernel of the Hankel
operator of the given Schur functions is analogous to our controllable forward
conservative realization presented in [AS09b], whose state space is essentially
the quotient of the past behavior over the kernel of the past/future map, and
the realization mentioned in [KFA69, pp. 262–263] which uses the range of
the kernel of the Hankel operator is analogous to our observable backward
conservative realization presented in [AS09b], whose state space is essentially
the range of the past/future map. However, the construction in [KFA69] is
completely algebraic as opposed to our construction which also make crucial
use of topological properties (in the form of various indefinite inner products
derived from the energy balance equations). Moreover, whereas the construc-
tion in [KFA69] is based entirely on i/o considerations, our construction is
completely i/o free.

Notations. The following standard notations are used below. C is the
complex plane, D+ := {z ∈ C | |z| < 1}, D− := {z ∈ C | |z| > 1} ∪ {∞},
T = {z ∈ C | |z| = 1}, Z = {0,±1,±2, . . .}, Z+ = {0, 1, 2, . . .}, and Z− =
{−1,−2,−3, . . .}.

The space of bounded linear operators from one Krĕın space U to another
Krĕın space Y is denoted by B(U ;Y). The domain, range, and kernel of a
linear operator A are denoted by D (A), R (A), and N (A), respectively. The
restriction of A to some subspace Z ⊂ D (A) is denoted by A|Z . The identity
operator on U is denoted by 1U . The orthogonal projection onto a closed
subspace Y of a Krĕın space K is denoted by PY .

The inner product in a Hilbert space X is denoted by (·, ·)X , and the
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inner product in a Krĕın space K is denoted by [·, ·]K. The orthogonal sum of
U and Y is denoted by U ⊕Y in the case of Hilbert spaces, and by U [u]Y in
the case of Krĕın spaces. The anti-space −K of a Krĕın space is algebraically
the same space as K, but it has a different inner product [·, ·]−K := −[·, ·]K.

We denote the orthogonal product of two Krĕın or Hilbert spaces Y and
U by

[
Y
U
]
. We sometimes identify [ Y0 ] with Y and [ 0

U ] with U and write
Y [u] U instead of

[
Y
U
]

in order to simplify the typesetting.
If w(·) is a sequence with values in a Krĕın or Hilbert space W defined

on Z, then S±1w is the sequence w(·) shifted one step to the right or left,
respectively. For sequences w(·) defined on Z+ we define (S+w)(n) = w(n−
1), n ≥ 1, (S+w)(0) = 0, and for sequences w(·) defined on Z− we define
(S−w)(n) = w(n− 1), n ∈ Z−.

Some additional notations will be introduced in Sections 2 and 3.

2 Preliminary Notions and Results.

2.1 Krĕın Spaces

Throughout this work both the signal space W and the node space K will
be a Krĕın space. We therefore begin with a review of the most important
Krĕın space notions and results that will be needed here.

A Krĕın space W is a (possibly infinite-dimensional) vector space with an
inner product [·, ·]W that satisfies all the standard properties required by an
inner product, except for the condition [w,w]W ≥ 0, with strict inequality if
w 6= 0. In addition, it is required that the space W can be decomposed into
a direct sum W = −Y u U , such that the following conditions are satisfied:

1) U and −Y are orthogonal to each other with respect to the inner prod-
uct [·, ·]W , i.e., [y, u]W = 0 for all u ∈ U and all y ∈ −Y .

2) U is a Hilbert space with the inner product (u, u′)U := [u, u′]W , u,
u′ ∈ U , inherited from W .

3) −Y is an anti-Hilbert space with the inner product [y, y′]−Y := [y, y′]W ,
y, y′ ∈ −Y , inherited from W .

Here and later we shall use the notation −Y for the anti-space of a vector
space Y equipped with a (possibly indefinite) inner product. This is alge-
braically the same space as Y , but the inner product [·, ·]Y in Y has been
replaced by the inner product[y, y′]−Y := −[y, y′]Y , y, y′ ∈ −Y . The condi-
tion that −Y is an anti-Hilbert space with the inner product inherited from
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W is equivalent to saying that Y is a Hilbert space with the inner product
(y, y′)Y := −[y, y′]W , y, y′ ∈ −Y , inherited from −W . Since Y and U are
orthogonal to each other we shall denote the direct sum by W = −Y [u] U .

Any decomposition W = −Y [u] U with the properties listed above is
called a fundamental decomposition of W . If the space W itself is neither a
Hilbert space nor an anti-Hilbert space, then it has infinite many fundamental
decompositions. If W = −Y [u] U is a fundamental decomposition of W ,
then

[w,w]W = −‖y‖2
Y + ‖u‖2

U , w = u + y, u ∈ U , y ∈ Y . (2.1)

The dimensions of the positive space U and the negative space −Y do not
depend on the particular decomposition. These dimensions are called the
positive and negative indices of W , respectively, and they are denoted by
ind+W and ind−W .

An arbitrary choice of fundamental decomposition W = −Y [u] U deter-
mines a Hilbert space norm on W by

‖w‖2
Y⊕U = ‖y‖2

Y + ‖u‖2
U , w = u + y, u ∈ U , y ∈ Y . (2.2)

While the norm ‖·‖Y⊕U itself depends on the choice of fundamental decompo-
sition W = −Y [u]U for W , all these norms are equivalent and the resulting
strong and weak topologies are each independent of the choice of the fun-
damental decomposition. Thus, we can define topological notions, such as
convergence, or closedness, with respect to any one of these norms. Any
norm on W arising in this way from some choice of fundamental decompo-
sition W = −Y [u] U for W we shall call an admissible norm on W , and
we shall refer to the corresponding positive inner product on Y ⊕ U as an
admissible Hilbert space inner product on W .

A subspace L of W is positive if every nonzero vector w ∈ L is positive
([w,w]W > 0), it is neutral if every vector w ∈ L is neutral ([w,w]W = 0),
and negative if every nonzero vector w ∈ L is negative ([w,w]W < 0). Non-
negative and nonpositive subspaces are defined in the analogous way. A non-
negative subspace which is not strictly contained in any other nonnegative
subspace is called maximal nonnegative, and the notion of a maximal nonpos-
itive subspace is defined in an analogous way. Every nonnegative subspace
is contained in some maximal nonnegative subspace, and every nonpositive
subspace is contained in some maximal nonpositive subspace. Maximal non-
negative or nonpositive subspaces are always closed.

The orthogonal companion L[⊥] of an arbitrary subset L ⊂ W with respect
to the Krĕın space inner product [·, ·]W consists of all vectors in W that are
orthogonal to all vectors in L, i.e.,

L[⊥] = {w′ ∈ W | [w′, w]W = 0 for all w ∈ L}.
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This is always a closed subspace of W , and L = (L[⊥])[⊥] if and only if L is
a closed subspace. If W is a Hilbert space, then we write L⊥ instead of L[⊥].
Note that, by definition, a subspace L is neutral if and only if L ⊂ L[⊥]. A
stronger notion than an neutral subspace is that of a Lagrangian subspace:
a subspace L ⊂ W is called Lagrangian if L = L[⊥].

A direct sum decomposition W = F u E of W where both F and E are
neutral is called a Lagrangian decomposition of W . The subspaces F and
E are automatically Lagrangian in this case. Such a decomposition exists if
and only if ind+W = ind−W (this index may be finite or infinite).

If we fix a fundamental decomposition W = −Y [u]U , then we may view
elements of W as consisting of column vectors

w =

[
y
y

]
∈
[
−Y
U

]
,

where we view Y and U as Hilbert spaces, and the Krĕın space inner product
on W is given by[[

y
u

]
,

[
y′

u′

]]
W

=

([
y
u

]
,

[
−1Y 0

0 1U

] [
y′

u′

])
Y⊕U

= −(y, y′)Y + (u, u′)U .

(2.3)

In this representation, nonnegative, neutral, nonpositive, and Lagrangian
subspaces are characterized as follows.

Proposition 2.1. LetW be a Krĕın space represented in the formW =
[
−Y
U
]

with Krĕın space inner product equal to the quadratic form [·, ·]J induced
by the operator J =

[ −1Y 0
0 1U

]
in the Hilbert space inner product of

[
Y
U
]

as
explained above, and let L be a subspace of W. Then the following claims
are true:

1) L is nonnegative if and only if there is a linear Hilbert space contraction
K+ : D+ 7→ Y from some domain D+ ⊂ U into Y such that

L =

[
K+

1U

]
D+ =

{[
K+d+

d+

] ∣∣∣∣ d+ ∈ D+

}
. (2.4)

L is maximal nonnegative if and only if, in addition, D+ = U .

2) L is nonpositive if and only if there is a linear contraction K− : D− 7→ U
from some domain D− ⊂ Y into U such that

L =

[
1Y
K−

]
D− =

{[
d−

K−d−

] ∣∣∣∣ d− ∈ D−} . (2.5)

L is maximal nonpositive if and only if, in addition, D− = Y.
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3) L is neutral if and only if there is an isometry K+ mapping a subspace
D+ of U isometrically onto a subspace D− of Y, or equivalently, an
isometry K− mapping D− ⊂ Y isometrically onto D+ ⊂ U , such that

L =

[
K+

1U

]
D+ =

[
1Y
K−

]
D−. (2.6)

L is Lagrangian if and only if, in addition, D+ = U and D− = Y.

4) L is maximal nonnegative if and only if L is closed and L[⊥] is maxi-
mal nonpositive. More precisely, if L has the representation (2.4) with
D+ = U , then L[⊥] has the representation

L[⊥] =

[
1Y
K∗

+

]
Y , (2.7)

where K∗
+ is computed with respect to the Hilbert space inner product

in Y (instead of the anti-Hilbert space inner product in −Y inherited
from W).

5) L is maximal nonnegative if and only if L is closed and nonnegative
and L[⊥] is nonpositive. In particular, L is Lagrangian if and only if L
is both maximal nonnegative and maximal nonpositive.

Proof. See [AI89, Section 1.8, pp. 48–64] or the following theorems in [Bog74]:
Theorem 11.7 on p. 54, Theorems 4.2 and 4.4 on pp. 105–106, and Lemma
4.5 on p. 106.

The fundamental decompositions that we have considered above are a
special case of orthogonal decompositions W = −Y [u]U of W , where Y and
U are orthogonal with respect to [·, ·]W , and both Y and U are Krĕın spaces
with the inner products inherited from −W and W , respectively. Thus, if
w = y + u with y ∈ Y and u ∈ U , then

[w,w]W = [y, y]W + [u, u]W = −[y, y]Y + [u, u]U . (2.8)

This orthogonal decomposition is fundamental if and only if Y and U are
Hilbert spaces, i.e., if they are both nonnegative.

The next lemma will be used later to find out if certain subspaces of a
Krĕın space with a special orthogonal decomposition are maximal nonnega-
tive, or maximal nonpositive, or Lagrangian.

Lemma 2.2. Let X and Z be two Hilbert spaces and W a Krĕın space, and

let K be the Krĕın space K =
[
−Z
X
W

]
.
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1) A nonnegative subspace V of K is maximal nonnegative if and only if
conditions (a) and (b) below hold:

(a) For each x ∈ X there exists some z ∈ Z and w ∈ W such that[
z
x
w

]
∈ V ;

(b) The set of all w ∈ W for which there exists some z ∈ Z such that[
z
0
w

]
∈ V is maximal nonnegative in W.

2) A nonpositive subspace V of K is maximal nonpositive if and only if
conditions (c) and (d) below hold:

(c) For each z ∈ Z there exists some x ∈ X and w ∈ W such that[
z
x
w

]
∈ V ;

(d) The set of all w ∈ W for which there exists some x ∈ X such that[
0
x
w

]
∈ V is maximal nonpositive in W.

3) A neutral subspace V of K is Lagrangian if and only if conditions (a)–
(d) above hold.

Proof of 1). Assume first that (a) and (b) hold. Let W = −Y [u] U be

a fundamental decomposition of W . Then −
[
Z
0
Y

]
[u]
[

0
X
U

]
is a fundamental

decomposition of K. By assertion 1) in Proposition 2.1 V has a representation

V =

{[
K1[ x0

u0 ]
x0

K2[ x0
u0 ]+u0

]∣∣∣∣ [ x0
u0 ] ∈ D+

}
, (2.9)

where
[

K1
K2

]
is a contraction defined on some subspace D+ of [ XU ] with values

in
[
Z
Y
]
. By Proposition 2.1, in order to show that V is maximal nonnegative

it suffices to show that D+ = [ XU ].
Let x be an arbitrary vector in X . Then by (a), there exist z1 ∈ X and

w1 ∈ W such that
[

z1
x

w1

]
∈ V . Since the set in (b) is maximal nonnegative

it follows that for any u ∈ U there exist z2 ∈ Z and w2 ∈ W such that

PUw2 = u− PUw1 and
[

z2
0

w2

]
∈ V . Since V is a subspace, also[

z1
x

w1

]
+
[

z2
0

w2

]
=
[

z1+z2
x

w1+w2

]
∈ V,

with PU(w1 + w2) = u. Thus [ x
u ] ∈ D+, z1 + z2 = K1 [ x

u ], and PY(w1 + w2) =
K2 [ x

u ]. Since x ∈ X and u ∈ U are arbitrary we find that D+ = [ XU ]. This
proves that V is maximal nonnegative.
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Conversely, suppose that V maximal nonnegative. By Proposition 2.1,
V has a representation of the form (2.9) for some contraction

[
K1
K1

]
: [ XU ] →[

X
Y
]
. Clearly this implies that (a) holds. Moreover, the set in (b) is given by{

u0 + K2 [ 0
u0

]
∣∣ u0 ∈ U

}
, and by Proposition 2.1 it is maximal nonnegative.

Thus also (b) holds.
Proof of 2). The proof of 2) is analogous to the proof of 1).
Proof of 3). This follows from 1) and 2) together with assertion 5) in

Proposition 2.1.

The Hilbert Space H(Z). In [AS09a] was constructed a Hilbert space
H(Z), where Z is a maximal nonnegative subspace of a Krĕın space. Below
we give a short review of this construction.

Let Z be a maximal nonnegative subspace of the Krĕın space K, and let
K/Z be the quotient of K modulo Z. We define H(Z) by

H(Z) = {h ∈ K/Z | sup{−[x, x]K | x ∈ h} < ∞}. (2.10)

It turns out that sup{−[x, x]K | x ∈ h} ≥ 0 for all h ∈ H(Z), that H(Z) is
a subspace of K/Z, that H(Z) is a Hilbert space with the norm∥∥h∥∥H(Z)

=
(
sup{−[x, x]K | x ∈ h}

)1/2
, h ∈ H(Z), (2.11)

and thatH(Z) is continuously contained in X/Z. We denote the equivalence
class h ∈ K/Z that contains a particular vector x ∈ K by h = x +Z. Thus,
with this notation, (2.10) and (2.11) can be rewritten in the form

H(Z) = {x + Z ∈ K/Z | ‖x + Z‖2
H(Z) < ∞}, (2.12)∥∥x + Z

∥∥2

H(Z)
=
(
sup{−[x + z, x + z]K | z ∈ Z}

)
, x ∈ H(Z). (2.13)

A very important (and easily proved fact) is that if we define

H0(Z) :=
{
z† + Z

∣∣ z† ∈ Z [⊥]
}
, (2.14)

then H0(Z) is a subspace of H(Z). However, even more is true: H0(Z) is a
dense subspace of H(Z), and for every z† ∈ Z [⊥] it is true that

‖z† + Z‖2
H(Z) = −[z†, z†]K, z† ∈ Z [⊥]. (2.15)

Furthermore, if we denote

K(Z) = {x ∈ K | x + Z ∈ H(Z)}. (2.16)
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then Z + Z [⊥] ⊂ K(Z) ⊂ Z + Z [⊥] and

(z† + Z, x + Z)H(Z) = −[z†, x]K, z† ∈ Z [⊥], x ∈ K(Z). (2.17)

See [AS09a] for more details.
Connection betweenH(Z) and de Branges Complementary Space.

Let A ∈ B(U ;Y) be a contractive operator between the Hilbert spaces U and
Y . The de Branges complementary space H(A) is defined by the formulas

H(A) = {y ∈ Y | ‖y‖H(A) < ∞}, (2.18)

where
‖y‖H(A) = sup{‖y − Au‖2

Y − ‖u‖2
Y | u ∈ U}. (2.19)

This is a Hilbert space continuously contained in Y . It was introduced and
used in [dBR66a, dBR66b], with A replaced by the operator D̂+ defined
in formula (10.2), as the state space in the canonical de Branges–Rovnyak
model of a scattering i/s/o observable backward passive system with a given
Schur class scattering matrix Φ. We shall derive this model from our s/s
model in the Section 10.

Later it was observed that H(A) has another alternative characterization:

H(A) = R
(
(1− AA∗)1/2

)
,

‖y‖H(A) = ‖[(1− AA∗)1/2][−1]y‖Y , y ∈ H(A),
(2.20)

where the upper index [−1] represents a pseudo-inverse, i.e., B[−1] : R (B) →
(N (B))⊥ is the inverse of the injective operator B|(N (B))⊥ → R (B). The

operator (1−AA∗)1/2 is usually called the defect operator of the contraction
A∗. See [ADRdS97] and [Sar94] for more details.

In [AS09a] it was explained how the space H(Z) defined earlier in this
section is related to the space H(A), where A is the contraction appearing
in the graph representation

Z =
{
[ Au

u ]
∣∣ u ∈ U}

of the maximal nonnegative subspace Z of K with respect to some funda-
mental decomposition K = −Y [u]U . The connection is the following. There
exists a unitary map T : H(Z) → H(A) with the property that the image of
x+Z ∈ H(Z) under T is the unique vector y in this equivalence class whose
projection onto U is zero. Explicitly this means that

T
(
[ y
u ] + Z

)
= y − Au, [ y

u ] ∈ K(Z),

T−1y = [ y
0 ] + Z, y ∈ H(A).

(2.21)

The operator T mapsH0(Z) one-to-one onto the dense subspaceR (1− AA∗)
of H(A). In the sequel we denote H0(A) := R (1− AA∗).
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2.2 Passive and Conservative State/Signal Systems

A s/s system Σ = (V ;X ,W) is called forward passive if the inequality (1.4)

holds for every interval I and every trajectory
[

x(·)
w(·)

]
of Σ on I. This is

equivalent to the requirement that V is a nonnegative subspace of the node
space K. We call Σ forward conservative if the equality (1.5) holds. This
stronger notion is equivalent to the condition that V is neutral, i.e., V ⊂ V [⊥].

The notions of a passive and a conservative s/s system Σ = (V ;X ,W)
depend on the notion of the adjoint s/s system Σ∗ = (V∗;X ,−W). This
system has same state space X as Σ, its signal space is −W , its node space
is K∗ = −X [u] X [u]−W , and its generating subspace V∗ is defined by

V∗ :=
[

0 1X 0
1X 0 0
0 0 I

]
V [⊥], (2.22)

where I is the identity operator acting from W to −W .

Proposition 2.3 ([AS07a, Proposition 4.6]). Let Σ = (V ;X ,W) be a s/s
system with the adjoint Σ∗ = (V∗;X ,W∗).

1) A sequence (x(·), w(·)) is a trajectory of Σ on Z+ if and only if

−(x(n+1), x∗(0))X +(x(0), x∗(n+1))X +
n∑

k=0

〈w(k), I−1w∗(n−k)〉W = 0

(2.23)
for all trajectories of Σ∗ on Z+ and all n ∈ Z+.

2) A sequence (x∗(·), w∗(·)) is a trajectory of Σ∗ on Z+ if and only if (2.23)
holds for all trajectories of Σ on Z+ and all n ∈ Z+.

From this proposition follows that (Σ∗)∗ = Σ.
By a backward conservative s/s system Σ we mean a system whose dual

system Σ∗ is forward conservative. A s/s system Σ = (V ;X ,W) is called
passive if both Σ and the dual system Σ∗ are forward passive, and it is called
conservative if both Σ and the dual system Σ∗ are forward conservative, or
in other words, Σ is both forward and backward conservative. The dual node
space K∗ and the dual generating subspace V∗ have been defined in such a
way that V∗ is nonnegative in K∗ if and only if V [⊥] is nonpositive in K,
and therefore, by Proposition 2.1, Σ is passive if and only if V is a maximal
nonnegative subspace of K. Likewise, V∗ is a neutral subspace of K∗, i.e.,
V

[⊥]
∗ ⊂ V∗, if and only if V [⊥] ⊂ V , and hence Σ is conservative if and only if

V = V [⊥], i.e., V is a Lagrangian subspace of K.
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A trajectory (x(·), w(·)) defined on some interval I with a finite left end-
point m is called externally generated on I if x(m) = 0. In the case where
the left end-point of I is −∞ we replace this condition by limk→−∞ x(k) = 0.

By (1.4), if Σ is passive, and if
[

x(·)
w(·)

]
is an externally generated trajectory

of Σ on some interval I with left end-point m ≥ −∞, then

‖x(n + 1)‖2
X ≤

n∑
k=m

[w(k), w(k)]W , n ∈ I. (2.24)

If w(·) ∈ `2(I;W) with respect to some admissible norm in W , then the sum∑n
k=m[w(k), w(k)]W has an upper bound independent of n, and it follows

from (2.24) that the sequence x(·) is bounded, i.e., x(·) ∈ `∞(I;X ). We call
a trajectory (x(·), w(·)) of Σ on some interval I stable if w(·) ∈ `2(I;W)
and x(·) ∈ `∞(I;X ). Thus, externally generated trajectories of a passive s/s
system are stable on I whenever the signal part belongs to `2(I;W).

Every passive s/s system Σ = (V ;X ,W) is well-posed in the forward time
direction in the following sense:

1) For every x0 ∈ X there exists x1 ∈ X and w0 ∈ W such that
[

x1
x0
w0

]
∈ V ;

2) For every
[

x1
x0
w0

]
∈ V there exists a stable future trajectory (x(·), w(·))

of Σ satisfying x(0) = x0, x(1) = x1, and w(0) = w0;

see, e.g., [AS07a, Proposition 5.12] and [AS09b, Lemma 2.3, assertion 7)]. If
Σ is conservative then it is also well-posed in the backward time direction in
the sense that the following two conditions hold:

3) For every x0 ∈ X there exists x−1 ∈ X and w−1 ∈ W such that[
x0

x−1
w−1

]
∈ V ;

4) For every
[

x0
x−1
w−1

]
∈ V there exists a stable past trajectory (x(·), w(·))

of Σ satisfying x(0) = x0, x(−1) = x−1, and w(−1) = w−1;

this follows from [AS09b, Lemma 3.1] and the fact that the adjoint system
Σ∗ is well-posed in the forward time direction.

The subspace of X that we get by taking the closure in X of all states
x(n) that appear in externally generated trajectories (x(·), w(·)) of Σ on Z+

is called the (approximately) reachable subspace, and we denote it by RΣ. If
RΣ = X , then Σ is called controllable. The subspace of all x0 ∈ X with the
property that there exists some trajectory (x(·), w(·)) of Σ on Z+ with x(0) =
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x0 for which w(·) vanishes identically is called the unobservable subspace,
and it is denoted by UΣ. If UΣ = {0}, then Σ is called (approximately)

observable. A s/s system Σ is called simple if X = RΣ + U⊥Σ, or equivalently,
if UΣ ∩R⊥

Σ = {0}, and it is minimal if it is both controllable and observable.
Throughout the rest of this paper all s/s systems that we shall consider

will be assumed to be passive. The main object of study in this paper is the
subclass of simple conservative s/s systems.

2.3 Future, Past, and Full Behaviors

Let Σ = (V ;X ,W) be a passive s/s system. By the (stable) behavior of Σ
on the discrete time interval I ⊂ Z we mean the set of all the signal parts
w(·) of all stable externally generated trajectories of Σ on I. We denote this
set by WΣ(I), and introduce the abbreviations

WΣ
− := WΣ(Z−), WΣ := WΣ(Z), WΣ

+ := WΣ(Z+). (2.25)

These three behaviors WΣ
−, WΣ, and WΣ

+ are called the past behavior, the
full behavior, and the future behavior of Σ, respectively. These are the signal
parts of all stable externally generated past, full, and future trajectories of
Σ, respectively.

By k2(I;W) we denote the Krĕın space that coincides with `2(I,W) as a
topological vector space, and is equipped with the indefinite inner product

[w1(·), w2(·)]k2(I;W) =
∑
k∈I

[w1(k), w2(k)]W , (2.26)

and introduce the abbreviations

k2
−(W) := k2(Z−;W), k2(W) := k2(Z;W), k2

+(W) := k2(Z+;W). (2.27)

If W = −Y [u] U is a fundamental decomposition of W , then k2(I,W) =
−`2(I,Y) [u] `2(I,U) is a fundamental decomposition of k2(I,W).

It follows from (2.24) that WΣ(I) is a nonnegative subspace of k2(I;W)
for all intervals I. Actually, the maximal nonnegativity of V in K implies
that these subspaces are even maximal nonnegative. This was proved in the
cases of WΣ

± and WΣ in [AS09b, Theorem 2.8], and the proof for a general
interval I is similar.

Apart from being maximal nonnegative the three behaviors WΣ
± and WΣ

are shift-invariant in the following sense. We denote the right-shift operator
on k2

±(W) by S± and the right-shift operator on k2(W) by S. It is easy to
see that WΣ

± are S±-invariant, and that WΣ is S-reducing (SWΣ = WΣ). In
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addition WΣ
± can be recovered from WΣ in the following way. We let π± be

the orthogonal projection of k2(W) onto k2
±(W). Then

WΣ
− = π−WΣ, WΣ

+ = WΣ ∩ k2
+(W). (2.28)

It is also possible to recover WΣ from WΣ
− and from WΣ

+ as described in
Proposition 2.5 below.

The above facts motivate the following definition.

Definition 2.4. Let W be a Krĕın space.

1) A maximal nonnegative S−-invariant subspace of k2
−(W) is called a

passive past behavior on the (signal) space W .

2) A maximal nonnegative S+-invariant subspace of k2
+(W) is called a

passive future behavior on the Krĕın (signal) space W .

3) A maximal nonnegative S-reducing subspace W of k2(W) is causal
if W− := π−W and W+ := W ∩ k2

+(W) are maximal nonnegative
subspaces of k2

−(W) and k2
+(W , respectively.

4) A maximal nonnegative S-reducing causal subspace of k2(W) is called
a passive full behavior on the (signal) space W .

As the following proposition shows, the two additional conditions required
of W in the above definition of causality are equivalent.

Proposition 2.5 ([AS09b, Theorem 2.11]). Let W be a Krĕın space.

1) If W is a maximal nonnegative S-reducing subspace of k2(W), and if
we define W− and W+ by

W− := π−W, W+ := W ∩ k2
+(W), (2.29)

then W− is a passive past behavior if and only if W+ is a passive future
behavior (and in this case W is a passive full behavior). Moreover, W

can be recovered from W+ and from W− by the formulas

W =
⋂

n∈Z+

{
w(·) ∈ k2(W)

∣∣ π−S−nw ∈ W−
}
, (2.30)

W =
∨

n∈Z+

S−nW+. (2.31)

2) If W− is a passive past behavior on W, and if we define W by (2.30),
then W is a passive full behavior on W and W− = π−W.
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3) If W+ is a passive future behavior on W, and if we define W by (2.31),
then W is a passive full behavior on W and W+ = W ∩ k2

+(W).

This proposition combined with our earlier results on the behaviors in-
duced by a passive s/s systems imply the following result.

Proposition 2.6 ([AS09b, Theorem 2.8]). Let Σ = (V ;X ,W) be a passive
s/s system. Then the past, full, and future behaviors of Σ are passive past,
full, and future behaviors, respectively, in the sense of Definition 2.4. Each
one of these behaviors determine the two others uniquely through formulas
(2.29)–(2.31).

This proposition has the following converse.

Proposition 2.7. Let W be a Krĕın space, and let W−, W, and W+ be
past, full, and future behaviors on W connected to each other by equations
(2.29)–(2.31). Then there exists a passive s/s system Σ = (V ;X ,W) whose
past, full, and future behaviors are equal to W−, W, and W+, respectively.
Moreover, it is possible to require, in addition, that Σ is (a) controllable and
forward conservative, (b) observable and backward conservative, or (c) simple
and conservative. These three types of realizations are defined uniquely by the
given behaviors up to unitary similarity.

Proof. This follows from [AS09b, Theorem 1.1] and Propositions 2.5 and
2.6.

Two canonical shift models of the type (a) and (b) were originally found
in [AS09b], and they will be presented in Section 2.4.

Graph Representations of Passive Behaviors. Let W = −Y [u] U
be a fundamental decomposition of W . Then k2(W) = −`2(Y) [u] `2(U) and
k2
±(W) = −`2

±(Y) [u] `2
±(U) are fundamental decompositions of of the Krĕın

spaces k2(W) and k2
±(W), respectively. By assertion 1) and 4) of Proposition

2.1, every passive past, full, and future behavior W−, W, and W+ on W and
their orthogonal companions have a graph representation with respect to the
above fundamental decompositions of the type

W± = {[ D±u
u ]|u ∈ `2

±(U)
}

, W = {[ Du
u ]|u ∈ `2

}
,

W
[⊥]
± =

{[ y
D∗±y

]∣∣ y ∈ `2
±(Y)

}
, W[⊥] =

{[ y
D∗y

]∣∣ y ∈ `2(Y)
}

,

where D± and D are linear contractions between the respective `2-spaces.
Since S±W± and SW = W we have

S±D± ⊂ D±S± and SD = DS. (2.32)
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Furthermore, if W± and W are related to each other by the relations (2.29)–
(2.31), then

D+ = D|`2+(U), D− = π−D|`2−(U), D∗
+ = π+D∗|`2+(U), D∗

− = D∗|`2−(U). (2.33)

From (2.32) and (2.33) follow that D± and D are convolution operators of
the type

(D+u+)(n) =
n∑

k=0

D(n− k)u(k), u+ ∈ `2
+(U), n ∈ Z+,

(D−u−)(n) =
n∑

k=−∞

D(n− k)u−(k), u− ∈ `2
−(U), n ∈ Z−,

(Du)(n) =
n∑

k=−∞

D(n− k)u(k), u ∈ `2(U), n ∈ Z,

(2.34)

with the same sequence {D(k)}∞k=0 of operators in B(U ;Y) in the three for-
mulas above. The contractivity of D+ implies, in particular, that D(0) is
a contraction. The adjoint of these causal convolution operators are the
anti-causal convolutions operators

(D∗
+y+)(n) =

∞∑
k=n

D∗(n− k)y(k), u+ ∈ `2
+(Y), n ∈ Z+,

(D∗
−y−)(n) =

−1∑
k=n

D∗(n− k)y−(k), u− ∈ `2
−(Y), n ∈ Z−,

(D∗y)(n) =
∞∑

k=n

D∗(n− k)y(k), u ∈ `2(Y), n ∈ Z.

(2.35)

Lemma 2.8. Let W be a Krĕın space.

1) The zero section
W+(0) := {w(0) | w ∈ W+}

of every passive future behavior W+ on W is a maximal nonnegative
subspace of W. Conversely, every maximal nonnegative subspace W0

of W is the zero section of some passive future behavior on W.

2) The (−1)-section

W
[⊥]
− (−1) := {w(−1) | w ∈ W

[⊥]
− }
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of the orthogonal companion of every passive past behavior W− on W
is a maximal nonpositive subspace of W. Conversely, every maximal
nonpositive subspace W−1 of W is the −1-section of the orthogonal
companion of some passive past behavior W−.

Proof. We only prove 1) below, and leave the analogous proof of 2) to the
reader.

Let W = −Y [u] U be a fundamental decomposition of W. By (2.34),
W+(0) has the representation W+(0) =

[
D(0)u0

u0

]
, where D(0) is a contraction

U → Y . By Proposition 2.1, this implies that W+(0) is maximal nonnegative.
Conversely, if W0 is maximal nonnegative in W , then by Proposition 2.1,

W0 has a graph representation W0 = {[ D0u0
u0

] | u0 ∈ U} with respect to the
fundamental decomposition W = −Y [u] U of W , where D0 ∈ B(U ;Y) is

a contraction. It is easy to see that W+ :=
{[

D0u(·)
u(·)

]∣∣∣u(·) ∈ `2
+(U)

}
is a

S+-invariant subspace of k2
+(W), and it follows from Proposition 2.1 that

W+ is maximal nonnegative since it is the graph of a contraction operator
`2
+(U) → `2

+(Y). Thus, W0 is the zero section of the passive future behavior
W+.

2.4 Forward and Backward Conservative Canonical Mod-
els

In this section we shall present two special Hilbert spaces that play a central
role throughout the rest of this article. Among others, they were used in
[AS09b] as the state spaces of two of our canonical realizations of a passive
behavior. These two spaces are special cases of the Hilbert space H(Z)
described in the preceding section.

The Hilbert SpaceH(W+) and the Backward Conservative Canon-
ical Model. Let W+ be a given passive future behavior on a Krĕın signal
spaceW , i.e., W+ is a maximal nonnegative S+-invariant subspace of k2

+(W).
We takeK = k2

+(W) and Z = W+ in the discussion in Section 2.1, and adapt-
ing our earlier formulas for H(Z) and H0(Z) to this case we get the following
result.

Theorem 2.9 ([AS09b, Theorem 4.1]). Let W+ be a passive future behavior
on the Krĕın space k2

+(W). Define

H(W+) = {h+ ∈ k2
+(W)/W+ | sup{−[w+, w+]k2

+(W) | w+ ∈ h+} < ∞},
(2.36)
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and define ‖·‖H(W+) by∥∥h+

∥∥
H(W+)

=
(
sup{−[w+, w+]k2

+(W) | w+ ∈ h+}
)1/2

, h+ ∈ H(W+).

(2.37)
Then H(W+) is a Hilbert space with the norm ‖·‖H(W+) that is continuously
contained in k2

+(W)/W+. The set

H0(W+) :=
{
w†

+ + W+

∣∣ w†
+ ∈ W

[⊥]
+

}
(2.38)

is a dense subspace of H(W+), and

‖w†
+ + W+‖2

H(W+) = −[w†
+(·), w†

+(·)]k2
+(W), w†

+ ∈ W
[⊥]
+ . (2.39)

The set

K(W+) = {w+(·) ∈ k2
+(W) | w+(·) + W+ ∈ H(W+)} (2.40)

is a subspace of k2
+(W), and

(w†
+(·) + W+, w+(·) + W+)H(W+) = −[w†

+(·), w+(·)]k2
+(W),

if w†
+(·) ∈ W

[⊥]
+ and w+(·) ∈ K(W+).

(2.41)

Lemma 2.10 ([AS09b, Lemma 4.3]). If w+(·) ∈ K(W+), where W+ is a
passive future behavior on the Krĕın space W, then S∗+w+ ∈ K(W+) and

‖S∗+w+ + W+‖2
H(W+) ≤ ‖w+ + W+‖2

H(W+) + [w+(0), w+(0)]W . (2.42)

If w+(·) ∈ W
[⊥]
+ , then w+(·) ∈ K(W+) and (2.42) holds as an equality.

Theorem 2.11 ([AS09b, Theorem 7.1]). Let W+ be a passive future behavior
on the Krĕın space W, and let

V
W+

obc =

{[
S∗+w+W+

w+W+

w(0)

]
∈
[
H(W+)
H(W+)
W

] ∣∣∣∣ w ∈ K(W+)

}
, (2.43)

where K(W+) is the space defined in (2.40). Then Σ
W+

obc = (V
W+

obc ;H(W+),W)
is a passive observable backward conservative s/s system whose future behav-

ior is equal to W+. Moreover, (x(·), w(·)) is a stable future trajectory of Σ
W+

obc

if and only if

w ∈ K(W+) and x(n) = (S∗+)nw + W+, n ∈ Z+. (2.44)
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The Hilbert Space H(W⊥
−). Let W− be a given passive past behavior

on a Krĕın signal space W , i.e., W− is a maximal nonnegative S−-invariant

subspace of k2
−(W). Then W

[⊥]
− is a maximal nonpositive S∗−-invariant sub-

space of k2
−(W), and hence it can be interpreted as a maximal nonnega-

tive S∗−-invariant subspace of the anti-space −k2
−(W). This time we take

K = −k2
−(W) and Z = W

[⊥]
− in the definition of H(Z). Adapting our earlier

formulas to this case we get the following result.

Theorem 2.12 ([AS09b, Theorem 4.4]). Let W− be a passive past behavior

on the Krĕın space k2
−(W), and interpret W

[⊥]
− as a maximal nonnegative

S∗−-invariant subspace of the anti-space −k2
−(W). Define

H(W
[⊥]
− ) = {h− ∈ −k2

−(W)/W
[⊥]
− | sup

{
[w−(·), w−(·)]k2

−(W) | w−(·) ∈ h−
}

< ∞},
(2.45)

and define ‖·‖H(W
[⊥]
− )

by

‖h−‖2

H(W
[⊥]
− )

= sup
{
[w−(·), w−(·)]k2

−(W) | w−(·) ∈ h−
}
. (2.46)

Then H(W
[⊥]
− ) is a Hilbert space with the norm ‖·‖H(W

[⊥]
− )

that is continuously

contained in −k2
−(W)/W

[⊥]
− . The set

H0(W
[⊥]
− ) = {w−(·) + W

[⊥]
− | w−(·) ∈ W−} (2.47)

is a dense subspace of H(W
[⊥]
− ), and

‖w− + W
[⊥]
− ‖2

H(W
[⊥]
− )

= [w−(·), w−(·)]k2
−(W), w−(·) ∈ W−. (2.48)

The set

K(W
[⊥]
− ) = {w−(·) ∈ k2

−(W) | w−(·) + W
[⊥]
− ∈ H(W

[⊥]
− )} (2.49)

is a subspace of k2
−(W), and

(w−(·) + W
[⊥]
− , v−(·) + W

[⊥]
− )H(W

[⊥]
− )

= [w−(·), v−(·)]k2
−(W),

if w−(·) ∈ W− and v−(·) ∈ K(W
[⊥]
− ).

(2.50)

Lemma 2.13 ([AS09b, Lemma 4.6]). If w−(·) ∈ K(W
[⊥]
− ), then S−w− ∈

K(W
[⊥]
− ) and

‖S−w− + W
[⊥]
− ‖2

H(W
[⊥]
− )

≤ ‖w− + W
[⊥]
− ‖2

H(W
[⊥]
− )

− [w−(−1), w−(−1)]W . (2.51)

If w−(·) ∈ W−, then w−(·) ∈ K(W
[⊥]
− ) and (2.51) holds as an equality.
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The Past/Future Map and the Forward Conservative Canoni-
cal Model. The passive controllable forward conservative canonical model
developed in [AS09b, Section 8] used the past/future map of a passive full
behavior, which will be defined below.

Lemma 2.14 ([AS09b, Lemma 6.1]). Let W be a passive full behavior on W
with the corresponding passive past behavior W− = π−W and passive future
behavior W+ = W ∩ k2

+(W). Then π+w + W+ ∈ H(W+) whenever w ∈ W,

and there exists a unique contraction ΓW : H(W
[⊥]
− ) → H(W+) satisfying

ΓW(π−w + W
[⊥]
− ) = π+w + W+, w ∈ W. (2.52)

Definition 2.15. The contraction ΓW : H(W
[⊥]
− ) → H(W+) in Lemma 2.14

is called the past/future map of the full behavior W. If W is the full behavior
of a passive s/s system Σ, then we also call ΓW the past/future map of Σ
and denote it by ΓΣ.

Theorem 2.16 ([AS09b, Theorem 8.1 and 8.6]). Let W be a passive full
behavior on the Krĕın space W, and let W− = π−W and W+ = W∩ k2

+(W)
be the corresponding passive past and future behaviors. Let

V̊
W−
cfc =

{[
w−+W

[⊥]
−

S−w−+W
[⊥]
−

w−(−1)

]
∈

[
H(W

[⊥]
− )

H(W
[⊥]
− )

W

]∣∣∣∣∣w− ∈ W−

}
. (2.53)

and let V
W−
cfc be the closure of V̊

W−
cfc in the Krĕın space K− := −H(W

[⊥]
− ) [u]

H(W
[⊥]
− ) [u]W. Then

V
W−
cfc =

{[
π−S−1w+W

[⊥]
−

π−w+W
[⊥]
−

w(0)

]∣∣∣∣∣ w = w− + w+, w− ∈ K(W
[⊥]
− ), w+ ∈ K(W+),

and w+ + W+ = ΓW(w− + W
[⊥]
− ),

}
(2.54)

and Σ
W−
cfc = (V

W−
cfc ;H(W

[⊥]
− ),W) is a passive controllable forward conservative

s/s system with past behavior W− and full behavior W.

The Input and Output Maps of a Passive State/Signal System.
In [AS09b, Section 5] the input and output maps of a passive s/s system were
defined in the following way.

Lemma 2.17 ([AS09b, Lemma 5.10]). Let Σ = (V ;X ;W) be a passive s/s
system with past behavior W−. Then there exists a unique linear contraction

BΣ : H(W
[⊥]
− ) → X , called the input map of Σ, whose restriction to H0(W

[⊥]
− )

is given by
BΣ(w− + W

[⊥]
− ) = x(0), w−(·) ∈ W−, (2.55)

where (x(·), w−(·)) is the unique stable externally generated past trajectory of
Σ whose signal part is w−(·).
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Lemma 2.18 ([AS09b, Lemma 5.2]). Let Σ = (V ;X ;W) be a passive s/s
system with future behavior W+. Then the formula

CΣx0 =

{
w+ +W+

∣∣∣∣ w+(·) is the signal part of some stable future

trajectory (x(·), w+(·)) of Σ with x(0) = x0

}
(2.56)

defines a linear contraction CΣ : X → H(W+), called the output map of Σ.

Lemma 2.19 ([AS09b, Lemma 5.12]). Let Σ = (V ;X ;W) be a passive s/s
system with past behavior W−, full behavior W, future behavior W+, input
map BΣ, and output map CΣ. Then (x(·), w(·)) is an externally generated
stable past trajectory of Σ if and only if

w ∈ W− and x(n) = BΣ(S−n
− w + W

[⊥]
− ), n ≤ 0, (2.57)

and (x(·), w(·)) is an externally generated stable full trajectory of Σ if and
only if

w ∈ W and x(n) = BΣ(π−S−nw + W
[⊥]
− ), n ∈ Z. (2.58)

In the latter case we have, in addition,

CΣx(n) = π+S−nw + W+, n ∈ Z. (2.59)

Lemma 2.20 ([AS09b, Lemma 6.3]). The past/future map ΓΣ of a passive
s/s system Σ = (V ;X ,W) factors into the product

ΓΣ = CΣBΣ (2.60)

of the input map BΣ and the output map CΣ of Σ.

Lemma 2.21 ([AS09b, Lemma 5.15]). If Σ is a passive forward conservative
s/s system, then the input map BΣ of Σ is an isometry with R (BΣ) = RΣ.

Lemma 2.22 ([AS09b, Lemma 5.20]). If Σ is a passive backward conserva-
tive s/s system, then the output map CΣ of Σ is a co-isometry with N (CΣ) =
UΣ.

The Null Controllable and Unconstructable Subspaces. As we
mentioned earlier, every conservative s/s system Σ = (V ;X ,W) is well-
posed both in the forward and the backward time direction in the sense that
to each x0 ∈ X there exists a stable full trajectory of Σ with x(0) = x0.
Much of what we have said earlier remains true if we interchange the roles
played by Z+ and Z−, provided we at the same time replace the notion of
an externally generated trajectory by the notion of a backward externally
generated trajectory. This notion is defined in the natural way: A trajectory

25



(x(·), w(·)) of Σ defined on an interval I with a finite right end-point n is
backward externally generated if x(n) = 0, and if the right end-point of I is
+∞ then we replace the condition x(n) = 0 by limk→∞ x(k) = 0.

The anti-causal future, full, and past behaviors of Σ are the signal parts
of all backward externally generated future, full, and past stable trajectories
of Σ, respectively. Here the “past”, “full”, and “future” still refer to the same
time intervals as before, i.e., “past” refers to Z−, “full” to Z, and “future”
to Z+. By [AS09b, Theorem 3.4], these behaviors are equal to W

[⊥]
+ , W[⊥],

and W
[⊥]
− , respectively, where W+, W, and W− are the future, full, and past

behaviors of Σ.
The causal versions of the input, output, and past/future maps BΣ, CΣ,

and ΓΣ defined above also have anti-causal counterparts B†
Σ, C†Σ, and Γ†Σ,

which we obtain by the same constructions as before, but interchange the
roles of Z+ and Z−, and also interchange the roles of H(W+) and H(W

[⊥]
− ).

Thus, if (x(·), w(·)) is a backward externally generated stable future trajec-
tory of Σ, then x(0) = B†

Σ(w + W+), C†Σx(0) is the equivalence class of all
the signal parts of stable past trajectories (x(·), w(·)) of Σ with x(0) = x0,
and

Γ†W(π+w† + W+) = π−w† + W
[⊥]
− , w† ∈ W[⊥].

As shown in [AS09b, Lemma 5.19], B†
Σ = C∗Σ, and C†Σ = B∗

Σ, and by [AS09b,
Lemma 6.8], Γ†Σ = Γ∗Σ.

Our earlier definition of the reachable and unobservable subspaces RΣ

and UΣ also have a built-in direction of time. These two subspaces do not, in
general, remain invariant under time reversal, and the subspaces RΣ and UΣ

that we defined earlier are the causal versions of these subspaces. We denote
the anti-causal counterparts of RΣ and UΣ by R†

Σ and U†Σ, respectively. Thus,
R† is the closure in X of all states x(n) that appear in backward externally
generated past trajectories (x(·), w(·)) of Σ, and U† consists of all x0 ∈ X
with the property that there exists some past trajectory (x(·), w(·)) of Σ
which with x(0) = x0 for which w(·) vanishes identically. We shall follow the
control theory tradition and call R†

Σ the (approximately) null controllable
subspace. The space U†Σ does not have an established name in control theory,
and here we shall use the name backward unobservable subspace. By an
backward unobservable trajectory we mean a past trajectory (x(·), w(·)) of
Σ for which w(·) vanishes identically. A full trajectory (x(·), w(·)) whose
signal part w(·) vanishes identically will be called a bilaterally unobservable
trajectory. The restriction of such a trajectory to Z+ is unobservable, and
the restriction to Z− is backward unobservable. By [AS07a, Proposition 4.7],
R†

Σ = R (B∗
Σ) = N (CΣ)⊥ = U⊥Σ and U†Σ = N (C∗Σ) = R (BΣ)⊥ = (RΣ)⊥.
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3 The Canonical Conservative Model.

Let W be a Krĕın space, and let W be a passive full behavior on W , with
corresponding past and future behaviors W− = π−W and W+ = W∩k2

+(W).
To shorten the notations we define

H− := H(W
[⊥]
− ), H0

− := H0(W
[⊥]
− ),

H+ := H(W+). H0
+ := H0(W+),

(3.1)

Moreover, we denote

Q−w := π−w + W
[⊥]
− , Q+w := π+w + W+,

Qw := w + (W
[⊥]
− + W+), w ∈ k2(W).

(3.2)

Below we shall encounter the quotient space k2(W)/(W+ u W
[⊥]
− ). Each

vector in this space is an equivalence class of the type x := w +(W+ uW
[⊥]
− )

for some w ∈ k2(W). Above we denoted the corresponding quotient map by
Q, i.e., x = Qw. Since k2(W) = k2

+(W) [u] k2
−(W), and since W+ is a closed

subspace of k2
+(W) and W

[⊥]
− is a closed subspace of k2

−(W), it follows that

we can identify k2(W)/(W+ u W
[⊥]
− ) with the product space

[
k2
+(W)/W+

k2
−(W)/W

[⊥]
−

]
.

We denote the projections of k2(W)/(W+ u W
[⊥]
− ) onto k2

+(W)/W+ and

k2
−(W)/W

[⊥]
− by P+ and P−, respectively. Thus, P± is the operator which

for each w ∈ k2(W) maps x = Qw into Q±w. Since H+ is continuously con-

tained in k2
+(W)/W+ and H− is continuously contained in k2

−(W)/W
[⊥]
− , this

means that
[
H+

H−

]
can be interpreted as a continuously contained subspace

of k2(W)/(W+ u W
[⊥]
− ).

Let

AW :=

[
1H+ ΓW

Γ∗W 1H−

]
. (3.3)

This is a bounded linear operator onH+⊕H−. It is nonnegative since ΓW is a
contractionH− → H+, and by the Schwarz inequality, for all [ x+

x− ] ∈ H+⊕H−,([
x+

x−

]
, AW

[
x+

x−

])
H+⊕H−

= ‖x+‖2
H+

+ 2<(x+, ΓWx−)H+ + ‖x−‖2
H−

≥ ‖x+‖2
H+
− 2‖x+‖H+‖x−‖H− + ‖x−‖2

H− ≥ 0.

We define D(W) to be the range of A
1/2
W , with the range norm, i.e.,∥∥∥∥[x+

x−

]∥∥∥∥
D(W)

=

∥∥∥∥(A1/2
W )[−1]

[
x+

x−

]∥∥∥∥
H+⊕H−

,
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where (A
1/2
W )[−1] is the pseudo-inverse of A

1/2
W , i.e.,

[
x′+
x′−

]
:= (A

1/2
W )[−1] [ x+

x− ] is

the unique vector in R (AW) which satisfies [ x+
x− ] = A

1/2
W

[
x′+
x′−

]
. With respect

to this inner product in the range space the operator A
1/2
W |R(AW) is a unitary

operator mapping R (AW) onto D(W). In particular, D(W) is a Hilbert
space.

Lemma 3.1. Define AW by (3.3).

1) R (AW) is a dense subset of the Hilbert space D(W), D(W) is a dense
subspace of R (AW), and D(W) is continuously contained in H+⊕H−.

2) AW is bounded as an operator H+ ⊕H− → D(W).

3) If x ∈ D(W) and y = AWy′, then y ∈ D(W), and (x, y)D(W) =
(x, y′)H−⊕H+.

4) AW|H− =
[

ΓW
1H−

]
is an isometry H− → D(W).

5) AW|H+ =
[

1H+

Γ∗W

]
is an isometry H+ → D(W).

Proof of 1). ClearlyR (AW) ⊂ R
(
A

1/2
W

)
= D(W). As is well-known,R

(
A

1/2
W

)
=

R (AW), and thus D(W) is a dense subspace ofR (AW). Let U be the unitary

map U := A
1/2
W |R(AW) : R (AW) → D(W). Since D(W) is a dense subspace of

R (AW), the image of D(W) under U is a dense subspace of D(W). But this
image is equal to R (AW). Thus, R (AW) is dense in D(W).

To show that D(W) is continuously contained in H+⊕H− we take some

x ∈ D(W). Then x = A
1/2
W y for some y ∈ R (AW), and ‖x‖D(W) = ‖y‖H+⊕H− .

Therefore

‖x‖2
H+⊕H− = ‖A1/2

W y‖2
H+⊕H− = (y, AWy)2

H+⊕H− ≤ ‖AW‖2‖y‖2
H+⊕H−

= ‖AW‖2‖x‖2
D(W).

This shows that D(W) is continuously embedded in R (AW), and hence con-
tinuously contained in H+ ⊕H−.

Proof of 2). With the same notation as in the proof of 1), AW factors into

AW = UA
1/2
W , where A

1/2
W is a bounded linear operator in H+⊕H−, and U is

a unitary operator R (AW) → D(W). Thus AW is bounded as an operator
H+ ⊕H− → D(W).
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Proof of 3). If, in addition, x = AWx′ for some x′ ∈ H+ ⊕H−, then

(x, y)D(W) = (AWx′, AWy′)D(W) = (A
1/2
W x′, A

1/2
W y′)H+⊕H−

= (AWx′, y′)H+⊕H− = (x, y′)H+⊕H− .

If x is an arbitrary vector in D(W), then there exists a sequence xn ∈ R (AW)
such that xn → x in D(W) as n →∞. Since D(W) is continuously contained
in H+ ⊕H−, it is also true that xn → x in H+ ⊕H−. Consequently

(x, y)D(W) = lim
n→∞

(xn, y)D(W) = lim
n→∞

(xn, y
′)H+⊕H− = (x, y′)H+⊕H− .

Proof of 4). This follows from 3) since we have for all x− ∈ H−,∥∥∥[ ΓW
1H−

]
x−

∥∥∥2

D(W)
=
([

ΓW
1H−

]
x−,

[
ΓW
1H−

]
x−

)2

D(W)
= (AWx−, AWx−)D(W)

= (x−, AWx−)H+⊕H− =
(
x−,

[
ΓW
1H−

]
x−

)
H+⊕H−

= ‖x−‖2
H− .

The proof of 5) is analogous.

In the sequel we shall throughout interpret AW as a bounded linear oper-
ator H+⊕H− → D(W), instead of interpreting AW as a self-adjoint operator
in H+⊕H−. In particular, in this setting the operator AW is not self-adjoint
unless D(W) = H+ ⊕ H−, i.e., unless ΓW = 0. When the duality in the
range space is taken with respect to the inner product in D(W) instead of
the inner product in H+ ⊕ H− the operator A∗

W becomes a bounded linear
operator D(W) → H+ ⊕H−.

Recall that we denoted the projections of k2(W)/(W+ u W
[⊥]
− ) onto

k2
+(W)/W+ and k2

−(W)/W
[⊥]
− by P+ and P−, respectively. We denote the

restrictions of P± to
[
H−
H+

]
by Π±, so that Π± [ x+

x− ] = x± for all [ x+
x− ] ∈

[
H+

H−

]
.

Lemma 3.2. Let AW be the operator defined in (3.3), interpreted as bounded
linear operator H+ ⊕ H− → D(W), whose adjoint A∗

W is a bounded linear
operator D(W) → H+ ⊕H−.

1) A∗
W is equal to the embedding operator D(W) ↪→

[
H+

H−

]
.

2) (AW|H+)∗ = Π−|D(W) and (AW|H−)∗ = Π+|D(W). (In the computation
of these adjoints we interpret AW|H± as operators H± → D(W).)
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Proof. By Part 3) of Lemma 3.1, for all x ∈ D(W) and all y′ ∈ H+ ⊕H−,

(x, AWy′)D(W) = (x, y′)H−⊕H+ .

This proves Claim 1). If we in the same computation replace y′ ∈ H+ ⊕H−
by either y′ ∈ H+ or y′ ∈ H− we get Claim 2).

As the following lemma shows, the subspace D0(W) defined by

D0(W) :=
{
Q(z + z†)

∣∣ z ∈ W, z† ∈ W[⊥]
}

(3.4)

is dense in D(W).
We define

L(W) = {w ∈ k2(W) | Qw ∈ D(W)},
L0(W) = {z + z† | z ∈ W, z† ∈ W[⊥]},

(3.5)

and

(w1, w2)L(W) = (Qw1, Qw2)D(W), w1, w2 ∈ L(W), (3.6)

‖w‖L(W) = ‖Qw‖D(W), w ∈ L(W). (3.7)

Then (·, ·)L(W) is a semi-inner product in L(W) and ‖·‖L(W) is a semi-norm
in L(W).

Lemma 3.3. 1) If z ∈ W and z† ∈ W[⊥], then Q(z + z†) = AW

[
Q+z†

Q−z

]
.

In particular, D0(W) ⊂ R (AW) and L0(W) ⊂ L(W).

2) D0(W) is a dense subspace of D(W).

3) If w ∈ L(W), z ∈ W, and z† ∈ W[⊥], then

(w, z)L(W) = (Q−w,Q−z)H− = [π−w, π−z]k2
−(W) (3.8)

(w, z†)L(W) = (Q+w,Q+z†)H+ = −[π+w, π+z†]k2
+(W). (3.9)

In particular,

‖z‖2
L(W) = ‖Q−z‖2

H− = [π−z, π−z]k2
−(W), z ∈ W, (3.10)

‖z†‖2
L(W) = ‖Q+z†‖2

H+
= −[π+z†, π+z†]k2

+(W), z† ∈ W[⊥]. (3.11)

Step 1: Proof of 1). Let z ∈ W. Then π+z + W+ = ΓW(π−z + W
[⊥]
− ), and

consequently

Qz =

[
Q+z
Q−z

]
=

[
ΓW

1H−

]
Q−z = AWQ−z.
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An analogous computation shows that Qz† = AWQ+z† for all z† ∈ W[⊥].

Thus, Q(z + z†) = AW

[
Q+z†

Q−z

]
.

Step 2: D0 is a dense subspace of D(W). Since H0
± is dense in H±, and

since R (AW) is dense in D(W), the image of H0
+ ⊕ H0

− under AW is dense
in D(W). However, by Claim 1, this image is equal to D0(W).

Step 3: Proof of (3.8)–(3.11). By Part 3) of Lemma 3.1 and Theorem
2.12

(w, z)L(W) = (Qw, Qz)D(W) = (Qw, AWQ−z)D(W)

= (Qw, Q−z)H+⊕H− = (Q−w,Q−z)H−
= [π−w, π−z]k2

−(W).

This proves (3.8), and an analogous computation together with Theorem 2.9
can be used to prove (3.9). The equalities (3.10) and (3.11) follow directly
from (3.8) and (3.9).

Lemma 3.4. 1) If w ∈ L(W), then S−1w ∈ L(W), and

‖S−1w‖2
L(W) = [w(0), w(0)]W + ‖w‖2

L(W). (3.12)

2) If w ∈ L(W), then Sw ∈ L(W), and

‖Sw‖2
L(W) = −[w(−1), w(−1)]W + ‖w‖2

L(W). (3.13)

3) If w1, w2 ∈ L(W), then

(w1, S
−1w2)L(W) = [w1(−1), w2(0)]W + (Sw1, w2)L(W). (3.14)

Step 1: Proof of 1). It follows from Lemma 3.3 that if w ∈ L0(W), then
S−1w ∈ L0(W) and (3.12) holds. Now let w ∈ L(W), and choose xm ∈
D0(W) such that xm → Qw in D(W) as m → ∞. Let R be a bounded
left-inverse of the quotient map Q, and define wm := w+R(xm−Qw). Then
Qwm = xm → Qw in D(W), wm ∈ L0(W), and wm → w in k2(W) as
m → ∞. It then follows from (3.12) applied to wm ∈ L0(W) that QS−1wm

is a Cauchy sequence in D(W), and hence it tends to a limit y in D(W)
satisfying ‖y‖2

D(W) = [w(0), w(0)]W + ‖Qw‖2
D(W). By the continuity of Q and

S−1,
RQS−1w = RQS−1 lim

m→∞
wm = R lim

m→∞
QS−1wm = Ry,

and hence y = QRy = QS−1w. This proves Claim 1).
Step 2: Proof of 2) This proof is analogous to the proof of 1).
Step 3: Proof of (3.14). By polarizing (3.12) we get

(S−1w1, S
−1w2)L(W) = [w1(0), w2(0)]W + [w1, w2]

2
L(W).

for all w1, w2 ∈ L(W). If we here replace w1 by Sw1, then we get (3.14).
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Theorem 3.5. Let W be a passive full behavior on the Krĕın space W, and
let W− = π−W and W+ = W∩k2

+(W) be the corresponding passive past and

future behaviors. Let D(W) be the range space of the operator A
1/2
W , where

AW is the nonnegative self-adjoint operator on H+ ⊕ H− defined by (3.3),
and define L(W) by (3.5). The the subspace Vsc defined by

Vsc :=

{[
QS−1w

Qw
w(0)

] ∣∣∣∣ w ∈ L(W)

}
. (3.15)

is the generating subspace of a simple conservative s/s system Σsc = (Vsc;D(W),W)

whose full behavior is W. The input map of Σsc is BΣsc =
[

ΓW
1H−

]
with B∗

Σ =

Π−|D(W), and the output map of Σsc is CΣsc = Π+|D(W) with C∗Σsc
=
[

1H+

Γ∗W

]
.

Moreover, (x(·), w(·)) is a stable externally generated full trajectory of Σsc if
and only if

w ∈ W and x(n) = QS−nw, n ∈ Z.

Proof. Step 1: Vsc is a neutral subspace of K. This follows from equality
(3.12).

Step 2: Vsc = V
[⊥]
sc , and hence Vsc generates a conservative s/s system

Σsc = (Vsc;D(W),W). Our proof of Step 2 is based on Lemma 2.2 with
Z = X = D(W). Clearly condition (a) in that lemma holds because of the
definition of L(W), and (c) holds because of Lemma 3.4. The set described in
condition (b) is equal to the zero section W+(0) = {w(0) ∈ W | w ∈ W+},
which according to Lemma 2.8 is maximal nonnegative, and and the set
described in condition (d) is is equal to the −1-section W

[⊥]
− (−1) = {w(−1) ∈

W | w ∈ W
[⊥]
− }, which according to Lemma 2.8 is maximal nonpositive.

Thus, by Lemma 2.2, Vsc is Lagrangian, and hence it generates a conservative
s/s system Σsc = (Vsc;D(W),W).

Step 3: The behavior of Σsc is equal to W. If w ∈ W+, then Qw ∈ D(W),
and it follows from (3.15) that (x(·), w(·)), where x(n) = QS−nw, n ∈ Z+,
is an externally generated stable future trajectory of Σsc. This implies that
W+ ⊂ WΣsc

+ . Since W+ is maximal nonnegative and WΣsc
+ is nonnegative,

this implies that W+ = WΣsc
+ . From this follows that also W− = WΣsc

− and
W = WΣsc .

Step 4: (x(·), w(·)) is an externally generated full trajectory of Σsc if and
only if w ∈ W and x(n) = QS−nw, n ∈ Z. By the definition of W, if
(x(·), w(·)) is an externally generated full trajectory of Σsc, then w ∈ W.
Conversely, let w ∈ W. Then w ∈ L(W), and it follows from (3.15) that
(x(·), w(·)) is a full trajectory of Σsc, where x(n) = QS−nw, n ∈ Z. This
trajectory is externally generated, since, according to Lemma 3.3

‖x(n)‖2
D(W) = ‖QS−nw‖L(W) = [π−S−nw, π−S−nw]k2

−(W) → 0 as n → −∞.
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As an externally generated full trajectory (x(·), w(·)) is determined uniquely
by it signal part w (see Lemma 2.19), it follows that every externally gener-
ated trajectory (x(·), w(·)) of Σsc satisfies x(n) = QS−nw, n ∈ Z.

Step 5: The input map of Σ is
[

ΓW
1H−

]
. According to Lemma 2.17, the op-

erator BΣsc is the unique operator H− → D(W) which satisfies BΣscQ−w =
x(0) for every w ∈ W, where x(·) is the state component of the unique ex-
ternally generated trajectory (x(·), w(·)) whose signal part is w. Let w ∈ W.
By Step 4,

x(0) = Qw =

[
Q+w
Q−w

]
=

[
ΓW

1H−

]
Q−w.

Thus, BΣsc =
[

ΓW
1H−

]
.

Step 6: The output map of Σ is Π+|D(W). According to Lemma 2.18, CΣsc

is the operator which maps x0 ∈ D(W) into the equivalence class consisting
of all the signal parts w(·) of all stable future trajectories (x(·), w(·)) of
Σsc satisfying x(0) = x0. Let x0 ∈ D(W), and choose some w0 ∈ L(W)
such that Qw0 = x0. It follows from (3.15) that (x(·), w0(·)), where x(n) =
QS−nwo, n ∈ Z+, is a stable future trajectory of Σsc satisfying x(0) = x0.
If (x1(·), w1(·)) is another stable future trajectory of Σsc satisfying x1(0) =
x(0) = x0, then (x − x1, w0 − w−) is an externally generated stable future
trajectory of Σsc, and hence w1 − w0 ∈ W+. Thus, the equivalence class
of all the signal parts w(·) of all stable future trajectories (x(·), w(·)) of Σsc

satisfying x(0) = x0 is equal to Q+w0. Consequently, CΣsc = Π+|D(W).
Step 7: Σsc is simple. According to Lemma 3.1, the linear span of the

ranges of BΣsc =
[

ΓW
1W−

]
and C∗Σsc

=
[

1W+

Γ∗W

]
is dense in the state space D(W),

and hence Σsc is simple.

Let R be the reachable subspace, U the unobservable subspace, R† the
null controllable subspace, and U† the backward unobservable subspace of
Σsc. As we noticed earlier, R† = U⊥ and U† = R⊥. By Lemma 3.2 and
Theorem 3.5,

R = R (BΣsc) = R
([

ΓW
1H−

])
=
{[

ΓWx−
x−

] ∣∣ x− ∈ H−
}
,

U† = N
(
B∗

Σsc

)
= N

(
Π−|D(W)

)
= {Qw | w ∈ L(W) ∩ k2

+(W)},

R† = R
(
C∗Σsc

)
= R

([
1H+

Γ∗W

])
=
{[ x+

Γ∗Wx+

] ∣∣ x+ ∈ H+

}
,

U = N (CΣsc) = N
(
Π+|D(W)

)
= {Qw | w ∈ L(W) ∩ k2

−(W)}.

(3.16)
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The orthogonal projections onto these subspaces are given by

PR = BΣscB
∗
Σsc

=
[

ΓWΠ−|D(W)

Π−|D(W)

]
,

PU† = 1D(W) − PR = Π+|D(W) − ΓWΠ−|D(W),

PR† = C∗Σsc
CΣsc =

[
Π+|D(W)

Γ∗WΠ+|D(W)

]
,

PU = 1D(W) − PR† = Π−|D(W) − Γ∗WΠ+|D(W),

(3.17)

4 The Full Stable Trajectories of a Conserva-

tive State/Signal System.

The input and output maps BΣ and CΣ together with their anti-causal coun-
terparts B†

Σ = C∗Σ and C†Σ = B∗
Σ of a conservative s/s system Σ can be used

to describe the relationship between the state component x(·) and the signal
component w(·) of an arbitrary stable full trajectory (x(·), w(·)) of Σ.

Theorem 4.1. Let Σ = (V ;X ,W) be a conservative s/s system with be-
havior W, input map BΣ, output map CΣ, reachable subspace R = R (BΣ),
unobservable subspace UΣ = N (CΣ), null controllable subspace R†

Σ = R (C∗Σ)
and backward unobservable subspace U†Σ = N (B∗

Σ).

1) The operator

Cfull
Σ :=

[
CΣ
B∗

Σ

]
(4.1)

is a co-isometry from X onto D(W), with kernel X0 := N
(
Cfull

Σ

)
=

U ∩ U†. Thus, Σ is simple if and only if Cfull
Σ is injective.

2) Denote the adjoint of Cfull
Σ by Bfull

Σ := (Cfull
Σ )∗. Then Bfull

Σ is an isometry
D(W) → X with range X⊥

0 = R + R†, which is uniquely determined
by the fact that

BΣ = Bfull
Σ

[
ΓW
1H−

]
, C∗Σ = Bfull

Σ

[
1H+

Γ∗W

]
. (4.2)

In articular, Bfull
Σ is surjective if and only if Σ is simple.

3) A full trajectory (x(·), w(·)) of Σ is stable if and only if w ∈ k2(W).

4) If (x(·), w(·)) is a stable full trajectory of Σ, then w ∈ L(W), QS−nw =
Cfull

Σ x(n), and PX⊥0 x(n) = Bfull
Σ QS−nw for all n ∈ Z.

5) Conversely, let w ∈ L(W), and define x(n) = Bfull
Σ QS−nw, n ∈ Z.

Then (x(·), w(·)) is a stable full trajectory of Σ.
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6) The state component x(·) of a stable full trajectory (x(·), w(·)) of Σ is
determined uniquely by the signal component w(·) if and only if Σ is
simple.

7) If Σ is simple, then Σ is unitarily similar to the canonical simple con-
servative model ΣW

sc with unitary similarity operator Cfull
Σ .

Proof of 1). The claim about the kernel of Cfull
Σ is trivial. Therefore, to prove

1) it suffices to show that the restriction of Cfull
Σ to a dense subspace of X⊥

0 is
isometric, and that the range of this restriction is a dense subspace of D(W).
We choose this dense subspace of X⊥

0 to be the set of all vectors x0 ∈ X of
the form

x0 = BΣQ−z + C∗ΣQ+z†,

where z ∈ W and z† ∈ W[⊥].
By Lemmas 2.21 and 2.22, both BΣ and C∗Σ are isometric, and since

ΓW = CΣBΣ, Q+z = ΓWQ−z and Q+z† = Γ∗WQ+z†, we have

‖x0‖2
X = ‖BΣQ−z + C∗ΣQ+z†‖2

X

= ‖BΣQ−z‖2
X + ‖C∗ΣQ+z†‖2

X + 2<(BΣQ−z, C∗ΣQ+z†)X

= ‖Q−z‖2
H− + ‖Q+z†‖2

H+
+ 2<(ΓWQ−z, Q+z†)H+

=
([

Q+z†

Q−z

]
,
[

Q+(z+z†)

Q−(z+z†)

])
H+⊕H−

.

On the other hand,

Cfull
Σ x0 =

[
CΣ

B∗
Σ

]
(BΣQ−z + C∗ΣQ+z†) =

[
ΓWQ−z + Q+z†

Q−z + Γ∗Q+z†

]
= AW

[
Q+z†

Q−z

]
.

Thus, by Lemma 3.1, Cfull
Σ x0 ∈ D(W), and

‖Cfull
Σ x0‖2

D(W) =
([

Q+z†

Q−z

]
, AW

[
Q+z†

Q−z

])
H+⊕H−

=
([

Q+z†

Q−z

]
,
[

Q+(z+z†)

Q−(z+z†)

])
H+⊕H−

= ‖x0‖2
X .

This proves that the restriction of Cfull
Σ to a dense subspace of X⊥

0 is a iso-
metric map of this subspace into D(W). The image of the same subspace is
equal to D0(W), which is dense in D(W). Thus, Cfull

Σ is a unitary map from
X⊥

0 onto D(W), and hence a co-isometric map from X onto D(W).
Proof of 2). We begin by observing that (4.2) defines Bfull

Σ uniquely, since
it defines Bfull

Σ on R (AW), which is dense in D(W). Thus, it suffices to prove
that (4.2) holds.
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Let z ∈ W, and let x0 = BΣQ−z. Then by the proof of Step 1, Cfull
Σ x0 =

Qz. On the other hand, since Cfull
Σ Bfull

Σ = 1D(W) we also have

Cfull
Σ Bfull

Σ Qz = Qz = Cfull
Σ BΣQ−z.

We also know that both x0 = BΣQ−z and Bfull
Σ Qz lie in X⊥

0 , and that Cfull
Σ

is injective on X⊥
0 . Thus,

BΣQ−z = Bfull
Σ Qz = Bfull

Σ

[
ΓW
1H−

]
Q−z

for all z ∈ W. Thus, BΣx− = Bfull
Σ

[
ΓW
1H−

]
x− for all x− ∈ H0

−. The subspace

H0
− is dense in H−, and thus BΣ = Bfull

Σ

[
ΓW
1H−

]
. An analogous argument

shows that C∗Σ = Bfull
Σ

[
1H+

Γ∗W

]
.

Proof of 3). By definition of a stable trajectory, if (x(·), w(·)) is a stable
full trajectory, then w ∈ k2(W). Conversely, if w ∈ k2(W), then it follows
from the balance equation

−‖x(n + 1)‖2
X + ‖x(m)‖2

X +
n∑

k=m

[w(n), w(n)]W

that ‖x(n)‖2
X has a finite limit at ±∞, and so x ∈ `∞(W).

Proof of 4). If (x(·), w(·)) is a stable full trajectory of Σ, and if we shift
this trajectory to the left or right, then the shifted trajectory is still a stable
full trajectory of Σ. Thus, it suffices to prove Claim 4) with n = 0.

If (x(·), w(·)) is a stable full trajectory of Σ, then the restriction of this
trajectory to Z+ is a stable future trajectory of Σ, and by the definition of
CΣ, this implies that Q+w = CΣx(0). The same argument applied to the anti-
causal adjoint system implies that Q−w = B∗

Σx(0), and consequently, Qw =
Cfull

Σ x(0). By applying Bfull
Σ to this identity we get Bfull

Σ Qw = Bfull
Σ Cfull

Σ x(0) =
PX⊥0 x(0).

Proof of 5). We first claim that if w = z + z†, where z ∈ W and z† ∈
W[⊥], and if we x(n) = Bfull

Σ QS−nw, n ∈ Z, then (x(·), w(·)) is a stable full
trajectory of Σ.

We first consider the case where w = z ∈ W. Then, by Claim 2),

x(n) = Bfull
Σ QS−nz = Bfull

Σ

[
ΓW
1H−

]
Q−S−nz = BΣQ−S−nz,

and it follows from Lemma 2.19 that (x(·), w(·)) is a stable full trajectory of
Σ. An analogous argument can be used in the case where w = z† ∈ W[⊥].
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Let now w be an arbitrary vector in L(W). Choose some sequence ym ∈
D0(W) such that ym → Qw in D(W) as m → ∞. Let R be a bounded
left-inverse of the quotient map Q, and define wm := w +R(ym−Qw). Then
Qwm = ym → Qw in D(W), wm ∈ L0(W), and wm → w in k2(W) as m →
∞. Define x(n) = Bfull

Σ QS−nw and xm(n) = Bfull
Σ QS−nwm, n ∈ Z. Then

(xm(·), wm(·)) is a stable full trajectory of Σ for all m, and xm(n) → x(n) for
all n ∈ Z as m → ∞. Since V is closed, also (x(·), w(·)) is a full trajectory
of Σ, and it is stable since w ∈ k2(W).

Proof of 6). If Σ is simple, then X⊥
0 = X , and it follows from 4) that the

state component x(·) of a stable full trajectory (x(·), w(·)) of Σ is determined
uniquely by w(·). Conversely, suppose that Σ has a stable full trajectory
(x(·), 0), where x(·) is not identically zero. Then it follows from 4) that
Cfull

Σ x(n) = 0 for all n ∈ Z, and hence Σ is not simple.

Proof of 7). Let
[

x1
x0
w0

]
∈ V , and choose some arbitrary stable full tra-

jectory (x(·), w(·)) such that x(0) = x0, x(1) = x1, and w(0) = w0; this
is possible since Σ is well-posed both in the forward and in the backward
time direction. By Parts 5) and 6), the unique full trajectory (xsc(·), w(·))
of Σsc whose signal part is w(·) satisfies xsc(n) = QS−nw, n ∈ Z, and
by the same argument, x(n) = Bfull

Σ QS−nw, n ∈ Z. Thus, in particular,

x0 = x(0) = Bfull
Σ xsc(0) and x1 = x(1) = Bfull

Σ xsc(1), where
[

xsc(1)
xsc(0)

w0

]
∈ Vsc.

This gives

V ⊂

Bfull
Σ 0 0
0 Bfull

Σ 0
0 0 1W

Vsc.

By interchanging the roles of Σ and Σsc we get the opposite inclusion. Thus, Σ
is unitarily similar ΣW

sc with unitary similarity operator (Bfull
Σ )−1 = Cfull

Σ .

Alternative proof of Theorem 3.5. Let Σ = (V ;X ,W) be an arbitrary simple
conservative s/s realization of W; that such a s/s system exists follows from
[AS07a, Theorem 8.6]. It follows from Theorem 4.1 that V has the image
representation

V =

{[
Bfull

Σ QS−1w

Bfull
Σ Qw

w(0)

] ∣∣∣∣ w ∈ L(W)

}
.

If we to this system apply a unitary similarity transform with similarity op-
erator Cfull

Σ = (Bfull
Σ )∗, then we get another simple conservative s/s realization

of W. The generating subspace that we get in this way is the same one which
is given in (3.15).

The above proof of Theorem 3.5 is very short, but it is not fully self-
contained in the sense that it is based on the knowledge that every passive
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full behavior has a simple conservative realization. The original proof given
Section 3 is complete in the sense that it does not rely on any a priori
knowledge of the existence of a simple conservative realization of W.

Corollary 4.2. Let W be a full behavior on the Krĕın space W. Then the
sequence (x(·), w(·)) is a stable full trajectory of ΣW

sc if and only if

w ∈ L(W) and x(n) = QS−nw, n ∈ Z.

Proof. This follows from Theorem 4.1.

Definition 4.3. We call the operators Cfull
Σ and Bfull

Σ defined in Theorem
4.1 the bilateral input and output maps, respectively, of the conservative s/s
system Σ.

5 Incoming and Outgoing Inner Channels

In this section we throughout let Σ = (V ;X ,W) be a conservative s/s system
with full behavior W, input map BΣ, and output map CΣ. Let RΣ = R (BΣ)
be the reachable subspace, let UΣ = N (CΣ) be the unobservable subspace,
let R†

Σ = R (C∗Σ) be the null controllable subspace, and let U†Σ = N (B∗
Σ) be

the backward unobservable subspace of Σ.

Lemma 5.1. Let Σ = (V ;X ,W) be a conservative s/s system.

1) There exists a unique isometry A− on UΣ such that (x(·), 0) is a un-
observable future trajectory of Σ if and only if x(n) = An

−x(0). Every
unobservable future trajectory (x(·), 0) is uniquely determined by the
value of x(n) for any fixed n ∈ Z+.

2) There exists a unique isometry A+ on U†Σ such that (x(·), 0) is a back-

ward unobservable past trajectory of Σ if and only if x(n) = A
|n|
+ x(0),

n ∈ Z−. Every backward unobservable past trajectory (x(·), 0) is uniquely
determined by the value of x(n) for any fixed n ∈ Z−.

Proof. By the definition of UΣ, for each x0 ∈ UΣ there exists a unique un-
observable future trajectory (x(·), 0) of Σ with x(0) = x0. Let A− be the
mapping from x0 to x(1). That A− is an isometry follows from the con-
servativity of Σ which implies that ‖x(1)‖2

X = ‖x(0)‖2
X . If we left-shift an

unobservable trajectory by n steps, then the shifted trajectory is still an un-
observable trajectory, and hence x(n+1) = A−x(n) for all n ∈ Z+. Since A−
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is isometric, the condition x(n + 1) = A−x(n) implies x(n) = A∗
−x(n + 1),

and therefore

x(n + 1) = A−x(n), x(n) = A∗
−x(n + 1), n ∈ Z+. (5.1)

Clearly, if we know x(n) for any fixed n ∈ Z+, then (5.1) determines the full
future trajectory uniquely.

The proof of Claim 2) is analogous. This time (5.1) is replaced by

x(n) = A+x(n + 1), x(n + 1) = A∗
+x(n), n ∈ Z−. (5.2)

Definition 5.2. We call (A∗
+, U†) the incoming inner channel and (A−; U)

the outgoing inner channel of the conservative s/s system Σ, where A+ and
A− are the operators defined in Lemma 5.1.

Theorem 5.3. Let Σ = (V ;X ,W) be a conservative s/s system with bilateral
input and output maps Bfull

Σ and Cfull
Σ , respectively, and incoming and outgoing

inner channels (A∗
+; U†Σ) and (A−; UΣ), respectively. Then

UΣ ∩ U†Σ = N
(
Cfull

Σ

)
= R

(
Bfull

Σ

)⊥
= ∩n∈Z+An

−UΣ = ∩n∈Z+An
+U†Σ. (5.3)

Consequently, the following four conditions are equivalently:

1) Σ is simple;

2) The operator A− is completely non-unitary.

3) The operator A+ is completely non-unitary.

4) Σ has no nontrivial bilaterally unobservable trajectory.

Proof. Step 1: UΣ∩U†Σ = N
(
Cfull

Σ

)
= R

(
Bfull

Σ

)⊥
. This follows from Theorem

4.1.
Step 2: U ∩ U† ⊂

(
∩n∈Z+An

−U
)
∩
(
∩n∈Z+An

+U†Σ

)
. Let x0 ∈ UΣ ∩ U†Σ.

Then by the definitions of UΣ and U†Σ, Σ has a bilaterally unobservable full
trajectory (x(·), 0) with x(0) = x0. The set of all bilaterally unobservable full
trajectories of Σ is invariant under both right and left shift, and together with
(5.1) and (5.2) this implies that for all n ∈ Z we have x(0) = An

−x(−n) =

An
+x(n). Consequently x0 ∈

(
∩n∈Z+An

−U
)
∩
(
∩n∈Z+An

+U†Σ

)
.
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Step 3: ∩n∈Z+An
−U ⊂ U ∩ U† and ∩n∈Z+An

+U†Σ ⊂ U ∩ U†. Denote X0 =
∩n∈Z+An

−U. Clearly

A−X0 ⊂ X0 = ∩n≥0A
n
−U ⊂ ∩n≥1A

n
−U = A−X0.

Thus, A−X0 = X0, and hence A0 := A−|X0 maps X0 unitarily onto itself.
Let x0 ∈ X0, and define x(n) = An

0x0, n ∈ Z. Then x(n + 1) = A−x(n),

n ∈ Z. By the definition of A−,

[
A−x(n)

x(n)
0

]
∈ V , n ∈ Z, and hence (x(·), 0)

is a bilaterally unobservable trajectory of Σ. By the definitions of UΣ and
U†Σ, this implies that x(0) = x0 ∈ U ∩ U†. Thus ∩n∈Z+An

−U ⊂ U ∩ U†. An

analogous argument shows that also ∩n∈Z+An
+U†Σ ⊂ U ∩ U†.

Lemma 5.4. Let Σ = (V ;X ,W) be a conservative s/s system with incoming
and outgoing inner channels (A∗

+; U†Σ) and (A−; UΣ), respectively. Then

PU†Σ
x1 = A∗

+PU†Σ
x0 and PUΣ

x0 = A∗
−PUΣ

x1 whenever
[

x1
x0
w0

]
∈ V. (5.4)

Proof. Let z0 ∈ U†Σ and
[

x1
x0
w0

]
∈ V . By Lemma 5.1,

[ z0
A+z0

0

]
∈ V and since

V = V [⊥] we get

0 =
[[ z0

A+z0

0

]
,
[

x1
x0
w0

]]
K

= −(z0, x1)X + (A+z0, x0)X

= −(z0, PU†Σ
x1)U∗Σ + (A+z0, PU†Σ

x0)UΣ∗

= (z0,−PU†Σ
x1 + A∗

+PU†Σ
x0)X .

This being true for all z0 ∈ U†Σ we have PU†Σ
x1 = A∗

+PU†Σ
x0. An analogous

computation shows that PUΣ
x0 = A∗

−PUΣ
x1.

Theorem 5.5. Let Σ = (V ;X ,W) be a conservative s/s system.

1) If (x(·), w(·)) is a future trajectory of Σ, then

PU†Σ
x(n) = (A∗

+)nPU†Σ
x(0), n ≥ 0. (5.5)

In particular, ‖PU†Σ
x(n)‖X is a nonincreasing function of n.

2) If (x(·), w(·)) is a past trajectory of Σ, then

PUΣ
x(n) = (A∗

−)|n|PUΣ
x(0), n ≤ 0. (5.6)

In particular, ‖PUΣ
x(n)‖X is a nonincreasing function of |n|.
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3) The following three assertions are equivalent:

(a) Σ is simple;

(b) PU†Σ
x(n) → 0 in X as n →∞ for every future trajectory (x(·), w(·))

of Σ;

(c) PUΣ
x(n) → 0 in X as n → −∞ for every past trajectory (x(·), w(·))

of Σ;

Proof. That (5.5) and (5.6) hold follows from Lemma 5.4, and the mono-
tonicity of the norm follows from the fact that A∗

+ and A∗
− are contractions.

By the Wold decomposition (see, e.g., [SF70, Theorem 1.1, p. 3]), A±
is completely non-unitary if and only if A∗

± is strongly stable, and hence 3)
follows from 1) and 2) combined with Theorem 5.3.

Suppose that Σ is simple, and denote N− = N
(
A∗
−
)
. Since A− is com-

pletely non-unitary it follows from the Wold decomposition [SF70, Theorem
1.1, p. 3] that UΣ = ⊕∞n=0A

n
−N−. This makes it possible to define a unitary

map U− : UΣ → `2
−(N−) by

U−x = {PN−(A∗
−)−(k+1)}−∞k=−1, x ∈ UΣ. (5.7)

The operator U− intertwines A− with the outgoing shift on `2
−(N−) in the

sense that
U−A− = S∗−U−. (5.8)

Analogously we define N+ = N
(
A∗

+

)
. Then U†Σ = ⊕∞n=0A

n
+N+, and this

makes it possible to define a unitary map U+ : U†Σ → `2
+(N+) by

U+x = {PN+(A∗
+)k}∞k=0, x ∈ U†Σ. (5.9)

The operator U+ intertwines A+ with the outgoing shift on `2
+(N+) in the

sense that
U+A+ = S+U+. (5.10)

In the case of the system Σsc = (Vsc;D(W),W) it is possible to give
more explicit formulas for the operators A± defined in Lemma 5.1 and their
adjoints.

Lemma 5.6. In the case of the canonical simple conservative system Σsc =
(Vsc;D(W),W) with behavior W and past/future map ΓW the operators A∓
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and their adjoints are given by the following formulas:

A−Qw = QS−1w, w ∈ L(W), π+w = 0,

A∗
−Qw =

[
0

Q− − Γ∗WQ+

]
Sw, w ∈ L(W), π+w = 0,

A+Qw = QSw, w ∈ L(W), π−w = 0,

A∗
+Qw =

[
Q+ − ΓWQ−

0

]
S−1w, w ∈ L(W), π−w = 0.

(5.11)

Thus, the defect subspaces N− and N+ for the system Σsc are given by

N− =
{
Qw | w ∈ L(W) with π+w = 0 and Q−Sw = Γ∗WQ+Sw

}
,

N+ =
{
Qw | w ∈ L(W) with π−w = 0 and Q+S−1w = ΓWQ−S−1w

}
.

(5.12)

Proof. Below we only prove the formulas for A− and A∗
−, and leave the proof

of the formulas for A+ and A∗
+ to the reader.

By the definition of A−, for all x0 ∈ U we have A−x0 = x1 where
[

x1
x0
0

]
∈

Vsc. Since x0 ∈ U it follows from (3.16) that x0 = Qw for some w ∈ L(W)
satisfying π+w = 0. By the definition of Vsc and the fact that the first
component of Vsc is determined uniquely by the last two components we
have x1 = QS−1w. This proves the first equation in (5.11).

To compute A∗
− we let x0 ∈ U, and choose some representatives w such

that x0 = Qw with w ∈ L(W) with π+w = 0. By Theorem 5.5 and (3.17) ,

A∗
−x0 = PUx−1 = (Π− − Γ∗WΠ+)x−1, where

[
x0

x−1
w−1

]
∈ Vsc for some w−1 ∈ W.

One such vector is
[

x0
x−1
w−1

]
=

[
Qw

QSw
w(−1)

]
. Thus,

A∗
− = (Π− − Γ∗WΠ+)QSw = Q−Sw − Γ∗WQ+Sw.

This proves the second equation in (5.11).

In the case of the system Σsc = (Vsc;D(W),W) it is possible to give
alternative descriptions of the unobservable and backward unobservable sub-
spaces.

Lemma 5.7. Let ΣW
sc = (Vsc;D(W),W) be the canonical model of a simple

conservative s/s system with passive full behavior W and past/future map
ΓW. Let U and U† be the unobservable and backward unobservable subspaces
of ΣW

sc . Finally, let H(ΓW) and H(Γ∗W) be the de Branges complementary
spaces of the contractive operators ΓW and Γ∗W. Then the following claims
hold.
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1) U is given by

U =
{
x ∈ D(W)

∣∣ Π+x = 0
}

=
{[

0
x−

]
∈
[
H+

H−

] ∣∣∣ x− ∈ H(Γ∗W)
}

,

(5.13)
and

‖x‖D(W) = ‖Π−x‖H(Γ∗W), x ∈ U. (5.14)

Thus, Π−|U is a unitary map from U onto H(Γ∗W).

2) U† is given by

U† =
{
x ∈ D(W)

∣∣ Π−x = 0
}

=
{

[ x+

0 ] ∈
[
H+

H−

] ∣∣∣ x+ ∈ H(ΓW)
}

,

(5.15)
and

‖x‖D(W) = ‖Π+x‖H(Γ∗W), x ∈ U†. (5.16)

Thus, Π+|U† is a unitary map from U† onto H(ΓW).

3) The s/s system Σsc is observable if and only if ΓW is isometric, or
equivalently, if and only if Π−|D(W) = Γ∗WΠ+|D(W).

4) The s/s system Σsc is controllable if and only if ΓW is co-isometric, or
equivalently, if and only if Π+|D(W) = ΓWΠ−|D(W).

5) The s/s system Σsc is minimal if and only if ΓW is unitary.

Proof. The first equalities in (5.13) and (5.15) follow from (3.16).
Define

∆W = 1H− − Γ∗WΓW, (5.17)

and let x− = ∆Wx′− with x′− ∈ H−. Then[
0
x−

]
=

[
0

x′− − Γ∗WΓWx′−

]
=

[
1H+ ΓW

Γ∗W 1H−

] [
−ΓWx′−

x′−

]
= AW

[
−ΓWx′−

x′−

]
,

where AW is the operator in (3.3). Consequently,
[

0
x−

]
∈ R (AW) ⊂ D(W),

and ∥∥∥∥[ 0
x−

]∥∥∥∥2

D(W)

=

∥∥∥∥A1/2
W

[
−ΓWx−

x−

]∥∥∥∥2

H+⊕H−

=

([
−ΓWx−

x−

]
, AW

[
−ΓWx−

x−

])
H+⊕H−

=

([
−ΓWx−

x−

]
,

[
0
x−

])
H+⊕H−

= (x−, x−)H− =
(
x′−, ∆Wx′−

)
H−

= ‖x−‖2
H(Γ∗W).
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Thus, {[
0

x−

] ∣∣ x− ∈ R (∆W)
}
⊂ D(W) ∩ (0⊕H−) = U,

and (5.14) holds for x− ∈ R (∆W). Since R (∆W) is a dense subspace of
H(Γ∗W), we find that (5.14) holds all x− ∈ H(Γ∗W), and that U0 :=

{[
0

x−

] ∣∣
x− ∈ H(Γ∗W)

}
is a closed subspace of U. To prove that U0 = U we let[

0
x−

]
∈ U be orthogonal to U0 in D(W). Then, for all x− ∈ H−,

0 =

〈[
0
x−

]
, AW

[
−ΓWx′−

x′−

]
D(W)

〉
= ((x−, x′−)H− ,

which implies that x− = 0. This proves assertion 1).
Assertion 2) may be proved in an analogous way, with ΓW replaced by

Γ∗W. Assertions 3) and 4) follows from assertions 1) and 2) and (3.17), and
assertion 5) follows from assertions 3) and 4).

For use in some subsequent work we record the following fact.

Proposition 5.8. Let Σ = (V ;X ,W) be a simple conservative s/s system
for which both the incoming inner channel (A∗

+; U†) and the outgoing inner

channel (A1; U) are nontrivial. Let Γ ∈ B(UΣ; U†Σ) be the operator

Γ = PU†Σ
|UΣ

. (5.18)

Then
ΓA− = A∗

+Γ (5.19)

and
Γ∗Γ < 1UΣ

, ΓΓ∗ < 1U†Σ
. (5.20)

Proof. That Γ has property (5.20) follows from its definition (5.18) and the
fact that UΣ ∩ U†Σ = 0. To check the relation (5.19) we take some arbitrary

x− ∈ UΣ and x+ ∈ U†Σ. Since both
[

A−x−
x−
0

]
∈ V and

[ x+

A+x+

0

]
∈ V and

V = V [⊥], we have
(A−x−, x+)X = (x−, A+x+)X .

Thus,

(ΓA−x−, x+)X = (PU†Σ
|UΣ

A−x−, x+)X = (A−x−, x+)X = (x−, A+x+)X

= (x−, PUΣ
|U†ΣA+x+)X = (x−, Γ∗A+x+)X .

This proves (5.19).
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An operator Γ ∈ B(UΣ; U†Σ) satisfying the intertwining condition (5.19)
with respect to the isometric completely non-unitary operator A− and the
co-isometric completely non-unitary operator A∗

+ is usually called a Hankel
operator. By (5.20), the Hankel operator Γ defined in (5.19) is a contraction
which does not have any singular numbers on the unit circle.

6 Alternative Characterizations of L(W) and

D(W).

Let W be a full passive behavior on the Krĕın signal space W , let W+ =
W ∩ k2

+(W) and W− = π−W be the corresponding future and past passive

behaviors, and denote H+ = H(W+) and H− = H(W
[⊥]
− ).

For each n ∈ Z+ we define

L−n (W) := {w(·) ∈ k2(W) | Q−S−nw ∈ H−}, (6.1)

ρ−n (w) = ‖Q−S−nw‖2
H− −

n−1∑
k=0

[w(k), w(k)]W , w ∈ L−n (W). (6.2)

If w ∈ L(W), then by Lemma 3.4, Q−S−nw ∈ H− for all n ∈ Z+, and
consequently L(W) ⊂ L−n (W) for all n ∈ Z+.

Theorem 6.1. Let W be a passive full behavior on W.

1) A sequence w ∈ k2(W) belongs to L(W) if and only if Q−S−nw ∈ H−
for all n ∈ Z+ and

sup
n∈Z+

‖Q−S−nw‖H− < ∞. (6.3)

2) If w ∈ L(W), then the sequence ρ−n (w) is nonnegative, nondecreasing
and bounded, and

‖Qw‖2
D(W) = ‖w‖2

L(W) = sup
n∈Z+

ρ−n (w) = lim
n→∞

ρ−n (w)

= lim
n→∞

‖Q−S−nw‖2
H− − [π+w, π+w]k2

+(W).
(6.4)

Proof. Step 1: If (6.3) holds, then w ∈ L(W). For each n ∈ Z+, the vector

yn :=
[

ΓM
1H−

]
Q−S−nw belongs to D(W), and as the sequence Q−S−nw ∈ H−

is assumed to be uniformly bounded in H−, the sequence yn is uniformly
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bounded in D(W). Let R+ be a right-inverse of the quotient map Q+, and
define wn, n ≥ 1, by

wn = Sn
(
R+ΓWQ−S−nw + π−S−nw

)
= SnR+ΓWQ−S−n + Pk2((−∞,n−1];W)w.

Then wn(k) = w(k) for k ≤ n − 1, wn is uniformly bounded in k2(W), and
yn = QS−nwn. Finally, define xn = Qwn. Then, by Lemma 3.4,

‖xn‖2
D(W) = ‖Qwn‖2

D(W) = ‖QS−nwn‖2
D(W) −

n−1∑
k=0

[wn(k), wn(k)]W

= ‖yn‖2
D(W) −

n−1∑
k=0

[w(k), w(k)]W ,

and hence the sequence xn is uniformly bounded in D(W). Since the unit ball
in D(W) is weakly compact, we can without loss of generality (by passing to
a subsequence) suppose that xn tends weakly to a limit x ∈ D(W), and hence

also in k2(W)/(W++W
[⊥]
− ). Since wn(k) = w(k) for k ≤ n, it is also true that

wn tends weakly to w in k2(W) as n →∞. Let R : k2(W)/(W+ + W
[⊥]
− ) →

k2(W) be a bounded right-inverse of Q. Then, on one hand, RQwn tends
weakly to RQw in k2(W), and on the other hand,

RQwn = Rxn → Rx weakly as n →∞.

Therefore, RQw = Rx. Since R is injective, this implies that Qw = x ∈
D(W), and consequently, x ∈ L(W).

Step 2: If w ∈ L(W), then (6.3) and (6.4) hold. It follows from Lemma
3.4 that if w ∈ L(W), then QS−nw ∈ L(W), and since D(W) is continuously
contained in H+ ⊕H−, this implies that Q−S−nw ∈ H− for all n ∈ Z+.

Let(x(·), w(·)) be the (unique) stable full trajectory of Σsc whose signal
part is w, i.e., x(n) = QS−nw, n ∈ Z. By the conservativity of Σsc,

‖x(n)‖2
D(W) = ‖x(0)‖2

D(W) +
n∑

n=0

[w(n), w(n)]W , n ∈ Z+.

Write
‖x(n)‖2

D(W) = ‖PRx(n)‖2
D(W) + ‖PU†x(n)‖2

D(W),

where

‖PRx(n)‖2
D(W) = ‖PRQS−nw‖2

D(W) =
∥∥∥[ ΓW

1H−

]
Π−QS−nw

∥∥∥2

D(W)
=
∥∥Q−S−nw

∥∥2

H−
.
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Thus,

ρ−n (w) = ‖Q−S−nw‖2
H− −

n−1∑
k=0

[w(k), w(k)]W

= ‖PRx(n)‖2
D(W) −

n−1∑
k=0

[w(k), w(k)]W

= ‖x(0)‖2
D(W) − ‖PU†x(n)‖2

D(W)

= ‖w‖2
L(W) − ‖PU†x(n)‖2

D(W).

Thus ρ−n (w) ≥ 0 since ‖PU†x(n)‖D(W) ≤ ‖w‖L(W). By Theorem 5.5, the
sequence ‖PU†x(n)‖2

D(W) is nonincreasing and tends to zero as n → ∞, and

hence the sequence ρ−n (w) is nondecreasing and tends to ‖w‖2
L(W) as n →

∞.

Above we looked at the behavior of the sequence Q−S−nw in H− as
n → ∞, and related this to the condition w ∈ L(W). It is also possible to
instead look at how the sequence Q+Snw behaves in H+ as n → ∞. For
each n ∈ Z+ we define

L+
n (W) := {w(·) ∈ k2(W) | Q+Snw ∈ H+}, (6.5)

ρ+
n (w) := ‖Q+Snw‖2

H+
−

−1∑
k=−n

[w(k), w(k)]W , w ∈ L+
n (W). (6.6)

If w ∈ L(W), then by Lemma 3.4, Q+Snw ∈ H+ for all n ∈ Z+, and
consequently L(W) ⊂ L+

n (W) for all n ∈ Z+.

Theorem 6.2. Let W be a passive full behavior on W.

1) A sequence w ∈ k2(W) belongs to L(W) if and only if Q+Snw ∈ H+

for all n ∈ Z+ and
sup
n∈Z+

‖Q+Snw‖H+ < ∞. (6.7)

2) If w ∈ L(W), then the sequence ρ+
n (w) is nonnegative, nondecreasing

and bounded, and

‖Qw‖2
D(W) = ‖w‖2

L(W) = sup
n∈Z+

ρ+
n (w) = lim

n→∞
ρ+

n (w)

= lim
n→∞

‖Q+Snw‖2
H+

+ [π−w, π−w]k2
−(W).

(6.8)

Proof. This proof is analogous to the proof of Theorem 6.1. One throughout
interchanges k2

−(W) and k2
+(W), π− and π+, Q− and Q+, S−1 and S, and

H− and H+. (However, W and W[⊥] should not be interchanged.)
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Lemma 6.3. Let w ∈ L(W).

1) The following conditions are equivalent:

(a) w ∈ W;

(b) ‖w‖2
L(W) = [π−w, π−w]k2

−(W);

(c) limn→∞‖Q−S−nw‖2
H− = [w,w]k2(W);

(d) limn→∞‖Q+Snw‖2
H+

= 0.

2) The following conditions are equivalent:

(e) w ∈ W[⊥];

(f) limn→∞‖Q−S−nw‖2
H− = 0;

(g) limn→∞‖Q+Snw‖2
H+

= [w,w]k2(W);

(h) ‖w‖2
L(W) = −[π+w, π+w]k2

+(W).

Proof. (a) ⇒ (b): This follows from Lemma 3.3.
(b) ⇔ (c): This follows from Theorem 6.1.
(b) ⇔ (d): This follows from Theorem 6.2.
(d) ⇒ (a): Let (x(·), w(·)) be the unique stable full trajectory of Σsc with

signal part w(·), i.e., x(n) = QS−nw for all n ∈ Z. We decompose x(n) in
two orthogonal components, x(n) = PR†x(n) + PUx(n). By Theorem 5.5,

PUx(n) → 0 as n → −∞, and by (3.17), PR†x(n) =
[

Q+

Γ∗WQ+

]
S−nw, which

tends to zero as n → −∞ if (d) holds. Thus, (x(·), w(·)) is an externally
generated trajectory of Σsc, and so w ∈ W.

Proof of 2). This proof is analogous to the one above.

7 Forward and Backward Conservative Com-

pressions of the Conservative Model.

In Section 2.4 we presented two additional canonical models, namely the con-
trollable backward passive model Σ

W−
cfc , and the observable backward passive

model Σ
W+

obc , which were originally obtained in [AS09b]. Here we shall study
the relationships between these two models and the model Σsc presented in
Section 3. As we shall see, the two models in Section 2.4 can be obtained
from Σsc by first performing an orthogonal compression, and then applying
a unitary similarity transform.
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We recall from [AS09b] that the s/s system Σ̃ = (Ṽ ; X̃ ,W) is called an
orthogonal dilation of the s/s system Σ = (V ;X ,W) and Σ is called an
orthogonal compression onto X of Σ̃, if X ⊂ X̃ and

V =
[

PX 0 0
0 1X 0
0 0 1W

] (
Ṽ ∩

[ eX
X
W

])
, (7.1)

If, in addition, [
PX 0 0
0 1X 0
0 0 1W

] (
Ṽ ∩

[ eX
X
W

])
=
[

PX 0 0
0 PX 0
0 0 1W

]
Ṽ , (7.2)

then Σ̃ is called an outgoing dilation of Σ and Σ is called an outgoing com-
pression of Σ̃. If instead, in addition to (7.1), we have[

PX 0 0
0 1X 0
0 0 1W

] (
Ṽ ∩

[ eX
X
W

])
= Ṽ ∩

[ eX
X
W

]
, (7.3)

then Σ̃ is called an incoming dilation of Σ and Σ is called an incoming
compression of Σ̃. The orthogonal compression of a passive s/s system is
passive, and every passive system has a conservative orthogonal s/s dilation.
A passive s/s system and its orthogonal passive s/s dilation have the same
past, full, and future behaviors.

By compressing Σsc orthogonally onto R we get a controllable forward
conservative s/s system Σcfc = (Vcfc; R,W), and by compressing Σsc or-
thogonally onto R† we get an observable backward conservative s/s Σobc =
(Vobc; R

†,W), both of which have the same future, full, and past behaviors
as Σsc.

The generating subspace Vcfc of the compression Σcfc of Σsc to R is given
by

Vcfc =
[

PR 0 0
0 1R 0
0 0 1W

] (
Vsc ∩

[ D(W)
R
W

])
= Vsc ∩

[ D(W)
R
W

]
=

{[
QS−1w

Qw
w(0)

] ∣∣∣∣ w ∈ L(W), Q+w = ΓWQ−w

}
.

(7.4)

Thus, this is an incoming compression of Σsc. That the two different formulas
for Vcfc given above are the same follows from the fact R is strongly invariant

in the sense that x1 ∈ R whenever
[

x1
x0
w0

]
∈ V and x0 ∈ R. The subspace

Vcfc can be compared to the generating subspace V
W−
cfc of the canonical con-

trollable and forward conservative model Σ
W−
cfc = (V

W−
cfc ;H−,W) described in

Theorem 2.16. These two systems are unitarily similar, with the similarity

operator BΣsc =
[

ΓW
1H−

]
: H− → R, whose inverse is Π−|R.
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The generating subspace Vobc of the compression Σobc of Σsc to R† is given
by

Vobc =

[
P

R† 0 0

0 1
R† 0

0 0 1W

](
Vsc ∩

[ D(W)

R†
W

])
=

[
P

R† 0 0

0 P
R† 0

0 0 1W

]
Vsc

=




»
1H+

Γ∗W

–
Q+S−1w»

1H+

Γ∗W

–
Q+w

w(0)


∣∣∣∣∣∣∣w ∈ L(W)

 .

(7.5)

Thus, this is an outgoing compression. That the two different formulas for
Vobc are equivalent follows from the fact that x1 ∈ U = (R†)⊥ whenever[

x1
x0
0

]
∈ Vsc and x0 ∈ U; cf. Lemma 5.1. Here the right-hand side depends

only on the projection w+ := π+w of w. By Theorem 6.2, w+ ∈ K(W+).
Conversely, if w+ ∈ K(W+), the w+ can be written in the form w+ = π+w

where w ∈ L(W) is an arbitrary sequence satisfying Qw =
[

1H+

Γ∗W

]
Q+w+ and

π+w = w+; that such a sequence exists follows from the fact that C∗Σsc
=[

1H+

Γ∗W

]
maps H+ into D(W). Therefore we can rewrite (7.5) in the form

Vobc =




»
1H+

Γ∗W

–
Q+S∗+w+»

1H+

Γ∗W

–
Q+w+

w+(0)


∣∣∣∣∣∣∣w+ ∈ K(W+)

 . (7.6)

This can be compared to the generating subspace V
W+

obc of the canonical

observable and backward passive model Σ
W+

obc = (V
W+

obc ;H+,W) presented in
Theorem 2.11. These two systems are unitarily similar, with the similarity

operator C∗Σsc
=
[

1H+

Γ∗W

]
: H+ → R†, whose inverse is Π+|R† .

We now want to investigate the connections between Σsc and the two com-
pressions defined above in more detail. Here the results described in Section
5 again become important. These results describe the part of the dynamics
which stays in the unobservable subspace U or the backward unobservable
subspace U†. To get a complete picture we also have to describe the part of
the dynamics that crosses over between these subspaces and the reachable
subspace R or the null controllable subspace R†, respectively. Here we only
directly look at the simple conservative canonical model, but the results can
easily be adapted to an arbitrary simple conservative system by using the
unitary similarity described in Part 7) of Theorem 4.1.

Lemma 7.1. Define Vobc by (7.5) let N− = N
(
A∗
−
)
. Then the formula

Xo

PR†QS−1w
Qw
w(0)

 = PUQS−1w, w ∈ L(W), Qw ∈ R†, (7.7)
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defines a bounded linear operator Xo from Vobc onto N− with

N (Xo) =

[
1

R† 0 0

0 R
R† 0

0 0 1W

](
Vsc ∩

[
R†

D(W)
W

])
= Vsc ∩

[
R†

D(W)
W

]
. (7.8)

This operator is isometric with respect to the inner product that Vobc inherits
from Ko := −R† [u] R† [u]W.

Proof. Let x0 ∈ R†, and choose some w ∈ L(W) such that Qw = x0. By
Theorem 3.5, QS−1w

x0

w(0)

 ∈ Vsc

and hence by the conservativity of Σsc,

−‖QS−1w‖2
D(W) + ‖x0‖2

D(W) + [w(0), w(0)]W = 0.

Here we split QS−1w into two orthogonal components QS−1w = x1 + z1,
where

x1 := PR†QS−1w ∈ R†, z1 := PUQS−1w ∈ U.

This gives

‖z1‖2
D(W) = ‖x0‖2

D(W) + [w(0), w(0)]W − ‖x1‖2
D(W)

=
[[ x1

x0

w(0)

]
,
[ x1

x0

w(0)

]]
−R†[u]R†[u]W

.

By (7.5),
[ x1

x0

w(0)

]
∈ Vobc. This shows that (7.7) defines an isometric map Xo

from Vobc into U whose kernel is the maximal neutral subspace of Vobc. This
subspace is equal to the orthogonal complement to Vobc in Ko since Σobc is
backward conservative, and it is not difficult to show that it is explicitly
given by (7.8). That the two different expressions for N (Xo) are equivalent

follows from the fact that x0 ∈ R† whenever
[

x1
x0
w0

]
∈ Vsc and x1 ∈ R†.

It remains to show that the R (Xo) = N−. Let z1 ∈ R (Xo). Then by
the definition of Xo, there exists w0 ∈ W , x0 ∈ R†, and x1 ∈ R† such that[

z1+x1
x0
w0

]
∈ Vsc. By Lemma 5.6,

0 = PUx0 = A∗
−PU(z1 + x1) = A∗

−z1.

Thus, z1 ∈ N
(
A∗
−
)

= N−. Conversely, suppose that z1 ∈ N−, i.e., that
z1 ∈ U and A∗

−z1 = 0. Since Σsc is well-posed in the backward time direction

it is possible to find some x0 ∈ D(W) and w0 ∈ W such that
[

z1
x0
w0

]
∈ Vsc.
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By Lemma 5.6, PUx0 = A∗
−PUz1 = A∗

−z1 = 0, and so x0 ∈ R†. Thus, by

the definition of Xo, z1 = Xo

[
0
x0
w0

]
, and so z1 ∈ R (Xo). This proves that

R (Xo) = N−.

Theorem 7.2. Let Σsc = (Vsc;D(W),W) be the canonical model of a sim-
ple conservative s/s system with passive full behavior W, and let Σobc =
(Vobc; R

†,W) be the orthogonal compression of Σsc onto the null controllable
subspace R† of Σsc. Let (A−; U) be the outgoing inner channel of Σsc, and
define the isometric operator Xo from Vobc onto N− = N

(
A∗
−
)

by (7.7).
Then

Vsc =

{[
x1
x0
w0

]
+

[
Xo

» x1
x0
w0

–
0
0

]
+
[

A−z0
z0
0

] ∣∣∣∣∣ [ x1
x0
w0

]
∈ Vobc, z0 ∈ U

}
. (7.9)

Proof. Let
[

x1+z1
x0+z0

w0

]
∈ Vsc, where xi ∈ R† and zi ∈ U for i = 1, 2. Then[

x1
x0
w0

]
∈ Vobc,

[
A−z0

z0
0

]
∈ Vsc, and

[
x1+z1−A−z0

x0
w0

]
∈ Vsc.

Moreover, z1 − A−z0 = Xo

[
x1
x0
w0

]
as was shown in the proof of Lemma 7.1.

Thus, [
x1+z1
x0+z0

w0

]
=
[

x1
x0
w0

]
+
[

z1
z0
0

]
=
[

x1
x0
w0

]
+

[
Xo

» x1
x0
w0

–
0
0

]
+
[

A−z0
z0
0

]
Conversely, if

[
x1
x0
w0

]
is an arbitrary vector in Vobc and z0 is an arbitrary vector

in U, then the above sum belongs to Vsc, as can be seen from the proof of
Lemma 7.1.

Lemma 7.3. Define Vcfc by (7.4). Then the formula

Xc

QS−1w
PRQw
w(0)

 = PU†Qw, w ∈ L(W), QS−1w ∈ R, (7.10)

defines a bounded linear operator Xc from

(Vcfc)
[⊥] =

PR 0 0
0 PR 0
0 0 1W

Vsc =

{[
PRQS−1w

PRQw
w(0)

]∣∣∣∣w ∈ L(W)

}
,

onto N+ with N (Xc) = Vcfc. This operator is isometric with respect to the
inner product that (Vcfc)

[⊥] inherits from −(−R [u] R [u]W).

52



Proof. The proof of this lemma is analogous to the proof of Lemma 7.1,
where one replaces Σobc by the anti-causal dual of Σcfc.

Corollary 7.4. Let Σsc = (Vsc;D(W),W) be the canonical model of a sim-
ple conservative s/s system with passive full behavior W, and let Σc

sc =
(V c

sc; R,W) be the orthogonal compression of Σsc onto the reachable subspace
R of Σsc. Let (A∗

+; U†) be the incoming inner channel of Σsc, and define the
isometric operator Xc from −(V c

sc)
[⊥] to N+ = N

(
A∗

+

)
by (7.10). Then

Vsc =

{[
x1
x0
w0

]
+

[
0

Xc

» x1
x0
w0

–
0

]
+
[

A∗+z0
z0
0

] ∣∣∣∣∣ [ x1
x0
w0

]
∈ (V c

sc)
[⊥], z0 ∈ U†

}
. (7.11)

Proof. The proof is analogous to the proof of Theorem 7.2, where the past
and the future have interchanged places, and Lemma 7.1 has been replaced
by Lemma 7.3

Lemma 7.5. The subspaces N± have the following representations:

N− =

{[
0

Q− − Γ∗WQ+

]
S−1w

∣∣∣∣∣ w ∈ L(W) and

Q−w = Γ∗WQ+w

}
,

N+ =

{[
Q+ − ΓWQ−

0

]
Sw

∣∣∣∣∣ w ∈ L(W) and

Q+w = ΓWQ−w

}
.

(7.12)

Proof. Formula (7.12) holds since N− = R (Xo) and N+ = R (Xc), where
Xo and Xc are the operator defined in Lemmas 7.1 and 7.3. In this formula
we have also used (3.16) and substituted the values of PR, PU, PR† and PU†

given in (3.17).

Theorem 7.6. Let Σsc = (Vsc;D(W),W) be the canonical model of a sim-
ple conservative s/s system with passive full behavior W, and let Σcfc =
(Vcfc; R,W) be the orthogonal compression of Σsc onto the reachable subspace
R of Σsc. Let (A∗

+; U†) be the incoming inner channel of Σsc, and define
N+ := N

(
A∗

+

)
. Then

Vsc = Vcfc + V1 + V0, where

V1 = Vsc ∩
[

R
N+

W

]
,

V0 =
{[ z1

A+z1

0

]∣∣∣ z1 ∈ U†
}

.

(7.13)

All of Vcfc, V0, and V1 are subspaces of Vsc, and

Vcfc ∩ V0 = {0}, V1 ∩ V0 = {0}, Vcfc ∩ V1 = Vsc ∩
[ D(W)

0
W

]
. (7.14)
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The interpretation of the above splitting is the following: The subspace
Vcfc represents the dynamics of the forward conservative controllable com-
pression of Σsc, the subspace V0 represents the internal dynamics in U†, and
the subspace V1 describes the part of the dynamics that crosses over from
N+ ⊂ U† to R.

Proof of Theorem 7.6. It is clear that each of Vcfc, V0, and V1 are subspaces

of Vsc. Conversely, let
[

x1
x0
w0

]
be an arbitrary vector in Vsc. Let x01 = PRx0

and z1 = PU†x1. By (7.4), it is possible to find x11 ∈ R and w01 ∈ W such

that
[

x11
x01
w01

]
∈ Vcfc ⊂ Vsc, and by Lemma 5.1,

[ z1
A+z1

0

]
∈ Vsc. Thus, also, also

the difference
[

x12
x02
w02

]
:=
[

x1
x0
w0

]
−
[

x11
x01
w01

]
−
[ z1

A+z1

0

]
belongs to Vsc. We have now

decomposed
[

x1
x0
w0

]
into[

x1
x0
w0

]
=
[

x11
x01
w01

]
+
[

x12
x02
w02

]
+
[ z1

A+z1

0

]
,

where each term belongs to Vsc, the first term belongs to Vcfc, and the last
term belongs to V0. The two top components of the middle term satisfies
x12 ∈ R and x02 ∈ U†, and hence by Lemma 5.4, A∗

+x02 = PU†x12 = 0. Thus
x02 ∈ N+, and we conclude that the middle term belongs to V1.

The splitting of x0 into x0 = x01+x02+A+z1 is orthogonal, since x01 ∈ R,
x01 ∈ N+, and A+z1 ∈ R (A+) = U† 	N+. This together with (7.4) implies
(7.14).

8 Conservative Dilations of the Forward and

Backward Conservative Canonical Models.

In the preceding section we described how to obtain the forward and back-
ward conservative models from the simple conservative model Σsc by first
performing an orthogonal compression, and then applying a unitary simi-
larity transform. Here we shall proceed in the opposite direction and show
how to construct a simple conservative model by a dilation from a forward
or backward conservative model. We begin with a central lemma, which is
related to Lemma 7.1.

Lemma 8.1. Let V be a maximal nonnegative subspace of a Krĕın space K
satisfying V [⊥] ⊂ V , V [⊥] 6= V . Let N0 be the quotient N0 = V/V [⊥]. Then
N0 is a Hilbert space with the inner product inherited from K. Let Π be the
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quotient map V 7→ V/V [⊥], and define

Vext =

{[
κ

Πκ

]
∈
[
K
N0

]∣∣∣∣κ ∈ V

}
.

Then Vext is a Lagrangian subspace of K [u]−N0.

Proof. If κ ∈ V , then[[
κ

Πκ

]
,

[
κ

Πκ

]]
K[u]−N0

= [v, v]K − [Πv, Πv]N0 = 0.

Thus, Vext is a neutral subspace of K [u]−N0

Next suppose that κ1, κ2 ∈ V , and that [ κ1
Πκ2

] is orthogonal to Vext in
K [u]−N0. Then, for all κ ∈ V ,

0 =

[[
κ1

Πκ2

]
,

[
κ

Πκ

]]
K[u]−N0

= [κ1, κ]K − [Πκ2, Πκ]N0

= [κ1, κ]K − [κ2, κ]K = [κ1 − κ2, κ]K .

Thus κ1 − κ2 ⊂ V [⊥] ⊂ V . Since κ2 ∈ V , this implies that κ1 ∈ V , and that
Πκ1 = Πκ2, and consequently [ κ1

Πκ2
] = [ κ1

Πκ1
] ∈ Vext.

Theorem 8.2. Let Σo = (V o;X o,W) be an observable backward conservative
passive s/s system which is not conservative. Then the quotient space No :=
V o/(V o)[⊥] is a Hilbert space with the inner product inherited from the node

space Ko =
[
−X o

X o

W

]
. Let Xo : V o → V o/(V o)[⊥] be the quotient map Xoκ :=

κ+(V o)⊥, κ ∈ V o, let Zo := `2
−(No) and let X o

ext := X o⊕Zo. Define V o
ext by

V o
ext =

{[
[x1
z1 ]

[x0
0 ]

w0

]
+

[ h
0

S∗−z0

i
[ 0
z0

]
0

]∣∣∣∣∣ [ x1
x0
w0

]
∈ V o, z0 ∈ Zo, z1 = d−1(·)Xo

[
x1
x0
w0

]}
,

(8.1)
where d−1(·) is the scalar sequence defined by d−1(−1) = 1, d−1(k) = 0 for
k < −1. Then V o

ext is the generating subspace of a simple conservative s/s
system Σo

ext = (V o
ext;X o

ext,W) which is an outgoing dilation of Σ with outgoing
inner channel (S−,Zo).

Proof. Define

Zo
0 = {w− ∈ `2

−(N−) | w−(k) = 0 for k < −1},
Zo

1 = {w− ∈ `2
−(N−) | w−(−1) = 0}.
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The node space Ko
ext = −X o

ext [u]X o
ext [u]W can be written as the orthogonal

sum of two Krĕın spaces Ko
ext = K1 [u] K0, where

K0 =
[ −Zo

1
Zo

0

]
, K1 =

[ −(X o⊕Zo
0 )

X o

W

]
.

We decompose V o
ext in the same way to get V o

ext = V0 [u] V1, where

V0 =
{[

S∗+z0
z0
0

]∣∣∣ z0 ∈ Zo
}

,

V1 =

{[
[x1
z1 ]

[x0
0 ]

w0

]∣∣∣∣ [ x1
x0
w0

]
∈ V o, z1 = d−1X

o
[

x1
x0
w0

]}
.

Here V0 is a Lagrangian subspace of K0, and by Lemma 8.1, V1 is a Lagrangian
subspace of K1. Thus, V o

ext is a Lagrangian subspace of Ko
ext = K1 [u] K0.

This means that V o
ext is the generating subspace of a conservative s/s system

Σo
ext = (V o

ext;X o
ext,W). It can easily be seen that Σo

ext is an outgoing dilation
of Σo with outgoing inner channel (S−;Zo). That Σo

ext is simple follows from
Theorem 5.3 and the fact that S− is completely non-unitary.

Theorem 8.3. Let Σc = (V c;X c,W) be a controllable forward conservative
passive s/s system. Then the quotient space Nc := (V c)[⊥]/V c is a Hilbert

space with the inner product inherited from −Kc =
[ X c

−X c

−W

]
. Let Xc : V c →

(V c)[⊥]/V c be the quotient map Xcκ := κ + V c, κ ∈ (V c)⊥, let Zc := `2
+(Nc)

and X c
ext := X c ⊕Zc, and define V c

ext by

V c
ext =

{[
[x1

0 ]
[x0
z0 ]
w0

]
+

[
[ 0
z1

]h
0

S+z1

i
0

]∣∣∣∣∣ [ x1
x0
w0

]
∈ (V c)[⊥], z1 ∈ Zc, z0 = d0X

c
[

x1
x0
w0

]}
,

(8.2)
where d0(·) is the scalar sequence defined by d0(0) = 1, δ0(k) = 0 for k > 1.
Then V c

ext is the generating subspace of a simple conservative s/s system
Σc

ext = (V c
ext;X c

ext,W) which is an outgoing dilation of Σc with incoming
inner channel (S∗+;Zc).

Proof. The proof of this theorem is analogous to the proof of 8.2.

By applying Theorems 8.2 and 8.3 to the canonical backward conserva-
tive and forward conservative models Σ

W+

obc and Σ
W−
cfc presented in Section 2.4

we can construct two additional non-symmetrical models of a simple conser-
vative s/s system with a given passive behavior W.

The state space in the model that we get by applying Theorem 8.2 to
the observable backward conservative model Σ

W+

obc is H(W+)⊕`2
−(No), where

No = V W+

obc /(V W+

obc )[⊥] with the inner product constructed in Lemma 8.1. This
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model is unitarily similar to the symmetrical model Σsc. If we decompose
the state space D(W) of Σsc into D(W) = R† ⊕ U, then with respect to
this decomposition the similarity operator Uo between these two models is

block diagonal, i.e., it is of the form Uo =
[

U
R† 0

0 UU

]
. Here UR† =

[
1H(W+)

Γ∗W

]
and U−1

R†
= Π+. To compute UU we first investigate the restriction of UU|No ,

which maps No unitarily onto N−. Recall that No = V W+

obc /(V W+

obc )[⊥]. The

operator

[
U

R† 0 0

0 U
R† 0

0 0 1W

]
is a unitary map of K

W+

obc := −H(W+)[u]H(W+)[u]W

onto Kobc := −R† [u] R† [u] W , and hence it induces a unitary map of
V W+

obc /(V W+

obc )[⊥] onto Vobc/N (Xo), where Xo is the operator defined in (7.7).
By composing this unitary map with the operator Xo in (7.7) we get the
unitary map UU|No : No → N−. The space `2

−(N−) can be mapped unitarily
onto U by means of the inverse of the operator U− in (5.8), and by combining
this map with the earlier described unitary similarity from No onto N− we
get the full formula for UU.

The state space in the model that we get by applying Theorem 8.3 to the
controllable forward conservative model Σ

W−
cfc is H(W

[⊥]
− ) ⊕ `2

+(Nc), where

Nc = (V
W−
cfc )[⊥]/V

W−
cfc with the inner product constructed in Lemma 8.1, with

the node space K
W−
cfc replaced by its anti-space. This model is unitarily similar

to the symmetrical model Σsc. If we decompose the state space D(W) of Σsc

into D(W) = R⊕ U†, then with respect to this decomposition the similarity
operator Uc between these two models is block diagonal, i.e., it is of the form

Uc =
[

UR 0
0 U

U†

]
. Here UR =

[
ΓW

1
H(W

[⊥]
− )

]
and U−1

R = Π−. To compute UU† we

first investigate the restriction of UU†|Nc , which maps Nc unitarily onto N+.

Recall that Nc = (V
W−
cfc )[⊥]/V

W−
cfc . The operator

[
UR 0 0
0 UR 0
0 0 1W

]
is a unitary map

of K
W−
cfc := −H(W

[⊥]
− ) [u]H(W

[⊥]
− ) [u] W onto Kcfc := −R [u] R [u]W , and

hence it induces a unitary map of (V
W−
cfc )[⊥]/V

W−
cfc onto Vcfc/N (Xc), where

Xc is the operator defined in (7.10). By composing this unitary map with
the operator Xc in (7.10) we get the unitary map UU†|Nc : Nc → N+. The
space `2

+(N+) can be mapped unitarily onto U† by means of the inverse of the
operator U+ in (5.10), and by combining this map with the earlier described
unitary similarity from Nc onto N+ we get the full formula for UU† .

9 Passive Realizations of Frequency Domain

Behaviors

The Fourier Transform. Up to now we have throughout worked in the
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time domain, and formulated all our results in terms of sequences in k2(I;W),
where I is a discrete time interval. It is also possible to work in the frequency
domain instead, replacing all the signal sequences w(·) by their Fourier trans-
forms. In this section we assume, for simplicity, that the signal space W is
separable.

As is well-known, for each Hilbert space X , the Fourier transform F ,
formally defined by (Fw)(z) := ŵ(z) =

∑∞
n=−∞ w(n)zn is a unitary map

from `2(X ) onto the Lebesgue space L2(X ) := L2(T;X ), where T := {ξ ∈
C | |ξ| = 1}. The restrictions F± = F|`2±(X ) of F to `2

±(X ) are unitary maps

from `2
±(X ) onto the Hardy spaces H2

±(X ) := H2(D±;X ), where

D+ := {z ∈ Z | |z| < 1}, D− := {ζ ∈ Z | |ζ| > 1} ∪ {∞}.

Functions in H2
±(X ) are analytic in D±, they have nontangential boundary

values in the strong sense a.e. on T, and the boundary function belongs to
L2(X ). The norms in L2(X ) and H2

±(X ) are given by the same formula

‖ŵ(·)‖2
L2(X ) =

1

2π

∮
ξ∈T
‖ŵ(ξ)‖2

X |dξ| = 1

2πi

∮
ξ∈T
‖ŵ(ξ)‖2

X
dξ

ξ
, (9.1)

and L2(X ) = H2
−(X ) ⊕ H2

−(X ). We denote the orthogonal projections of
L2(X ) onto H2

±(X ) by π̂±. They are explicitly given by

(π̂+ŵ)(z) =
1

2πi

∮
ξ∈T

ŵ(ξ)

ξ − z
dξ, ŵ ∈ L2(W), z ∈ D+,

(π̂−ŵ)(ζ) = − 1

2πi

∮
ξ∈T

ŵ(ξ)

ξ − ζ
dξ, ŵ ∈ L2(W), ζ ∈ D−.

(9.2)

If we denote the inverse Fourier transform of ŵ by w, then w(0) = (π̂+ŵ)(0),
and it can be computed from the first formula in (9.2) with z = 0.

Above we discussed the situation where X is a Hilbert space, and these
considerations can be extended to the case where X is replaced by a Krĕın
space W . We denote the images of k2(W) and k2

±(W) under the Fourier
transform by K2(W) := K2(T;W) and K2

±(W) := K2(D±;W), respectively,
and define the indefinite inner products in these spaces so that the Fourier
transform is a unitary operator in each case. This means that, if we fix some
admissible Hilbert space inner product in W , then the spaces K2(W) and
K2
±(W) coincide with L2(W) and H2

±(W), respectively, and that the inner
product in K2(W) and K2

±(W) are given by the same formula

[ŵ1(·), ŵ2(·)]K2(W) =
1

2π

∮
ξ∈T

[ŵ1(ξ), ŵ2(ξ)]W |dξ|

=
1

2πi

∮
ξ∈T

[ŵ1(ξ), ŵ2(ξ)]W
dξ

ξ
.

(9.3)
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Every fundamental decomposition W = −Y [u] U of the signal space gives
rise to the fundamental decompositions

K2(W) = −L2(Y) [u] L2(U), K2
±(W) = −H2

±(Y) [u] H2
±(U).

Under the Fourier transform the three shift operators S+, S, and S− and
their adjoints are mapped into the frequency domain shift operators

(Ŝ+ŵ)(z) := zŵ(z), (Ŝ∗+ŵ)(z) := 1
z
(ŵ(z)− ŵ(0)), ŵ(·) ∈ K2

+(W),

(Ŝ ŵ)(ξ) := ξŵ(ξ), (Ŝ−1ŵ)(ξ) := 1
ξ
ŵ(ξ), ŵ(·) ∈ K2(W),

(Ŝ−ŵ)(ζ) := ζŵ(ζ)− lim
ζ→∞

ζŵ(ζ), (Ŝ∗−ŵ)(ζ) := 1
ζ
ŵ(ζ), ŵ(·) ∈ K2

−(W).

(9.4)
Frequency Domain Behaviors. Under the Fourier transform the class

of all passive future behaviors W+ on W is mapped onto the class of all

maximal nonnegative Ŝ+-invariant subspaces Ŵ+ of K2
+(W), the class of all

passive past behaviors W− on W is mapped onto the class of all maximal

nonnegative Ŝ−-invariant subspaces Ŵ− of K2
−(W), and the class of all pas-

sive full behaviors W is mapped onto the class of all maximal nonnegative
Ŝ-reducing causal subspaces Ŵ of K2(W). The definition of causality in the
frequency domain is analogous to the definition of causality in time domain,
i.e., a Ŝ-reducing maximal nonnegative subspace Ŵ is causal if it is true that
Ŵ− := π̂−W is a maximal nonnegative subspace of K2

−(W), or equivalently,

that Ŵ+ := Ŵ ∩K2
+(W) is a maximal nonnegative subspace of K2

+(W).
All our earlier results on passive realizations of passive (time domain)

behaviors can be reformulated in frequency domain terms. In particular, the
frequency domain analogues of (2.29)–(2.31) are

Ŵ− = π̂−Ŵ, Ŵ+ = Ŵ ∩K2
+(W), Ŵ =

∨
n∈Z+

Ŝ−nŴ+,

Ŵ =
⋂

n∈Z+

{
ŵ(·) ∈ K2(W)

∣∣ π̂−Ŝ−nŵ ∈ Ŵ−
}
.

(9.5)

The Fourier transforms of WΣ and WΣ
± give the respective frequency domain

behaviors ŴΣ and ŴΣ
±.

Frequency Domain Versions of the Canonical Models. The fre-
quency domain analogue of the space H(W+) is the Hilbert space H(Ŵ+),

where Ŵ+ is a maximal nonnegative Ŝ+-invariant subspace of K2
+(W), and

the frequency domain analogue of the space H(W
[⊥]
− ) is the Hilbert space

H(Ŵ
[⊥]
− ), where Ŵ− is a maximal nonnegative Ŝ−-invariant subspace of

K2
−(W). These spaces are defined in the same way as in Section 2.4, with
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k2
±(W) replaced by K2

±(W) and with M± replaced by Ŵ±. Since the F±
is a unitary map of k2

±(W) onto K2
±(W), and since the frequency domain

constructions are identical to the time domain constructions, the Fourier
transform induces two unitary maps H(W±) → H(Ŵ±) which map H0(W±)

isometrically onto H0(Ŵ±). We shall use the same notation F± for these
two unitary maps.

We denote the frequency domain analogue of the past/future map ΓW

by ΓcW = F+ΓWF−1
− . Thus, if W is a passive full behavior on W with the

corresponding passive future and past behaviors W+ and W−, then ΓcW is

the unique linear contraction H(Ŵ
[⊥]
− ) → H(Ŵ+), which is defined by the

relation
Q̂+ŵ = ΓcWQ̂−ŵ, ŵ ∈ Ŵ,

on the dense subspace H0(Ŵ
[⊥]
− ) := Q̂−Ŵ of H(Ŵ

[⊥]
− ) and then extended to

H(Ŵ
[⊥]
− ) by continuity.

Frequency domain versions of the two canonical backward and forward
conservative models presented in Theorems 2.11 and 2.16 were given in
[AS09b, Section 10], and there it was also shown how to derive the respective
de Branges–Rovnyak canonical scattering models from our backward and
forward conservative canonical models. Below we shall carry out the same
program for simple conservative canonical model presented in Theorem 3.5.

The frequency domain analogue of the space D(W) is the Hilbert space

D(Ŵ), which is the range space of the operator A
1/2cW , where

AcW :=

[
1 bH+

ΓcW
Γ∗cW 1 bH−

]
, Ĥ+ := H(Ŵ+), Ĥ− := H(Ŵ

[⊥]
− ). (9.6)

The frequency domain analogues of the quotient maps Q and Q± are the
quotient maps Q̂ and Q̂± given by

Q̂ŵ = ŵ + Ŵ+ + Ŵ
[⊥]
− , Q̂+ŵ = π̂+ŵ + Ŵ+, Q̂−ŵ = π̂−ŵ + Ŵ

[⊥]
− ,

for ŵ ∈ K2(W). The frequency domain analogue of the subspace L(W) of

k2(W) is the subspace L(Ŵ) of K2(W) defined by

L(Ŵ) =
{
ŵ ∈ K2(W)

∣∣ Q̂ŵ ∈ D(Ŵ)
}
.

The frequency domain analogue of the canonical model Σsc = (Vsc;D(W),W)

is the canonical model Σ̂sc = (V̂sc;D(Ŵ),W), where

V̂sc :=

{[ bQbS−1 bwbQ bwbw(0)

] ∣∣∣∣ ŵ ∈ L(Ŵ)

}
. (9.7)
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The input map of Σ̂sc is BbΣsc
=
[

ΓcW
1 bH−

]
with B̂∗

Σsc
= Π̂−|D(cW), and the out-

put map of Σsc is ĈbΣsc
= Π̂+|D(cW) with Ĉ∗bΣsc

=
[

1 bH+

ΓcW
]
, where Π̂± are the

orthoprojections from Ĥ+ ⊕ Ĥ− onto Ĥ±.

10 The deBranges–Rovnyak Conservative I/S/O

Model.

In this final section we shall use our simple conservative frequency domain
canonical s/s model Σ̂sc to derive the classical de Branges–Rovnyak model of a
simple conservative scattering realization of a given Schur function, originally
developed in [dBR66a, dBR66b].

Graph Representations of Frequency Domain Behaviors. Let W

be a passive full behavior on the Krĕın signal space W , let W+ = W∩k2
+(W)

and W− = π−W be the corresponding passive future and past behaviors,

and let Ŵ and Ŵ± be the corresponding frequency domain behaviors. Let
W = −Y [u] U be a fundamental decomposition of W , with the correspond-
ing fundamental decompositions K2(W) = −L2(Y) [u]L2(U) and K2

±(W) =

−H2
±(Y) [u] H2

±(U) of K2(W) and K2
±(W), respectively. Since Ŵ and Ŵ±

are maximal nonnegative subspaces of K2(W) and K2
±(W), respectively, it

follows from assertion 1) of Proposition 2.1 that they have the graph repre-
sentations

Ŵ =
{
ŵ =

[ bDû
û

] ∣∣ û ∈ L2(U)
}
,

Ŵ± =
{

ŵ± =
[ bD±û±

û±

] ∣∣∣ û± ∈ H2
±(U)

}
,

(10.1)

where D̂ ∈ B(L2(U); L2(Y)) and D̂± ∈ B(H2
±(U); H2

±(Y)) are contractions.

It follows from (9.5) that D̂+ = D̂|H2
+(U) and D̂− = π̂−D̂|H2

−(U). As was shown

in [AS09b, Section 9], the operators D̂ and D̂± are (Laurent) operators of
the type

(D̂û)(ξ) = Φ(ξ)û(ξ), û ∈ L2(U), ξ ∈ T,

(D̂+û+)(z) = Φ(z)û+(z), û+ ∈ H2
+(U), z ∈ D+,

(D̂−û−)(ζ) = − 1

2πi

∮
ξ∈T

Φ(ξ)û−(ξ)

ξ − ζ
dξ, û− ∈ H2

−(U), ζ ∈ D−,

(10.2)

whose symbol Φ is a function in the Schur class S(U ,Y), i.e., Φ is an analytic
B(U ;Y)-valued function in D+ satisfying ‖Φ(z)‖B(U ,Y) ≤ 1, z ∈ D+. Such
a function has a strong nontangential limit Φ(ζ) for almost all ζ ∈ T. The
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boundary function belongs to L∞(T), ‖Φ(ζ)‖B(U ,Y) ≤ 1 for almost all ζ ∈ T,
and

‖Φ‖H∞(D+) = sup
z∈D+

‖Φ(z)‖B(U ,Y) = sup
ζ∈T
‖Φ(ζ)‖B(U ,Y) = ‖Φ‖L∞(T).

The orthogonal companions of Ŵ and Ŵ± have the representations

Ŵ[⊥] =
{

ŵ =
[

ŷbD∗ŷ
] ∣∣∣ ŷ ∈ L2(Y)

}
,

Ŵ
[⊥]
± =

{
ŵ± =

[
ŷ±bD∗±ŷ±

] ∣∣∣ ŷ± ∈ H2
±(Y)

}
.

(10.3)

The adjoint D̂∗ of D̂ is the Laurent operator whose symbol is Φ∗(ζ), ζ ∈ T,

and D̂∗
+ and D̂∗

+ are the appropriate compressions of D̂∗. More precisely,

(D̂∗ŷ)(ξ) = Φ(ξ)∗ŷ(ξ), ŷ ∈ L2(Y), ξ ∈ T,

(D̂∗
+ŷ+)(z) =

1

2πi

∮
ζ∈T

Φ(ξ)∗ŷ+(ξ)

ξ − z
dξ, ŷ+ ∈ H2

+(Y), z ∈ D+,

(D̂∗
−ŷ−)(ζ) = Φ(1/ζ)∗ŷ−(ζ), ŷ− ∈ H2

−(Y), ζ ∈ D−,

(10.4)

The de Branges Complementary Spaces H(D̂+) and H(D̂∗
−). The

connection between the Hilbert space H(Z), where Z is a maximal nonneg-
ative subspace of a Krĕın space K, and the de Branges complementary space
H(A), where A is a contraction between two Hilbert spaces, was explained
in Section 2.1. We shall now use this connection with the following two sets
of substitutions:

1) Z → Ŵ+, K → K2
+(W), U → H2

+(U), Y → H2
+(Y), A → D̂+, and

T → T̂+,

2) Z → Ŵ
[⊥]
− , K → −K2

−(W), U → H2
−(Y), Y → H2

−(U), A → D̂∗
−, and

T → T̂−.

Here T̂+ : H(Ŵ+) → H(D̂+) and T̂− : H(Ŵ
[⊥]
− ) → H(D̂−) are the unitary

operators that we get by carrying out the above substitutions in (2.21), and
they are explicitly given by

T̂+Q̂+

[
ŷ+

û+

]
= ŷ+ − D̂+û+,

[
ŷ+

û+

]
∈ K(Ŵ+),

T̂−Q̂−

[
ŷ−
û−

]
= û− − D̂∗

−ŷ−,
[

ŷ−
û−

]
∈ K(Ŵ

[⊥]
− ),

T̂−1
+ ŷ+ = Q̂+

[
ŷ+

0

]
, ŷ+ ∈ H(W+),

T̂−1
− û− = Q̂−

[
0

û−

]
, û− ∈ H(W

[⊥]
− ).

(10.5)
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The Past/Future Map From H(D̂∗
−) to H(D̂+). By using the unitary

maps T̂− : H(Ŵ
[⊥]
− ) → H(D̂∗

−) and T̂+ : H(Ŵ+) → H(D̂+) we can define a
version of the past/future map ΓW of a passive full behavior which is a

contraction from H(D̂∗
−) to H(D̂+), namely

Γ(bD∗−,bD+) := T̂+ΓcWT̂−1
− = T̂+F+ΓWF−1

− T̂−1
− .

This map is related to but not identical with the Hankel operator

ΓbD := π̂+D̂|H2
−(U) : H2

−(U) → H2
+(Y)

induced by D̂.
We recall the following results from [AS09b].

Lemma 10.1 ([AS09b, Lemma 9.1]). Let ŵ ∈ Ŵ, and write ŵ in the form

ŵ =
[ bDû

û

]
∈ Ŵ where û = PL2(U)ŵ ∈ L2(U) (cf. (10.1)). Then

T̂−(π̂−ŵ + Ŵ
[⊥]
− ) = (1H2

−(U) − D̂∗
−D̂−)û−,

T̂+(π̂+ŵ + Ŵ+) = ΓbDû−,
(10.6)

where û− = π̂−u ∈ H2
−(U).

Lemma 10.2 ([AS09b, Lemma 9.2]). The operator Γ(bD∗−,bD+) is the unique

linear contraction H(D̂∗
−) → H(D̂+), which is defined by the relation

Γ(bD∗−,bD+) = ΓbD(1H2
−(U) − D̂∗

−D̂−
)[−1]

, (10.7)

on the dense subspace H0(D̂∗
−) = R

(
1H2

+(Y) − D̂∗
−D̂−

)
of H(D̂∗

−) and then

extended to H(D̂∗
−) by continuity.

Lemma 10.3 ([AS09b, Lemma 9.3]). The adjoint of the inclusion map

Î− : H(D̂∗
−) ↪→ H2

−(U) is the operator Î∗− = 1H2
−(U) − D̂∗

−D̂− : H2
−(U) →

H(D̂∗
−).

We shall also need the dual versions of Lemmas 10.1–10.3, which read as
follows, and which may be proved in the same way as Lemmas 10.1–10.3.

Lemma 10.4. Let ŵ† ∈ Ŵ[⊥], and write ŵ† in the form ŵ† =
[

ŷbD∗ŷ
]

where

ŷ = PL2(Y)ŵ
† ∈ L2(Y) (cf. (10.3)). Then

T̂−(π̂−ŵ† + Ŵ
[⊥]
− ) = Γ∗bDŷ+,

T̂+(π̂+ŵ† + Ŵ+) = (1H2
+(Y) − D̂+D̂∗

+)ŷ+,
(10.8)

where ŷ+ = π̂+ŷ ∈ H2
+(Y).
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Lemma 10.5. The operator Γ∗
(bD∗−,bD+)

is the unique linear contractionH(D̂+) →

H(D̂∗
−), which is defined by the relation

Γ∗
(bD∗−,bD+)

= Γ∗bD(1H2
+(Y) − D̂+D̂∗

+

)[−1]
, (10.9)

on the dense subspace H0(D̂+) = R
(
1H2

+(Y) − D̂+D̂∗
+

)
of H(D̂∗

+) and then

extended to H(D̂∗
+) by continuity.

Lemma 10.6. The adjoint of the inclusion map Î+ : H(D̂+) ↪→ H2
+(Y) is

the operator Î∗+ = 1H2
+(Y) − D̂+D̂∗

+ : H2
+(Y) → H(D̂+).

The Spaces H(D̂+) and H(D̂∗
−) as Reproducing Kernel Hilbert

Spaces. We begin by showing that our spaceH(D̂+) is equal to the standard
de Branges reproducing kernel Hilbert space H(Φ), where Φ is the symbol of

D̂+, as defined in, e.g., [ADRdS97, Definition 2.1.1].
Let EH2

+(Y)(z) : H2
+(Y) → Y be the point evaluation operator EH2

+(Y)(z)ŷ+ =

ŷ+(z), z ∈ D+. Since H(D̂+) is continuously contained in H2
+(Y), the re-

striction E+(z) = EH2
+(Y)(z)|H(bD+) is a bounded linear operator H(D̂+) → Y

given by the same formula E+(z)ŷ+ = ŷ+(z), z ∈ D+. Since each E+(z)

is a bounded linear operator, and since each ŷ+ ∈ H(D̂+) is determined
uniquely by its values in D+, it follows from [ADRdS97, Theorem 1.1.2]

that H(D̂+) is a reproducing kernel Hilbert space, with the reproducing

kernel KbD+
(z, z∗) = E+(z)E+(z∗)

∗ on D+ × D+. Let Î+ be the inclusion

map H(D̂+) ↪→ H2
+(Y). Then E+(z∗)

∗ = Î∗+EH2
+(Y)(z∗)

∗. By Lemma 10.6,

Î∗+ = 1H2
+(Y) − D̂+D∗

+. A direct computation shows that

EH2
+(Y)(z∗)

∗y0 =

(
z 7→ y0

1− zz∗

)
, y0 ∈ Y ,

Î∗+EH2
+(Y)(z∗)

∗y0 =
(
1H2

+(Y) − D̂+D∗
+

)
EH2

+(Y)(z∗)
∗y0

=

(
z 7→ y0 − Φ(z)Φ(z∗)

∗y0

1− zz∗

)
, y0 ∈ Y ,

KbD+
(z, z∗) = EH2

+(Y)(z)Î∗+EH2
+(Y)(z∗)

∗

=
1Y − Φ(z)Φ(z∗)

∗

1− zz∗
, (z, z∗) ∈ D+ × D+.

This is the reproducing kernel of the standard de Branges space H(Φ) (see,

e.g., [ADRdS97, Definition 2.1.1]). Thus, we conclude that H(D̂+) = H(Φ).
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A similar result can be derived for our space H(D̂∗
−). This is a reproduc-

ing kernel Hilbert space of analytic U -valued functions defined on D− and
continuously contained in H2

−(U). A computation similar to the one above
shows that the reproducing kernel of this space is given by

KbD∗−(ζ, ζ∗) = E−(ζ)E−(ζ∗)
∗ = EH2

−(U)(ζ)Î∗−EH2
−(U)(ζ∗)

∗

where E−(ζ) and EH2
−(U)(ζ) are the point evaluation operator in H(D̂∗

−) and

H2
−(U), respectively, at the point ζ ∈ D−, and Î− is the inclusion map

H(D̂∗
−) ↪→ H2

−(U). A direct computation shows that

EH2
−(U)(ζ∗)

∗u0 =

(
ζ 7→ u0

ζζ∗ − 1

)
, u0 ∈ U ,

KbD∗−(ζ, ζ∗) = EH2
−(U)(ζ)Î∗−EH2

−(U)(ζ∗)
∗

=
1U − Φ(1/ζ)∗Φ(1/ζ∗)

ζζ∗ − 1
, (ζ, ζ∗) ∈ D− × D−.

Let R be the reflection operator which maps û− ∈ H2
−(U) onto the

function (Rû−)(z) = (1/z)û−(1/z) ∈ H2
+(U), and define D̂†

+ = RD̂∗
−R−1.

Then D̂†
+ is a causal convolution operator whose symbol is the Schur func-

tion Φ†(z) = Φ(z)∗. The operator R is a unitary map from H2
−(U) onto

H2
+(U), and this implies that R|H(bD∗−) is a unitary map of H(D̂∗

−) onto

H(D̂†
+), as can easily be seen from the definition of these two spaces. By

comparing the above reproducing kernel to the reproducing kernel of the de
Branges space H(Φ†) (see, e.g., [ADRdS97, Definition 2.1.1]) we conclude

that H(D̂∗
−) = R−1H(Φ†).

The Space D(D̂) as a Reproducing Kernel Hilbert Space. Since

D(D̂) is continuously contained in H2
+(Y)⊕H2

−(U) it is true that the point

evaluation operators
[

ŷ+

û−

]
7→
[

ŷ+(z)
û−(ζ)

]
are continuous for all (z, ζ) ∈ D+×D−.

We can apply [ADRdS97, Theorem 1.1.2] to the space D(D̂) by interpreting

each vector in D(D̂) as a function defined on Ω = D+×D−, so that the point

evaluation ED(bD) is given by ED(bD)(z, ζ)
[

ŷ+

û−

]
=
[

ŷ+(z)
û−(ζ)

]
,
[

ŷ+

û−

]
∈ D(D̂). We

claim that D(D̂) =
[

1
H2

+(Y)
0

0 R−1

]
D(Φ), where R is the reflection operator

defined above and D(Φ) is the standard de Branges space induced by the

symbol Φ of D̂. This space was introduced in [dBR66a] and [dBR66b] as the
state space in the de Branges–Rovnyak canonical model of a simple conser-
vative i/s/o scattering system with scattering matrix Φ. The same space is
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characterized in [ADRdS97] as a reproducing kernel Hilbert space. See the
cited references for details, as well as [Sar94].

Arguing above we find that the reproducing kernel of the reproducing
kernel Hilbert space D(D̂) of (Y ×U)-valued functions defined on Ω = D+×
D− is given by

K(z, ζ; z∗, ζ∗) = EH2
+(Y)⊕H2

−(U)(z, ζ)Î∗E∗
H2

+(Y)⊕H2
−(U)(z∗, ζ∗),

where EH2
+(Y)⊕H2

−(U)(z, ζ) is the point evaluation operator in H2
+(Y)⊕H2

−(U)

at the point (z, ζ) ∈ D+×D−, and Î is the inclusion map D(D̂) ↪→ H2
+(Y)⊕

H2
−(U). To compute the adjoint of Î we factor it into Î =

[ bI+ 0

0 bI−
]
ÎD(bD),

where ÎD(bD) is the inclusion map D(D̂) ↪→ H(D̂+)⊕H(D̂∗
−), and

[ bI+ 0

0 bI−
]

is

the inclusion mapH(D̂+)⊕H(D̃−) ↪→ H2
+(Y⊕U). Thus, Î∗ = Î∗D(bD)

[ bI+ 0

0 bI−
]∗

.

By Lemma 3.2, Î∗D(bD)
= AbD, where

AbD :=

[
1 bH(bD+) Γ(bD∗−,bD+)

Γ∗
(bD∗−,bD+)

1 bH(bD[⊥]
− )

]
, (10.10)

and by Lemmas 10.3 and 10.6,[
Î+ 0

0 Î−

]∗
=

[
1H2

+(Y) − D̂+D̂∗
+ 0

0 1H2
−(U) − D̂∗

−D̂−

]
.

These identities together with (10.7) and (10.9) imply that

Î∗ = BbD :=

[
1H2

+(Y) − D̂+D̂∗
+ ΓbD

Γ∗bD 1H2
−(U) − D̂∗

−D̂−

]
. (10.11)

A direct computation shows that

EH2(Y⊕U)(ζ)∗
[
y0

u0

]
=

(
z 7→

[
y0

1−zz∗
u0

ζζ∗−1

])
,

[
y0

u0

]
∈
[
Y
U

]
,

K(z, ζ; z∗, ζ∗) = EH2
+(Y)⊕H2

−(U)(z, ζ)Î∗E∗
H2

+(Y)⊕H2
−(U)(z∗, ζ∗)

=

 1Y−Φ(z)Φ(z∗)∗

1−zz∗

Φ(z)−Φ(1/ζ∗)

zζ∗−1
Φ(1/ζ)∗−Φ(z∗)∗

1−ζz∗

1U−Φ(1/ζ)∗Φ(1/ζ∗)

ζζ∗−1

 ,

(z, ζ; z∗, ζ∗) ∈ (D+ × D+)× (D− × D−).
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This differs from the reproducing kernel of the standard de Branges space
D(Φ) (see, e.g., [ADRdS97, Definition 2.1.1]) only by a reflection in the

second component. Thus, we conclude that D(D̂) =
[

1
H2

+(Y)
0

0 R−1

]
D(Φ).

Above we defined BbD to be the adjoint of the inclusion map Î+ : D(D̂) ↪→
H2

+(Y)⊕H2
−(U). We can also interpret BbD as an operator mapping H2

+(Y)⊕
H2
−(U) into itself by multiplying BbD to the left by Î+, after which it becomes

equal to Î+AbDÎ∗+. Here AbD = T̂AcWT̂−1, where

T̂ :=
[ bT+ 0

0 bT−
]

: H(Ŵ+)⊕H(Ŵ
[⊥]
− ) → H(D̂+)⊕H(D̂∗

−). (10.12)

The operator AbD can be interpreted as a nonnegative operator on H(D̂+)⊕
H(D̂∗

−). Thus, with this interpretation BbD becomes a nonnegative operator

on H2
+(Y) ⊕ H2

−(U). Moreover, A
1/2bD = T̂A

1/2cW T̂−1. Thus the range space

D̂(D̂) = R
(
A

1/2bD
)

is the unitary image under the operator T̂ | bD(cW) of the

range space D(Ŵ).

Lemma 10.7. With the above definitions, R
(
B

1/2bD
)

= R
(
A

1/2bD
)
, with equal-

ity of range norms. Thus, the Hilbert space D(D̂) is the range space of the

operator B
1/2bD in H+(Y)⊕H−(U) as well as the range space of the operator

A
1/2bD in H(D̂+)⊕H(D̂∗

−).

Proof. Clearly R
(
BbD) ⊂ R

(
AbD) ⊂ R

(
A

1/2bD
)
. Moreover, R

(
BbD) is dense

in R
(
B

1/2bD
)

and R
(
AbDÎ∗

)
is dense in R

(
A

1/2bD
)
, so to prove the lemma it

suffices to show that for all x = BbDy = AbDÎ∗y ∈ R (BbD) we have

‖BbDy‖2

R
“
B

1/2bD
” = ‖AbDÎ∗y‖2

R
“
A

1/2bD
”.

But this follows from the fact that

‖BbDy‖2

R
“
B

1/2bD
” = ‖B1/2bD y‖2

H2
+(Y)⊕H2

−(U) = (y, BbDy)H2
+(Y)⊕H2

−(U)

= (y, ÎAbDÎ∗y)H2
+(Y)⊕H2

−(U) = (Î∗y, AbDÎ∗y)H+(bD−)⊕H−(bD∗−)

= ‖AbDÎ∗y‖2

R
“
A

1/2bD
”.

Remark 10.8. The characterization in Lemma 10.7 of D(D̂) as the range of

the operator A
1/2bD in the space H(D̂+)⊕H(D̂∗

−) is equivalent to the one given

in [ADRdS97, Theorem 3.4.3]. The operator Λ appearing in that theorem is
given by Λ = R−1Γ∗

(bD∗−,bD+)
.
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Scattering I/S/O Representations of a Passive S/S System Let
Σ = (V ;X ,W) be a passive s/s system with future, full, and past behav-
iors W+, W, and W−, respectively. Let W = −Y [u] U e a fundamental
decomposition of W , and let D and D± be the operators in the graph repre-
sentations of W and W±. The Krĕın nodes space K = −X [u] X [u]W has
the fundamental decomposition K = −(X ⊕Y) [u] (X ⊕U). By assertion 1)
of Proposition 2.1, V has the graph representation

V =
{[

Ax̂0+Bu0
x̂0

Cx̂0+Du0+u0

]
∈ K

∣∣∣ x0 ∈ X , u0 ∈ U
}

, (10.13)

where [ A B
C D ] is a contraction X ⊕ U → X ⊕Y . This means that Σ has i/s/o

representation Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y

)
where the state space X , input space

U , and output space Y are Hilbert spaces. The set of trajectories of Σi/s/o

on an interval I consists of triples (x(·), u(·), y(·)) satisfying

x(n + 1) = Ax(n) + Bu(n),

y(n) = Cx(n) + Du(n),
n ∈ I. (10.14)

The i/s/o system Σi/s/o defined above is called a scattering representation
of the passive s/s system Σ. The transfer function, which is also called the
scattering matrix, of this i/s/o representation is given by

Φ(z) = zC(1X − zA)−1B + D, (10.15)

and it is a Schur function in D+.
A scattering representation of a s/s system is controllable, or observable,

or simple, or minimal, or forward conservative, or backward conservative, or
conservative if the corresponding s/s system has the corresponding property.
More details about scattering representations of passive s/s systems can be
found in, e.g., [AS07a] and [AS09b].

Scattering Representations of the Frequency Domain Versions
of the Canonical S/S Model. We continue by developing a description of

the i/s/o representation of Σ̂sc corresponding to a fundamental decomposition
W = −Y [u] U of the signal space W . This description contains the unitary

operator T̂ defined in (10.12). The operator T̂ and its inverse are explicitly
given by

T̂ Q̂

[
ŷ
û

]
=

[
π̂+ −D̂+π̂+

−D̂∗
−π̂− π̂−

] [
ŷ
û

]
,

[
ŷ
û

]
∈ L(Ŵ),

T̂−1

[
ŷ+

û−

]
= Q̂

[
ŷ+

û−

]
,

[
ŷ+

û−

]
∈ D(Ŵ).

(10.16)
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We begin by applying the unitary similarity transform T̂ to Σ̂sc in order
to replace the state space D(Ŵ) of Σ̂sc by the state space D(D̂) of the new

system Σ
bD
sc = (V

bD
sc ;D(D̂),W) with generating subspace

V
bD

sc :=

T̂ 0 0

0 T̂ 0
0 0 1W

V
cW
sc . (10.17)

The fundamental decomposition W = −Y [u] U of W is admissible for Σ
bD
sc,

and the corresponding i/s/o representation Σ
bD
i/s/o =

([
Asc Bsc
Csc Dsc

]
;X ,U ,Y

)
is a

simple conservative scattering system with scattering matrix Φ.
Explicit formulas for the operators Asc, Bsc, Csc, and Dsc can be computed

in the following way. Let
[

ŷ+

û−

]
∈ D(D̂) be the initial state of Σ

bD
sc. Then

T̂−1
[

ŷ+

û−

]
is the corresponding initial state of Σ̂sc. By (10.16), this initial

state can be written in the form

T̂−1

[
ŷ+

û−

]
=

[
ŷ+

û−

]
+ Ŵ+ + Ŵ

[⊥]
− ,

and hence T−1
[

ŷ+

û−

]
= Q̂ŵ, where

ŵ =

[
ŷ+

û−

]
+

[
D̂+û−

û−

]
+

[
ŷ−

D̂∗
−ŷ−

]
, (10.18)

and û+ and ŷ− are free parameters in H2
+(U) and H2

−(Y), respectively.
By (9.7) and (10.17),

V
bD

sc =

{[ bT bQbS−1 bwbT bQ bwbw(0)

] ∣∣∣∣ ŵ ∈ L(Ŵ)

}
.

Here T̂ Q̂ŵ =
[

ŷ+

û−

]
and

ŵ(0) =

[
ŷ+(0)

0

]
+

[
D̂+û−

û−

]
(0) =

[
ŷ+(0)

0

]
+

[
Φ(0)û+(0)

û+(0)

]
.

In order to compute T̂ Q̂Ŝ−1ŵ we apply T̂ Q̂Ŝ−1 to each of the components
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in (10.18), and get

T̂ Q̂Ŝ−1

[
ŷ+

û−

]
=

[
π̂+Ŝ−1 0

−D̂∗
−π̂−Ŝ−1 π̂−Ŝ−1

] [
ŷ+

û−

]
,

T̂ Q̂Ŝ−1

[
D+û+

û+

]
=

[
Ŝ∗+D̂+ − D̂+Ŝ∗+

π̂+Ŝ−1 − D̂∗
−π̂−Ŝ−1D̂+

]
û+,

T̂ Q̂Ŝ−1

[
ŷ−

D̂∗
−ŷ−

]
= 0.

(10.19)

The operators above can be computed explicitly by means of (9.2), (9.4),
(10.2), and (10.4), and they turn out to be[

π̂+Ŝ−1 0

−D̂∗
−π̂−Ŝ−1 π̂−Ŝ−1

] [
ŷ+

û−

]
=

(
(z, ζ) 7→

[ 1
z

(
ŷ+(z)− ŷ+(0)

)
1
ζ

(
û−(ζ)− Φ(1/ζ)∗ŷ+(0)

)]) ,[
Ŝ∗+D̂+ − D̂+Ŝ∗+

π̂+Ŝ−1 − D̂∗
−π̂−Ŝ−1D̂+

]
û+ =

(
(z, ζ) 7→

[ 1
z

(
Φ(z)− Φ(0)

)
1
ζ

(
1U − Φ(1/ζ)∗Φ(0)

)] û+(0)

)
.

Thus, we conclude that V
bD

sc has the representation

V
bD

sc =

{[
Ascx̂0+Bscu0

x̂0
Cscx̂0+Dscu0 +u0

]
∈
[
D(bD)

D(bD)
W

]∣∣∣∣ x̂0 ∈ D(D̂), u0 ∈ U
}

, (10.20)

where(
Asc

[
ŷ+

û−

])
(z, ζ) =

[ 1
z

(
ŷ+(z)− ŷ+(0)

)
1
ζ

(
û−(ζ)− Φ(1/ζ)∗ŷ+(0)

)] ,

(Bscu0)(z, ζ) =

(
(z, ζ) 7→

[ 1
z

(
Φ(z)− Φ(0)

)
1
ζ

(
1U − Φ(1/ζ)∗Φ(0)

)]u0

)
,

Csc

[
ŷ+

û−

]
= ŷ+(0),

Dsc = Φ(0).

(10.21)

Comparing these coefficients
[

Asc Bsc
Csc Dsc

]
to those given in, e.g., [ADRdS97]

we find that the scattering representation Σi/s/o =
([

Asc Bsc
Csc Dsc

]
,D(D̂),U ,Y

)
of Σ

bD
sc corresponding to the fundamental decomposition W = −Y [u] U of

W is unitarily similar with similarity operator
[

1
H2

+(Y)
0

0 R−1

]
to the canonical

de Branges–Rovnyak model of a simple conservative i/s/o scattering system
with scattering matrix Φ.
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Scattering representations of the two Conservative Dilations in
Section 8. It is possible to apply the Fourier transform to also convert
the two models at the end of Section 8 into frequency domain models. The
scattering representations of these models that we obtain by applying the
same method that have been used earlier in this section coincide with the
corresponding models in [ADRdS97, Section 2.4]. We leave the details to the
reader.
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[NV89] Nikolăı K. Nikolskĭı and Vasily I. Vasyunin, A unified approach
to function models, and the transcription problem, The Gohberg
anniversary collection, Vol. II (Calgary, AB, 1988), Oper. The-
ory Adv. Appl., vol. 41, Birkhäuser, Basel, 1989, pp. 405–434.
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