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Abstra
t

Re
ently Guo and Luo (and independently Weiss and Tu
snak) were

able to prove that the damped se
ond order system
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C

0

_z(t) + C

�

0

u(t);

y(t) = �C

0

_z(t) + u(t);


an be interpreted as a 
ontinuous time (well-posed and stable) s
attering


onservative system with input u, state

h

p

A

0

z

_z

i

, and output y. Here A

0

is a positive (unbounded) self-adjoint operator on a Hilbert spa
e Z with

a bounded inverse, and C

0

is a bounded linear operator from D(

p

A

0

)

to another Hilbert spa
e U . We show that this is a spe
ial 
ase of the

following more general result: if we apply the so 
alled diagonal transform

(whi
h is a parti
ular res
aled feedba
k/feedforward transform) to an

arbitrary 
ontinuous time impedan
e 
onservative system, then we always

get a s
attering 
onservative system. In the parti
ular 
ase mentioned

above the 
orresponding impedan
e 
onservative system is the undamped

system

�z(t) +A

0

z(t) =

1

p

2

C

�

0

u(t);

y(t) =

1

p

2

C

0

_z(t);

whi
h may be interpreted as a se
ond order system with 
ollo
ated a
-

tuators and sensors.

Keywords

1



S
attering, impedan
e, 
onservative, passive, 
ompatible, diagonal

transform, feed-ba
k, 
ow-inversion.

1 Introdu
tion

In two re
ent arti
les Guo and Luo [1℄ and Weiss and Tu
snak [15℄ study the

abstra
t se
ond order system of di�erential equations

d

2

dt

2

z(t) +A
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2

C

�

0

d

dt

C

0

z(t) + C

�

0

u(t);
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d

dt

C

0

z(t) + u(t);

(1)

with input u, state

h

p

A

0

z

_z

i

, and output y. Here A

0

is an arbitrary positive

(unbounded) self-adjoint operator on a Hilbert spa
e Z with a bounded in-

verse. We de�ne the fra
tional powers of A

0

in the usual way, and denote

Z

1=2

= D(

p

A

0

) and Z

�1=2

= (Z

1=2

)

�

(where we identify Z with its dual).

Thus, Z

1=2

� Z � Z

�1=2

, with 
ontinuous and dense inje
tions, and A

�1

maps Z

�1=2

onto Z

1=2

. The operator C is an arbitrary bounded linear op-

erator from Z

1=2

to another Hilbert spa
e U . Guo and Luo showed in [1℄

and Weiss and Tu
snak showed in [15℄ (independently of ea
h other) that the

above system may be interpreted as a 
ontinuous time (well-posed and energy

stable) s
attering 
onservative system with input u, state x =

h

p

A

0

z

_z

i

, and

output y. The input and output spa
es are both U , and the state spa
e is

X =

�

Z

Z

�

(= Z � Z).

Formally, the system (1) is equivalent to the diagonally transformed system

d

2

dt

2

z(t) +A

0

z(t) =

1

p

2

C

�

0

u

�

(t);

y

�

(t) =

1

p

2

d

dt

C

0

z(t);

(2)

whi
h we get from (1) by repla
ing u and y in (1) by u

�

=

1

p

2

(u + y) re-

spe
tively y

�

=

1

p

2

(u� y). We 
an formally get ba
k to (1) by repeating the

same transform: we repla
e u

�

and y

�

in (2) by u =

1

p

2

(u

�

+y

�

) respe
tively

y =

1

p

2

(u

�

� y

�

). This transform, drawn in Figure 1, is simply a res
aled

feedba
k/feedforward 
onne
tion.

The purpose of this arti
le is to show that the above transformations are

not just formal, but that that they 
an be mathemati
ally justi�ed, thereby
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Figure 1: The diagonal transform

giving a positive answer to the question posed in [1, Remark 2℄. It follows

dire
tly from [8, Theorem 4.7℄ that (2) is an impedan
e 
onservative system

of the type introdu
ed in [8℄. A

ording to [9, Theorem 8.2℄, by applying the

diagonal transform to this system we get a s
attering passive system. As we

shall show below, this s
attering passive system is exa
tly the system des
ribed

by (1).

2 In�nite-Dimensional Linear Systems

Many in�nite-dimensional linear time-invariant 
ontinuous-time systems 
an

be des
ribed by the equations

x

0

(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t); t � 0;

x(0) = x

0

;

(3)

on a triple of Hilbert spa
es, namely, the input spa
e U , the state spa
e X, and

the output spa
e Y . We have u(t) 2 U , x(t) 2 X and y(t) 2 Y . The operator

A is supposed to be the generator of a strongly 
ontinuous semigroup. The

operators A, B and C are usually unbounded, but D is bounded.

By modifying this set of equations slightly we get the 
lass of systems

whi
h will be used in this arti
le. In the sequel, we think about the blo
k

matrix S =

�

A B

C D

�

as one single (unbounded) operator from

�

X

U

�

to

�

X

Y

�

, and

write (3) in the form

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

; t � 0; x(0) = x

0

: (4)

The operator S 
ompletely determines the system. Thus, we may identify the

system with su
h an operator, whi
h we 
all the node of the system.
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The system nodes that we use have a 
ertain stru
ture whi
h makes it

resemble a blo
k matrix operator of the type

�

A B

C D

�

. To des
ribe this stru
-

ture we need the notion of rigged Hilbert spa
es. Let A be the generator of

a C

0

semigroup on the Hilbert spa
e X. We denote its domain D(A) by

X

1

. We identify the dual of X with X itself, and denote X

�1

= D(A

�

)

�

.

Then X

1

� X � X

�1

with 
ontinuous and dense inje
tions. The operator

A has a unique extension to an operator in L(X;X

�1

) whi
h we denote by

A

jX

(thereby indi
ating that the domain of this operator is all of X). This

operator is the generator a C

0

semigroup on X

�1

, whose restri
tion to X is

the semigroup generated by A.

De�nition 2.1. We 
all S a system node on the three Hilbert spa
es (U;X; Y )

if it satis�es 
ondition (S) below:

1

(S) S :=

�

A&B

C&D

�

:

�

X

U

�

� D(S) !

�

X

Y

�

is a 
losed linear operator. Here

A&B is the restri
tion to D(S) of

�

A

jX

B

�

, where A is the generator

of a C

0

semigroup on X (the notations A

jX

2 L(X;X

�1

) and X

�1

were

introdu
ed in the text above). The operator B is an arbitrary operator

in L(U ;X

�1

), and C&D is an arbitrary linear operator from D(S) to Y .

In addition, we require that

D(S) =

�

[

x

u

℄ 2

�

X

U

�

�

�

A

jX

x+Bu 2 X

	

:

We shall use the following names of the di�erent parts of the system node

S =

�

A&B

C&D

�

. The operator A is the main operator or the semigroup genera-

tor, B is the 
ontrol operator, C&D is the 
ombined observation/feedthrough

operator, and the operator C de�ned by

Cx := C&D

�

x

0

�

; x 2 X

1

;

is the observation operator of S.

An easy algebrai
 
omputation (see, e.g., [10, Se
tion 4.7℄ for details) shows

that for ea
h � 2 �(A) = �(A

jX

), the operator

h

1 (��A

jX

)

�1

B

0 1

i

is an boundedly

invertible mapping between

�

X

U

�

!

�

X

U

�

and

�

X

1

U

�

! D(S). Sin
e

�

X

1

U

�

is

dense in

�

X

U

�

, this implies that D(S) is dense in

�

X

U

�

. Furthermore, sin
e the

se
ond 
olumn

h

(��A

jX

)

�1

B

1

i

of this operator maps U into D(S), we 
an de�ne

1

This de�nition is equivalent to the 
orresponding de�nitions used by Smuljan in [6℄ and

by Salamon in [4, 5℄.
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the transfer fun
tion of S by

b

D(s) := C&D

�

(s�A

jX

)

�1

B

1

�

; s 2 �(A); (5)

whi
h is a L(U ;Y )-valued analyti
 fun
tion on �(A). By the resolvent formula,

for any two �, � 2 �(A),

b

D(�)�

b

D(�) = C

�

(��A

jX

)

�1

� (� �A

jX

)

�1

�

B

= (� � �)C(� �A)

�1

(� �A

jX

)

�1

B:

(6)

Let us �nally present the 
lass of 
ompatible system nodes, originally in-

trodu
ed by Helton [2℄). This 
lass 
an be de�ned in several di�erent ways,

one of whi
h is the following. We introdu
e an auxiliary Bana
h spa
e W

satisfying X

1

� W � X, �x some � 2 �(A), and de�ne W

�1

= (� � A

jX

)W

with jxj

W

�1

= j(��A

jX

)

�1

xj

W

(de�ned in this way the norm inW

�1

depends

on �, but the spa
e itself does not). Thus

X

1

�W � X �W

�1

� X

�1

:

The embeddings W � X and W

�1

� X

�1

are always dense, but the embed-

dings X

1

� W and X � W

�1

need not be dense. The system is 
ompatible

if R(B) � W

�1

and C has an extension to an operator C

jW

2 L(W ;Y ) (this

extension is not unique unless the embedding X

1

� W is dense). Thus, in

this 
ase the operator C

jW

(��A

jX

)

�1

B 2 L(U ;Y ) for all � 2 �(A). If we �x

some � 2 �(A) and de�ne

D :=

b

D(�)� C

jW

(��A

jX

)

�1

B;

then D 2 L(U ;Y ), and it follows from (6) that D does not depend on �,

only on A, B, C

jW

, and

b

D (in parti
ular, di�erent extensions of C to W

give di�erent operators D). Clearly, the above formula means that

b

D 
an be

written in the simple form

b

D(s) = C

jW

(s�A

jX

)

�1

B +D; s 2 �(A): (7)

Another way of des
ribing 
ompatibility is to say that the system node S 
an

be extended to a bounded linear operator

h

A

jW

B

C

jW

D

i

2 L

��

W

U

�

;

�

W

�1

U

��

, where

A

jW

is the restri
tion of A

jX

to W . Thus

�

A&B

C&D

�

=

�

A

jW

B

C

jW

D

�

jD(S)

:
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We shall refer to the operator

h

A

jW

B

C

jW

D

i

as a (possibly non-unique) 
ompatible

representation of S over the spa
e W . There is always a minimal spa
e W

whi
h 
an be used in this representation, namely W := (��A)

�1

W

�1

where

� 2 �(A) and W

�1

:= (X + BU), but it is frequently more 
onvenient to

work in some other spa
e W (for example, it may be possible to 
hoose a

larger spa
e W for whi
h the embedding X

1

� W is dense and the extension

is unique).

As shown in [11℄, the system node S of a well-posed system is always


ompatible, but the 
onverse is not true (an example of a 
ompatible system

of the type (2) whi
h is not well-posed is given in [13℄).

Every system node indu
es a `dynami
al system' of a 
ertain type:

Lemma 2.2. Let S be a system node on (U;X; Y ). Then, for ea
h x

0

2 X

and u 2W

2;1

lo


(R

+

;U) with

�

x

0

u(0)

�

2 D(S), the equation

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

; t � 0; x(0) = x

0

; (8)

has a unique solution (x; y) satisfying

h

x(t)

u(t)

i

2 D(S) for all t � 0, x 2

C

1

(R

+

;X), and y 2 C(R

+

;Y ).

This lemma is proved in [3℄ (and also in [10℄).

2

So far we have de�ned �

t

0

only for the 
lass of smooth data given in

Lemma 2.2. It is possible to allow arbitrary initial states x

0

2 X and in-

put fun
tions u 2 L

1

lo


(R

+

;U) in Lemma 2.2 by allowing the state to take

values in the larger spa
e X

�1

instead of in X, and by allowing y to be a

distribution. Rather than presenting this result in its full generality, let us

observe the following fa
t.

Lemma 2.3. Let S =

�

A&B

C&D

�

be a system node on (U;X; Y ). Let x

0

2 X,

and u 2 L

1

lo


(R

+

;U), and let x and y be the state traje
tory and output of S

with initial state x

0

, and input fun
tion u. If x 2 W

1;1

lo


(R

+

;X), then [

x

u

℄ 2

L

1

lo


(R

+

;D(S)), y 2 L

1

lo


(R

+

;Y ), and [

x

y

℄ is the unique solution with the above

properties of the equation

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

for almost all t � 0; x(0) = x

0

: (9)

If u 2 C(R

+

;U) and x 2 C

1

(R

+

;X), then [

x

u

℄ 2 C(R

+

;D(S)), y 2 C(R

+

;Y ),

and the equation (9) holds for all t � 0.

2

Well-posed versions of this lemma (see De�nition 2.4) are (impli
itly) found in [4℄ and

[6℄ (and also in [11℄). In the well-posed 
ase we need less smoothness of u: it suÆ
es to take

u 2W

1;2

lo


(R

+

;U). In addition y will be smoother: y 2W

1;2

lo


(R

+

;Y ).
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See [10, Se
tion 4.7℄ for the proof.

Many system nodes are well-posed :

De�nition 2.4. A system node S is well-posed if, for some t > 0, there is a

�nite 
onstant K(t) su
h that the solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

+ kyk

2

L

2

(0;t)

� K(t)

�

jx

0

j

2

+ kuk

2

L

2

(0;t)

�

: (WP)

It is energy stable if there is some K <1 so that, for all t 2 R

+

, the solution

(x; y) in Lemma 2.2 satis�es

jx(t)j

2

+ kyk

2

L

2

(0;t)

� K

�

jx

0

j

2

+ kuk

2

L

2

(0;t)

�

: (ES)

For more details, explanations and examples we refer the reader to [3℄ and

[7, 8, 9, 10℄ (and the referen
es therein).

3 Passive and Conservative S
attering and Impedan
e

Systems

The following de�nitions are slightly modi�ed versions of the de�nitions in the

two 
lassi
al papers [16, 17℄ by Willems (although we use a slightly di�erent

terminology: our passive is the same as Willems' dissipative, and we use

Willems' storage fun
tion as the norm in the state spa
e).

De�nition 3.1. A system node S is s
attering passive if, for all t > 0, the

solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

� jx

0

j

2

� kuk

2

L

2

(0;t)

� kyk

2

L

2

(0;t)

: (SP)

It is s
attering energy preserving if the above inequality holds in the form of

an equality: for all t > 0, the solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

� jx

0

j

2

= kuk

2

L

2

(0;t)

� kyk

2

L

2

(0;t)

: (SE)

Finally, it is s
attering 
onservative if both S and S

�

are s
attering energy

preserving.

3

Thus, every s
attering passive system is well-posed and energy stable: the

passivity inequality (SP) implies the energy stability inequality (ES).

3

If S is a system node on (U;X; Y ), then its adjoint S

�

is a system node on (Y;X; U).

See, e.g., [3℄.
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De�nition 3.2. A system node S on (U;X;U) (note that Y = U) is impedan
e

passive if, for all t > 0, the solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

X

� jx

0

j

2

X

� 2

Z

t

0

<hy(t); u(t)i

U

dt: (IP)

It is impedan
e energy preserving if the above inequality holds in the form of

an equality: for all t > 0, the solution (x; y) in Lemma 2.2 satis�es

jx(t)j

2

X

� jx

0

j

2

X

= 2

Z

t

0

<hy(t); u(t)i

U

dt: (IE)

Finally, S is impedan
e 
onservative if both S and the dual system node S

�

are impedan
e energy preserving.

Note that in this 
ase well-posedness is neither guaranteed, nor relevant.

Physi
ally, passivity means that there are no internal energy sour
es. An

energy preserving system has neither any internal energy sour
es nor any sinks.

Other types of passivity have also been 
onsidered in the literature; in parti
-

ular transmission (or 
hain s
attering) passive or 
onservative systems.

Both in the s
attering and in the impedan
e setting, the property of being

passive is 
onserved under the passage from a system node S to its dual. See

[8℄ for details.

The following theorem 
an be used to test if a system node is impedan
e

passive or energy preserving or 
onservative:

Theorem 3.3 ([8, Theorems 4.2, 4.6, and 4.7℄). Let S =

�

A&B

C&D

�

be a

system node on (U;X;U).

(i) S is impedan
e passive if and only if the system node

�

A&B

�C&D

�

is dissi-

pative, i.e, for all [

x

0

u

0

℄ 2 D(S),

<

��

x

0

u

0

�

;

�

A&B

�C&D

� �

x

0

u

0

��

h

X

U

i

� 0: (10)

(ii) S is impedan
e energy preserving if and only if the system node

�

A&B

�C&D

�

is skew-symmetri
, i.e., D(S) = D(

�

A&B

�C&D

�

) � D(

�

A&B

�C&D

�

�

), and

�

A&B

�C&D

�

�

�

x

0

u

0

�

= �

�

A&B

�C&D

� �

x

0

u

0

�

;

�

x

0

u

0

�

2 D(S): (11)
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(iii) S is impedan
e 
onservative if and only if the system node

�

A&B

�C&D

�

is

skew-adjoint, i.e.,

�

A&B

�C&D

�

�

= �

�

A&B

�C&D

�

: (12)

Equivalently, S is impedan
e 
onservative if and only A

�

= �A, B

�

= C,

and

b

D(�) +

b

D(��)

�

= 0 for some (or equivalently, for all) � 2 �(A) (in

parti
ular, this identity is true for all � with <� 6= 0).

Many impedan
e passive systems are well-posed. There is a simple way of


hara
terizing su
h systems:

Theorem 3.4. An impedan
e passive system node is well-posed if and only if

its transfer fun
tion

b

D is bounded on some (or equivalently, on every) verti
al

line in C

+

. When this is the 
ase, the growth bound of the system is zero, and,

in parti
ular,

b

D is bounded on every right half-plane C

+

�

= fs 2 C j <s > �g

with � > 0.

This is [8, Theorem 5.1℄. It 
an be used to show that many systems with


ollo
ated a
tuators and sensors are well-posed.

Example 3.5. To get the system des
ribed by (2) we take the state to be

x =

h

p

A

0

z

_z

i

, the input to be u, and the output to be y. The input and

output spa
es are U , the state spa
e is

�

Z

Z

�

, and, in 
ompatibility notion with

W = Z

1=2

and W

�1=2

= Z

�1=2

, the extended system node is given by

"

A B

C D

#

=

2

6

4

0

p

A

0

0

�

p

A

0

0

1

p

2

C

�

0

0

1

p

2

C

0

0

3

7

5

(the �rst element in the middle row stands for an extended version of

p

A

0

).

The domain of the system node itself 
onsists of those

h

x

1

x

2

u

i

2

h

Z

Z

U

i

whi
h

satisfy x

1

�A

�1=2

0

C

�

0

u 2 Z

1=2

and x

2

2 Z

1=2

, and its transfer fun
tion is

b

D(s) = C

0

�

s+

1

s

A

0

�

�1

C

�

0

<s 6= 0

(where the inverse maps Z

�1=2

onto Z

1=2

). By Theorem 3.3, this system node

is impedan
e 
onservative.

9



Example 3.6. Also the system des
ribed by (1) 
an be formulated as a system

node with the same input, state, and output as in Example 3.5. This time we

take the extended system node to be (in the notation below we have anti
ipated

the fa
t, whi
h will be proved later, that this example is the diagonal transform

of Example 3.5) (2))

"

A

�

B

�

C

�

D

�

#

=

2

6

4

0

p

A

0

0

�

p

A

0

1

2

C

�

0

C

0

C

�

0

0 �C

0

1

3

7

5

(again the �rst element in the middle row stands for an extended version of

p

A

0

). The domain of the system node itself 
onsists of those

h

x

1

x

2

u

i

2

h

Z

Z

U

i

whi
h satisfy x

1

� A

�1=2

0

�

1

2

C

�

0

C

0

x

2

+ C

�

0

u

�

2 Z

1=2

and x

2

2 Z

1=2

, and its

transfer fun
tion is

b

D(s) = 1� C

0

�

s+

1

2

C

�

0

C

0

+

1

s

A

0

�

�1

C

�

0

<s 6= 0:

It is not obvious that Example 3.6 is s
attering 
onservative (hen
e well-

posed and energy stable). That this is, indeed, the 
ase is the main result

of [15℄. Here we shall rederive that result by a 
ompletely di�erent method,

appealing to the following general result.

Theorem 3.7 ([9, Theorem 8.2℄). A system node S =

�

A&B

C&D

�

on (U;X;U)

is impedan
e passive (or energy preserving or 
onservative) if and only if

it is diagonally transformable,

4

and the diagonally transformed system node

S

�

=

h

[A&B℄

�

[C&D℄

�

i

is s
attering passive (or energy preserving, or 
onservative)

(in parti
ular, it is well-posed and energy stable). The system node S

�


an be

determined from its main operator A

�

, 
ontrol operator B

�

, observation oper-

ator C

�

, and transfer fun
tion

b

D

�

, whi
h 
an be 
omputed from the following

4

This notion will be de�ned in Se
tion 5.

10



formulas, valid for all � 2 �(A) \ �(A

�

),

5

"

(��A

�

)

�1

1

p

2

(��A

�

jX

)

�1

B

�

1

p

2

C

�

(� �A

�

)

�1

1

2

(1 +

b

D

�

(�))

#

=

��

� 0

0 1

�

�

�

A&B

�C&D

��

�1

=

�

(��A)

�1

0

0 0

�

+

�

(��A

jX

)

�1

B

1

�

(1 +

b

D(�))

�1

�

�C(��A)

�1

1

�

(13)

In parti
ular, 1+

b

D(�) is invertible and

b

D

�

(�) = (1�

b

D(�))(1+

b

D(�))

�1

for

all � 2 �(A) \ �(A

�

).

Thus, in order to show that Example 3.6 is s
attering 
onservative, it

suÆ
es to show that it is the diagonal transform of Example 3.5. This 
an

be a
hieved via a lengthy 
omputation based on formula (13), but instead of

doing this we shall derive an alternative formula to (13) whi
h is valid (only)

for 
ompatible systems. See Corollary 5.2 and Remark 5.4.

4 Flow-Inversion

In order to get a 
ompatible version of (13) we need to develop a version of the

diagonal transform whi
h is more dire
t than the one presented in [9℄ (there

this transformation was de�ned as a Cayley transform, followed by a dis
rete

time diagonal transform, followed by an inverse Cayley transform). Instead

of using this lengthy 
hain of transformations we here want to use a (non-

well-posed) system node version of the approa
h used in [8, Se
tion 5℄. That

approa
h used the theory of 
ow-inversion of a well-posed system developed

in [12℄, so we have to start by �rst extending the notion of 
ow-inversion to a

general system node.

6

De�nition 4.1. Let S =

�

A&B

C&D

�

be a system node on (U;X; Y ). We 
all S


ow-invertible if there exists another system node S

�

=

h

[A&B℄

�

[C&D℄

�

i

on (Y;X;U)

5

A

�

jX

is the extension of A

�

to an operator in L(X;X

�

�1

), where X

�

�1

is the analogue of

X

�1

with A repla
ed by A

�

.

6

Flow-inversion 
an be interpreted as a spe
ial 
ase of output feedba
k, and 
onversely,

output feedba
k 
an be interpreted as a spe
ial 
ase of 
ow-inversion. See [12, Remark 5.5℄.

11



whi
h together with S satis�es the following 
onditions: the operator

�

1 0

C&D

�

maps D(S) 
ontinuously onto D(S

�

), its inverse is

h

1 0

[C&D℄

�

i

, and

S

�

=

�

[A&B℄

�

[C&D℄

�

�

=

�

A&B

0 1

� �

1 0

C&D

�

�1

;

S =

�

A&B

C&D

�

=

�

[A&B℄

�

0 1

� �

1 0

[C&D℄

�

�

�1

:

(14)

In this 
ase we 
all S and S

�


ow-inverses of ea
h other.

Obviously, the 
ow-inverse of a node S in unique (when it exists). Fur-

thermore, by [12, Corollary 5.3℄, in the well-posed 
ase this notion agrees with

the notion of 
ow-inversion introdu
ed in [12℄.

The following theorem lists a number of alternative 
hara
terizations for

the 
ow-invertibility of a system node.

7

Theorem 4.2. Let S =

�

A&B

C&D

�

be a system node on (U;X; Y ), with main

operator A, 
ontrol operator B, observation operator C, and transfer fun
tion

D, and let S

�

=

h

[A&B℄

�

[C&D℄

�

i

be a system node on (Y;X;U), with main operator

A

�

, 
ontrol operator B

�

, observation operator C

�

, and transfer fun
tion D

�

.

We denote D(A) = X

1

, (D(A

�

))

�

= X

�1

, D(A

�

) = X

�

1

, and (D((A

�

)

�

))

�

=

X

�1

. Then the following 
onditions are equivalent:

(i) S and S

�

are 
ow-inverses of ea
h other.

(ii) The operator

h

1 0

[C&D℄

�

i

maps D(S

�

) one-to-one onto D(S), and

�

[A&B℄

�

0 1

�

=

�

A&B

C&D

� �

1 0

[C&D℄

�

�

(on D(S

�

)): (15)

(iii) For all � 2 �(A

�

), the operator [

� 0

0 0

℄ � S maps D(S) one-to-one onto

�

X

Y

�

, and its (bounded) inverse is given by

��

� 0

0 0

�

� S

�

�1

=

"

(��A

�

)

�1

�(��A

�

jX

)

�1

B

�

C

�

(��A

�

)

�1

�

b

D

�

(�)

#

: (16)

7

In this list we have not expli
itly in
luded the equivalent dis
rete time eigenvalue 
on-

ditions that 
an be derived from the alternative 
hara
terization of 
ontinuous time 
ow-

inversion as a Cayley transform, followed by a dis
rete time 
ow inversion, followed by an

inverse Cayley transform.
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(iv) For some � 2 �(A

�

), the operator [

� 0

0 0

℄�S maps D(S) one-to-one onto

�

X

Y

�

and (16) holds.

(v) For all � 2 �(A) \ �(A

�

),

b

D(�) is invertible and the following operator

identity holds in L

��

X

Y

�

;D(S)

�

:

"

(��A

�

)

�1

�(��A

�

jX

)

�1

B

�

C

�

(��A

�

)

�1

�

b

D

�

(�)

#

=

�

(��A)

�1

0

0 0

�

�

�

(��A

jX

)

�1

B

1

�

[

b

D(�)℄

�1

�

C(��A)

�1

1

�

:

(17)

(vi) For some � 2 �(A) \ �(A

�

),

b

D(�) is invertible and (17) holds.

When these equivalent 
onditions hold, then

�

1

C

�

maps X

1

into D(S

�

),

�

1

C

�

�

maps X

�

1

into D(S), and

A = A

�

jX

1

+B

�

C; A

�

= A

jX

�

1

+BC

�

;

0 = [C&D℄

�

�

1

C

�

; 0 = C&D

�

1

C

�

�

:

(18)

Proof. We begin by observing that (18), whi
h is equivalent to

�

[A&B℄

�

[C&D℄

�

� �

1

C

�

=

�

A

0

�

;

�

A&B

C&D

� �

1

C

�

�

=

�

A

�

0

�

; (19)

follows from (i) and (14) sin
e

�

X

1

0

�

2 D(S) and

h

X

�

1

0

i

2 D(S

�

).

(i) ) (ii): This is obvious (see De�nition 4.1).

(ii) ) (i): Suppose that (ii) holds. Then

�

1 0

C&D

�

h

1 0

[C&D℄

�

i

= [

1 0

0 1

℄ on

D(S

�

) (sin
e, by assumption, C&D

h

1 0

[C&D℄

�

i

=

�

0 1

�

, and we always have

�

1 0

�

h

1 0

[C&D℄

�

i

=

�

1 0

�

). Thus,

�

1 0

C&D

�

is a left-inverse of

h

1 0

[C&D℄

�

i

. How-

ever, as (by assumption)

h

1 0

[C&D℄

�

i

is both one-to-one and onto, it is invert-

ible, so the left inverse is also a right inverse, i.e., the inverse of

h

1 0

[C&D℄

�

i

is

�

1 0

C&D

�

. Multiplying (15) to the right by

h

1 0

[C&D℄

�

i

�1

we get the se
ond iden-

tity in (14). The �rst identity in (14) 
an equivalently be written in the form

h

[A&B℄

�

[C&D℄

�

i

=

�

A&B

0 1

�

h

1 0

[C&D℄

�

i

. The top part [A&B℄

�

= A&B

h

1 0

[C&D℄

�

i

of this

13



identity is 
ontained in (15)), and the bottom part [C&D℄

�

=

�

0 1

�

h

1 0

[C&D℄

�

i

is always valid. We 
on
lude that (ii) ) (i).

(ii) ) (iii): Let � 2 C be arbitrary. Clearly, (ii) is equivalent to the

requirement that

h

1 0

[C&D℄

�

i

maps D(S

�

) one-to-one onto D(S), 
ombined with

the identity (note that

�

� 0

�

h

1 0

[C&D℄

�

i

=

�

� 0

�

)

��

� 0

0 0

�

� S

��

1 0

[C&D℄

�

�

=

��

� 0

0 �1

�

�

�

[A&B℄

�

0

��

(on D(S

�

)):

If � 2 �(A

�

), then

h

(��A

�

)

�1

(��A

�

jX

)

�1

B

�

0 1

i

maps

�

X

U

�

one-to-one onto D(S

�

),

so we may multiply the above identity by this operator to the right to get the

equivalent identity

��

� 0

0 0

�

� S

�

"

(��A

�

)

�1

(��A

�

jX

)

�1

B

�

C

�

(��A

�

)

�1

b

D

�

(�)

#

=

�

1 0

0 �1

�

;

whi
h is now valid on all of

�

X

U

�

. This 
an alternatively be written as (multipy

by

�

1 0

0 �1

�

to the right)

��

� 0

0 0

�

� S

�

"

(��A

�

)

�1

�(��A

�

jX

)

�1

B

�

C

�

(��A

�

)

�1

�

b

D

�

(�)

#

=

�

1 0

0 1

�

:

By tra
ing the history of the se
ond fa
tor on the left-hand side we �nd that

it maps

�

X

U

�

one-to-one onto D(S). Thus, [

� 0

0 0

℄ � S is the left-inverse of an

invertible operator, hen
e invertible, and (16) holds.

(iii) ) (iv): This is obvious.

(iv) ) (ii): This is the same 
omputation that we did in the proof of the

impli
ation (ii)) (iii) done ba
kwards, for one parti
ular value of � 2 �(A

�

).

Observe, in parti
ular, that

h

1 0

[C&D℄

�

i

maps D(S

�

) one-to-one onto D(S) if

and only if the operator on the right-hand side of (16) maps

�

X

U

�

one-to-one

onto D(S).

(iii) ) (v): This follows from the easily veri�ed identity

��

� 0

0 0

�

�

�

A&B

C&D

��

=

�

1 0

�C(��A)

�1

1

� �

��A 0

0 �

b

D(�)

� �

1 �(��A

jX

)

�1

B

0 1

�

:

(20)

valid for all � 2 �(A).
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(v) ) (vi): This is obvious.

(vi) ) (iv): Argue as in the proof of the impli
ation (iii) ) (v).

The original idea behind the 
ow-inversion of a well-posed system intro-

du
ed in [12, Se
tion 5℄ was to inter
hange the roles of the input and output.

A similar interpretation is valid for the 
ow-inversion of system nodes, too.

Theorem 4.3. Let S =

�

A&B

C&D

�

be a 
ow-invertible system node on (Y;X;U),

whose 
ow-inverse S

�

is also a system node (on (U;X; Y )). Let x and y be the

state traje
tory and output of S with initial state x

0

2 X and input fun
tion

u 2 L

1

lo


(R

+

;U), and suppose that x 2 W

1;1

lo


(R

+

;X). Then y 2 L

1

lo


(R

+

;Y ),

and x and u are the state traje
tory and output of S

�

with initial state x

0

and

input fun
tion y.

Proof. By Lemma 2.3, [

x

u

℄ 2 L

1

lo


(R

+

;D(S)), y 2 L

1

lo


(R

+

;Y ), and [

x

y

℄ is the

unique solution with the above properties of the equation

�

_x(t)

y(t)

�

= S

�

x(t)

u(t)

�

for almost all t � s; x(s) = x

s

:

Sin
e

�

1 0

C&D

�

maps D(S) 
ontinuously onto D(S

�

), this implies that [

x

y

℄ =

�

1 0

C&D

�

[

x

u

℄ 2 L

1

lo


(R

+

;D(S

�

)). Moreover, sin
e

�

1 0

C&D

�

�1

=

h

1 0

[C&D℄

�

i

, we

have for almost all t � s,

�

x

0

(t)

u(t)

�

=

�

A&B

0 1

� �

x(t)

u(t)

�

=

�

A&B

0 1

� �

1 0

[C&D℄

�

� �

1 0

C&D

� �

x(t)

u(t)

�

=

�

[A&B℄

�

[C&D℄

�

� �

x(t)

y(t)

�

:

By Lemma 2.3, this implies that x and u are the state and output fun
tion of

S

�

with initial time s, initial state x

s

, and input fun
tion y.

Our next theorem shows that 
ompatibility is preserved under 
ow-inversion

in most 
ases.

Theorem 4.4. Let S =

�

A&B

C&D

�

be a 
ompatible system node on (Y;X;U),

and let

h

A

jW

B

C

jW

D

i

2 L(

�

W

U

�

;

�

W

�1

Y

�

) be a 
ompatible extension of S (here X

1

�

W � X and W

�1

is de�ned as in Se
tion 2). Suppose that S if 
ow-invertible.

Denote the 
ow-inverted system node by S

�

=

h

[A&B℄

�

[C&D℄

�

i

, let X

�

1

and X

�

�1

be

the analogues of X

1

and X

�1

for S

�

, and let W

�

�1

be the analogue of W

�1

for

S

�

(i.e., W

�

�1

= (��A

�

jW

)W for some � 2 �(A

�

)).
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(i) If D has a left inverse D

�1

left

2 L(Y ;U), then X

�

1

�W and S

�

is 
ompat-

ible with extended observation operator C

�

jW

: W ! U and 
orresponding

feedthrough operator D

�

given by

C

�

jW

= �D

�1

left

C

jW

;

D

�

= D

�1

left

;

(21)

and the the main operator A

�

of S

�

is given by

A

�

=

�

A

jX

�BD

�1

left

C

jW

�

jX

�

1

:

In this 
ase the spa
e W

�1


an be identi�ed with a 
losed subspa
e of

W

�

�1

, so that X �W

�1

� X

�1

\X

�

�1

. With this identi�
ation,

A

jW

= A

�

jW

+B

�

C

jW

; B = B

�

D

(where we by A

jW

and A

�

jW

mean the restri
tions of A

jX

and A

�

jX

to W ).

(ii) If D is invertible (with a bounded inverse), then W

�1

= W

�

�1

, A

�

W �

W

�1

, B

�

U � W

�1

, and the operator

�

A

�

jW

B

�

C

�

jW

D

�

�

2 L

��

W

U

�

;

�

W

�1

Y

��

de-

�ned by

"

A

�

jW

B

�

C

�

jW

D

�

#

=

�

A

jW

�BD

�1

C

jW

BD

�1

�D

�1

C

jW

D

�1

�

=

�

A

jW

0

0 0

�

+

�

B

1

�

D

�1

�

�C

jW

1

�

=

�

A

jW

0

0 0

�

+

�

B

1

�

h

C

�

jW

1

i

=

�

A

jW

0

0 0

�

+

�

B

�

1

�

�

�C

jW

1

�

is a 
ompatible extension of S

�

.

Proof. (i) Take [

x

y

℄ 2 D(S

�

), and de�ne u = [C&D℄

�

[

x

y

℄. Then [

x

u

℄ 2 D(S)

and y = C&D [

x

u

℄ = C

jW

x +Du. Multiplying the above identity by D

�1

left

to

the left we get for all [

x

y

℄ 2 D(S

�

),

u = [C&D℄

�

[

x

y

℄ = �D

�1

left

C

jW

x+D

�1

left

y:

16



The right-hand side is de�ned (and 
ontinuous) on all of W � Y . By (17), for

all y 2 Y and all � 2 �(A) \ �(A

�

),

(��A

�

jX

)

�1

B

�

y = (��A

jX

)

�1

B

b

D

�

(�)y 2W;

so R(B

�

) 2 W

�

�1

. This implies that

�

A

�

jW

B

�

C

�

jW

D

�

�

is a 
ompatible extension of

S

�

, with C

�

jW

= �D

�1

left

C

jW

and D

�

= D

�1

left

. By (18), for all x 2 X

�

1

, we have

A

�

x = (A

jX

+BC

�

)x = (A

jX

�BD

�1

left

C

jW

)x, as 
laimed.

Next we 
onstru
t an embedding operator J : W

�1

!W

�

�1

. This operator

is required to be one-to-one, and its restri
tion to X should be the identity

operator. We de�ne

J = (��A

�

jW

�B

�

C

jW

)(� �A

jW

)

�1

;

J

�

= (��A

jW

�BC

�

jW

)(� �A

�

jW

)

�1

:

(22)

The 
ompatibility of S and S

�

implies that J 2 L(W

�1

;W

�

�1

) and J

�

2

L(W

�

�1

;W

�1

) and by (18), both J and J

�

redu
e to the identity operator on

X.

We 
laim that J

�

2 L(W

�

�1

;W

�1

) is a left inverse of J 2 L(W

�1

;W

�

�1

),

or equivalently, that (��A

jW

)

�1

J

�

J(��A

jW

) is the identity on W . To see

that this is the 
ase we use (22), (21), (17), and (7) (in this order) to 
ompute

(��A

jW

)

�1

J

�

J(� �A

jW

)

= (��A

jW

)

�1

(��A

jW

�BC

�

jW

)

� (��A

�

jW

)

�1

(��A

�

jW

�B

�

C

jW

)

= (1� (��A

jW

)

�1

BC

�

jW

)(1� (��A

�

jW

)

�1

B

�

C

jW

)

= (1 + (��A

jW

)

�1

BD

�1

left

C

jW

)(1 � (��A

jW

)

�1

B

b

D

�1

(�)C

jW

)

= 1 + (��A

jW

)

�1

B

�

D

�1

left

�

b

D

�1

(�)�D

�1

left

C

jW

(��A

jW

)

�1

B

b

D

�1

(�)

�

C

jW

= 1 + (��A

jW

)

�1

BD

�1

left

�

b

D(�) �D �C

jW

(��A

jW

)

�1

B

�

b

D

�1

(�)C

jW

= 1:

This implies that the operator J is one-to-one; hen
e it de�nes a (not ne
es-

sarily dense) embedding of W

�1

intoW

�

�1

. In the sequel we shall identifyW

�1

with the range of J . That W

�1

is 
losed in W

�

�1

follows from the fa
t that J

has a bounded left inverse.

The identi�
ation of W

�1

with a subspa
e of W

�

�1

means that the embed-

ding operator J = (� � A

�

jW

� B

�

C

jW

)(� � A

jW

)

�1

be
omes the identity on

17



W

�1

, and hen
e, with this identi�
ation, (� � A

jW

) = (� � A

�

jW

� B

�

C

jW

),

or equivalently,

A

jW

= A

�

jW

+B

�

C

jW

:

The remaining identity B = B

�

D 
an veri�ed as follows. By (17) and the

fa
t that A

�

jW

= A

jW

�B

�

C

jW

,

B

�

b

D(�) = (��A

�

jW

)(� �A

jW

)

�1

B

= (��A

jW

+B

�

C

jW

)(� �A

jW

)

�1

B

= (B +B

�

C

jW

(��A

jW

)

�1

B)

= (B +B

�

(

b

D(�)�D))

= B

�

b

D(�) +B �B

�

D:

Thus B = B

�

D.

(ii) Part (ii) follows from part (i) if we inter
hange S and S

�

. (This will

also inter
hange W

�1

with W

�

�1

and J with J

�

.)

5 The Diagonal Transform

With the theory that we developed in the pre
eding se
tion at our disposal we


an now pro
eed in the same way as we did in [8, Se
tion 5℄ to investigate the


ontinuous time diagonal transform. First of all, by 
omparing (13) and (17)

we observe that it is possible to redu
e the 
ontinuous time diagonal transform

to 
ow-inversion in the following way.

De�nition 5.1. Let S =

�

A&B

C&D

�

be a system node on (U;X;U) (note that

Y = U). We 
all S diagonally transformable if the system node

e

S =

h

A&B

^

C&D

i

is 
ow-invertible, where

^

C&D =

1

p

2

�

C&D +

�

0 1

�

�

:

Denote the 
ow-inverse of this system node by

e

S

�

=

h

[A&B℄

�

[

^

C&D℄

�

i

. Then the

diagonal transform of S is the system node S

�

=

h

[A&B℄

�

[C&D℄

�

i

, where

[C&D℄

�

=

p

2 [

^

C&D℄

�

�

�

0 1

�

:

The diagonal transform 
an be 
omputed more expli
itly as follows.
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Corollary 5.2. Let S =

�

A&B

C&D

�

be a diagonally transformable system node

on (U;X;U). Then the diagonal transform S

�

=

h

[A&B℄

�

[C&D℄

�

i

of S satis�es

S

�

+

�

0 0

0 1

�

=

�

1 0

0

p

2

� �

A&B

0 1

���

1 0

C&D

�

+

�

0 0

0 1

��

�1

�

1 0

0

p

2

�

:

If S is 
ompatible with a 
ompatible extension

h

A

jW

B

C

jW

D

i

2 L(

�

W

U

�

;

�

W

�1

U

�

)

where 1+D invertible, then S

�

is also 
ompatible, with the 
ompatible exten-

sion (over the same spa
e W )

"

A

�

jW

B

�

C

�

jW

D

�

#

=

�

A

jW

0

0 �1

�

+

�

B

p

2

�

(1 +D)

�1

�

�C

jW

p

2

�

=

�

A

jW

�B(1 +D)

�1

C

jW

p

2B(1 +D)

�1

�

p

2(1 +D)

�1

C

jW

(1�D)(1 +D)

�1

�

:

(23)

This follows dire
tly from De�nition 5.1 and Theorems 4.3 and 4.4.

Corollary 5.3. Example 3.6 is a s
attering 
onservative system node.

This follows from Theorem 3.7 and Corollary 5.2.

Remark 5.4. By applying the same theory to other examples of impedan
e

passive or 
onservative systems we 
an 
reate many more examples of 
ontin-

uous time s
attering passive or 
onservative systems. One parti
ularly inter-

esting 
lass is the one whi
h is often referred to as `systems with 
ollo
ated

a
tuators and sensors', dis
ussed in, e.g., [1℄, [13℄, and [14℄.
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