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Abstract

Recently Guo and Luo (and independently Weiss and Tucsnak) were
able to prove that the damped second order system

5(t) + Agz(t) = —%CSCOZ(t) + Cru(t),
y(t) = —Coz(t) + u(t),

can be interpreted as a continuous time (well-posed and stable) scattering
conservative system with input u, state [@Z], and output y. Here Ag

is a positive (unbounded) self-adjoint operator on a Hilbert space Z with
a bounded inverse, and Cy is a bounded linear operator from D(v/Ap )
to another Hilbert space U. We show that this is a special case of the
following more general result: if we apply the so called diagonal transform
(which is a particular rescaled feedback/feedforward transform) to an
arbitrary continuous time impedance conservative system, then we always
get a scattering conservative system. In the particular case mentioned
above the corresponding impedance conservative system is the undamped
system
1
Z(t) + Aoz(t) = —= Clu(t
( ) 0 ( ) \/§ 0 ( )7
1
t) = —
y(t) 7
which may be interpreted as a second order system with collocated ac-
tuators and sensors.

Coé(t),

Keywords



Scattering, impedance, conservative, passive, compatible, diagonal
transform, feed-back, flow-inversion.

1 Introduction

In two recent articles Guo and Luo [1] and Weiss and Tucsnak [15] study the
abstract second order system of differential equations

2
3#(0) + Aoa(t) = —3 G = Coxlt) + Ciutt) 0
y(t) = = = Cozl) +u(t),

with input u, state [@ Z], and output y. Here Ay is an arbitrary positive
(unbounded) self-adjoint operator on a Hilbert space Z with a bounded in-
verse. We define the fractional powers of Aj in the usual way, and denote
Zyjp = D(vAp) and Z_1j3 = (Z1)2)" (where we identify Z with its dual).
Thus, Zyp C Z C Z_y/p, with continuous and dense injections, and AL
maps Z_yp onto Z;,. The operator C' is an arbitrary bounded linear op-
erator from Z)/, to another Hilbert space U. Guo and Luo showed in [1]
and Weiss and Tucsnak showed in [15] (independently of each other) that the
above system may be interpreted as a continuous time (well-posed and energy

stable) scattering conservative system with input u, state z = @Z , and
output y. The input and output spaces are both U, and the state space is
X = [%](:ZXZ).

Formally, the system (1) is equivalent to the diagonally transformed system

d? 1 %, X
g7t + Aoz(t) = = Gou (1),
2 (2)

which we get from (1) by replacing v and y in (1) by u* = %(u + y) re-
spectively y* = %(u —1y). We can formally get back to (1) by repeating the
same transform: we replace v and y* in (2) by u = %
y = %(uX — y*). This transform, drawn in Figure 1, is simply a rescaled

Y™ (t)

(u™ 4+y*) respectively

feedback /feedforward connection.
The purpose of this article is to show that the above transformations are
not just formal, but that that they can be mathematically justified, thereby
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Figure 1: The diagonal transform

giving a positive answer to the question posed in [1, Remark 2]. It follows
directly from [8, Theorem 4.7] that (2) is an impedance conservative system
of the type introduced in [8]. According to [9, Theorem 8.2], by applying the
diagonal transform to this system we get a scattering passive system. As we
shall show below, this scattering passive system is exactly the system described

by (1).

2 Infinite-Dimensional Linear Systems

Many infinite-dimensional linear time-invariant continuous-time systems can
be described by the equations

7' (t) = Az(t) + Bu(t),
Cz(t) + Du(t), t>0, (3)

<
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z(0) = zo,

on a triple of Hilbert spaces, namely, the input space U, the state space X, and
the output space Y. We have u(t) € U, z(t) € X and y(¢) € Y. The operator
A is supposed to be the generator of a strongly continuous semigroup. The
operators A, B and C are usually unbounded, but D is bounded.

By modifying this set of equations slightly we get the class of systems
which will be used in this article. In the sequel, we think about the block

matrix S = [é, B] as one single (unbounded) operator from [5] to [{f], and

write (3) in the form
LEQFS[EQ] t>0, (0) = 0. (4)

The operator S completely determines the system. Thus, we may identify the
system with such an operator, which we call the node of the system.



The system nodes that we use have a certain structure which makes it
resemble a block matrix operator of the type [é g]. To describe this struc-
ture we need the notion of rigged Hilbert spaces. Let A be the generator of
a Cp semigroup on the Hilbert space X. We denote its domain D(A) by
X1. We identify the dual of X with X itself, and denote X_; = D(A*)*.
Then X; C X C X_; with continuous and dense injections. The operator
A has a unique extension to an operator in £(X;X_;) which we denote by
A|x (thereby indicating that the domain of this operator is all of X). This
operator is the generator a Cjy semigroup on X_;, whose restriction to X is
the semigroup generated by A.

Definition 2.1. We call S a system node on the three Hilbert spaces (U, X,Y")
if it satisfies condition (S) below:!

(S) S :=[4%B]: [£] > D(S) — [{] is a closed linear operator. Here
A&B is the restriction to D(S) of [A|X B], where A is the generator
of a Cy semigroup on X (the notations A|x € L(X;X_1) and X_; were
introduced in the text above). The operator B is an arbitrary operator
in L(U; X_1), and C&D is an arbitrary linear operator from D(S) to Y.
In addition, we require that

D(S)={[i]e [¥] | Axz+Bue X},

We shall use the following names of the different parts of the system node
S = [éé‘;g]. The operator A is the main operator or the semigroup genera-
tor, B is the control operator, C&D is the combined observation/feedthrough

operator, and the operator C' defined by

x

Cx :=C&D [0

:| R r € X,
is the observation operator of S.
An easy algebraic computation (see, e.g., [10, Section 4.7] for details) shows

-1

that for each a € p(A) = p(4|x), the operator {(1) (O‘*A\f) B] is an boundedly

invertible mapping between [%] — [§] and [7}] — D(S). Since [)[(]1] is

dense in [ ], this implies that D(S) is dense in [jg |. Furthermore, since the

second column [(afAlf‘)_lB} of this operator maps U into D(S), we can define

!This definition is equivalent to the corresponding definitions used by Smuljan in [6] and
by Salamon in [4, 5].



the transfer function of S by
R _ -1
B(s) == C&D [(3 A\lx) B], s € p(A), (5)

which is a £L(U;Y)-valued analytic function on p(A). By the resolvent formula,
for any two «a, € p(A),

D(a) -D(B) =Clla—Ax) " = (8- Ax) B

6
= (B~ a)C(a—A) (B - Ax)"'B. )

Let us finally present the class of compatible system nodes, originally in-
troduced by Helton [2]). This class can be defined in several different ways,
one of which is the following. We introduce an auxiliary Banach space W
satisfying X1 C W C X, fix some « € p(4), and define W_; = (a — A\x)W
with |z|w_, = |[(— A x) 'z|w (defined in this way the norm in W_; depends
on «, but the space itself does not). Thus

XiCcWcCcXcW ,CX .

The embeddings W C X and W_; C X_; are always dense, but the embed-
dings X7 C W and X C W_; need not be dense. The system is compatible
if R(B) C W_1 and C has an extension to an operator C|y € L(W;Y) (this
extension is not unique unless the embedding X; C W is dense). Thus, in
this case the operator Cyy (o — Ax)"'B € L(U;Y) for all a € p(A). If we fix
some « € p(A) and define

D :=9(a) - Oy (a— Ax) !B,

then D € L(U;Y), and it follows from (6) that D does not depend on «,
only on A, B, Cjy, and D (in particular, different extensions of C' to W

give different operators D). Clearly, the above formula means that D can be
written in the simple form

D(s) =Clw(s — Ax) "B+ D, s € p(A). (7)
Another way of describing compatibility is to say that the system node S can
be extended to a bounded linear operator [g::VV g] € E([V[}/] ; [WU—I ]), where
Ay is the restriction of A x to W. Thus

[A&B] _ [AW B

c&D| = |Cw D] o)



A . . .
We shall refer to the operator [ C:Z g} as a (possibly non-unique) compatible

representation of S over the space W. There is always a minimal space W
which can be used in this representation, namely W := (o — A) 'W_; where
a € p(A) and W_; := (X 4 BU), but it is frequently more convenient to
work in some other space W (for example, it may be possible to choose a
larger space W for which the embedding X1 C W is dense and the extension
is unique).

As shown in [11], the system node S of a well-posed system is always
compatible, but the converse is not true (an example of a compatible system
of the type (2) which is not well-posed is given in [13]).

Every system node induces a ‘dynamical system’ of a certain type:

Lemma 2.2. Let S be a system node on (U,X,Y). Then, for each oy € X
and u € W2 (RY; U) with [uaég)] € D(S), the equation

loc
[w(t)] -9 [ig;] , t>0, z(0)=mx, (8)
(t)

has a unique solution (z,y) satisfying [Z(t)} € D(S) forallt > 0, z €
CHR"; X), and y € C(RT;Y).

This lemma is proved in [3] (and also in [10]).2

So far we have defined X only for the class of smooth data given in
Lemma 2.2. It is possible to allow arbitrary initial states xp € X and in-
put functions u € L} (R";U) in Lemma 2.2 by allowing the state to take
values in the larger space X_; instead of in X, and by allowing y to be a
distribution. Rather than presenting this result in its full generality, let us

observe the following fact.

Lemma 2.3. Let S = [égg] be a system node on (U, X,Y). Let xy € X,
and u € L (RY;U), and let x and y be the state trajectory and output of S

loc

with initial state xo, and input function u. If x € WI’I(RJ“;X), then [5] €

loc

LL (RT;D(9)), y € LL .(RT;Y), and [§] is the unique solution with the above

properties of the equation
i(t)] [!E(t)]
=S5 or almost all t >0, z(0) = zo. 9
o) =5 i) 7 20, 0= ®)
Ifue C(RY;U) and x € CH(RT; X), then [£] € C(RY;D(S)), y € C(RT;Y),
and the equation (9) holds for all t > 0.

*Well-posed versions of this lemma (see Definition 2.4) are (implicitly) found in [4] and
[6] (and also in [11]). In the well-posed case we need less smoothness of u: it suffices to take
uw € WEA(RY; U). In addition y will be smoother: y € W2 (RT;Y).

loc loc




See [10, Section 4.7] for the proof.
Many system nodes are well-posed:

Definition 2.4. A system node S is well-posed if, for some ¢ > 0, there is a
finite constant K (¢) such that the solution (z,y) in Lemma 2.2 satisfies

2O + Iyl 2 000 < K0 (120 + 320, (WP)

It is energy stable if there is some K < oo so that, for all #+ € R™, the solution
(z,y) in Lemma 2.2 satisfies

[ + 1912200 < K (20 + 220, (BS)

For more details, explanations and examples we refer the reader to [3] and
[7, 8,9, 10] (and the references therein).

3 Passive and Conservative Scattering and Impedance
Systems

The following definitions are slightly modified versions of the definitions in the
two classical papers [16, 17] by Willems (although we use a slightly different
terminology: our passive is the same as Willems’ dissipative, and we use
Willems’ storage function as the norm in the state space).

Definition 3.1. A system node S is scattering passive if, for all t > 0, the
solution (z,y) in Lemma 2.2 satisfies

2O ~ ool < lulZgory — 1912200 (SP)

It is scattering energy preserving if the above inequality holds in the form of
an equality: for all ¢ > 0, the solution (z,y) in Lemma 2.2 satisfies

2O — [20f? = a0 = 191220, (SE)

Finally, it is scattering conservative if both S and S* are scattering energy
preserving.>

Thus, every scattering passive system is well-posed and energy stable: the
passivity inequality (SP) implies the energy stability inequality (ES).

3If S is a system node on (U, X,Y), then its adjoint S* is a system node on (Y, X, U).
See, e.g., [3].



Definition 3.2. A system node S on (U, X, U) (note that Y = U) is impedance
passive if, for all ¢ > 0, the solution (z,y) in Lemma 2.2 satisfies

()% — Jwol} <2 / Ry (1), u(t)) dt. (1P)
0

It is impedance energy preserving if the above inequality holds in the form of
an equality: for all ¢ > 0, the solution (z,y) in Lemma 2.2 satisfies

t
@) — [zl =2 / Ry (t), u(t)) v dr. (IE)
0

Finally, S is impedance conservative if both S and the dual system node S*
are impedance energy preserving.

Note that in this case well-posedness is neither guaranteed, nor relevant.

Physically, passivity means that there are no internal energy sources. An
energy preserving system has neither any internal energy sources nor any sinks.
Other types of passivity have also been considered in the literature; in partic-
ular transmission (or chain scattering) passive or conservative systems.

Both in the scattering and in the impedance setting, the property of being
passive is conserved under the passage from a system node S to its dual. See
[8] for details.

The following theorem can be used to test if a system node is impedance
passive or energy preserving or conservative:

Theorem 3.3 ([8, Theorems 4.2, 4.6, and 4.7]). Let S = [A¥B] be a
system node on (U, X,U).
(i) S is impedance passive if and only if the system node [7({%3] s dissi-
pative, i.e, for all [13] € D(S),

o el [l = w

(ii) S is impedance energy preserving if and only if the system node [7@%5]

is skew-symmetric, i.e., D(S) = D([ _A¥B]) D([fégg]*), and

[—égﬁiﬂ;[_éﬁiﬂ [iﬁ]v [mO]eD(S>- (11)



(iii) S is impedance conservative if and only if the system node [7&%5] 18

skew-adjoint, i.e.,
[ A&:B]* _ _[ A&B]

_C&D _C&D (12)

Equiy\alently,/\S is impedance conservative if and only A* = — A, B* = C,
and D(a) +D(—a)* =0 for some (or equivalently, for all) o € p(A) (in
particular, this identity is true for all o with R # 0).

Many impedance passive systems are well-posed. There is a simple way of
characterizing such systems:

Theorem 3.4. An impedance passive system node is well-posed if and only if
its transfer function D is bounded on some (or equivalently, on every) vertical
line in C*. When this is the case, the growth bound of the system is zero, and,
in particular, D is bounded on every right half-plane CH={seC|Rs>e¢€}
with € > 0.

This is [8, Theorem 5.1]. It can be used to show that many systems with
collocated actuators and sensors are well-posed.

Example 3.5. To get the system described by (2) we take the state to be

¢ = |VA07| the input to be u, and the output to be y. The input and
z

output spaces are U, the state space is [%], and, in compatibility notion with

W =2y, and W_y,5 = Z_y 5, the extended system node is given by

0 VA | o
i’ﬂ | —va o ‘ e
¢lD 0 LOO‘ 0

V2

(the first element in the middle row stands for an extended version of /Ay ).

The domain of the system node itself consists of those {%] € [g} which

satisfy xq — AO_I/QC(’)‘U € Zy12 and 79 € Zy 9, and its transfer function is
~ 1 ~1
@(s)zoo(erng) ;. Rs#0

(where the inverse maps Z_1/2 onto Z1/2). By Theorem 3.3, this system node
is impedance conservative.



Example 3.6. Also the system described by (1) can be formulated as a system
node with the same input, state, and output as in Example 3.5. This time we
take the extended system node to be (in the notation below we have anticipated
the fact, which will be proved later, that this example is the diagonal transform
of Example 3.5) (2))

A% | B 0 VA | 0
—’F | = —VAy 5C5C | Gy
0 —C |

(again the first element in the middle row stands for an extended version of
. . . Z
VAp). The domain of the system node itself consists of those [%} € [5}

which satisfy z; — Aal/z(% CyCoza + C’gu) € Zyp and z2 € Zy)o, and its
transfer function is

~ 1 N 1 —1 N
@(5)21—00(s+50000+§,40) Ci Rs A0

It is not obvious that Example 3.6 is scattering conservative (hence well-
posed and energy stable). That this is, indeed, the case is the main result
of [15]. Here we shall rederive that result by a completely different method,
appealing to the following general result.

Theorem 3.7 ([9, Theorem 8.2]). A system node S = [A¥8] on (U, X,U)
is impedance passive (or energy preserving or conservative) if and only if
it is diagonally transformable,* and the diagonally transformed system node

_ | [A&B]*
8% = [[C&D]><

(in particular, it is well-posed and energy stable). The system node S* can be
determined from its main operator A™, control operator B>, observation oper-
ator C*, and transfer function ©*, which can be computed from the following

} is scattering passive (or energy preserving, or conservative)

4This notion will be defined in Section 5.

10



formulas, valid for all o € p(A) N p(A*),>

(@A) L(a—A%) B

L0 a— A1 J(1+D%(w)

V2 -1
- ([g (1)] B [—ngD 13
:[(a—A)l 0] v
0 0
[ 20 (4 By -

In particular, 1+ D(a) is invertible and D (a) = (1 — D (a))(1 +D ()"t for
all @ € p(A) N p(AX).

Thus, in order to show that Example 3.6 is scattering conservative, it
suffices to show that it is the diagonal transform of Example 3.5. This can
be achieved via a lengthy computation based on formula (13), but instead of
doing this we shall derive an alternative formula to (13) which is valid (only)
for compatible systems. See Corollary 5.2 and Remark 5.4.

4 Flow-Inversion

In order to get a compatible version of (13) we need to develop a version of the
diagonal transform which is more direct than the one presented in [9] (there
this transformation was defined as a Cayley transform, followed by a discrete
time diagonal transform, followed by an inverse Cayley transform). Instead
of using this lengthy chain of transformations we here want to use a (non-
well-posed) system node version of the approach used in [8, Section 5]. That
approach used the theory of flow-inversion of a well-posed system developed
in [12], so we have to start by first extending the notion of flow-inversion to a
general system node.5

Definition 4.1. Let S = [AFB] be a system node on (U, X,Y). We call S

flow-invertible if there exists another system node §* = ngg]]z ] on (Y, X,U)

5A|><X is the extension of A* to an operator in £(X; X*,), where X*, is the analogue of

X_1 with A replaced by A*.
SFlow-inversion can be interpreted as a special case of output feedback, and conversely,
output feedback can be interpreted as a special case of flow-inversion. See [12, Remark 5.5].

11



which together with S satisfies the following conditions: the operator [ é&%]

maps D(S) continuously onto D(S*), its inverse is [[é&OD]x }, and

oo _ ) e 0]1’

[C&D]* 0 1||c&D - )
5= |oun) = [0V | eany] -

In this case we call S and S* flow-inverses of each other.

Obviously, the flow-inverse of a node S in unique (when it exists). Fur-
thermore, by [12, Corollary 5.3], in the well-posed case this notion agrees with
the notion of flow-inversion introduced in [12].

The following theorem lists a number of alternative characterizations for
the flow-invertibility of a system node.”

Theorem 4.2. Let S = [éé‘;g] be a system node on (U, X,Y), with main
operator A, control operator B, observation operator C, and transfer function

D, and let S* = Hég[B)]]i} be a system node on (Y, X,U), with main operator

A control operator B>, observation operator C*, and transfer function .
We denote D(A) = X1, (D(A*))* = X_1, D(A*) = X{*, and (D((A*)*))* =
X_1. Then the following conditions are equivalent:

(i) S and S* are flow-inverses of each other.
(ii) The operator [[é&%]x} maps D(S*) one-to-one onto D(S), and

[[g&Bl]X] - [égg] [[é‘&?}p] (on D(S%)). (15)

(iii) For all a € p(A®), the operator [ 3] — S maps D(S) one-to-one onto
(], and its (bounded) inverse is given by

(5 0-) " oo, 2]

"In this list we have not explicitly included the equivalent discrete time eigenvalue con-
ditions that can be derived from the alternative characterization of continuous time flow-
inversion as a Cayley transform, followed by a discrete time flow inversion, followed by an
inverse Cayley transform.

12



(iv) For some « € p(A*), the operator [¢ ] — S maps D(S) one-to-one onto
[¥] and (16) holds.

(v) For all a € p(A) N p(A%), (a) is invertible and the following operator

identity holds in E([{f] ;D )
(= A1 —(a— A‘XX) 'BX| [(a - A)™! 0]
CHla-a)™ DX L 0 o
o — -t -~
_ [( Al\x) B] B ()] ' [Cla—A4)t 1].

(vi) For some a € p(A) N p(A*), 5(04) is invertible and (17) holds.

When these equivalent conditions hold, then [ ] maps X1 into D(S™), [cx]
maps X{* into D(S), and

A=A +B*C, AX:A|XX+BCX,
0=c&Dn* |} 0= C&D (18)
_ceny [, _cen[L].

Proof. We begin by observing that (18), which is equivalent to
[A&B)*1 [1] _[A]  [A&B|[1] _ [A~ (19)
[C&D]*| |C| |0]|" |C&D||(C*| |0]|’
follows from (i) and (14) since [} ] € D(S) and [ ] € D(Sx).
(i) = (ii): This is obvious (see Definition 4.1).
(ii) = (i): Suppose that (ii) holds. Then [} %] [[é&%]x] = [§9] on
[0

D(S*) (since, by assumption, C&D [[C&D} ] ], and we always have

1 0] [[C&D] ] =[1 0]). Thus, [2%] is a left-inverse of [[é&%]x]. How-
ever, as (by assumption) [[é&%] ] is both one-to-one and onto, it is invert-

ible, so the left inverse is also a right inverse, i.e., the inverse of [[C& D)X } is

[ de ] Multiplying (15) to the right by [[C&D]x } we get the second iden-
tity in (14). The first identity in (14) can equivalently be written in the form

el ] = [498] [ by |- The top part [A&B]* = A&B | by« | of this

13



identity is contained in (15)), and the bottom part [C&D]* = [0 1] [[é&OD]x }

is always valid. We conclude that (ii) = (i).
(ii) = (iii): Let o € C be arbitrary. Clearly, (ii) is equivalent to the
requirement that [[é&%]x ] maps D(S*) one-to-one onto D(S), combined with

the identity (note that [a 0] [[é&%]x] =[a 0])

(95 [am] = (%] [427]) nmsn

If a € p(A*), then [(a_%X)A (O‘_A\X)i)ile ] maps [ & | one-to-one onto D(S*),
so we may multiply the above identity by this operator to the right to get the
equivalent identity

(5 0 -) e i a7 =0 1)

which is now valid on all of [5 ] This can alternatively be written as (multipy
by [§ %] to the right)

(-9 o e 8 )= 0]

By tracing the history of the second factor on the left-hand side we find that
it maps [ ] one-to-one onto D(S). Thus, [§§] — S is the left-inverse of an
invertible operator, hence invertible, and (16) holds.

(iii) = (iv): This is obvious.

(iv) = (ii): This is the same computation that we did in the proof of the
implication (ii) = (iii) done backwards, for one particular value of a € p(A*).

Observe, in particular, that [[é&%}x} maps D(S*) one-to-one onto D(S) if

and only if the operator on the right-hand side of (16) maps [5 ] one-to-one
onto D(S).
(iii) = (v): This follows from the easily verified identity

(cpintev)
~ 1 0] [a—A 0 Hl (o= Apy)"'B]

(20)
_[—C(a—A)l 1]l 0 -®Dw]|o 1

valid for all a € p(A).

14



(v) = (vi): This is obvious.
(vi) = (iv): Argue as in the proof of the implication (iii) = (v). O

The original idea behind the flow-inversion of a well-posed system intro-
duced in [12, Section 5] was to interchange the roles of the input and output.
A similar interpretation is valid for the flow-inversion of system nodes, too.

Theorem 4.3. Let S = [é(‘%ﬁ[B)] be a flow-invertible system node on (Y, X,U),
whose flow-inverse S™ is also a system node (on (U, X,Y)). Let x and y be the
state trajectory and output of S with initial state Ty € X and input function
u € L (RY;U), and suppose that x € Wllo’cl(R"';X). Then y € Ll (RT;Y),
and x and u are the state trajectory and output of S™ with initial state ¢ and
input function y.

Proof. By Lemma 2.3, [£] € L. (R";D(S)), y € L (RT;Y), and [§] is the

loc loc
unique solution with the above properties of the equation

[j;(t)] -5 [zg;] for almost all t > s, z(s) = .

Since [ A% ] maps D(S) continuously onto D(S*), this implies that [§] =
. ~1

[é&%] [4] € L} (R";D(S*)). Moreover, since [é&%] = [[é&omx], we

have for almost all ¢t > s,

o = 0] o] =[5 Lewne] Lewn] Lo
- o] (o)

By Lemma 2.3, this implies that = and w are the state and output function of
S* with initial time s, initial state x5, and input function y. O

Our next theorem shows that compatibility is preserved under flow-inversion
in most cases.

Theorem 4.4. Let S = [égg] be a compatible system node on (Y, X,U),

and let [g\‘v‘t [B,] e L([V]; [W;‘l]) be a compatible extension of S (here X; C

W C X and W_y is defined as in Section 2). Suppose that S if flow-invertible.

e | et X7 and XX, be

the analogues of X1 and X_y for S*, and let W, be the analogue of W_; for
S* (i.e., WX = (a — A|XW)W for some «a € p(A*)).

Denote the flow-inverted system node by S™ = [
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(i) If D has a left inverse Dlgflt € L(Y;U), then X C W and S* is compat-

1ble with extended observation operator Cﬁ(/‘,: W — U and corresponding

feedthrough operator D* given by
(21)

and the the main operator A* of S* is given by

—1
A% = (A\X - BDleftC\W)\XIX'

In this case the space W_1 can be identified with a closed subspace of
W, so that X C W_1 C X_1 N X",. With this identification,

A|W:A|>;V-I—BXC‘W, B=B*D

(where we by Apy and Aﬁ/[/ mean the restrictions of Ax and A& toW).

(ii) If D is invertible (with a bounded inverse), then W_1 = W, A*W C

A, BX
W_y, B*U C W_y, and the operator [CXVVZ DX:| e L([V]; [V[;_l]) de-
fined by
Ay Bl 'A‘W—BID_IC‘W BD‘II]
X - _ _
Ciw D~ . D7 Cw D
Aw 0] [B] -y
- I (‘) 0] + _1:| D [_C\W 1]
A 0], [B] [
= C 1
0 0_+_1M w1
Aw 0] [B*
:_5 0_+_1][_CW 1]

is a compatible extension of S*.
Proof. (i) Take [y] € D(S*), and define u = [C&D]* [y]. Then [{] € D(S)
and y = C&D [j] = Cjwx + Du. Multiplying the above identity by Dl;flt to
the left we get for all [y] € D(S%),

u=[C&D]* [§] = —Dig,Ciwz + Dity.
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The right-hand side is defined (and continuous) on all of W x Y. By (17), for
all y € Y and all « € p(A) Np(A™),

(=A%) By = (a - Ax) ' BD (a)y € W,
A, BX
so R(B*) € W*,. This implies that [ Cle DX] is a compatible extension of
W
S*, with Cﬁ(/v = —Dlgfltqw and D* = D By (18), for all z € X[, we have

A%z = (Ax + BC")z = (A]x — BDl;flth)x, as claimed.

Next we construct an embedding operator J: W_; — W*|. This operator
is required to be one-to-one, and its restriction to X should be the identity
operator. We define

J = (a— Ay — B*C)a— Ap) ",

J* = (a— Aw — BCjy) (e — A|XW)—1.

(22)

The compatibility of S and S* implies that J € L(W_;;W*|) and J* €
L(W*;W_1) and by (18), both J and J* reduce to the identity operator on
X.

We claim that J* € L(WX;W_1) is a left inverse of J € L(W_y; W),
or equivalently, that (a — A‘W)_IJXJ(a — Apw) is the identity on W. To see
that this is the case we use (22), (21), (17), and (7) (in this order) to compute

(o — A‘W)_IJXJ(Oé — A|W)

= (a— A|W)*1(oz — A — BC|>I</V)
X (a0 — Aﬁ/‘,)_l(a — A‘XW - B*Cyw)
=(1—(a— A|W)*1BC‘T,V)(1 —(a— A‘XW)*lBXC‘W)

= (1+ (e — Apy) 'BDECy ) (1 = (@ — Ajy) ' BD () Cpyy)

=1+ (a—Aw) 'B[Djy, — D Ya) = Dy, Ciw (e — Aw) 'BD )| Cpwr
=1+ (a— Aw) 'BD [9(e) = D = Ciw(a — Apy) ' B]D () Ol

= 1.

This implies that the operator J is one-to-one; hence it defines a (not neces-
sarily dense) embedding of W_1 into W|. In the sequel we shall identify W_;
with the range of J. That W_; is closed in I/V_X1 follows from the fact that J
has a bounded left inverse.

The identification of W_; with a subspace of Wfl means that the embed-
ding operator J = (o — A‘);,V — B*Cyw)(a — Ajyy) ! becomes the identity on
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W_1, and hence, with this identification, (o« — Apy) = (@ — A‘XW - B*Cw),
or equivalently,
Aw = A

The remaining identity B = B* D can verified as follows. By (17) and the

fact that AF;V = Aw — B*Cyw,

B*®(a) = (o =A%) (@ — Aw) ™' B
(Oé—A\WJrB C|W)(O‘_A|W)
= (B + B* C|W(a—A‘W) B)

= (B+B*(D(a) - D))

=B*®(a)+ B - B*D.

Thus B = B*D.

(ii) Part (ii) follows from part (i) if we interchange S and S*. (This will
also interchange W_; with W*| and J with J*.) O

5 The Diagonal Transform

With the theory that we developed in the preceding section at our disposal we
can now proceed in the same way as we did in [8, Section 5] to investigate the
continuous time diagonal transform. First of all, by comparing (13) and (17)
we observe that it is possible to reduce the continuous time diagonal transform
to flow-inversion in the following way.

Definition 5.1. Let S = [4¢B] be a system node on (U, X,U) (note that

Y =U). We call S diagonally transformable if the system node S = [%ﬁ%}
is flow-invertible, where

C&D = %(C&:Dwt o 1]).

~ X
Denote the flow-inverse of this system node by S* = Hgiig]x } Then the
diagonal transform of S is the system node S* = Hgig}]i ], where

[C&D]* = V2 [C&D]* — [0 1].

The diagonal transform can be computed more explicitly as follows.
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Corollary 5.2. Let § = [égg] be a diagonally transformable system node
on (U, X,U). Then the diagonal transform S* = [[A&B]X] of S satisfies

(C&D]*
gx [0 0]t 0] [AuB 10+00*110
0 1] |0 v2] [0 1]\|Cc&D| |0 1 0 V2|’

If S is compatible with a compatible extension [é::vv g} e L([V]; [WU‘I])

where 14+ D invertible, then S™ is also compatible, with the compatible exten-
sion (over the same space W)

o o = [ S [ aerrow Ve

23
- [A|W—B(1+D)—10W V2B(1+ D)™t ] 29)
L V204D 0w (1-D)(1+ D)7

This follows directly from Definition 5.1 and Theorems 4.3 and 4.4.
Corollary 5.3. Ezample 3.6 is a scattering conservative system node.
This follows from Theorem 3.7 and Corollary 5.2.

Remark 5.4. By applying the same theory to other examples of impedance
passive or conservative systems we can create many more examples of contin-
uous time scattering passive or conservative systems. One particularly inter-
esting class is the one which is often referred to as ‘systems with collocated
actuators and sensors’, discussed in, e.g., [1], [13], and [14].
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