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Abstrat

Reently Guo and Luo (and independently Weiss and Tusnak) were

able to prove that the damped seond order system

�z(t) +A

0
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C

0

_z(t) + C

�

0

u(t);

y(t) = �C

0

_z(t) + u(t);

an be interpreted as a ontinuous time (well-posed and stable) sattering

onservative system with input u, state

h

p

A

0

z

_z

i

, and output y. Here A

0

is a positive (unbounded) self-adjoint operator on a Hilbert spae Z with

a bounded inverse, and C

0

is a bounded linear operator from D(

p

A

0

)

to another Hilbert spae U . We show that this is a speial ase of the

following more general result: if we apply the so alled diagonal transform

(whih is a partiular resaled feedbak/feedforward transform) to an

arbitrary ontinuous time impedane onservative system, then we always

get a sattering onservative system. In the partiular ase mentioned

above the orresponding impedane onservative system is the undamped

system
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1

p

2

C

0

_z(t);

whih may be interpreted as a seond order system with olloated a-

tuators and sensors.
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1 Introdution

In two reent artiles Guo and Luo [1℄ and Weiss and Tusnak [15℄ study the

abstrat seond order system of di�erential equations

d

2

dt

2

z(t) +A

0

z(t) = �

1

2

C

�

0

d

dt

C

0

z(t) + C

�

0

u(t);

y(t) = �

d

dt

C

0

z(t) + u(t);

(1)

with input u, state

h

p

A

0

z

_z

i

, and output y. Here A

0

is an arbitrary positive

(unbounded) self-adjoint operator on a Hilbert spae Z with a bounded in-

verse. We de�ne the frational powers of A

0

in the usual way, and denote

Z

1=2

= D(

p

A

0

) and Z

�1=2

= (Z

1=2

)

�

(where we identify Z with its dual).

Thus, Z

1=2

� Z � Z

�1=2

, with ontinuous and dense injetions, and A

�1

maps Z

�1=2

onto Z

1=2

. The operator C is an arbitrary bounded linear op-

erator from Z

1=2

to another Hilbert spae U . Guo and Luo showed in [1℄

and Weiss and Tusnak showed in [15℄ (independently of eah other) that the

above system may be interpreted as a ontinuous time (well-posed and energy

stable) sattering onservative system with input u, state x =

h

p

A

0

z

_z

i

, and

output y. The input and output spaes are both U , and the state spae is

X =

�

Z

Z

�

(= Z � Z).

Formally, the system (1) is equivalent to the diagonally transformed system

d

2

dt

2

z(t) +A

0

z(t) =

1

p

2

C

�

0

u

�

(t);

y

�

(t) =

1

p

2

d

dt

C

0

z(t);

(2)

whih we get from (1) by replaing u and y in (1) by u

�

=

1

p

2

(u + y) re-

spetively y

�

=

1

p

2

(u� y). We an formally get bak to (1) by repeating the

same transform: we replae u

�

and y

�

in (2) by u =

1

p

2

(u

�

+y

�

) respetively

y =

1

p

2

(u

�

� y

�

). This transform, drawn in Figure 1, is simply a resaled

feedbak/feedforward onnetion.

The purpose of this artile is to show that the above transformations are

not just formal, but that that they an be mathematially justi�ed, thereby
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Figure 1: The diagonal transform

giving a positive answer to the question posed in [1, Remark 2℄. It follows

diretly from [8, Theorem 4.7℄ that (2) is an impedane onservative system

of the type introdued in [8℄. Aording to [9, Theorem 8.2℄, by applying the

diagonal transform to this system we get a sattering passive system. As we

shall show below, this sattering passive system is exatly the system desribed

by (1).

2 In�nite-Dimensional Linear Systems

Many in�nite-dimensional linear time-invariant ontinuous-time systems an

be desribed by the equations

x

0

(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t); t � 0;

x(0) = x

0

;

(3)

on a triple of Hilbert spaes, namely, the input spae U , the state spae X, and

the output spae Y . We have u(t) 2 U , x(t) 2 X and y(t) 2 Y . The operator

A is supposed to be the generator of a strongly ontinuous semigroup. The

operators A, B and C are usually unbounded, but D is bounded.

By modifying this set of equations slightly we get the lass of systems

whih will be used in this artile. In the sequel, we think about the blok

matrix S =

�

A B

C D

�

as one single (unbounded) operator from

�

X

U

�

to

�

X

Y

�

, and

write (3) in the form

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

; t � 0; x(0) = x

0

: (4)

The operator S ompletely determines the system. Thus, we may identify the

system with suh an operator, whih we all the node of the system.
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The system nodes that we use have a ertain struture whih makes it

resemble a blok matrix operator of the type

�

A B

C D

�

. To desribe this stru-

ture we need the notion of rigged Hilbert spaes. Let A be the generator of

a C

0

semigroup on the Hilbert spae X. We denote its domain D(A) by

X

1

. We identify the dual of X with X itself, and denote X

�1

= D(A

�

)

�

.

Then X

1

� X � X

�1

with ontinuous and dense injetions. The operator

A has a unique extension to an operator in L(X;X

�1

) whih we denote by

A

jX

(thereby indiating that the domain of this operator is all of X). This

operator is the generator a C

0

semigroup on X

�1

, whose restrition to X is

the semigroup generated by A.

De�nition 2.1. We all S a system node on the three Hilbert spaes (U;X; Y )

if it satis�es ondition (S) below:

1

(S) S :=

�

A&B

C&D

�

:

�

X

U

�

� D(S) !

�

X

Y

�

is a losed linear operator. Here

A&B is the restrition to D(S) of

�

A

jX

B

�

, where A is the generator

of a C

0

semigroup on X (the notations A

jX

2 L(X;X

�1

) and X

�1

were

introdued in the text above). The operator B is an arbitrary operator

in L(U ;X

�1

), and C&D is an arbitrary linear operator from D(S) to Y .

In addition, we require that

D(S) =

�

[

x

u

℄ 2

�

X

U

�

�

�

A

jX

x+Bu 2 X

	

:

We shall use the following names of the di�erent parts of the system node

S =

�

A&B

C&D

�

. The operator A is the main operator or the semigroup genera-

tor, B is the ontrol operator, C&D is the ombined observation/feedthrough

operator, and the operator C de�ned by

Cx := C&D

�

x

0

�

; x 2 X

1

;

is the observation operator of S.

An easy algebrai omputation (see, e.g., [10, Setion 4.7℄ for details) shows

that for eah � 2 �(A) = �(A

jX

), the operator

h

1 (��A

jX

)

�1

B

0 1

i

is an boundedly

invertible mapping between

�

X

U

�

!

�

X

U

�

and

�

X

1

U

�

! D(S). Sine

�

X

1

U

�

is

dense in

�

X

U

�

, this implies that D(S) is dense in

�

X

U

�

. Furthermore, sine the

seond olumn

h

(��A

jX

)

�1

B

1

i

of this operator maps U into D(S), we an de�ne

1

This de�nition is equivalent to the orresponding de�nitions used by Smuljan in [6℄ and

by Salamon in [4, 5℄.
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the transfer funtion of S by

b

D(s) := C&D

�

(s�A

jX

)

�1

B

1

�

; s 2 �(A); (5)

whih is a L(U ;Y )-valued analyti funtion on �(A). By the resolvent formula,

for any two �, � 2 �(A),

b

D(�)�

b

D(�) = C

�

(��A

jX

)

�1

� (� �A

jX

)

�1

�

B

= (� � �)C(� �A)

�1

(� �A

jX

)

�1

B:

(6)

Let us �nally present the lass of ompatible system nodes, originally in-

trodued by Helton [2℄). This lass an be de�ned in several di�erent ways,

one of whih is the following. We introdue an auxiliary Banah spae W

satisfying X

1

� W � X, �x some � 2 �(A), and de�ne W

�1

= (� � A

jX

)W

with jxj

W

�1

= j(��A

jX

)

�1

xj

W

(de�ned in this way the norm inW

�1

depends

on �, but the spae itself does not). Thus

X

1

�W � X �W

�1

� X

�1

:

The embeddings W � X and W

�1

� X

�1

are always dense, but the embed-

dings X

1

� W and X � W

�1

need not be dense. The system is ompatible

if R(B) � W

�1

and C has an extension to an operator C

jW

2 L(W ;Y ) (this

extension is not unique unless the embedding X

1

� W is dense). Thus, in

this ase the operator C

jW

(��A

jX

)

�1

B 2 L(U ;Y ) for all � 2 �(A). If we �x

some � 2 �(A) and de�ne

D :=

b

D(�)� C

jW

(��A

jX

)

�1

B;

then D 2 L(U ;Y ), and it follows from (6) that D does not depend on �,

only on A, B, C

jW

, and

b

D (in partiular, di�erent extensions of C to W

give di�erent operators D). Clearly, the above formula means that

b

D an be

written in the simple form

b

D(s) = C

jW

(s�A

jX

)

�1

B +D; s 2 �(A): (7)

Another way of desribing ompatibility is to say that the system node S an

be extended to a bounded linear operator

h

A

jW

B

C

jW

D

i

2 L

��

W

U

�

;

�

W

�1

U

��

, where

A

jW

is the restrition of A

jX

to W . Thus

�

A&B

C&D

�

=

�

A

jW

B

C

jW

D

�

jD(S)

:
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We shall refer to the operator

h

A

jW

B

C

jW

D

i

as a (possibly non-unique) ompatible

representation of S over the spae W . There is always a minimal spae W

whih an be used in this representation, namely W := (��A)

�1

W

�1

where

� 2 �(A) and W

�1

:= (X + BU), but it is frequently more onvenient to

work in some other spae W (for example, it may be possible to hoose a

larger spae W for whih the embedding X

1

� W is dense and the extension

is unique).

As shown in [11℄, the system node S of a well-posed system is always

ompatible, but the onverse is not true (an example of a ompatible system

of the type (2) whih is not well-posed is given in [13℄).

Every system node indues a `dynamial system' of a ertain type:

Lemma 2.2. Let S be a system node on (U;X; Y ). Then, for eah x

0

2 X

and u 2W

2;1

lo

(R

+

;U) with

�

x

0

u(0)

�

2 D(S), the equation

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

; t � 0; x(0) = x

0

; (8)

has a unique solution (x; y) satisfying

h

x(t)

u(t)

i

2 D(S) for all t � 0, x 2

C

1

(R

+

;X), and y 2 C(R

+

;Y ).

This lemma is proved in [3℄ (and also in [10℄).

2

So far we have de�ned �

t

0

only for the lass of smooth data given in

Lemma 2.2. It is possible to allow arbitrary initial states x

0

2 X and in-

put funtions u 2 L

1

lo

(R

+

;U) in Lemma 2.2 by allowing the state to take

values in the larger spae X

�1

instead of in X, and by allowing y to be a

distribution. Rather than presenting this result in its full generality, let us

observe the following fat.

Lemma 2.3. Let S =

�

A&B

C&D

�

be a system node on (U;X; Y ). Let x

0

2 X,

and u 2 L

1

lo

(R

+

;U), and let x and y be the state trajetory and output of S

with initial state x

0

, and input funtion u. If x 2 W

1;1

lo

(R

+

;X), then [

x

u

℄ 2

L

1

lo

(R

+

;D(S)), y 2 L

1

lo

(R

+

;Y ), and [

x

y

℄ is the unique solution with the above

properties of the equation

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

for almost all t � 0; x(0) = x

0

: (9)

If u 2 C(R

+

;U) and x 2 C

1

(R

+

;X), then [

x

u

℄ 2 C(R

+

;D(S)), y 2 C(R

+

;Y ),

and the equation (9) holds for all t � 0.

2

Well-posed versions of this lemma (see De�nition 2.4) are (impliitly) found in [4℄ and

[6℄ (and also in [11℄). In the well-posed ase we need less smoothness of u: it suÆes to take

u 2W

1;2

lo

(R

+

;U). In addition y will be smoother: y 2W

1;2

lo

(R

+

;Y ).
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See [10, Setion 4.7℄ for the proof.

Many system nodes are well-posed :

De�nition 2.4. A system node S is well-posed if, for some t > 0, there is a

�nite onstant K(t) suh that the solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

+ kyk

2

L

2

(0;t)

� K(t)

�

jx

0

j

2

+ kuk

2

L

2

(0;t)

�

: (WP)

It is energy stable if there is some K <1 so that, for all t 2 R

+

, the solution

(x; y) in Lemma 2.2 satis�es

jx(t)j

2

+ kyk

2

L

2

(0;t)

� K

�

jx

0

j

2

+ kuk

2

L

2

(0;t)

�

: (ES)

For more details, explanations and examples we refer the reader to [3℄ and

[7, 8, 9, 10℄ (and the referenes therein).

3 Passive and Conservative Sattering and Impedane

Systems

The following de�nitions are slightly modi�ed versions of the de�nitions in the

two lassial papers [16, 17℄ by Willems (although we use a slightly di�erent

terminology: our passive is the same as Willems' dissipative, and we use

Willems' storage funtion as the norm in the state spae).

De�nition 3.1. A system node S is sattering passive if, for all t > 0, the

solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

� jx

0

j

2

� kuk

2

L

2

(0;t)

� kyk

2

L

2

(0;t)

: (SP)

It is sattering energy preserving if the above inequality holds in the form of

an equality: for all t > 0, the solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

� jx

0

j

2

= kuk

2

L

2

(0;t)

� kyk

2

L

2

(0;t)

: (SE)

Finally, it is sattering onservative if both S and S

�

are sattering energy

preserving.

3

Thus, every sattering passive system is well-posed and energy stable: the

passivity inequality (SP) implies the energy stability inequality (ES).

3

If S is a system node on (U;X; Y ), then its adjoint S

�

is a system node on (Y;X; U).

See, e.g., [3℄.
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De�nition 3.2. A system node S on (U;X;U) (note that Y = U) is impedane

passive if, for all t > 0, the solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

X

� jx

0

j

2

X

� 2

Z

t

0

<hy(t); u(t)i

U

dt: (IP)

It is impedane energy preserving if the above inequality holds in the form of

an equality: for all t > 0, the solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

X

� jx

0

j

2

X

= 2

Z

t

0

<hy(t); u(t)i

U

dt: (IE)

Finally, S is impedane onservative if both S and the dual system node S

�

are impedane energy preserving.

Note that in this ase well-posedness is neither guaranteed, nor relevant.

Physially, passivity means that there are no internal energy soures. An

energy preserving system has neither any internal energy soures nor any sinks.

Other types of passivity have also been onsidered in the literature; in parti-

ular transmission (or hain sattering) passive or onservative systems.

Both in the sattering and in the impedane setting, the property of being

passive is onserved under the passage from a system node S to its dual. See

[8℄ for details.

The following theorem an be used to test if a system node is impedane

passive or energy preserving or onservative:

Theorem 3.3 ([8, Theorems 4.2, 4.6, and 4.7℄). Let S =

�

A&B

C&D

�

be a

system node on (U;X;U).

(i) S is impedane passive if and only if the system node

�

A&B

�C&D

�

is dissi-

pative, i.e, for all [

x

0

u

0

℄ 2 D(S),

<

��

x

0

u

0

�

;

�

A&B

�C&D

� �

x

0

u

0

��

h

X

U

i

� 0: (10)

(ii) S is impedane energy preserving if and only if the system node

�

A&B

�C&D

�

is skew-symmetri, i.e., D(S) = D(

�

A&B

�C&D

�

) � D(

�

A&B

�C&D

�

�

), and

�

A&B

�C&D

�

�

�

x

0

u

0

�

= �

�

A&B

�C&D

� �

x

0

u

0

�

;

�

x

0

u

0

�

2 D(S): (11)
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(iii) S is impedane onservative if and only if the system node

�

A&B

�C&D

�

is

skew-adjoint, i.e.,

�

A&B

�C&D

�

�

= �

�

A&B

�C&D

�

: (12)

Equivalently, S is impedane onservative if and only A

�

= �A, B

�

= C,

and

b

D(�) +

b

D(��)

�

= 0 for some (or equivalently, for all) � 2 �(A) (in

partiular, this identity is true for all � with <� 6= 0).

Many impedane passive systems are well-posed. There is a simple way of

haraterizing suh systems:

Theorem 3.4. An impedane passive system node is well-posed if and only if

its transfer funtion

b

D is bounded on some (or equivalently, on every) vertial

line in C

+

. When this is the ase, the growth bound of the system is zero, and,

in partiular,

b

D is bounded on every right half-plane C

+

�

= fs 2 C j <s > �g

with � > 0.

This is [8, Theorem 5.1℄. It an be used to show that many systems with

olloated atuators and sensors are well-posed.

Example 3.5. To get the system desribed by (2) we take the state to be

x =

h

p

A

0

z

_z

i

, the input to be u, and the output to be y. The input and

output spaes are U , the state spae is

�

Z

Z

�

, and, in ompatibility notion with

W = Z

1=2

and W

�1=2

= Z

�1=2

, the extended system node is given by

"

A B

C D

#

=

2

6

4

0

p

A

0

0

�

p

A

0

0

1

p

2

C

�

0

0

1

p

2

C

0

0

3

7

5

(the �rst element in the middle row stands for an extended version of

p

A

0

).

The domain of the system node itself onsists of those

h

x

1

x

2

u

i

2

h

Z

Z

U

i

whih

satisfy x

1

�A

�1=2

0

C

�

0

u 2 Z

1=2

and x

2

2 Z

1=2

, and its transfer funtion is

b

D(s) = C

0

�

s+

1

s

A

0

�

�1

C

�

0

<s 6= 0

(where the inverse maps Z

�1=2

onto Z

1=2

). By Theorem 3.3, this system node

is impedane onservative.
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Example 3.6. Also the system desribed by (1) an be formulated as a system

node with the same input, state, and output as in Example 3.5. This time we

take the extended system node to be (in the notation below we have antiipated

the fat, whih will be proved later, that this example is the diagonal transform

of Example 3.5) (2))

"

A

�

B

�

C

�

D

�

#

=

2

6

4

0

p

A

0

0

�

p

A

0

1

2

C

�

0

C

0

C

�

0

0 �C

0

1

3

7

5

(again the �rst element in the middle row stands for an extended version of

p

A

0

). The domain of the system node itself onsists of those

h

x

1

x

2

u

i

2

h

Z

Z

U

i

whih satisfy x

1

� A

�1=2

0

�

1

2

C

�

0

C

0

x

2

+ C

�

0

u

�

2 Z

1=2

and x

2

2 Z

1=2

, and its

transfer funtion is

b

D(s) = 1� C

0

�

s+

1

2

C

�

0

C

0

+

1

s

A

0

�

�1

C

�

0

<s 6= 0:

It is not obvious that Example 3.6 is sattering onservative (hene well-

posed and energy stable). That this is, indeed, the ase is the main result

of [15℄. Here we shall rederive that result by a ompletely di�erent method,

appealing to the following general result.

Theorem 3.7 ([9, Theorem 8.2℄). A system node S =

�

A&B

C&D

�

on (U;X;U)

is impedane passive (or energy preserving or onservative) if and only if

it is diagonally transformable,

4

and the diagonally transformed system node

S

�

=

h

[A&B℄

�

[C&D℄

�

i

is sattering passive (or energy preserving, or onservative)

(in partiular, it is well-posed and energy stable). The system node S

�

an be

determined from its main operator A

�

, ontrol operator B

�

, observation oper-

ator C

�

, and transfer funtion

b

D

�

, whih an be omputed from the following

4

This notion will be de�ned in Setion 5.
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formulas, valid for all � 2 �(A) \ �(A

�

),

5

"

(��A

�

)

�1

1

p

2

(��A

�

jX

)

�1

B

�

1

p

2

C

�

(� �A

�

)

�1

1

2

(1 +

b

D

�

(�))

#

=

��

� 0

0 1

�

�

�

A&B

�C&D

��

�1

=

�

(��A)

�1

0

0 0

�

+

�

(��A

jX

)

�1

B

1

�

(1 +

b

D(�))

�1

�

�C(��A)

�1

1

�

(13)

In partiular, 1+

b

D(�) is invertible and

b

D

�

(�) = (1�

b

D(�))(1+

b

D(�))

�1

for

all � 2 �(A) \ �(A

�

).

Thus, in order to show that Example 3.6 is sattering onservative, it

suÆes to show that it is the diagonal transform of Example 3.5. This an

be ahieved via a lengthy omputation based on formula (13), but instead of

doing this we shall derive an alternative formula to (13) whih is valid (only)

for ompatible systems. See Corollary 5.2 and Remark 5.4.

4 Flow-Inversion

In order to get a ompatible version of (13) we need to develop a version of the

diagonal transform whih is more diret than the one presented in [9℄ (there

this transformation was de�ned as a Cayley transform, followed by a disrete

time diagonal transform, followed by an inverse Cayley transform). Instead

of using this lengthy hain of transformations we here want to use a (non-

well-posed) system node version of the approah used in [8, Setion 5℄. That

approah used the theory of ow-inversion of a well-posed system developed

in [12℄, so we have to start by �rst extending the notion of ow-inversion to a

general system node.

6

De�nition 4.1. Let S =

�

A&B

C&D

�

be a system node on (U;X; Y ). We all S

ow-invertible if there exists another system node S

�

=

h

[A&B℄

�

[C&D℄

�

i

on (Y;X;U)

5

A

�

jX

is the extension of A

�

to an operator in L(X;X

�

�1

), where X

�

�1

is the analogue of

X

�1

with A replaed by A

�

.

6

Flow-inversion an be interpreted as a speial ase of output feedbak, and onversely,

output feedbak an be interpreted as a speial ase of ow-inversion. See [12, Remark 5.5℄.
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whih together with S satis�es the following onditions: the operator

�

1 0

C&D

�

maps D(S) ontinuously onto D(S

�

), its inverse is

h

1 0

[C&D℄

�

i

, and

S

�

=

�

[A&B℄

�

[C&D℄

�

�

=

�

A&B

0 1

� �

1 0

C&D

�

�1

;

S =

�

A&B

C&D

�

=

�

[A&B℄

�

0 1

� �

1 0

[C&D℄

�

�

�1

:

(14)

In this ase we all S and S

�

ow-inverses of eah other.

Obviously, the ow-inverse of a node S in unique (when it exists). Fur-

thermore, by [12, Corollary 5.3℄, in the well-posed ase this notion agrees with

the notion of ow-inversion introdued in [12℄.

The following theorem lists a number of alternative haraterizations for

the ow-invertibility of a system node.

7

Theorem 4.2. Let S =

�

A&B

C&D

�

be a system node on (U;X; Y ), with main

operator A, ontrol operator B, observation operator C, and transfer funtion

D, and let S

�

=

h

[A&B℄

�

[C&D℄

�

i

be a system node on (Y;X;U), with main operator

A

�

, ontrol operator B

�

, observation operator C

�

, and transfer funtion D

�

.

We denote D(A) = X

1

, (D(A

�

))

�

= X

�1

, D(A

�

) = X

�

1

, and (D((A

�

)

�

))

�

=

X

�1

. Then the following onditions are equivalent:

(i) S and S

�

are ow-inverses of eah other.

(ii) The operator

h

1 0

[C&D℄

�

i

maps D(S

�

) one-to-one onto D(S), and

�

[A&B℄

�

0 1

�

=

�

A&B

C&D

� �

1 0

[C&D℄

�

�

(on D(S

�

)): (15)

(iii) For all � 2 �(A

�

), the operator [

� 0

0 0

℄ � S maps D(S) one-to-one onto

�

X

Y

�

, and its (bounded) inverse is given by

��

� 0

0 0

�

� S

�

�1

=

"

(��A

�

)

�1

�(��A

�

jX

)

�1

B

�

C

�

(��A

�

)

�1

�

b

D

�

(�)

#

: (16)

7

In this list we have not expliitly inluded the equivalent disrete time eigenvalue on-

ditions that an be derived from the alternative haraterization of ontinuous time ow-

inversion as a Cayley transform, followed by a disrete time ow inversion, followed by an

inverse Cayley transform.
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(iv) For some � 2 �(A

�

), the operator [

� 0

0 0

℄�S maps D(S) one-to-one onto

�

X

Y

�

and (16) holds.

(v) For all � 2 �(A) \ �(A

�

),

b

D(�) is invertible and the following operator

identity holds in L

��

X

Y

�

;D(S)

�

:

"

(��A

�

)

�1

�(��A

�

jX

)

�1

B

�

C

�

(��A

�

)

�1

�

b

D

�

(�)

#

=

�

(��A)

�1

0

0 0

�

�

�

(��A

jX

)

�1

B

1

�

[

b

D(�)℄

�1

�

C(��A)

�1

1

�

:

(17)

(vi) For some � 2 �(A) \ �(A

�

),

b

D(�) is invertible and (17) holds.

When these equivalent onditions hold, then

�

1

C

�

maps X

1

into D(S

�

),

�

1

C

�

�

maps X

�

1

into D(S), and

A = A

�

jX

1

+B

�

C; A

�

= A

jX

�

1

+BC

�

;

0 = [C&D℄

�

�

1

C

�

; 0 = C&D

�

1

C

�

�

:

(18)

Proof. We begin by observing that (18), whih is equivalent to

�

[A&B℄

�

[C&D℄

�

� �

1

C

�

=

�

A

0

�

;

�

A&B

C&D

� �

1

C

�

�

=

�

A

�

0

�

; (19)

follows from (i) and (14) sine

�

X

1

0

�

2 D(S) and

h

X

�

1

0

i

2 D(S

�

).

(i) ) (ii): This is obvious (see De�nition 4.1).

(ii) ) (i): Suppose that (ii) holds. Then

�

1 0

C&D

�

h

1 0

[C&D℄

�

i

= [

1 0

0 1

℄ on

D(S

�

) (sine, by assumption, C&D

h

1 0

[C&D℄

�

i

=

�

0 1

�

, and we always have

�

1 0

�

h

1 0

[C&D℄

�

i

=

�

1 0

�

). Thus,

�

1 0

C&D

�

is a left-inverse of

h

1 0

[C&D℄

�

i

. How-

ever, as (by assumption)

h

1 0

[C&D℄

�

i

is both one-to-one and onto, it is invert-

ible, so the left inverse is also a right inverse, i.e., the inverse of

h

1 0

[C&D℄

�

i

is

�

1 0

C&D

�

. Multiplying (15) to the right by

h

1 0

[C&D℄

�

i

�1

we get the seond iden-

tity in (14). The �rst identity in (14) an equivalently be written in the form

h

[A&B℄

�

[C&D℄

�

i

=

�

A&B

0 1

�

h

1 0

[C&D℄

�

i

. The top part [A&B℄

�

= A&B

h

1 0

[C&D℄

�

i

of this

13



identity is ontained in (15)), and the bottom part [C&D℄

�

=

�

0 1

�

h

1 0

[C&D℄

�

i

is always valid. We onlude that (ii) ) (i).

(ii) ) (iii): Let � 2 C be arbitrary. Clearly, (ii) is equivalent to the

requirement that

h

1 0

[C&D℄

�

i

maps D(S

�

) one-to-one onto D(S), ombined with

the identity (note that

�

� 0

�

h

1 0

[C&D℄

�

i

=

�

� 0

�

)

��

� 0

0 0

�

� S

��

1 0

[C&D℄

�

�

=

��

� 0

0 �1

�

�

�

[A&B℄

�

0

��

(on D(S

�

)):

If � 2 �(A

�

), then

h

(��A

�

)

�1

(��A

�

jX

)

�1

B

�

0 1

i

maps

�

X

U

�

one-to-one onto D(S

�

),

so we may multiply the above identity by this operator to the right to get the

equivalent identity

��

� 0

0 0

�

� S

�

"

(��A

�

)

�1

(��A

�

jX

)

�1

B

�

C

�

(��A

�

)

�1

b

D

�

(�)

#

=

�

1 0

0 �1

�

;

whih is now valid on all of

�

X

U

�

. This an alternatively be written as (multipy

by

�

1 0

0 �1

�

to the right)

��

� 0

0 0

�

� S

�

"

(��A

�

)

�1

�(��A

�

jX

)

�1

B

�

C

�

(��A

�

)

�1

�

b

D

�

(�)

#

=

�

1 0

0 1

�

:

By traing the history of the seond fator on the left-hand side we �nd that

it maps

�

X

U

�

one-to-one onto D(S). Thus, [

� 0

0 0

℄ � S is the left-inverse of an

invertible operator, hene invertible, and (16) holds.

(iii) ) (iv): This is obvious.

(iv) ) (ii): This is the same omputation that we did in the proof of the

impliation (ii)) (iii) done bakwards, for one partiular value of � 2 �(A

�

).

Observe, in partiular, that

h

1 0

[C&D℄

�

i

maps D(S

�

) one-to-one onto D(S) if

and only if the operator on the right-hand side of (16) maps

�

X

U

�

one-to-one

onto D(S).

(iii) ) (v): This follows from the easily veri�ed identity

��

� 0

0 0

�

�

�

A&B

C&D

��

=

�

1 0

�C(��A)

�1

1

� �

��A 0

0 �

b

D(�)

� �

1 �(��A

jX

)

�1

B

0 1

�

:

(20)

valid for all � 2 �(A).
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(v) ) (vi): This is obvious.

(vi) ) (iv): Argue as in the proof of the impliation (iii) ) (v).

The original idea behind the ow-inversion of a well-posed system intro-

dued in [12, Setion 5℄ was to interhange the roles of the input and output.

A similar interpretation is valid for the ow-inversion of system nodes, too.

Theorem 4.3. Let S =

�

A&B

C&D

�

be a ow-invertible system node on (Y;X;U),

whose ow-inverse S

�

is also a system node (on (U;X; Y )). Let x and y be the

state trajetory and output of S with initial state x

0

2 X and input funtion

u 2 L

1

lo

(R

+

;U), and suppose that x 2 W

1;1

lo

(R

+

;X). Then y 2 L

1

lo

(R

+

;Y ),

and x and u are the state trajetory and output of S

�

with initial state x

0

and

input funtion y.

Proof. By Lemma 2.3, [

x

u

℄ 2 L

1

lo

(R

+

;D(S)), y 2 L

1

lo

(R

+

;Y ), and [

x

y

℄ is the

unique solution with the above properties of the equation

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

for almost all t � s; x(s) = x

s

:

Sine

�

1 0

C&D

�

maps D(S) ontinuously onto D(S

�

), this implies that [

x

y

℄ =

�

1 0

C&D

�

[

x

u

℄ 2 L

1

lo

(R

+

;D(S

�

)). Moreover, sine

�

1 0

C&D

�

�1

=

h

1 0

[C&D℄

�

i

, we

have for almost all t � s,

�

x

0

(t)

u(t)

�

=

�

A&B

0 1

� �

x(t)

u(t)

�

=

�

A&B

0 1

� �

1 0

[C&D℄

�

� �

1 0

C&D

� �

x(t)

u(t)

�

=

�

[A&B℄

�

[C&D℄

�

� �

x(t)

y(t)

�

:

By Lemma 2.3, this implies that x and u are the state and output funtion of

S

�

with initial time s, initial state x

s

, and input funtion y.

Our next theorem shows that ompatibility is preserved under ow-inversion

in most ases.

Theorem 4.4. Let S =

�

A&B

C&D

�

be a ompatible system node on (Y;X;U),

and let

h

A

jW

B

C

jW

D

i

2 L(

�

W

U

�

;

�

W

�1

Y

�

) be a ompatible extension of S (here X

1

�

W � X and W

�1

is de�ned as in Setion 2). Suppose that S if ow-invertible.

Denote the ow-inverted system node by S

�

=

h

[A&B℄

�

[C&D℄

�

i

, let X

�

1

and X

�

�1

be

the analogues of X

1

and X

�1

for S

�

, and let W

�

�1

be the analogue of W

�1

for

S

�

(i.e., W

�

�1

= (��A

�

jW

)W for some � 2 �(A

�

)).
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(i) If D has a left inverse D

�1

left

2 L(Y ;U), then X

�

1

�W and S

�

is ompat-

ible with extended observation operator C

�

jW

: W ! U and orresponding

feedthrough operator D

�

given by

C

�

jW

= �D

�1

left

C

jW

;

D

�

= D

�1

left

;

(21)

and the the main operator A

�

of S

�

is given by

A

�

=

�

A

jX

�BD

�1

left

C

jW

�

jX

�

1

:

In this ase the spae W

�1

an be identi�ed with a losed subspae of

W

�

�1

, so that X �W

�1

� X

�1

\X

�

�1

. With this identi�ation,

A

jW

= A

�

jW

+B

�

C

jW

; B = B

�

D

(where we by A

jW

and A

�

jW

mean the restritions of A

jX

and A

�

jX

to W ).

(ii) If D is invertible (with a bounded inverse), then W

�1

= W

�

�1

, A

�

W �

W

�1

, B

�

U � W

�1

, and the operator

�

A

�

jW

B

�

C

�

jW

D

�

�

2 L

��

W

U

�

;

�

W

�1

Y

��

de-

�ned by

"

A

�

jW

B

�

C

�

jW

D

�

#

=

�

A

jW

�BD

�1

C

jW

BD

�1

�D

�1

C

jW

D

�1

�

=

�

A

jW

0

0 0

�

+

�

B

1

�

D

�1

�

�C

jW

1

�

=

�

A

jW

0

0 0

�

+

�

B

1

�

h

C

�

jW

1

i

=

�

A

jW

0

0 0

�

+

�

B

�

1

�

�

�C

jW

1

�

is a ompatible extension of S

�

.

Proof. (i) Take [

x

y

℄ 2 D(S

�

), and de�ne u = [C&D℄

�

[

x

y

℄. Then [

x

u

℄ 2 D(S)

and y = C&D [

x

u

℄ = C

jW

x +Du. Multiplying the above identity by D

�1

left

to

the left we get for all [

x

y

℄ 2 D(S

�

),

u = [C&D℄

�

[

x

y

℄ = �D

�1

left

C

jW

x+D

�1

left

y:
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The right-hand side is de�ned (and ontinuous) on all of W � Y . By (17), for

all y 2 Y and all � 2 �(A) \ �(A

�

),

(��A

�

jX

)

�1

B

�

y = (��A

jX

)

�1

B

b

D

�

(�)y 2W;

so R(B

�

) 2 W

�

�1

. This implies that

�

A

�

jW

B

�

C

�

jW

D

�

�

is a ompatible extension of

S

�

, with C

�

jW

= �D

�1

left

C

jW

and D

�

= D

�1

left

. By (18), for all x 2 X

�

1

, we have

A

�

x = (A

jX

+BC

�

)x = (A

jX

�BD

�1

left

C

jW

)x, as laimed.

Next we onstrut an embedding operator J : W

�1

!W

�

�1

. This operator

is required to be one-to-one, and its restrition to X should be the identity

operator. We de�ne

J = (��A

�

jW

�B

�

C

jW

)(� �A

jW

)

�1

;

J

�

= (��A

jW

�BC

�

jW

)(� �A

�

jW

)

�1

:

(22)

The ompatibility of S and S

�

implies that J 2 L(W

�1

;W

�

�1

) and J

�

2

L(W

�

�1

;W

�1

) and by (18), both J and J

�

redue to the identity operator on

X.

We laim that J

�

2 L(W

�

�1

;W

�1

) is a left inverse of J 2 L(W

�1

;W

�

�1

),

or equivalently, that (��A

jW

)

�1

J

�

J(��A

jW

) is the identity on W . To see

that this is the ase we use (22), (21), (17), and (7) (in this order) to ompute

(��A

jW

)

�1

J

�

J(� �A

jW

)

= (��A

jW

)

�1

(��A

jW

�BC

�

jW

)

� (��A

�

jW

)

�1

(��A

�

jW

�B

�

C

jW

)

= (1� (��A

jW

)

�1

BC

�

jW

)(1� (��A

�

jW

)

�1

B

�

C

jW

)

= (1 + (��A

jW

)

�1

BD

�1

left

C

jW

)(1 � (��A

jW

)

�1

B

b

D

�1

(�)C

jW

)

= 1 + (��A

jW

)

�1

B

�

D

�1

left

�

b

D

�1

(�)�D

�1

left

C

jW

(��A

jW

)

�1

B

b

D

�1

(�)

�

C

jW

= 1 + (��A

jW

)

�1

BD

�1

left

�

b

D(�) �D �C

jW

(��A

jW

)

�1

B

�

b

D

�1

(�)C

jW

= 1:

This implies that the operator J is one-to-one; hene it de�nes a (not nees-

sarily dense) embedding of W

�1

intoW

�

�1

. In the sequel we shall identifyW

�1

with the range of J . That W

�1

is losed in W

�

�1

follows from the fat that J

has a bounded left inverse.

The identi�ation of W

�1

with a subspae of W

�

�1

means that the embed-

ding operator J = (� � A

�

jW

� B

�

C

jW

)(� � A

jW

)

�1

beomes the identity on
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W

�1

, and hene, with this identi�ation, (� � A

jW

) = (� � A

�

jW

� B

�

C

jW

),

or equivalently,

A

jW

= A

�

jW

+B

�

C

jW

:

The remaining identity B = B

�

D an veri�ed as follows. By (17) and the

fat that A

�

jW

= A

jW

�B

�

C

jW

,

B

�

b

D(�) = (��A

�

jW

)(� �A

jW

)

�1

B

= (��A

jW

+B

�

C

jW

)(� �A

jW

)

�1

B

= (B +B

�

C

jW

(��A

jW

)

�1

B)

= (B +B

�

(

b

D(�)�D))

= B

�

b

D(�) +B �B

�

D:

Thus B = B

�

D.

(ii) Part (ii) follows from part (i) if we interhange S and S

�

. (This will

also interhange W

�1

with W

�

�1

and J with J

�

.)

5 The Diagonal Transform

With the theory that we developed in the preeding setion at our disposal we

an now proeed in the same way as we did in [8, Setion 5℄ to investigate the

ontinuous time diagonal transform. First of all, by omparing (13) and (17)

we observe that it is possible to redue the ontinuous time diagonal transform

to ow-inversion in the following way.

De�nition 5.1. Let S =

�

A&B

C&D

�

be a system node on (U;X;U) (note that

Y = U). We all S diagonally transformable if the system node

e

S =

h

A&B

^

C&D

i

is ow-invertible, where

^

C&D =

1

p

2

�

C&D +

�

0 1

�

�

:

Denote the ow-inverse of this system node by

e

S

�

=

h

[A&B℄

�

[

^

C&D℄

�

i

. Then the

diagonal transform of S is the system node S

�

=

h

[A&B℄

�

[C&D℄

�

i

, where

[C&D℄

�

=

p

2 [

^

C&D℄

�

�

�

0 1

�

:

The diagonal transform an be omputed more expliitly as follows.
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Corollary 5.2. Let S =

�

A&B

C&D

�

be a diagonally transformable system node

on (U;X;U). Then the diagonal transform S

�

=

h

[A&B℄

�

[C&D℄

�

i

of S satis�es

S

�

+

�

0 0

0 1

�

=

�

1 0

0

p

2

� �

A&B

0 1

���

1 0

C&D

�

+

�

0 0

0 1

��

�1

�

1 0

0

p

2

�

:

If S is ompatible with a ompatible extension

h

A

jW

B

C

jW

D

i

2 L(

�

W

U

�

;

�

W

�1

U

�

)

where 1+D invertible, then S

�

is also ompatible, with the ompatible exten-

sion (over the same spae W )

"

A

�

jW

B

�

C

�

jW

D

�

#

=

�

A

jW

0

0 �1

�

+

�

B

p

2

�

(1 +D)

�1

�

�C

jW

p

2

�

=

�

A

jW

�B(1 +D)

�1

C

jW

p

2B(1 +D)

�1

�

p

2(1 +D)

�1

C

jW

(1�D)(1 +D)

�1

�

:

(23)

This follows diretly from De�nition 5.1 and Theorems 4.3 and 4.4.

Corollary 5.3. Example 3.6 is a sattering onservative system node.

This follows from Theorem 3.7 and Corollary 5.2.

Remark 5.4. By applying the same theory to other examples of impedane

passive or onservative systems we an reate many more examples of ontin-

uous time sattering passive or onservative systems. One partiularly inter-

esting lass is the one whih is often referred to as `systems with olloated

atuators and sensors', disussed in, e.g., [1℄, [13℄, and [14℄.
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