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State/Signal Linear Time-Invariant
Systems Theory, Part I:
Discrete Time Systems

Damir Z. Arov and Olof J. Staffans

Abstract. This is the first paper in a series of several papers in which we de-
velop a state/signal linear time-invariant systems theory. In this first part we
shall present the general state/signal setting in discrete time. Our following
papers will deal with conservative and passive state/signal systems in discrete
time, the general state/signal setting in continuous time, and conservative and
passive state/signal systems in continuous time, respectively. The state/signal
theory that we develop differs from the standard input/state/output theory
in the sense that we do not distinguish between input signals and output sig-
nals, only between the “internal” states x and the “external” signals w. In the
development of the general state/signal systems theory we take both the state
space X and the signal space W to be Hilbert spaces. In later papers where
we discuss conservative and passive systems we assume that the signal space
W has an additional Krĕın space structure. The definition of a state/signal
system has been designed in such a way that to any state/signal system there
exists at least one decomposition of the signal space W as the direct sum
W = Y � U such that the evolution of the system can be described by the
standard input/state/output system of equations with input space U and out-
put space Y. (In a passive state/signal system we may take U and Y to be the
positive and negative parts, respectively, of a fundamental decomposition of
the Krĕın space W.) Thus, to each state/signal system corresponds infinitely
many input/state/output systems constructed in the way described above. A
state/signal system consists of a state/signal node and the set of trajectories
generated by this node. A state/signal node is a triple Σ = (V ;X ,W), where
V is a subspace with appropriate properties of the product space X ×X ×W.
In this first paper we extend standard input/state/output notions, such as
existence and uniqueness of solutions, continuous dependence on initial data,
observability, controllability, stabilizability, detectability, and minimality to
the state/signal setting. Three classes of representations of state/systems are
presented (one of which is the class of input/state/output representations),
and the families of all the transfer functions of these representations are stud-
ied. We also discuss realizations of signal behaviors by state/signal systems, as
well as dilations and compressions of these systems. (Duality will be discussed
later in connection with passivity and conservativity.)
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1. Introduction

The main motivation for this work comes from the notion of a multi-port network.
Such a network consists of internal branches, where the evolution of the data is
described by, e.g., systems of ordinary or partial differential equations involving
state variables (lumped or distributed), and external branches (ports), where the
evolution of the port variables is only partially restricted by the network equations.
Typically one part of the port variables can be prescribed in an arbitrary way (this
is the “input” part), after which the remaining “output” part of the port variables
can be computed from the network equations. However, the splitting of the port
variables into an input part and output part is not specified, and many different
choices are possible.

To be a little more concrete, let us consider a two-port Kirchhoff network, i.e.,
a Kirchhoff network with two external branches. To each of these branches we asso-
ciate at each time instant t a normalized voltage/current pair (v1(t), i1(t)), respec-
tively, (v2(t), i2(t)) (normalization means that we divide each voltage by

√
R and

multiply each current by
√

R, where R is a fixed resistance). Thus, the complete
set of port variables is the four-dimensional vector w(t) = (v1(t), i1(t), v2(t), i2(t)).
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Sometimes we may use u(t) = (v1(t), i1(t)) as the input data, and regard
(v2(t), i2(t)) as the output data (or the other way around). This case is called
the transmission case, and it is used, e.g., in the cascade synthesis of two-ports.
However, this choice of input and output data is not always possible or reason-
able. Another possibility is to choose u(t) = (i1(t), i2(t)) as the input data and
y(t) = (v1(t), v2(t)) as the output data (or the other way around). These cases
are referred to as the impedance and admittance cases, and they are used, e.g.,
in series and parallel connections of networks. Neither is this choice of input and
output data always possible or reasonable. In his development of the theory of
passive Kirchhoff networks V. Belevitch [Bel68] proposed the use of the incoming
wave data u(t) = ( 1√

2
(v1(t) + i1(t)), 1√

2
(v2(t) + i2(t))) as input data and the out-

going wave data u(t) = ( 1√
2

(v1(t)−i1(t)), 1√
2

(v2(t)−i2(t))) as output. This case is
called the scattering case, and this particular decomposition is always possible and
meaningful for passive Kirchhoff networks. In all these cases the physical network
is the same, but depending on the decomposition of w(t) = (v1(t), i1(t), v2(t), i2(t))
into an input part and an output part we get very different input/state/output
characteristics.

The idea of considering the evolution of external signals w(t) without an
explicit decomposition into an input part u(t) and an output part y(t) is the most
fundamental ingredient in the behavioral theory initiated by J. Willems (see, e.g.,
[PW98] for a recent presentation of behavioral theory). Our approach differs from
the standard behavioral approach in the sense that we always include a state
variable in the equations describing the evolution of the system, and we more
or less ignore polynomial descriptions as well as dynamics generated by ordinary
differential equations. It is genuinely infinite-dimensional, and it appears to be
applicable to a large class of infinite-dimensional problems. A first step in this
direction was taken by J. Ball and O. Staffans [BS05], where the main notion of a
state/signal node and its trajectories are found in an implicit way.

A state/signal system consists of a state/signal node and the set of trajecto-
ries generated by this node. A state/signal node is a triple Σ = (V ;X ,W), where
X (the state space) and W (the signal space) are Hilbert spaces, and V is a sub-
space of the product space

[ X
X
W

]
with appropriate properties. In this paper we shall

only discuss systems with discrete time. The list of properties that the subspace
V should satisfy in this case is given in Definition 2.1. By a trajectory (x(·), w(·))
of Σ on Z+ = {0, 1, 2, . . .} we mean a pair of sequences {x(n)}∞n=0 and {w(n)}∞n=0

satisfying [
x(n+1)

x(n)
w(n)

]
∈ V, n ∈ Z

+. (1.1)

The properties of the subspace V have been chosen in such a way that there exists
at least one admissible decomposition (actually infinitely many decompositions)
of the signal space W as the direct sum W = Y � U of an input space U and an
output space Y such that trajectories are defined by a usual input/state/output
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system of equations

x(n + 1) = Ax(n) + Bu(n),

y(n) = Cx(n) + Du(n), n ∈ Z
+,

x(0) = x0,

(1.2)

where the coefficients A, B, C, and D are bounded linear operators between
the respective Hilbert spaces, i.e., [ A B

C D ] ∈ B([XU ] ;
[ X
Y
]
). The set of all trajec-

tories (x(·), w(·)) of the state/signal system (1.1) can be obtained from the set
of trajectories of (1.2) by taking the state sequence x(·) to be the same and tak-
ing w(·) = y(·) + u(·). The latter equation we write alternatively in the form
w(·) =

[
y(·)
u(·)

]
, and likewise, instead of W = Y�U we write alternatively W =

[ Y
U
]
.

In addition to these input/state/output representations, there are two other
useful types of representations, namely driving variable and output nulling repre-
sentations. In a driving variable representation we parameterize the trajectories by
using an extra driving variable � with values in an auxiliary driving variable Hilbert
space L. The trajectories of the system are described by a system of equations

x(n + 1) = A′x(n) + B′�(n),

w(n) = C′x(n) + D′�(n), n ∈ Z
+,

x(0) = x0,

(1.3)

where the coefficients (A′, B′, C′, D′) are bounded linear operators between the
respective Hilbert spaces, i.e.,

[
A′ B′
C′ D′

] ∈ B([XL ] ; [ X
W ]), and D′ is injective and has

closed range. The set of all trajectories (x(·), w(·)) of the state/signal system Σ
can be obtained from the set of trajectories (x(·), �(·), w(·)) of (1.3) by simply
dropping the driving variable �(·). In an output nulling representation we formally
consider the signal component w as an input which is restricted by an additional
equation posed in an auxiliary error space K. The trajectories of this new input/
state/output system are described by a system of equations

x(n + 1) = A′′x(n) + B′′w(n),

e(n) = C′′x(n) + D′′w(n), n ∈ Z
+,

x(0) = x0,

(1.4)

where the coefficients (A′′, B′′, C′′, D′′) are bounded linear operators between the
respective Hilbert spaces, i.e.,

[
A′′ B′′
C′′ D′′

] ∈ B([ X
W ] ; [XK ]), and D′′ is surjective. The

reason for the name “output nulling” for this representation is that (x(·), w(·)) is a
trajectory of Σ if and only if (x(·), w(·), e(·)) with e(n) = 0 for all n is a trajectory
of the input/state/output system described by (1.4).

To each state/signal system there corresponds infinitely many representations
of each of the three types described above. We prove the existence of these three
types of representations, discuss their properties, and also discuss the relationships
between different representations of the same type or of different types.
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Each input/state/output representation (1.2) of a given state/signal system
has a B(U ;Y)-valued transfer function given by

D(z) = D + zC(1X − zA)−1B, z ∈ ΛA, (1.5)

where ΛA is the set of points z ∈ C for which (1X − zA) has a bounded inverse,
plus the point at infinity if A is boundedly invertible. Thus, each state/signal sys-
tem has infinitely many such transfer functions, one corresponding to each input/
state/output representation. All of these transfer functions can be obtained from
one fixed input/state/output representation through the use of a linear fractional
transformation. More precisely, let W = Y�U and W = Y1�U1 be two admissible
input/output decompositions of the signal space W of a given state/signal system
Σ, and denote the corresponding transfer functions by D and D1, respectively. Let

Θ =
[
Θ11 Θ12

Θ21 Θ22

]
=
[
PU1
Y1

|Y PU1
Y1

|U
PY1
U1

|Y PY1
U1

|U

]
, (1.6)

where PU1
Y1

|Y is the restriction to Y of the projection of W onto Y1 along U1, etc.
(Note that Θ can be interpreted as a decomposition of the identity in W with
respect to the two sum decompositions W = Y � U = Y1 � U1.) Then D1 is the
value of the linear fractional transform of D with coefficient matrix Θ, i.e.,

D1(z) = [Θ11D(z) + Θ12][Θ21D(z) + Θ22]−1, z ∈ ΛA ∩ ΛA1 . (1.7)

We also introduce notions of controllability, observability, and minimality of
state/signal systems. These notions are defined in terms of the properties of its
trajectories, without any reference to the various representations described above,
but it is possible to give equivalent conditions for controllability and observability
in terms of the different types of representations described above. In particular,
we prove that a state/signal system is controllable (or observable, or minimal) if
and only if at least one corresponding input/state/output system (1.2) (hence all
of them) has the same property.

In Section 2 we discuss the main notions of the theory: state/signal nodes,
the corresponding trajectories, and their basic properties. In Sections 3 and 4 we
study driving variable and output nulling representations, respectively. Here we
also define the notions of controllability and observability and develop tests for
controllability and observability in terms of driving variable and output nulling
representations. Input/state/output representations are studied in Section 5. Here
we also give criteria for the admissibility of a decomposition of the signal space
W into an input space U and an output space Y and describe the connections
between different representations. Different kinds of transfer functions related to
different representations of state/signal systems and their connections are studied
in Section 6. In Section 7 we introduce and study signal behaviors and their re-
alizations by means of state/signal systems. Dilations of state/signal systems are
studied in depth in Section 8. In particular, we show that a dilation of a state/
signal system has the same signal behavior and also the same set of input/output
transfer functions (restricted to a neighborhood of zero) as the original system.
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The main result of this section characterizes dilations in terms of the existence of
a decomposition of the state space into parts with certain invariance properties.
All the proofs are given in the state/signal setting, and we obtain standard input/
state/output results as corollaries of our main results. Finally, Section 9 is devoted
to a study of different stabilizability properties of state/signal systems in terms of
the existence of stable representations of driving variable, output nulling, or input/
state/output type. Not only power stability, but also strong stability is studied.

Notation. The space of bounded linear operators from one normed space X to
another normed space Y is denoted by B(X ;Y), and we abbreviate B(X ;X ) to
B(X ). The domain of a linear operator A is denoted by D(A), its range by R (A),
and its kernel by N (A). The restriction of A to some subspace Z ⊂ D(A) is
denoted by A|Z . The identity operator on X is denoted by 1X . For each A ∈ B(X )
we let ΛA be the set of points z ∈ C for which (1X − zA) has a bounded inverse,
plus the point at infinity if A is boundedly invertible.

C is the complex plane, D is the open unit disk in C, Z = {0,±1,±2, . . .},
Z+ = {0, 1, 2, . . .}, and Z− = {−1,−2, . . .}. The space H2(D;U), where U is a
Hilbert space, consists of all analytic U-valued functions φ on D which satisfy
‖φ‖2 := sup0≤r<1

1
2π

∮
|z|=r

‖φ(z)‖2|dz| < ∞. The space H∞(D;U ,Y), where U and
Y are Hilbert spaces, consists of all bounded analytic B(U ;Y)-valued functions on
D. The sequence spaces �1(Z+;U) and �2(Z+;U) contain those U-valued sequences
u(·) on Z+ which satisfy

∑
n∈Z+‖u(n)‖ < ∞, respectively,

∑
n∈Z+‖u(n)‖2 < ∞,

and �∞(Z+;U) consists of all bounded U-valued sequences on Z+.
We denote the projection onto a closed subspace Y of a space X along some

complementary subspace U by PU
Y . The closed linear span or linear span of a

sequence of subsets Rn ⊂ X where n runs over some index set Λ is denoted by
∨n∈ΛRn and spann∈ΛRn, respectively.

We denote the product of the two locally convex topological vector spaces X
and Y by

[ X
Y
]
. In particular, although X and Y may be Hilbert spaces (in which

case the product topology in
[X
Y
]

is induced by an inner product), we shall not
require that [X0 ] ⊥ [

0
Y
]

in
[X
Y
]
. Furthermore, in this case we identify a vector

[ x
0 ] ∈ [X0 ] with x ∈ X and a vector

[
0
y

] ∈ [
0
Y
]

with y ∈ Y. (Thus, we also denote
the ordered direct sum X � Y by

[X
Y
]
.)

2. State/signal nodes and trajectories

In this section we shall study time-invariant linear systems induced by something
that we call a state/signal node.

Definition 2.1. A triple Σ = (V ;X ,W), where the (internal ) state space X and the
(external ) signal space W are Hilbert spaces and V is a subspace of the product
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space K :=
[ X

X
W

]
is called a state/signal node if it has the following properties:1

(i) V is closed in K;
(ii) For every x ∈ X there is some [ z

w ] ∈ [ X
W ] such that

[
z
x
w

]
∈ V ;

(iii) If
[

z
0
0

]
∈ V , then z = 0;

(iv) The set
{

[ x
w ] ∈ [ X

W ]
∣∣ [ z

x
w

]
∈ V for some z ∈ X

}
is closed in [ X

W ].

We call K the node space and V the generating subspace.

As we shall see in a moment (in Proposition 2.2, Lemmas 2.3–2.4 and The-
orem 2.5), all of these conditions have a clear meaning related to the fact that
we shall use the generating subspace V as the main tool in our definition of a
trajectory. To define such a trajectory it is not important that (i)–(iv) hold.

We define a trajectory (x(·), w(·)) along an arbitrary subspace V of K on
the time interval [n1, n2], where n1, n2 ∈ Z, n1 ≤ n2, to be a pair of sequences
{x(k)}n2+1

k=n1
and {w(k)}n2

k=n1
satisfying

[
x(k+1)

x(k)
w(k)

]
∈ V, n1 ≤ k ≤ n2. (2.1)

We shall also allow n1 = −∞ or n2 = ∞, in which case we replace ≤ by < in the
formula above. Most of our trajectories will be considered on Z+. We shall refer
to the sequence x(·) as the state component and to the sequence w(·) as the signal
component of the trajectory (x(·), w(·)). In the case where n1 is finite we shall call
x(n1) the initial state of this trajectory.

It follows immediately from Definition 2.1 that the set of trajectories along
a given subspace V of K has the following two properties:

1) if (x(·), w(·)) is a trajectory along V on [n1, n2], then for each k ∈ Z, the
shifted pair of sequences (x(· + k), w(· + k)) is a trajectory along V on [n1 −
k, n2 − k].

2) if (x1(·), w1(·)) is a trajectory along V on [n1, n2], if (x2(·), w2(·)) is a trajec-
tory along V on [n2 +1, n3], and if x1(n2 +1) = x2(n2 +1), then the concate-
nation (x(·), w(·)) defined by (x(k), w(k)) = (x1(k), w1(k)) for k ∈ [n1, n2],
(x(k), w(k)) = (x2(k), w2(k)) for k ∈ [n2 +1, n3], and x(n3 +1) = x2(n3 +1),
is a trajectory along V on [n1, n3].

Property 1) means that the set of trajectories along V is time-invariant, and
property 2) says that x has the state property; cf. [PW98, p. 119].

1Recall that we denote the direct product X ×X ×W by
[ X

X
W

]
. Later when we introduce passive

nodes we shall require X to be a Hilbert space, W to be a Krĕın space, and equip K with a
particular Krĕın space structure rather than the Hilbert space structure that it inherits from
X and W . This is the reason why we throughout ignore the Hilbert space inner product in K
induced by the inner products in X and W . The only way in which we use the fact that X and
W are Hilbert spaces is in the assertion that every closed subspace of K has a complementary
subspace. The same comments applies to all other Hilbert spaces and their products that appear
in this paper.
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Properties (ii) and (iii) in Definition 2.1 are reflected in the properties of the
set of all trajectories along V as follows:

Proposition 2.2. Let V be a subspace of the product space K :=
[ X

X
W

]
.

1) The following three statements are equivalent:
(a) V has property (ii) in Definition 2.1;
(b) for every x0 ∈ X there is a trajectory (x(·), w(·)) along V on Z

+ with
x(0) = x0;

(c) every trajectory (x(·), w(·)) along V defined on some interval [0, n2] can
be extended to a trajectory on Z+.

2) The following four statements are equivalent:
(a) V has property (iii) in Definition 2.1;
(b) if (x(·), w(·)) is a trajectory on [n1, n2] along V , then for every k ∈

[n1, n2], the value of x(k + 1) is determined uniquely by
[

x(k)
w(k)

]
;

(c) if (x(·), w(·)) is a trajectory on [n1, n2] along V , then the value of x(n2+
1) is determined uniquely by x(n1) and w(k), n1 ≤ k ≤ n2.

(d) if (x(·), w(·)) is a trajectory on [n1, n2] along V with x(n1) = 0, then
the value of x(n2 + 1) is determined uniquely by w(k), n1 ≤ k ≤ n2.

Proof. Proof of 1): The implications (b) ⇒ (a) and (c) ⇒ (a) are obvious.
We next prove that (a) ⇒ (b). Suppose that (a) holds. Let x0 ∈ X , and define

x(0) = x0. It follows from property (ii) in Definition 2.1 that there exist x(1) and

w(0) such that
[

x(1)
x(0)
w(0)

]
∈ V . By the same argument with x(0) replaced by x(1),

there exist x(2) and w(1) such that
[

x(2)
x(1)
w(1)

]
∈ V . By induction, we will obtain (b).

The proof of the fact that (a) ⇒ (c) is the same as the proof of the implication
(a) ⇒ (b) given above, except that we start from time n + 1 and the initial value
x(n + 1) (instead of time zero and initial value x0).

The proof of 2) is left to the reader. �

By the state/signal system generated by the state/signal node Σ = (V ;X ,W)
we mean this node itself together with the set of all trajectories along V . For
simplicity we use the same notation Σ for the system as we used for the original
node. We shall also refer to the trajectories along V as the trajectories of Σ.

We shall next develop certain representations of the subspace V in Definition
2.1, and begin with the following lemmas.

Lemma 2.3. Let V be a subspace of the product space K :=
[ X

X
W

]
. Let G2,3 : V →

[ X
W ] be the bounded linear operator that maps the vector

[
z
x
w

]
∈ V into [ x

w ] ∈ [ X
W ].

Then the following conditions are equivalent:
1) V has property (iii);
2) G2,3 is injective;
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3) V has a graph representation over the last two components [ X
W ] of K, i.e.,

there exists a linear operator F , mapping D(F ) ⊂ [ X
W ] into X such that[

z
x
w

]
∈ V if and only if [ x

w ] ∈ D(F ) and z = F [ x
w ].

Assuming 1), with G2,3 and F defined as in 2) and 3), the operator F is uniquely
determined by V (hence so is D(F )), R (G2,3) = D(F ), G−1

2,3 : D(F ) → V is given

by G−1
2,3 =

[
F

1X 0
0 1W

]
, and

V = G−1
2,3D(F ) =

{


z
x
w



∣∣∣∣∣ z = F

([
x
w

])
,

[
x
w

]
∈ D(F )

}
(2.2)

Lemma 2.4. Let V be a subspace of the product space K :=
[ X

X
W

]
. Assume that V

has property (iii), and let F be the operator defined in Lemma 2.3. Then

1) V has property (i) if and only if F is closed,
2) V has property (ii) if and only if the linear operator D(F ) → X that maps

[ x
w ] ∈ D(F ) into x ∈ X is surjective,

3) V has property (iv) if and only if D(F ) is closed,
4) V has properties (i) and (iv) if and only if F is bounded and D(F ) is closed.

We leave the straightforward proofs of Lemmas 2.3 and 2.4 to the reader.
By combining Lemmas 2.3 and 2.4 we get the following theorem:

Theorem 2.5. Let V be a subspace of the product space K :=
[ X

X
W

]
. Then V has

properties (i)–(iv) listed in Definition 2.1, i.e., Σ = (V ;X ,W) is a state/signal
node, if and only if V has a graph representation over the last two components
[ X
W ] of K with a bounded linear operator F : D(F ) ⊂ [ X

W ] → X with closed domain,
i.e.,

V =

{


z
x
w



∣∣∣∣∣ z = F

([
x
w

])
,

[
x
w

]
∈ D(F )

}
, (2.3)

with the additional property that the linear operator D(F ) → X that maps [ x
w ] ∈

D(F ) into x ∈ X is surjective.

In the next three sections we shall develop three different types of represen-
tations of a state/signal system Σ: driving variable representations, output nulling
representations, and input/state/output representations. They complement each
other, and all of them are important in slightly different connections.

3. The driving variable representation

In our first representation of the generating subspace V we write V as the image
of a bounded linear injective operator of the following type.
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Lemma 3.1. Let V be a subspace of the product space K :=
[ X

X
W

]
, where X and W

are Hilbert spaces. If there exists a Hilbert space L and four operators

A′ ∈ B(X ), B′ ∈ B(L;X ), C′ ∈ B(X ,W), and D′ ∈ B(L;W), (3.1)

where
D′ is injective and has a closed range (3.2)

such that

V = R





A′ B′

1X 0
C′ D′




 =

{


A′x + B′�
x

C′x + D′�



∣∣∣∣∣ x ∈ X , � ∈ L

}
, (3.3)

then V has properties (i)–(iv) listed in Definition 2.1, i.e., (V ;X ,W) is a state/
signal node. Conversely, if V has properties (i)–(iv) listed in Definition 2.1 then
V is given by (3.3) for some Hilbert space L and some operators A′, B′, C′, and
D′ satisfying (3.1) and (3.2).

Proof. We begin by proving that the representation (3.1)–(3.3) implies that V
has properties (i)–(iv) in Definition 2.1. Trivially, (3.1) and (3.3) imply (ii). It is
also clear that the injectivity of D′ implies that the operator

[
1X 0
C′ D′

]
is injective.

Thus, by defining D(F ) = R ([
1X 0
C′ D′

])
and F =

[
A′ B′] [ 1X 0

C′ D′
]−1

we get the
graph representation (2.3) of V . According to Lemma 2.3, this implies that V has
property (iii). The closedness of R (D′) implies that also R ([

1X 0
C′ D′

])
is closed,

because R ([
1X 0
C′ D′

])
=
[

1X 0
C′ 1W

] [ X
R(D′)

]
, where

[
1X 0
C′ 1W

]
is boundedly invertible.

Finally, the closed graph theorem implies that
[

1X 0
C′ D′

]−1
is bounded on D(F ),

hence so is F , and by part 4) of Lemma 2.4, V has properties (i) and (iv). We
have now showed that V has all the properties (i)–(iv).

Conversely, suppose that V has properties (i)–(iv) in Definition 2.1. Let G2 ∈
B(V ;X ) be the bounded linear operator that maps

[
z
x
w

]
∈ V into x ∈ X . We take

L = N (G2), and define B′ ∈ B(L;X ) and D′ ∈ B(X ;W) by B′
[

z
0
w

]
= z and

D′
[

z
0
w

]
= w for each

[
z
0
w

]
∈ L. Clearly � =

[
B′
0

D′

]
� for all � ∈ L,

[
B′
D′
]

is injective

on L, and the range of
[

B′
D′
]

is closed in [ X
W ]. By property (ii) in Definition 2.1, G2

maps V onto X . Let G−1
2,right ∈ B(X ; V ) be an arbitrary right-inverse of G2 (such

a bounded right-inverse exists since V is closed). This right-inverse must be of the

form G−1
2,right =

[
A′
1X
C′

]
(the middle component must be the identity operator since

G2

[
z
x
w

]
= x for all

[
z
x
w

]
∈ V ). By property (i), V = R

(
G−1

2,right

)
� L, hence

V =
[

A′
1X
C′

]
X � L =

[
A′
1X
C′

]
X �

[
B′
0

D′

]
L.

This implies (3.3).
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We still have to show that D′ is injective and has closed range, and for this we
need properties (iii) and (iv) (which we have not used up to now). By construction

the operator
[

A′ B′
1X 0
C′ D′

]
is injective. It then follows from Lemma 2.3 that the operator

G2,3

[
A′ B′
1X 0
C′ D′

]
=
[

1X 0
C′ D′

]
: [XL ] → [ X

W ] also must be injective (since we now assume

(iii)). This implies that D′ is injective. That the range is closed follows from (iv),
i.e., from the closedness of D(F ) = R ([

1X 0
C′ D′

])
, since (as we observed above)

R ([
1X 0
C′ D′

])
=
[

1X 0
C′ 1W

] [ X
R(D′)

]
, where

[
1X 0
C′ 1W

]
is boundedly invertible. �

We shall call a colligation Σdv/s/s :=
([

A′ B′
C′ D′

]
;X ,L,W)

, where L is a Hilbert
space and A′, B′, C′, and D′ satisfy (3.1)–(3.3) a driving variable representation
of the state/signal node Σ = (V ;X ,W). We shall also refer to Σdv/s/s as a driving-
variable/state/signal node. By the driving-variable/state/signal system Σdv/s/s we
mean the node Σdv/s/s itself together with the set of all trajectories (x(·), �(·), w(·))
generated by this node through the equations

x(k + 1) = A′x(k) + B′�(k),

w(k) = C′x(k) + D′�(k), n1 ≤ k ≤ n2.
(3.4)

The space L considered above is called a driving variable space, and the vector
� ∈ L in (3.3) is called a driving variable. (The notion of a driving variable is known
in the finite-dimensional setting from the theory of behaviors; see, e.g., [WT02].)
From each trajectory (x(·), �(·), w(·)) of the driving-variable/state/signal system
Σdv/s/s we get a trajectory (x(·), w(·)) of the state/signal system Σ by simply
deleting the driving variable component �. It follows from part 3) of Proposition
3.2 below that this correspondence between the trajectories of the two types of
systems is one-to-one.

Let us next point out some important properties of driving variable repre-
sentations.

Proposition 3.2. Let Σ = (V ;X ,W) be a state/signal node with the driving variable
representation Σdv/s/s =

([
A′ B′
C′ D′

]
;X ,L,W)

, and let F : D(F ) → X be the linear
operator defined in Lemma 2.3. Then the following assertions are true.

1) R ([
1X 0
C′ D′

])
= D(F ), R (B′) = R0, R (D′) = U0, and the preimage of R (D′)

under C′ is given by U0, where

R0 =
{
F [ 0

w ]
∣∣ [ 0

w ] ∈ D(F )
}

=
{

z ∈ X
∣∣∣
[

z
0
w

]
∈ V for some w ∈ W

}
, (3.5)

U0 =
{
w ∈ W ∣∣ [ 0

w ] ∈ D(F )
}

=
{

w ∈ W
∣∣∣
[

z
0
w

]
∈ V for some z ∈ X

}
, (3.6)
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U0 =
{
x ∈ X ∣∣ [ x

0 ] ∈ D(F )
}

=
{

x ∈ X
∣∣∣
[

z
x
0

]
∈ V for some z ∈ X

}
. (3.7)

Consequently, the ranges of B′, D′, and
[

1X 0
C′ D′

]
do not depend on the par-

ticular choice of Σdv/s/s.
2) The space L is isomorphic to the space U0 defined in (3.6).
3) The operator

[
1X 0
C′ D′

]
has a bounded inverse mapping D(F ) one-to-one onto

[XL ], and the vector � in the representation (3.3) is uniquely determined by
[ x
w ] via [

x
�

]
=
[
1X 0
C′ D′

]−1 [
x
w

]
,

[
x
w

]
∈ D(F ). (3.8)

4) The operator
[
A′ B′] is given by

[
A′ B′] = F

[
1X 0
C′ D′

]
. (3.9)

Consequently, A′ is determined uniquely by C′ and B′ is determined uniquely
by D′.

Proof. Assertion 1) follows from (3.3) and the definition of F . To see that assertion
2) holds it suffices to note that the operator D′ maps L one-to-one onto U0, and by
the closed graph theorem, then inverse of this operator is also bounded. Assertions
3) and 4) were established as a part of the proof of Lemma 3.1. �

Theorem 3.3. Let Σdv/s/s =
([

A′ B′
C′ D′

]
;X ,L,W)

be a driving variable representa-
tion of a state signal system Σ, and let[

A′
1 B′

1

C′
1 D′

1

]
=
[
A′ B′

C′ D′

] [
1X 0
K ′ M ′

]
(3.10)

where

K ′ ∈ B(X ;L), M ′ ∈ B(L1;L), and M ′ has a bounded inverse, (3.11)

for some Hilbert space L1. Then Σ1
dv/s/s =

([A′
1 B′

1
C′

1 D′
1

]
;X ,L1,W

)
is a driving vari-

able representation of Σ. Conversely, every driving variable representation Σ1
dv/s/s

of Σ may be obtained from formula (3.10) for some operators K ′ and M ′ satisfying
(3.11). The operators K ′ and M ′ are uniquely defined by Σdv/s/s and Σ1

dv/s/s via

D′K ′ = C′
1 − C′ and D′M ′ = D′

1. (3.12)

Proof. Suppose that Σ1
dv/s/s =

([A′
1 B′

1
C′

1 D′
1

]
;X ,L1,W

)
given by (3.10) for some op-

erators K ′ and M ′ satisfying (3.11). It follows from (3.11) that
[

1X 0
K′ M ′

]
maps [XL ]

one-to-one onto
[ X
L1

]
. By (3.3) and (3.10),




A′
1 B′

1

1X 0
C′

1 D′
1



[X
L1

]
=




A′ B′

1X 0
C′ D′



[
1X 0
K ′ M ′

] [X
L1

]
=




A′ B′

1X 0
C′ D′



[X
L
]

= V.
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Furthermore, D′
1 = D′M ′ is injective and has closed range. Thus Σ1

dv/s/s is a
driving variable representation of Σ.

We next turn to the converse part. By statements 1) and 3) of Proposition 3.2,
the operator

[
G′ H′
K′ M ′

]
:=
[

1X 0
C′ D′

]−1
[

1X 0
C′

1 D′
1

]
is a bounded linear operator mapping

[ X
L1

]
one-to-one onto [XL ]. It follows from the identity

[
1X 0
C′

1 D′
1

]
=
[

1X 0
C′ D′

] [
G′ H′
K′ M ′

]

that G′ = 1X and that H ′ = 0, and the invertibility of
[

G′ H′
K′ M ′

]
=
[

1X 0
K′ M ′

]
implies that M ′ is invertible. Thus, (3.11) and (3.12) hold. By statement 4) of
Proposition 3.2,

F =
[
A′ B′] [ 1X 0

C′ D′
]−1

=
[
A′

1 B′
1

] [ 1X 0
C′

1 D′
1

]−1

,

hence
[
A′

1 B′
1

]
=
[
A′ B′] [ 1X 0

K′ M ′
]
. Thus equation (3.10) holds.

Finally, we remark that (3.12) determines K ′ and M ′ uniquely since D′ is
injective. �

Definition 3.4. Let Σ = (V ;X ,W) be a state/signal system.
1) By an externally generated trajectory of Σ on [0, n] or on Z+ we mean a

trajectory (x(·), w(·)) satisfying x(0) = 0.
2) The reachable subspace Rn of Σ in time n is the subspace of all the final states

x(n + 1) of all externally generated trajectories (x(·), w(·)) of the system Σ
on the interval [0, n].

3) The (approximately) reachable subspace R of Σ (in infinite time) is the closure
in X of all the possible values of the state components x(·) of all externally
generated trajectories (x(·), w(·)) of the system Σ on Z+.

4) The system is (approximately) controllable if the reachable subspace is all
of X .

Thus,
Rn ⊂ Rn+1, R = ∨n∈Z+Rn

(we get the first inclusion by taking x(0) = 0 and w(0) = 0, so that also x(1) = 0;
for the second inclusion we use part 1) of Proposition 2.2). Observe, in particular,
that the subspace R0 defined above coincides with the subspace R0 defined in (3.5).

The subspaces Rn and R in Definition 3.4 have the following simple charac-
terizations in terms of an arbitrary driving variable representation of Σ.

Proposition 3.5. Let Σ = (V ;X ,W) be a state/signal system, with a driving vari-
able representation Σdv/s/s =

([
A′ B′
C′ D′

]
;X ,L,W)

. Then the subspaces Rn defined
above and the reachable subspace R are given by

Rn = span{R (
(A′)kB′) | 0 ≤ k ≤ n}, n ∈ Z

+, (3.13)

R = ∨k∈Z+R (
(A′)kB′) . (3.14)

In particular, Σ is controllable if and only if

X = ∨k∈Z+R (
(A′)kB′) . (3.15)
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Proof. Let (x(·), w(·)) be an externally generated trajectory of Σ on [0, n]. It follows
from the representation (3.3) (by induction) that x(n + 1) can be written in the
form

x(n + 1) =
n∑

k=0

(A′)kB′�(n − k)

for some sequence {�(k)}n
k=0. Thus, x(n + 1) belongs to the linear span of

{R (
(A′)kB′)}n

k=0. Conversely, to each such sequence {�(k)}n
k=0 corresponds a tra-

jectory on [0, n] for which x(n+1) is given by the formula above. This proves (3.13).
Letting n → ∞ in (3.13) we get (3.14). The final statement follows from (3.14)
and the definition of controllability. �

4. The output nulling representation

In our second representation of the generating subspace V we write V as the kernel
of a surjective operator of the following type.

Lemma 4.1. Let V be a subspace of the product space K :=
[ X

X
W

]
, where X and W

are Hilbert spaces. If there exists a Hilbert space K and four operators

A′′ ∈ B(X ), B′′ ∈ B(W ;X ), C′′ ∈ B(X ,K), and D′′ ∈ B(W ;K) (4.1)

where
D′′ is surjective (4.2)

such that

V = N
([−1X A′′ B′′

0 C′′ D′′

])
=

{


z
x
w


 ∈ K

∣∣∣∣∣
z = A′′x + B′′w

0 = C′′x + D′′w

}
, (4.3)

then V has properties (i)–(iv) listed in Definition 2.1, i.e., (V ;X ,W) is a state/
signal node. Conversely, if V has properties (i)–(iv) listed in Definition 2.1 then
V is given by (4.3) for some Hilbert space K and some operators A′′, B′′, C′′, and
D′′ satisfying (4.1) and (4.2).

Proof. Trivially, if V is given by (4.3), then V has property (iii). That (i) holds fol-
lows from the fact that V is the kernel of the bounded linear operator

[
−1X A′′ B′′

0 C′′ D′′

]
.

Define F as in Lemma 2.3. That (iv) holds follows from the fact that D(F ) is the
kernel of the bounded linear operator

[
C′′ D′′]. Finally, (ii) holds since the sur-

jectivity of D′′ guarantees that for every x ∈ X it is possible to find some w ∈ W
such that C′′x + D′′w = 0, i.e., [ x

w ] ∈ D(F ).
Conversely, suppose that V has properties (i)–(iv). Then the operator F in

Lemma 2.3 is bounded and D(F ) is closed. Let
[
C′′ D′′] ∈ B([ X

W ] ;K) be an arbi-
trary surjective operator with N ([

C′′ D′′]) = D(F ) (e.g., let K be a complemen-
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tary subspace to D(F ) in [ X
W ] and let

[
C′′ D′′] = P

D(F )
K ). Let

[
A′′ B′′] be an ar-

bitrary extension of F to an operator in B([ XW ] ;X ) (e.g., take
[
A′′ B′′] = FPK

D(F )

with K chosen as above). Then
[
C′′ D′′] is surjective and (4.1) and (4.3) hold.

It remains to show that D′′ is surjective, and for this we need property (ii)
(which has not yet been used). It follows from (4.3) that (ii) holds if and only
if R (C′′) ⊂ R (D′′). Because of the surjectivity of

[
C′′ D′′], this is equivalent

to (4.2). �

We shall call a colligation Σs/s/on :=
([

A′′ B′′
C′′ D′′

]
;X ,W ,K), where K is a

Hilbert space and A′′, B′′, C′′, and D′′ satisfy (4.1)–(4.3) an output nulling repre-
sentation of the state/signal node Σ = (V ;X ,W). (Output nulling representations
are known in the finite-dimensional case from the theory of behaviors; see, e.g.,
[WT02].) We shall also refer to Σs/s/on as a signal/state/output nulling node. By
the signal/state/output nulling system Σs/s/on we mean the node Σs/s/on itself
together with the set of all trajectories generated by this node. However, the no-
tion of a trajectory of such a node differs slightly from the corresponding notions
for a state/signal node or a driving-variable/state/signal node. By a trajectory of
Σs/s/on on [n1, n2] we mean a triple of sequences (x(·), w(·), e(·)) which satisfy

x(k + 1) = A′′x(k) + B′′w(k),

e(k) = C′′x(k) + D′′w(k), n1 ≤ k ≤ n2.
(4.4)

Here we interpret w as input data and e as output data. Thus, not every trajectory
of (4.4) corresponds to a trajectory of the corresponding state/signal system Σ;
this is true exactly for those trajectories whose output e(·) is null (i.e., it vanishes
identically). We shall refer to e as the error variable, and to the space K as the
error space.

Output nulling representations have a number of important properties listed
below.

Proposition 4.2. Let Σ = (V ;X ,W) be a state/signal node with the output nulling
representation Σs/s/on =

([
A′′ B′′
C′′ D′′

]
;X ,W ,K), and let F : D(F ) → X be the linear

operator defined in Lemma 2.3. Then the following assertions are true.

1) The operator F is given by

F =
[
A′′ B′′] |D(F ) with D(F ) = N ([

C′′ D′′]). (4.5)

2) We have

N (D′′) = U0, N (C′′) = U0, R (B′′|U0) = R0, (4.6)

where R0, U0, and U0 are defined in (3.5)–(3.7). Consequently, the ranges
and kernels listed above do not depend on the particular choice of Σs/s/on.

3) Let Y0 be a direct complement in W to the space U0 defined in (3.6), i.e.,
W = Y0 �U0. Then D′′|Y0 maps Y0 one-to-one onto K and

[
1X B′′|Y0
0 D′′|Y0

]
maps
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[ X
Y0

]
one-to-one onto [XK ], and consequently, these operators are boundedly

invertible. Moreover,
[
F
0

] [
1X
HY0

]
=
[
A′′ B′′

C′′ D′′

] [
1X
HY0

]
, (4.7)

or equivalently,
[
A′′

C′′

]
=
[
1X B′′|Y0

0 D′′|Y0

]([
F
0

] [
1X
HY0

]
−
[

0
HY0

])
, (4.8)

where HY0 : X → W is the operator defined by HY0x = w, where w is the
unique element in Y0 such that [ x

w ] ∈ D(F ). Consequently, A′′ is determined
uniquely by B′′ and C′′ is determined uniquely by D′′.

4) The space K is isomorphic to every direct complement in W to the space U0

defined in (3.6).

Proof. We leave the straightforward proofs of 1) and 2) to the reader. That the
restriction of D′′ to any complement Y0 of U0 is invertible with a bounded in-
verse follows from the fact that N (D′′) = U0. This implies that the restriction of[

1X B′′

0 D′′

]
to
[ X
Y0

]
is invertible with a bounded inverse. Formula (4.7) follows from

(4.3) and (4.5). Clearly (4.8) is equivalent to (4.7). Finally, 4) follows from the
invertibility of D′′|Y0 established in 3). �

Theorem 4.3. Let Σs/s/on = (
[

A′′ B′′
C′′ D′′

]
;X ,W ,K) be an output nulling representa-

tion of a state/signal system Σ, and let
[
A′′

1 B′′
1

C′′
1 D′′

1

]
=
[
1X K ′′

0 M ′′

] [
A′′ B′′

C′′ D′′

]
, (4.9)

where

K ′′ ∈ B(K,X ), M ′′ ∈ B(K,K1), and M ′′ has a bounded inverse, (4.10)

for some Hilbert space K1. Then

Σ1
s/s/on =

([
A′′

1 B′′
1

C′′
1 D′′

1

]
;X ,W ,K1

)

is an output nulling representation of Σ. Conversely, every output nulling repre-
sentation Σ1

s/s/on of Σ may be obtained from the formula (4.9) for some operators
M ′′ and K ′′ satisfying (4.10). The operators M ′′ and K ′′ are uniquely defined by
Σs/s/on and Σ1

s/s/on via

M ′′D′′ = D′′
1 and K ′′D′′ = B′′

1 − B′′. (4.11)

Proof. Suppose that Σ1
s/s/on =

([A′′
1 B′′

1
C′′

1 D′′
1

]
;X ,W ,K1

)
is given by (4.9) for some

operators K ′′ and M ′′ satisfying (4.10). It follows from (4.9) and (4.10) that
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D′′
1 = M ′′D′′ is surjective, that

[
1X 0 0
0 1X K′′

0 0 M ′′

]
is invertible, and that

N
([−1X A′′

1 B′′
1

0 C′′
1 D′′

1

])
= N





1X 0 0
0 1X K ′′

0 0 M ′′



[−1X A′′ B′′

0 C′′ D′′

]


= N
([−1X A′′ B′′

0 C′′ D′′

])
= V.

Thus Σ1
s/s/on is an output nulling representation of Σ.

We next turn to the converse part. Let Y be an arbitrary complement to
D(F ). By part 3) of Proposition 4.2, the operator

[
G′′ K ′′

H ′′ M ′′

]
:=
[
1X B′′

1 |Y0

0 D′′
1 |Y0

] [
1X B′′|Y0

0 D′′|Y0

]−1

is a bounded linear operator mapping [XK ] one-to-one onto
[ X
K1

]
. It follows from

the identity
[

1X B′′
1 |Y0

0 D′′
1 |Y0

]
=
[

G′′ K′′
H′′ M ′′

] [ 1X B′′|Y0
0 D′′|Y0

]
that G′′ = 1X and that H ′′ = 0,

and the invertibility of
[

G′′ K′′
H′′ M ′′

]
=
[

1X K′′

0 M ′′

]
implies that M ′′ is invertible. Thus,

(4.10) and (4.11) hold. By (4.8),
[

1X B′′
1 |Y0

0 D′′
1 |Y0

]−1 [
A′′

1
C′′

1

]
=
[

1X B′′|Y0
0 D′′|Y0

]−1 [
A′′
C′′
]
, hence[

A′′
1

C′′
1

]
=
[

1X K′′

0 M ′′

] [
A′′
C′′
]
. Thus equation (4.9) holds.

Finally, we remark that (4.11) determines K ′′ and M ′′ uniquely since D′′ is
surjective. �

Definition 4.4. Let Σ = (V ;X ,W) be a state/signal system.

1) By an unobservable trajectory of Σ on [0, n] or on Z+ we mean a trajectory
(x(·), 0) (i.e., the signal component of this trajectory is identically zero on
[0, n] or on Z+).

2) The unobservable subspace Un of Σ in time n is the subspace of the initial
states x(0) of all unobservable trajectories (x(·), 0) of Σ on [0, n].

3) The unobservable subspace U of Σ (in infinite time) is the subspace of the
initial states x(0) of all unobservable trajectories (x(·), 0) of Σ on Z+.

4) The system is (approximately) observable if the unobservable subspace is {0}.
Thus,

Un+1 ⊂ Un, U = ∩n∈Z+Un.

Observe, in particular, that the subspace U0 defined above coincides with the
subspace U0 defined in (3.7).

The subspaces Un and U in Definition 4.4 have the following simple charac-
terizations in terms of an arbitrary output nulling representation of Σ.
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Proposition 4.5. Let Σ = (V ;X ,W) be a state/signal system and let Σs/s/on =
(
[

A′′ B′′
C′′ D′′

]
;X ,W ,K) be an output nulling representation of this system. Then

Un = ∩0≤k≤nN
(
C′′(A′′)k

)
, (4.12)

U = ∩k∈Z+N (
C′′(A′′)k

)
. (4.13)

In particular, Σ is observable if and only if

∩k∈Z+N (
C′′(A′′)k

)
= {0}. (4.14)

Proof. If x0 ∈ ∩0≤k≤nN
(
C′′(A′′)k

)
, i.e., if C′′(A′′)kx0 = 0 for 0 ≤ k ≤ n, then it

follows from (4.3) that (x(·), w(·)), where x(k) = (A′′)kx0 and w(k) = 0, 0 ≤ k ≤ n,
is a trajectory of Σ on the interval [0, n]. Thus, x0 ∈ Un in this case. Conversely, if
(x(·), w(·)) is a trajectory of Σ on [0, n] with x(0) = x0 and w(k) = 0, 0 ≤ k ≤ n,
then by (4.3)

x(k + 1) = A′′x(k)

0 = C′′x(k), 0 ≤ k ≤ n,

which gives x0 ∈ N (
C′′(A′′)k

)
for all k, 0 ≤ k ≤ n. Thus (4.12) holds. Letting

n → ∞ in (4.12) we get (4.13). The final statement follows from (4.13) and the
definition of observability. �

5. The input/state/output representation

In this section we shall discuss a third type of representation of a state/signal
system Σ = (V ;X ,W) in which trajectories (x(·), w(·)) on Z+ of Σ are described
by the usual system of equations (1.2) in the traditional input/state/output theory.

Theorem 5.1. Let V be a subspace of the product space K :=
[ X

X
W

]
, where X

and W are Hilbert spaces, and suppose that W = Y � U is the direct sum of two
complementary closed subspaces Y and U . If there exists four operators

A ∈ B(X ), B ∈ B(U ;X ), C ∈ B(X ,Y), and D ∈ B(U ;Y), (5.1)

such that

V = R







A B
1X 0
C D
0 1U





 = N

([−1X A 0 B
0 C −1Y D

])

=

{


Ax + Bu
x

Cx + Du + u



∣∣∣∣∣ x ∈ X , u ∈ U

}
,

(5.2)

then V has properties (i)–(iv) listed in Definition 2.1, i.e., (V ;X ,W) is a state/
signal node. Conversely, if V has properties (i)–(iv) listed in Definition 2.1 then
V is given by (5.2) for some operators A, B, C, and D satisfying (5.1) for some
decomposition W = Y � U . These operators are uniquely defined by V and by the
decomposition W = Y � U .
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Proof. The representation (5.2) has an obvious interpretation as a driving variable
representation of V (take C′ = [ C

0 ] and D′ =
[

D
1U

]
). Thus, by Lemma 3.1, if V

is given by (5.2) for some operators A, B, C, and D satisfying (5.1), then V has
properties (i)–(iv).

To prove the converse part we start from an arbitrary driving variable rep-
resentation of V (e.g., from the one constructed in the proof of the converse part
of Lemma 3.1), i.e., we let L be a Hilbert space, and let A′, B′, C′, and D′ satisfy
(3.1)–(3.3). Then each

[
z
x
w

]
∈ V can be written in the form




z
x
w


 =




A′ B′

1X 0
C′ D′



[
x
�

]
,

for a unique � ∈ L. Let W = Y � U be an arbitrary decomposition of W with the
property that PY

U D′ maps L one-to-one onto U (for example, we can take U = U0,
with U0 defined as in (3.6), and take Y to be an arbitrary direct complement to
U0). With respect to this decomposition of W the vector

[
z
x
w

]
can be written in

the form (where we denote u = PY
U w and y = PU

Y w)




z
x
y
u


 =




A′ B′

1X 0
PU
Y C′ PU

Y D′

PY
U C′ PY

U D′



[
x
�

]
.

Since PY
U D′ is boundedly invertible, we can solve for � to get the equivalent rep-

resentation



z
x
y
u


 =




A′ B′

1X 0
PU
Y C′ PU

Y D′

PY
U C′ PY

U D′



[

1X 0
PY
U C′ PY

U D′

]−1 [
x
u

]

=




A′ − B′(PY
U D′)−1PY

U C′ B′(PY
U D′)−1

1X 0
PU
Y C′ − PU

Y D′(PY
U D′)−1PY

U C′ PU
Y D′(PY

U D′)−1

0 1U



[
x
u

]
.

This representation is of the type (5.2) with

[
A B
C D

]
=
[

A′ B′

PU
Y C′ PU

Y D′

] [
1X 0

PY
U C′ PY

U D′

]−1

=
[

A′ − B′(PY
U D′)−1PY

U C′ B′(PY
U D′)−1

PU
Y C′ − PU

Y D′(PY
U D′)−1PY

U C′ PU
Y D′(PY

U D′)−1

]
.

(5.3)
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The uniqueness of [ A B
C D ] follows from the fact that (5.2) is a graph represen-

tation of V with respect to the decomposition of K into K =
[X

0
Y
0

]
�
[

0
X
0
U

]
, and the

operator appearing in this graph representation is unique. �

We shall call a colligation Σi/s/o :=
(
[ A B
C D ] ;X ,U ,Y), where W = Y �U and

A, B, C, and D satisfy (5.1) and (5.2) an input/state/output representation of the
state/signal node Σ = (V ;X ,W). We shall also refer to Σi/s/o as an input/state/
output node. By the input/state/output system Σi/s/o we mean the node Σi/s/o

itself together with the set of all trajectories (x(·), u(·), y(·)) generated by this node
through the equations

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k), n1 ≤ k ≤ n2.
(5.4)

The subspace U considered above is called an input space, and the vector u ∈ U in
(5.2) is called an input variable. Analogously, the subspace Y considered above is
called an output space, and the vector y ∈ Y in (5.2) is called an output variable.
From each trajectory (x(·), u(·), y(·)) of the input/state/output system Σi/s/o we
get a trajectory (x(·), w(·)) of the state/signal system Σ by taking w = u + y,
and conversely, from each trajectory (x(·), w(·)) of the state/signal system Σ we
get a trajectory (x(·), u(·), y(·)) of the input/state/output system Σi/s/o by taking
u = PY

U w and y = PU
Y w.

Remark 5.2. Every input/state/output representation can be interpreted both as
a driving variable representation and as an output nulling representation. In both
cases we combined u and y into the signal vector w = [ y

u ]. We get a driving variable
representation by writing (5.2) in the form

z = Ax + Bu,[
y
u

]
=
[
C
0

]
x +

[
D
1U

]
u,

with driving variable space U (the operator D′ =
[

D
1U

]
is injective and has closed

range), and we get an output nulling representation by writing it in the form

z = Ax +
[
0 B

] [y
u

]
,

0 = Cx +
[−1Y D

] [y
u

]
,

with error space Y (the operator D′′ =
[−1Y D

]
is surjective).

Remark 5.3. In the standard input/state/output systems theory one considers
trajectories (x(·), u(·), y(·)) generated by (5.4), but the input space U and the
output space Y are not required to be complementary subspaces of a given signal
space W . Nevertheless, also in this situation it is possible to introduce the product
space W =

[ Y
U
]
with an appropriate inner product, to identify Y with the subspace
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[ Y
0

]
of W , and to identify U with the subspace [ 0

U ] of W . Then W = Y � U ,
the triple Σ = (V ;X ,W) with V defined by (5.2) is a state/signal node, and the
original input/state/output system is an input/state/output representation of this
node.

Remark 5.4. Each driving variable representation Σdv/s/s of a state/signal system
may be interpreted as an input/state/output system, with the driving variable
as input data and the original signal as output data. We can and will therefore
apply all notions, notations, and results that we will define or obtain for input/
state/output systems to such driving variable representations. In this connection
we throughout replace the word “input” by “driving” and the word “output” by
“signal”. An analogous remark is valid for output nulling representations of state
signal systems. When we interpret such representations as input/state/output sys-
tems we throughout replace the word “input” by “signal” and the word “output”
by “error”.

Corollary 5.5. Let Σ = (V ;X ,W) be a state/signal system, with an input/state/
output representation Σi/s/o =

(
[ A B
C D ] ;X ,U ,Y).

1) The reachable subspaces Rn in time n and the reachable subspace R are given
by

Rn = span{R (
AkB

) | 0 ≤ k ≤ n}, n ∈ Z
+, (5.5)

R = ∨k∈Z+R (
AkB

)
. (5.6)

In particular, Σ is controllable if and only if

X = ∨k∈Z+R (
AkB

)
. (5.7)

2) The unobservable subspaces Un in time n and the unobservable subspace U
are given by

Un = ∩0≤k≤nN
(
CAk

)
, (5.8)

U = ∩k∈Z+N (
CAk

)
. (5.9)

In particular, Σ is observable if and only if

∩k∈Z+N (
CAk

)
= {0}. (5.10)

Proof. This follows from Propositions 3.5 and 4.5 and Remark 5.2. �
Definition 5.6. Let Σ = (V ;X ,W) be a state/signal system. We call the ordered
direct sum decomposition W = Y � U (also denoted by W =

[ Y
U
]
) an admissible

(input/output) decomposition for Σ if Σ has an input/state/output representation
with input space U and output space Y.

Our following theorem characterizes the set of all admissible input/output
decompositions.

Lemma 5.7. Let Σ = (V ;X ,W) be a state/signal node, and let W = Y � U
be a direct sum decomposition of W. Define U0 as in (3.6). Then the following
statements are equivalent:
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1) W = Y � U is an admissible input/output decomposition for Σ.
2) PY

U |U0 maps U0 one-to-one onto U , i.e., (PY
U |U0)

−1 ∈ B(U ;U0).
3) The space U0 has the graph representation

U0 =
{
w =

[
D
1U

]
u | u ∈ U}, (5.11)

for some D ∈ B(U ;Y).
If the decomposition W = Y �U is admissible for Σ, then the operator D in (5.11)
coincides with the operator D in (5.2).

Proof. Proof of 1) ⇒ 3): If 1) holds, then the representation (5.2) of V gives us a
graph space representation of U0 (with the same operator D as in (5.2)).

Proof of 3) ⇒ 2): If 3) holds, then PY
U maps U0 one-to-one onto U , and

D = PU
Y (PY

U |U0)
−1.

Proof of 2) ⇒ 1): Let Σdv/s/s =
([

A′ B′
C′ D′

]
;X ,L,W)

be an arbitrary driving
variable representation of Σ. Then PY

U maps U0 one-to-one onto U and PY
U D′ maps

L one-to-one onto U . The proof of Theorem 5.1 provides us with an input/state/
output representation of Σ with input space U and output space Y. �

Remark 5.8. According to Lemma 5.7, if Y is an arbitrary direct complement to
the subspace U0 in (3.6), then W = Y � U0 is an admissible decomposition for Σ.
For this reason we shall refer to U0 as the canonical input space.

The admissibility of a given decomposition of the signal space of a given
state/signal system Σ can also be studied by means of a given driving variable, or
output nulling, or input/state/output representation of the given system Σ.

Lemma 5.9. Let Σ = (V ;X ,W) be a state/signal node with the driving variable
representation Σdv/s/s =

([
A′ B′
C′ D′

]
;X ,L,W)

.
1) W = Y � U is an admissible input/output decomposition for Σ if and only if

PY
U D′ maps L one-to-one onto U , i.e., (PY

U D′)−1 ∈ B(U ;L). (5.12)

2) If the decomposition W = Y � U is admissible for Σ, then the corresponding
operators A, B, C, and D in (5.2) are given by (5.3).

Proof. In the proof of Theorem 5.1 we constructed an input/state/output repre-
sentation of Σ under the assumption that (5.12) holds. Thus, (5.12) is sufficient
for admissibility. Conversely, suppose that the decomposition is admissible for Σ.
Then by Lemma 5.7, PY

U maps the canonical input space U0 = R (D′) one-to-one
onto U , and D′ is injective. Thus, (5.12) is also necessary for admissibility. �

Lemma 5.10. Let Σ = (V ;X ,W) be a state/signal node with the output nulling
representation Σs/s/on =

([
A′′ B′′
C′′ D′′

]
;X ,W ,K), and let W = Y �U be a direct sum

decomposition of W.
1) W = Y � U is an admissible input/output decomposition for Σ if and only if

D′′|Y maps Y one-to-one onto K, i.e., (D′′|Y)−1 ∈ B(K;Y). (5.13)
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2) If the decomposition W = Y � U is admissible for Σ, then the corresponding
operators A, B, C, and D in (5.2) are given by
[
A B
C D

]
=
[
1X −B′′|Y
0 −D′′|Y

]−1 [
A′′ B′′|U
C′′ D′′|U

]

=
[
A′′ − B′′|Y(D′′|Y)−1C′′ B′′|U − B′′|Y(D′′|Y)−1D′′|U

−(D′′|Y)−1C′′ −(D′′|Y)−1D′′|U
]

.

(5.14)

Proof. Take an arbitrary
[

z
x
w

]
∈ K. By (4.3),

[
z
x
w

]
∈ V if and only if

[
z
0

]
=
[
A′′ B′′

C′′ D′′

] [
x
w

]
.

With u = PY
U w and y = PU

Y w this can be written in the equivalent form
[
z
0

]
=
[
A′′ B′′|Y B′′|U
C′′ D′′|Y D′′|U

]

x
y
u


 . (5.15)

If the decomposition W = Y � U is admissible for Σ, then the condition
[

z
x
w

]
∈ V

determines y uniquely as a continuous function of x and u (by (5.2), y = Cx +
Du), and therefore the operator D′′|Y in (5.15) must map Y one-to-one onto K
(recall that the range of D′′ is all of K). Thus (5.13) is a necessary condition for
admissibility. Conversely, suppose that (5.13) holds. Then (5.15) can be written in
the equivalent form

[
z
y

]
=
[
1X −B′′|Y
0 −D′′|Y

]−1 [
A′′ B′′|U
C′′ D′′|U

] [
x
u

]

=
[
A′′ − B′′|Y(D′′|Y)−1C′′ B′′|U − B′′|Y(D′′|Y)−1D′′|U

−(D′′|Y)−1C′′ −(D′′|Y)−1D′′|U
] [

x
u

]
.

This is an input/state/output representation with A′′, B′′, C′′, and D′′ given by
(5.14). Thus, (5.13) is also sufficient for the admissibility of the decomposition
W = Y � U . �
Theorem 5.11. Let Σ = (V ;X ,W) be a state/signal node with the input/state/
output representation Σi/s/o =

(
[ A B
C D ] ;X ,U ,Y). Let W = Y1 �U1 be a direct sum

decomposition of W, and define Θ ∈ B(
[ Y
U
]
;
[ Y1
U1

]
) by (1.6).

1) W = Y1 � U1 is an admissible input/output decomposition for Σ if and only
if

Θ21D + Θ22 maps U one-to-one onto U1, i.e.,

(Θ21D + Θ22)−1 ∈ B(U1;U).
(5.16)

2) If the decomposition W = Y1 �U1 is admissible for Σ, then the corresponding
operators A1, B1, C1, and D1 are given by
[
A1 B1

C1 D1

]
=
[

A B
Θ11C Θ11D + Θ12

] [
1X 0

Θ21C Θ21D + Θ22

]−1

, (5.17)
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or equivalently,

A1 = A − B(Θ21D + Θ22)−1Θ21C,

B1 = B(Θ21D + Θ22)−1,

C1 = Θ11C − (Θ11D + Θ12)(Θ21D + Θ22)−1Θ21C,

D1 = (Θ11D + Θ12)(Θ21D + Θ22)−1.

(5.18)

Proof. This follows from Remark 5.2 and Lemma 5.9. �

Theorem 5.12. Let Σ = (V ;X ,W) be a state/signal node with the input/state/
output representation Σi/s/o =

(
[ A B
C D ] ;X ,U ,Y), and let W = Y1 � U1 be a direct

sum decomposition of W. Define Θ̃ ∈ B(
[ Y1
U1

]
;
[ Y
U
]
) by

Θ̃ =
[
Θ̃11 Θ̃12

Θ̃21 Θ̃22

]
=
[
PU
Y |Y1 PU

Y |U1

PY
U |Y1 PY

U |U1

]
. (5.19)

1) W = Y1 � U1 is an admissible input/output decomposition for Σ if and only
if

Θ̃11 − DΘ̃21 maps Y1 one-to-one onto Y . (5.20)
2) If the decomposition W = Y1 �U1 is admissible for Σ, then the corresponding

operators A1, B1, C1, and D1 are given by
[
A1 B1

C1 D1

]
=
[
1X −BΘ̃21

0 Θ̃11 − DΘ̃21

]−1 [
A BΘ̃22

C −Θ̃12 + DΘ̃22

]
, (5.21)

or equivalently,

A1 = A + BΘ̃21(Θ̃11 − DΘ̃21)−1C,

B1 = BΘ̃22 + BΘ̃21(Θ̃11 − DΘ̃21)−1(−Θ̃12 + DΘ̃22),

C1 = (Θ̃11 − DΘ̃21)−1C,

D1 = (Θ̃11 − DΘ̃21)−1(−Θ̃12 + DΘ̃22).

(5.22)

Proof. This follows from Remark 5.2 and Lemma 5.10. �

6. Transfer functions

The (input-output) transfer function of discrete time input/state/output system
Σi/s/o =

(
[ A B
C D ] ;X ,U ,Y) is defined by the formula

D(z) = D + zC(1X − zA)−1B, z ∈ ΛA, (6.1)

where ΛA is the set of points z ∈ C for which (1X − zA) has a bounded inverse,
plus the point at infinity if A is boundedly invertible. The set ΛA is the maximal
domain of analyticity of the function zA(z), where A is the (Fredholm) resolvent
of A, i.e.,

A(z) = (1X − zA)−1, z ∈ ΛA. (6.2)
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Thus, both D and A will be defined on the same subset ΛA of the extended complex
plane. The resolvent A may have an analytic extension to the point at infinity even
if A does not have a bounded inverse, and the transfer function D may have an
analytic extension to a larger domain, but in this paper we shall not make any
use of such extensions. Note that D(z) = D + zCA(z)B, that D(0) = D and that
D(∞) = D − CA−1B (if A is boundedly invertible).

The function D arises in a natural way when one studies the Z-transform of
a trajectory (x(·), u(·), y(·)) of Σi/s/o on Z+. Let us denote the formal power series
induced by the sequences {x(n)}∞n=0, {y(n)}∞n=0, and {u(n)}∞n=0 by2

x̂(z) =
∞∑

n=0

x(n)zn, ŷ(z) =
∞∑

n=0

y(n)zn, û(z) =
∞∑

n=0

u(n)zn.

The system of equations (1.2) is then equivalent to the following system of equa-
tions for formal power series:

x̂(z) = x(0) + zAx̂(z) + zBû(z),

ŷ(z) = Cx̂(z) + Dû(z).
(6.3)

Solving these equations for x̂ and ŷ in terms of x(0) and û we get the more explicit
formula [

x̂(z)
ŷ(z)

]
=
[
A(z)
C(z)

]
x(0) +

[
B(z)
D(z)

]
û(z), (6.4)

where the right-hand side should be interpreted as sums and products of (formal)
power series of the following type: x(0) is just a constant, û(z) is the formal power
series induced by the sequence {u(n)}∞n=0, and the multipliers A(z), B(z), C(z),
and D(z), represent the MacLaurin series of the corresponding functions defined
by (6.1), (6.2), and by

B(z) = z(1X − zA)−1B = zA(z)B, z ∈ ΛA,

C(z) = C(1X − zA)−1 = CA(z), z ∈ ΛA,
(6.5)

that is,

A(z) =
∞∑

n=0

Anzn, B(z) =
∞∑

n=0

AnBzn+1,

C(z) =
∞∑

n=0

CAnzn, D(z) = D +
∞∑

n=0

CAnBzn+1.

(6.6)

2The alternative transform where z is replaced by 1/z is also frequently used. The corresponding
transfer function is then given by D + C(z −A)−1B, defined on the resolvent set of A, including
the point at infinity.
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The corresponding time-domain formulas are

x(n) = Anx(0) +
n−1∑
k=0

AkBu(n − k − 1),

y(n) = CAnx(0) + Du(n) +
n−1∑
k=0

CAkBu(n − k − 1), n ∈ Z
+

(6.7)

(where we interpret an empty sum as zero). From time to time we shall need to
refer to the different maps in (6.7), and therefore introduce the following termi-
nology. We define the state-to-state map Ǎ : X → X Z

+
, the input-to-state map

B̌ : UZ
+ → X Z

+
, the state-to-output map Č : X → YZ

+
, and the input-to-output

map Ď : UZ
+ → UZ

+
by

(Ǎx)(n) = Anx, n ∈ Z
+,

(B̌u)(n) =
n−1∑
k=0

AkBu(n − k − 1), n ∈ Z
+,

(Čx)(n) = CAnx, n ∈ Z
+,

(Ďu)(n) = D +
n−1∑
k=0

CAkBu(n − k − 1), n ∈ Z
+.

(6.8)

It is frequently possible to interpret the above equations as equations between
analytic functions defined in a neighborhood of zero rather than formal power
series. It suffices to assume that the (formal) power series defining û has a strictly
positive radius of convergence. This implies that also the series defining x̂ and ŷ
have a positive radius of convergence, that û, ẑ, and ŷ are analytic functions defined
in a neighborhood of zero, and that (6.4) holds with A(z), B(z), C(z), and D(z)
defined by (6.1), (6.2), and (6.5). In particular, if x(0) = 0, then ŷ(z) = D(z)û(z)
in a neighborhood of zero, and this explains why the function D is called the
input-output transfer function. Similar interpretations are valid for the transfer
functions A (state to state), B (input to state), and C (state to output).

A more compact way of writing (6.1), (6.2), and (6.5) is
[
zA(z) B(z)
zC(z) D(z)

]
=
[

(1/z − A)−1 (1/z − A)−1B
C(1/z − A)−1 D + C(1/z − A)−1B

]

=
[
1X 0
C D

] [
1/z − A −B

0 1U

]−1

=
[
1/z − A 0
−C 1Y

]−1 [1X B
0 D

]
, z ∈ ΛA, z �= 0

(6.9)

(the value at infinity is obtained by taking limits as z → ∞, and the corresponding
formula for z = 0 is trivial).
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We shall call

V(z) :=
[
A(z) B(z)
C(z) D(z)

]

the four block input/state/output transfer function of the system Σi/s/o.
A driving-variable/state/signal system Σdv/s/s =

([
A′ B′
C′ D′

]
;X ,L,W)

may
be interpreted as an input/state/output system with L as input space, X as
state space, and W as output space. The Z-transform (x̂, �̂, ŵ) of a trajectory
(x(·), �(·), w(·)) of this system on Z+ therefore satisfies[

x̂(z)
ŷ(z)

]
= V′(z)

[
x(0)
û(z)

]
:=

[
A′(z) B′(z)
C′(z) D′(z)

] [
x(0)
û(z)

]
, (6.10)

where A′, B′, C′, and D′ are given by (6.9) with A, B, C, and D replaced by
A′, B′, C′, and D′. We shall call V′ the four block driving-variable/state/signal
transfer function of the system Σdv/s/s. Analogously, the Z-transform (x̂, ŵ, ê) of
a trajectory (x(·), w(·), e(·)) of a signal/state/output nulling system Σs/s/on =([

A′′ B′′
C′′ D′′

]
;X ,W ,K) on Z+ therefore satisfies

[
x̂(z)
ê(z)

]
= V′′(z)

[
x(0)
ŵ(z)

]
:=

[
A′′(z) B′′(z)
C′′(z) D′′(z)

] [
x(0)
ŵ(z)

]
, (6.11)

where A′′, B′′, C′′, and D′′ are given by (6.9) with A, B, C, and D replaced by
A′′, B′′, C′′, and D′′. We shall call V′′ the four block signal/state/error transfer
function of the system Σs/s/on.

Below we shall study relations between the four block transfer functions V,
V′, and V′′ that correspond to the three types of representations (input/state/
output, driving variable, or output nulling, respectively) of a given state/signal
system Σ = (V ;X ,W).

First we will consider the relationships between the four block driving variable
transfer function of two driving-variable representations of a state/signal system.

Theorem 6.1. Let

Σdv/s/s =
([

A′ B′
C′ D′

]
;X ,L,W)

and Σ1
dv/s/s =

([A′
1 B′

1
C′

1 D′
1

]
;X ,L1,W

)

be two driving variable representations of the state/signal system Σ = (V ;X ,W).
Denote the four block transfer functions of Σdv/s/s and Σ1

dv/s/s by
[

A′(z) B′(z)

C′(z) D′(z)

]

and
[

A′
1(z) B′

1(z)

C′
1(z) D′

1(z)

]
, respectively, and let K ′ ∈ B(X ;L) and M ′ ∈ B(L1;L) be the

operators in Theorem 3.3, uniquely determined by (3.12).
1) The operator 1L − K ′B′(z) (defined on ΛA′) has a bounded inverse if and

only if z ∈ ΛA′ ∩ ΛA′
1
.

2) For all z ∈ ΛA′ ∩ ΛA′
1
,

[
A′

1(z) B′
1(z)

C′
1(z) D′

1(z)

]
=
[
A′(z) B′(z)
C′(z) D′(z)

] [
1X 0

−K ′A′(z) 1L − K ′B′(z)

]−1 [1X 0
0 M ′

]
,

(6.12)
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or equivalently,3

A′
1(z) = (1X − B′(z)K ′)−1A′(z),

B′
1(z) = (1X − B′(z)K ′)−1B′(z)M ′,

C′
1(z) = C′(z) + D′(z)K ′(1X − B′(z)K ′)−1A′(z),

D′
1(z) = D′(z)(1L − K ′B′(z))−1M ′.

(6.13)

Proof. The case where z = 0 is trivial, so in the sequel we assume that z �= 0.
Assume first that z ∈ ΛA′∩ΛA′

1
, with z �= 0. Since z ∈ ΛA′

1
, we get from (6.9),

[
zA′

1(z) B′
1(z)

zC′
1(z) D′

1(z)

]
=
[
1X 0
C′

1 D′
1

] [
1/z − A′

1 −B′
1

0 1L1

]−1

=
[
1X 0
C′

1 D′
1

] [
1X 0
K ′ M ′

]−1([1/z − A′
1 −B′

1

0 1L1

] [
1X 0
K ′ M ′

]−1)−1

=
[
1X 0
C′ D′

] [
1/z − A′ −B′

−(M ′)−1K ′ (M ′)−1

]−1

.

Observe, in particular, that the last block matrix above is boundedly invertible.
Since also z ∈ ΛA′ , we can factor
[

1/z − A′ −B′

−(M ′)−1K ′ (M ′)−1

]
=
[

1X 0
−(M ′)−1K ′zA′(z) (M ′)−1(1L − K ′B′(z))

]

×
[
1/z − A′ −B′

0 1L

]
.

(6.14)

As we noticed above, the left-hand side in boundedly invertible, and hence also
the operator 1L−K ′B′(z) must be boundedly invertible. Substituting this factor-
ization into the formula above we get
[
zA′

1(z) B′
1(z)

zC′
1(z) D′

1(z)

]
=
[
1X 0
C′ D′

] [
1/z − A′ −B′

0 1L

]−1

×
[

1X 0
−(M ′)−1K ′zA′(z) (M ′)−1(1L − K ′B′(z))

]−1

=
[
zA′(z) B′(z)
zC′(z) D′(z)

] [
1X 0

−K ′zA′(z) 1L − K ′B′(z)

]−1[1X 0
0 M ′

]
.

Multiplying this identity to the right by
[

1/z 0
0 1

]
we get (6.12). We have now proved

assertion 2) and one half of assertion 1).
To prove the other half of assertion 1) we assume that z ∈ ΛA′ , z �= 0,

and that 1L − K ′B′(z) is boundedly invertible. Then the block operator matrix
on the left-hand side of (6.14) is also boundedly invertible. As we noticed above,

3Note that, by Lemma 10.1, 1L − K ′B′(z) has a bounded inverse if and only if 1X − B′(z)K ′
has a bounded inverse.
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this matrix factors into
[

1/z−A′
1 −B′

1
0 1L1

] [
1X 0
K′ M ′

]−1
, and hence 1/z − A′

1 must be
boundedly invertible, i.e., z ∈ ΛA′

1
.

Theorem 6.2. Let

Σs/s/on =
([

A′′ B′′
C′′ D′′

]
;X ,W ,K) and Σ1

s/s/on =
([A′′

1 B′′
1

C′′
1 D′′

1

]
;X ,W ,K1

)

be two output nulling representations of the state/signal system Σ = (V ;X ,W).
Denote the four block transfer functions of Σs/s/on and Σ1

s/s/on by
[

A′′(z) B′′(z)

C′′(z) D′′(z)

]

and
[

A′′
1 (z) B′′

1 (z)

C′′
1 (z) D′′

1 (z)

]
, respectively, and let K ′′ and M ′′ be the operators in Theorem

4.3, uniquely determined by (4.11).

1) The operator 1K − zC′′(z)K ′′ (defined on ΛA′′) has a bounded inverse if and
only if z ∈ ΛA′′ ∩ ΛA′′

1
.

2) For all z ∈ ΛA′′ ∩ ΛA′′
1
,

[
A′′

1(z) B′′
1 (z)

C′′
1(z) D′′

1(z)

]
=
[
1X 0
0 M ′′

] [
1X −zA′′(z)K ′′

0 1K − zC′′(z)K ′′

]−1 [
A′′(z) B′′(z)
C′′(z) D′′(z)

]
,

(6.15)
or equivalently,4

A′′
1(z) = A′′(z)(1X − zK ′′C′′(z))−1C′′(z),

B′′
1 (z) = B′′(z) + zA′′(z)(1X − zK ′′C′′(z))−1K ′′D′′(z),

C′′
1 (z) = M ′′C′′(z)(1X − zK ′′C′′(z))−1,

D′′
1 (z) = M ′′(1K − zC′′(z)K ′′)−1D′′(z).

(6.16)

The proof of this theorem is similar to the proof of Theorem 6.1, and we leave
it to the reader.

Lemma 6.3. Let Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y) and Σdv/s/s =

([
A′ B′
C′ D′

]
;X ,L,W)

be
an input/state/output and a driving variable representation, respectively, of the
state/signal system Σ = (V ;X ,W). Denote the four block transfer functions of
Σi/s/o and Σdv/s/s by

[
A(z) B(z)
C(z) D(z)

]
and

[
A′(z) B′(z)

C′(z) D′(z)

]
, respectively.

1) The operator PY
U D′(z) (defined on ΛA′) has a bounded inverse if and only if

z ∈ ΛA ∩ ΛA′ .
2) For all z ∈ ΛA ∩ ΛA′ ,

[
A(z) B(z)
C(z) D(z)

]
=
[

A′(z) B′(z)
PU
Y C′(z) PU

Y D′(z)

] [
1X 0

PY
U C′(z) PY

U D′(z)

]−1

(6.17)

4Note that, by Lemma 10.1, 1K−zC′′(z)K ′′ has a bounded inverse if and only if 1X −zK ′′C′′(z)
has a bounded inverse.
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or equivalently,

A(z) = A′(z) − B′(z)(PY
U D′(z))−1PY

U C′(z)

B(z) = B′(z)(PY
U D′(z))−1

C(z) = PU
Y C′(z) − PU

Y D′(z)(PY
U D′(z))−1PY

U C′(z)

D(z) = PU
Y D′(z)(PY

U D′(z))−1.

(6.18)

Proof. We interpret Σi/s/o as a driving variable representation

Σ1
dv/s/s =

([A′
1 B′

1
C′

1 D′
1

]
;X ,L1,W

)

with L1 = U and
[

A′
1 B′

1

C′
1 D′

1

]
=




A B

C D
0 1U


 ;

see Remark 5.2. The corresponding block decomposition of Σdv/s/s is given by

[
A′ B′

C′ D′

]
=




A′ B′

PU
Y C′ PU

Y D′

PY
U C′ PY

U D′


 .

To these two driving variable representations we apply Theorem 6.1. By comparing
the two representations to each other we find that the operators K ′ ∈ B(X ;L) and
M ′ ∈ B(U ;L) are given by

M ′ = [PY
U D′]−1, K ′ = −[PY

U D′]−1PY
U C′.

The operator 1L − K ′B′(z) in part 1) Theorem 6.1 is given by

1L − K ′B′(z) = 1L + [PY
U D′]−1PY

U C′B′(z)

= [PY
U D′]−1(PY

U D′ + PY
U C′B′(z))

= [PY
U D′]−1PY

U D(z),

and it is boundedly invertible if and only if PY
U D(z) is boundedly invertible. Sub-

stituting the above values into (6.12) we get (6.17). �

Lemma 6.4. Let Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y) and Σs/s/on =

([
A′′ B′′
C′′ D′′

]
;X ,W ,K)

be an input/state/output and a output nulling representation, respectively, of the
state/signal system Σ = (V ;X ,W). Denote the four block transfer functions of
Σi/s/o and Σs/s/on by

[
A(z) B(z)
C(z) D(z)

]
and

[
A′′(z) B′′(z)

C′′(z) D′′(z)

]
, respectively.

1) The operator D′′(z)|Y (defined on ΛA′′) has a bounded inverse if and only if
z ∈ ΛA ∩ ΛA′′ .

2) For all z ∈ ΛA ∩ ΛA′′ ,
[
A(z) B(z)
C(z) D(z)

]
=
[
1X −B′′(z)|Y
0 −D′′(z)|Y

]−1 [
A′′(z) B′′(z)|U
C′′(z) D′′(z)|U

]
, (6.19)
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or equivalently

A(z) = A′′(z) − B′′(z)|Y(D′′(z)|Y)−1C′′(z),

B(z) = B′′(z)|U − B′′(z)|Y(D′′(z)|Y)−1D′′(z)|U ,

C(z) = −(D′′(z)|Y)−1C′′(z),

D(z) = −(D′′(z)|Y)−1D′′(z)|U .

(6.20)

Proof. This lemma is proved in the same way as Lemma 6.3, but this time we
interpret Σi/s/o as an output nulling representation of Σ (as in Remark 5.2) and
use Theorem 6.2 instead of Theorem 6.1. �

Theorem 6.5. Let Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y) and Σ1

i/s/o =
([

A1 B1
C1 D1

]
;X ,U1,Y1

)
be

two input/state/output representations of the state/signal system Σ = (V ;X ,W).
Denote the four block transfer functions of Σi/s/o and Σ1

i/s/o by
[

A(z) B(z)
C(z) D(z)

]
and[

A1(z) B1(z)
C1(z) D1(z)

]
, respectively. Define Θ ∈ B(

[ Y
U
]
;
[ Y1
U1

]
) and Θ̃ ∈ B(

[ Y1
U1

]
;
[ Y
U
]
) by

(1.6) and (5.19), respectively.
1) For each z ∈ ΛA the following conditions are equivalent:

(a) z ∈ ΛA1 .
(b) The operator Θ21D(z) + Θ22 has a bounded inverse.
(c) The operator Θ̃11 − D(z)Θ̃21 has a bounded inverse.

2) For all z ∈ ΛA ∩ ΛA1 ,[
A1(z) B1(z)
C1(z) D1(z)

]
=
[

A(z) B(z)
Θ11C(z) Θ11D(z) + Θ12

] [
1X 0

Θ21C(z) Θ21D(z) + Θ22

]−1

,

(6.21)
or equivalently,

A1(z) = A(z) − B(z)(Θ21D(z) + Θ22)−1Θ21C(z),

B1(z) = B(z)(Θ21D(z) + Θ22)−1,

C1(z) = Θ11C(z) − (Θ11D(z) + Θ12)(Θ21D(z) + Θ22)−1Θ21C(z),

D1(z) = (Θ11D(z) + Θ12)(Θ21D(z) + Θ22)−1.

(6.22)

3) For all z ∈ ΛA ∩ ΛA1 ,[
A1(z) B1(z)
C1(z) D1(z)

]
=
[
1X −B(z)Θ̃21

0 Θ̃11 − D(z)Θ̃21

]−1 [
A(z) B(z)Θ̃22

C(z) −Θ̃12 + D(z)Θ̃22

]
, (6.23)

or equivalently,

A1(z) = A(z) + B(z)Θ̃21(Θ̃11 − D(z)Θ̃21)−1C(z),

B1(z) = B(z)Θ̃22 + B(z)Θ̃21(Θ̃11 − D(z)Θ̃21)−1(−Θ̃12 + D(z)Θ̃22),

C1(z) = (Θ̃11 − D(z)Θ̃21)−1C(z),

D1(z) = (Θ̃11 − D(z)Θ̃21)−1(−Θ̃12 + D(z)Θ̃22).

(6.24)
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Proof. Assertion 2) follows from Lemma 6.3, assertion 3) from Lemma 6.4, and for
assertion 1) we need both of these lemmas. For the proof of 2) we interpret Σ1

i/s/o

as a driving variable representation, and for the proof of 3) we interpret Σ1
i/s/o as

an output nulling representation, as explained in Remark 5.2. �

7. Signal behaviors, external equivalence, and similarity

The behavioral approach to systems theory was introduced by Willems, and has
been developed extensively by him and others (see, e.g., [PW98] for a recent pre-
sentation of behavioral theory). The vast majority of the literature on behaviors
deals with finite-dimensional systems, and the existing extensions to the infinite-
dimensional case seem to ignore state space representations of the type that we
have introduced above. Below we shall consider the problem of realization of a
given behavior on a Hilbert space W by a state/signal system Σ = (V ;X ,W).

In order to motivate out definition of a signal behavior we first take a closer
look at the signal parts of all externally generated trajectories of a state/signal
system Σ = (V ;X ,W). Let W be the set of all the signal sequences w(·), defined
on Z+ with values in W , that are the signal components of externally generated
trajectories (x(·), w(·)) of Σ on Z+. It is easy to see that this set W is a closed
right-shift invariant subspace of the Fréchet space WZ

+
of all W-valued sequences

on Z
+.
We now turn the above property into a definition.

Definition 7.1. Let W be a Hilbert space.5 By a (causal signal) behavior on the
signal space W we mean a closed right-shift invariant subspace of WZ

+
.

This is a special case of a “manifest behavior”, as described, e.g., in [PW98,
Definition 1.2.9], but our choice of this particular subclass of behaviors is not a
standard one. A similar definition was used by Ball and Staffans [BS05] in con-
tinuous time (with an extra growth restriction at infinity that was appropriate in
their setting).

A behavior that is induced by a state/signal system Σ = (V ;X ,W) as ex-
plained above is called realizable, and the state/signal system Σ that induces this
behavior is called a realization of the behavior W.

Definition 7.2. Two state/signal systems with the same signal space are called
externally equivalent if they induce the same behavior.

A behavior induced by a state/signal system has both an image representation
and a kernel representation of the following type:

Lemma 7.3. Let W be the behavior induced by a state/signal system Σ = (V ;X ;W).
Then

5We make only indirect use of the fact that W is a Hilbert space. See the footnote to Definition 2.1.
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1) W is the range of the driving-to-signal map Ď′ of every driving variable rep-
resentation of Σ, and

2) W is the kernel of the signal-to-error map Ď′′ of every output nulling repre-
sentation of Σ.

We leave the easy proof to the reader.

After introducing the above notions we face the following tasks:

1) find criteria of realizability of a given behavior on W ;
2) find criteria of external equivalence between two state/signal systems with

the same signal space.

The solutions of these problems will be given in this section. These solutions
involve some additional notation. If W is a behavior on W , then the set

W(0) = {w(0) | w ∈ W}. (7.1)

is a closed subspace of W . We call this subspace the zero section of W. Observe
that, if W is induced by a state/signal system, then W(0) coincides with the
canonical input space U0 in (3.6).

Definition 7.4. Let W be a behavior on W . An ordered direct sum decomposition
W = Y � U (also denoted by W =

[ Y
U
]
) is called an admissible (input/output)

decomposition for W if it has the following two properties:

1) For any sequence u(·) ∈ UZ
+

there exists at least one sequence w(·) ∈ W

such that u(n) = PY
U w(n) for all n ∈ Z+ (that is, the projection of W onto

UZ
+

along YZ
+

is surjective).
2) There exists positive constants M and r such that

T∑
n=0

‖rnw(n)‖2 ≤ M2
T∑

n=0

‖rnPY
U w(n)‖2 (7.2)

for all w(·) ∈ W and all T ∈ Z+.

Theorem 7.5. Let W be a behavior on W.

1) The following conditions are equivalent:
(a) The behavior W is realizable by a state/signal system.
(b) There exists at least one admissible input/output decomposition W =

Y � U for W.
(c) For some direct complement Y0 to the zero section W(0) the decompo-

sition W = Y0 � W(0) is admissible for W.
(d) For every direct complement Y0 to the zero section W(0) the decompo-

sition W = Y0 � W(0) is admissible for W.
2) Assume that W is realizable by the state/signal system Σ = (V ;X ,W). Then

a direct sum decomposition W = Y � U is admissible for W if and only if it
is admissible for Σ.
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Proof. We begin by proving one half of assertion 2). Suppose first that the behavior
W is realized by the state/signal system Σ = (V ;X ,W). Consider some admissible
input/output decomposition W = Y�U for the state/signal system Σ. Let Σi/s/o =(
[ A B
C D ] ;X ,U ,Y) be the input/state/output representation of Σ corresponding to

this decomposition. Then, for every externally generated trajectory (x(·), w(·)) of
Σ on Z+ we have w(n) = y(n)+u(n), where u(n) = PY

U w(n) and y(n) = PU
Y w(n).

Clearly, the projection of W onto UZ
+

is surjective (this is the first requirement of
an admissible input/output decomposition for W). To prove that also (7.2) holds
we choose some r > 0 and rewrite (1.2) in the form

xr(n + 1) = rAxr(n) + rBur(n),

yr(n) = Cxr(n) + Dur(n), n ∈ Z
+,

x(0) = 0,

(7.3)

where xr(n) = rnx(n), ur(n) = rnu(n), and yr(n) = rny(n). Choose r so small
that ‖rA‖ < 1. By (6.7) and by the standard fact that the convolution of an
�1-sequence and an �2-sequence belongs to �2,

T∑
n=0

‖yr(n)‖2 ≤ M2
1

T∑
n=0

‖ur(n)‖2,

where M1 = ‖D‖ + ‖C‖(1 − ‖rA‖)−1‖B‖. Clearly this implies (7.2) with a larger
constant M (which depends, among others, on the norms of PU

Y ). Thus, the de-
composition W = Y � U is admissible for W, and we have proved one direction
of assertion 2). In addition, we have proved the implication (a) ⇒ (d), since the
decomposition in (d) is admissible for Σ (see Lemma 5.7). Trivially (d) ⇒ (c)
and (c) ⇒ (b). Thus, it remains to prove the other half of assertion 2) and the
implication (b) ⇒ (a).

Suppose now that W = Y�U is an admissible decomposition for the behavior
W. Let r and M be the constants in (7.2). For each w(·) ∈ W we define wr(n) =
rnw(n), ur(n) = rnPY

U w(n), and yr(n) = rnPU
Y w, n ∈ Z+. Then (7.2) implies

that the mapping from ur to yr is a continuous right-shift invariant mapping from
�2(Z+;U) to �2(Z+;Y). As is well known, this implies that this mapping has a
multiplier representation given in terms of Z-transforms by

ŷr(z) = Dr(z)ûr(z)

for some bounded holomorphic B(U ;Y)-valued function in the unit disk D, satis-
fying supz∈D

‖Dr(z)‖ ≤ M . This function Dr can be realized as the input/output
transfer function of an input/state/output system Σr =

([
Ar Br

Cr Dr

]
;X ,U ,Y); see

[Aro74, Theorem 3], [Fuh74], or [Hel74, Theorem 3c.1]. We then define

Σi/s/o =
([

r−1Ar r−1Br

Cr Dr

]
;X ,U ,Y).

This system is an input/state/output representation of a state/signal system Σ =
(V ;X ,W), and the decomposition W = Y � U is admissible for this system. The



State/Signal Systems 149

system Σ is a state/signal realization of the given behavior W. This proves the
implication (b) ⇒ (a), and completes the proof of assertion 1).

It only remains to prove the second half of the assertion 2), namely that
every decomposition W = Y � U that is admissible for the behavior W is also
admissible for its realization Σ. To do this we use the characterization given in
Lemma 5.7. Let u0 ∈ U , and take some arbitrary u(·) ∈ UZ

+
with u(0) = u0. Then

there is a corresponding signal w(·) ∈ W such that PY
U w(·) = u(·). In particular,

u0 = PY
U w(0), where w(0) ∈ W(0) = U0. Thus PY

U maps U0 onto U . That PY
U |U0

is injective follows from (7.2). By Lemma 5.7, the decomposition W = Y � U is
admissible for Σ. �
Corollary 7.6. Let W be a realizable behavior on W, let W = Y � U be a direct
sum decomposition of W. Then the following conditions are equivalent.

1) W = Y � U is an admissible input/output decomposition for W.
2) PY

U maps W(0) one-to-one onto U , i.e., (PY
U )−1 ∈ B(U ; W(0)).

3) The space W(0) has the graph representation

W(0) =
{
w =

[
D
1U

]
u | u ∈ U}, (7.4)

for some D ∈ B(U ;Y).
If the decomposition is admissible, then the operator D in (7.4) is the feedthrough
operator of every input/state/output realization of W with W = Y � U .

This follows from Lemma 5.7 and part 2) of Theorem 7.5 (recall that W(0) = U0).

Theorem 7.7. Let Σ and Σ1 be two state/signal systems with the common signal
space W.

1) If Σ and Σ1 have a common admissible input/output decomposition W =
Y � U and the corresponding input/output transfer functions coincide in a
neighborhood of zero, then the two systems are externally equivalent.

2) Conversely, if Σ and Σ1 are externally equivalent, then any direct sum de-
composition W = Y � U is admissible for Σ if and only if it is admissible
for Σ1, and the corresponding input/output transfer functions coincide in the
(connected) component of ΛA ∩ ΛA1 which contains zero. In particular, the
feedthrough operators also coincide.

Proof. Proof of 1): We denote the input/state/output representations of Σ and
Σ1 by Σi/s/o =

(
[ A B
C D ] ;X ,U ,Y), respectively, Σ1

i/s/o =
([

A1 B1
C1 D1

]
;X ,U ,Y), and

the behaviors induced by Σ and Σ1 by W, respectively, W1. Let w(·) ∈ W. Then
there exists a sequence x(·) with x(0) = 0 such that (x(·), w(·)) is a trajectory of
Σ on Z+. Equivalently, (x(·), u(·), y(·)), with u(·) = PY

U w(·) and y(·) = PU
Y w(·) is

a trajectory of Σi/s/o on Z+ with x(0) = 0. Let (x1(·), u(·), y1(·)) be the trajectory
of Σ1

i/s/o on Z
+ which has x1(0) = 0 and the same input sequence u as above.

We claim that y1(·) = y(·). To prove this is suffices to show that the two input-
to-output map (the map Ď in (6.8)) are the same for the two systems Σi/s/o and
Σ1

i/s/o, i.e., that D = D1 and that CAkB = C1A
k
1B for all k ∈ Z

+. However,
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these are the Taylor coefficients of the corresponding transfer functions D and D1

at the origin, and since we assume that the two transfer functions coincide in a
neighborhood of the origin, these Taylor coefficients are the same, too. Thus, y(·) =
y1(·), as claimed. This means that (x1(·), w(·)) is an externally generated trajectory
of Σ1 on Z+. The above argument shows that W ⊂ W1. By interchanging the roles
of the two systems Σ and Σ1 we conclude by the same argument that W1 ⊂ W.
Thus, the two systems Σ and Σ1 are externally equivalent.

Proof of 2). Suppose that Σ and Σ1 are externally equivalent. Then they
induce the same behavior W. By part 2) of Theorem 7.5, the decomposition W =
Y�U is admissible for Σ if and only if it is admissible for W, and this is true if and
only if it is admissible for Σ1. Assume that the decomposition is admissible (for
both systems), and denote the corresponding transfer functions by D, respectively,
D1. Let u(·) ∈ UZ

+
, and suppose that the Z-transform of u(·) has a nonzero

radius of convergence. Choose some w(·) ∈ W such that PY
U w(·) = u(·). Define

y(·) = PU
Y w(·). Then we have in some (possibly smaller) neighborhood of zero,

ŷ(z) = D(z)û(z) = D1û(z).

This being true for all u(·) ∈ UZ
+

whose Z-transform of u(·) has a nonzero radius
of convergence, this implies that D(z) = D1(z) in some neighborhood of zero. By
analytic extension, these two transfer functions must coincide in the connected
component of ΛA ∩ ΛA1 which contains zero. That the feedthrough operators co-
incide follows from the fact that they are the values of the transfer functions at
zero. �

Instead of testing the external equivalence of two state/signal systems by
using input/state/output representations of these systems it is also possible to use
driving variable or output nulling representations.

Proposition 7.8. Let Σ and Σ1 be two state/signal systems with the common signal
space W. Let Σi/s/o and Σ1

i/s/o be two input/state/output representations of Σ,
respectively, Σ1 corresponding to the same admissible decomposition W = Y � U ,
let Σdv/s/s and Σ1

dv/s/s be two driving variable representations of Σ, respectively,
Σ1, and let Σs/s/on and Σ1

s/s/on be two output nulling variable representations of
Σ, respectively, Σ1. Then the following conditions are equivalent:

1) Σ and Σ1 are externally equivalent.
2) The input-to-output maps Ď and Ď1 of Σi/s/o, respectively, Σ1

i/s/o coincide.
3) The driving-to-signal maps Ď′ and Ď′

1 of Σdv/s/s, respectively, Σ1
dv/s/s have

the same ranges.
4) The signal-to-error maps Ď′′ and Ď′′

1 of Σs/s/on, respectively, Σ1
s/s/on have

the same kernels.

Proof. This follows from Lemma 7.3, Theorem 7.7, and the fact that the in-
put/output transfer function determines the input-to-output map uniquely. �
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The rest of this section is devoted to a study of similarity and pseudo-
similarity of state/signal systems.

Definition 7.9. Two state/signal systems Σ = (V ;X ,W) and Σ1 = (V1;X1,W)
with the same signal space W are similar if there exists a boundedly invertible
operator R ∈ B(X ;X1), called the similarity operator, such that (x(·), w(·)) is a
trajectory of Σ if and only if (x1(·), w(·)) = (Rx(·), w(·)) is a trajectory of Σ1.

From this definition follows that two similar state/signal systems are exter-
nally equivalent.

The corresponding similarity notion is well known for input/state/output
systems. Two input/state/output systems Σi/s/o =

(
[ A B
C D ] ;X ,U ,Y) and Σ1

i/s/o =([
A1 B1
C1 D1

]
;X1,U ,Y) with the same input and output spaces are similar if there

exists a boundedly invertible operator R ∈ B(X ;X1) such that[
A1 B1

C1 D1

]
=
[
RAR−1 RB
CR−1 D

]
.

We shall apply the same similarity notion to driving variable and output nulling
representations, too, interpreting them as input/state/output systems (as ex-
plained in Remark 5.4).

Proposition 7.10. Let Σ = (V ;X ,W) and Σ1 = (V1;X1,W) be two state/signal
systems with the same signal space W. Then the following conditions are equiva-
lent.

1) Σ and Σ1 are similar with similarity operator R.
2) V1 =

[
R 0 0
0 R 0
0 0 1W

]
V .

3) Σ and Σ1 have driving variable representations Σdv/s/s and Σ1
dv/s/s, respec-

tively, which are similar with similarity operator R.
4) To each driving variable representation Σdv/s/s of Σ there is a (unique) driv-

ing variable representation Σ1
dv/s/s of Σ1 such that these representations are

similar with similarity operator R.
5) Σ and Σ1 have output nulling representations Σs/s/on and Σ1

s/s/on, respec-
tively, which are similar with similarity operator R.

6) To each output nulling representation Σs/s/on of Σ there is a (unique) out-
put nulling representation Σ1

s/s/on of Σ1 such that these representations are
similar with similarity operator R.

7) There exists some decomposition W = Y � U of W which is admissible both
for Σ and for Σ1, and the corresponding input/state/output representations
Σi/s/o and Σ1

i/s/o are similar with similarity operator R.
8) The systems Σ and Σ1 have the same set of admissible decompositions W =

Y � U of W, and for every such decomposition the corresponding input/
state/output representations Σi/s/o and Σ1

i/s/o are similar with similarity op-
erator R.

We leave the easy proof to the reader.
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Various partial converses to the statement that two similar systems are exter-
nally equivalent is also valid. Some additional conditions are always needed. One
such condition is that both the systems are controllable and observable. In this
case they need not actually be similar but only pseudo-similar. Two state/signal
systems Σ = (V ;X ,W) and Σ1 = (V1;X1,W) are called pseudo-similar if there
exists an injective densely defined closed linear operator R : X → X1 with dense
range such that the following conditions hold:

If (x(·), w(·)) is a trajectory of Σ on Z+ with x(0) ∈ D(R), then x(n) ∈ D(R)
for all n ∈ Z+ and (Rx(·), w(·)) is a trajectory of Σ1 on Z+, and conversely,
if (x1(·), w(·)) is a trajectory of Σ1 on Z

+ with x1(0) ∈ R (R), then x1(n) ∈
D(R) for all n ∈ Z+ and (R−1x1(·), w(·)) is a trajectory of Σ on Z+.

Proposition 7.11. Two controllable and observable state/signal systems Σ =
(V ;X ,W) and Σ1 = (V1;X1,W) with the same signal space W are externally
equivalent if and only if they are pseudo-similar.

Proof. In one direction the assertion is obvious: if Σ and Σ1 are pseudo-similar,
then they induce the same behavior (take x(0) = 0 and x1(0) = 0).

Conversely, suppose that Σ and Σ and are controllable and observable state/
signal systems which are externally equivalent. Then they have the same set of
admissible input/output decompositions of the signal space W . Let W = Y � U
be such a decomposition, and denote the corresponding input/state/output repre-
sentations of Σ and Σ1 by Σi/s/o =

(
[A B
C D];X ,U ,Y) and Σ1

i/s/o =
([

A1 B1
C1 D1

]
;X1,U ,Y),

respectively. Then both Σi/s/o and Σ1
i/s/o are controllable and observable, and

also externally equivalent. This means that their input/output transfer functions
coincide a neighborhood of zero. By [Aro79, Proposition 6], these two systems
are pseudo-similar in the following sense: there exists an injective densely defined
closed linear operator R : X → X1 with dense range such that

R (B) ⊂ D(R), AD(R) ⊂ D(R), A1R (R) ⊂ R (R) ,

A1R = RA|D(R), B1 = RB, C1R = C|D(R), D1 = D.
(7.5)

If (x(·), w(·)) and (x1(·), w(·)) are externally generated trajectories of Σ and Σ1,
respectively, with x(0) ∈ D(R), x1(0) ∈ R (R), and x1(0) = Rx(0), then for all
n ∈ Z+,

x(n) = Anx(0) +
n−1∑
k=0

AkBu(n − k − 1),

x1(n) = An
1Rx(0)(0) +

n−1∑
k=0

Ak
1B1u(n − k − 1),

(7.6)

where u(n) = PY
U w(n). This combined with (7.5) gives x1(n) = Rx(n) for all

n ∈ Z+. Thus, Σ and Σ1 are pseudo-similar. �
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8. Dilations of state/signal systems

In the classical finite-dimensional input/state/output systems theory a system is
called minimal if the dimension of its state space is minimal among all systems
with the same transfer function. By a classical result due to Kalman, such a finite-
dimensional input/state/output system is minimal if and only if it is controllable
and observable. We can reformulate this result is the state/signal setting as follows:
a state/signal system with a finite-dimensional state space has a state space with
minimal dimension among all externally equivalent systems if and only if it is
controllable and observable.

In the case where the state space is infinite-dimensional the requirement
that its state space should have minimal dimension becomes obscure (all infinite-
dimensional separable Hilbert spaces has the same dimension). It is therefore nec-
essary to define minimality in terms of some other property. One natural solution
is to study dilations and compressions of systems. In the finite-dimensional case
the minimality of the dimension of the state space is equivalent to the statement
that the system cannot be compressed into a “smaller” system, and this char-
acterization has a natural infinite-dimensional analogue. The notions of dilations
and compressions of operators and of input/state/output systems have attracted
a great deal of attention and it plays an important role in many works, see, e.g.,
[Aro79], [SF70], and [LP67] for Hilbert space versions, and [BGK79] and [Sta05]
for Banach space versions.

Definition 8.1. The state/signal system Σ̃ = (Ṽ ; X̃ ,W) is a dilation along Z of
the state/signal system Σ = (V ;X ,W), or equivalently, the state/signal system
Σ is a compression along Z onto X of the state/signal system Σ̃, if the following
conditions hold:

1) X̃ = X � Z,
2) If (x̃(·), w(·)) is a trajectory of Σ̃ on Z

+ with x̃(0) ∈ X , then (PZ
X x̃(·), w(·))

is a trajectory of Σ on Z+.
3) There is at least one decomposition W = Y �U of W which is admissible for

both Σ̃ and Σ.

Note that, whereas the compressed system is determined uniquely by the
dilated system and by the decomposition X̃ = X � Z, the converse is clearly not
true.

Lemma 8.2. Let the state/signal system Σ̃ = (Ṽ ; X̃ ,W) be a dilation along Z of
Σ = (V ;X ,W). Then the following claims hold.

1) To each trajectory (x(·), w(·)) of Σ on Z
+ there is a unique trajectory

(x̃(·), w̃(·)) of Σ̃ on Z
+ satisfying x̃(0) = x(0) and w̃(·) = w(·). This tra-

jectory has the additional property that x(·) = PZ
X x̃(·).

2) Σ̃ and Σ are externally equivalent. In particular, they have the same admis-
sible input/output decompositions of the signal space, and the input/output
transfer functions and the input-to-output maps of the corresponding input/
state/output representations of Σ̃ and Σ coincide.
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Proof. Let W = Y �U be a decomposition which is admissible both for Σ̃ and for
Σ, and denote the corresponding input/state/output representations of Σ̃ and Σ by
Σ̃i/s/o and Σi/s/o, respectively. Let (x(·), w(·)) be a trajectory of Σ on Z+. Define
u(·) = PY

U w(·) and y(·) = PU
Y w(·). Then (x(·), u(·), y(·)) is a trajectory of Σi/s/o,

and Σ̃i/s/o has a unique trajectory (x̃(·), u(·), ỹ(·)) on Z
+ satisfying x̃(0) = x(0).

Define w̃(·) = ỹ(·)+u(·). Then (x̃(·), w̃(·)) is a trajectory of Σ̃ on Z+. According to
property 2) in Definition 8.1, (PZ

X x̃(·), w̃(·)) must be a trajectory of Σ, and hence,
if we define ỹ(·) = PU

Y w̃(·), then (PZ
X x̃(·), u(·), ỹ(·)) is a trajectory of Σi/s/o. But a

trajectory of Σi/s/o is determined uniquely by its initial state and input data, and
therefore we must have x(·) = PZ

X x̃(·) and ỹ(·) = y(·). This proves assertion 1).
Assertion 2) follows immediately from property 2) in Definition 8.1 together with
assertion 1) . �

Observability and controllability are preserved under compressions (but not
under dilations).

Lemma 8.3. Let the state/signal system Σ̃ = (Ṽ ; X̃ ,W) be a dilation along Z
of Σ = (V ;X ,W). Let R̃ and R be the reachable subspaces and let Ũ and U be
the unobservable subspaces of Σ̃ and Σ, respectively. Then U = Ũ ∩ X and R is
the closure of PZ

X R̃. In particular, if Σ̃ is controllable or observable, then Σ is
controllable or observable, respectively.

We leave the easy proof to the reader.

In order to be able to study the relationship between the two systems Σ̃ and
Σ in Definition 8.1 in more detail we need the following two invariance notions.6

Definition 8.4. Let Σ = (V ;X ,W) be a state/signal system.
1) A closed subspace Z of X is outgoing invariant for Σ if to each x0 ∈ Z

there is a (unique) trajectory (x(·), 0) of Σ on Z+ with x(0) = x0 satisfying
x(n) ∈ Z for all n ∈ Z+.

2) A closed subspace Z of X is strongly invariant for Σ if every trajectory
(x(·), w(·)) of Σ on Z

+ with x(0) ∈ Z satisfies x(n) ∈ Z for all n ∈ Z
+.

These invariance properties can also be described in terms of the generating
subspace V as follows.

Lemma 8.5. Let Σ = (V ;X ,W) be a state/signal system, and let Z be a closed
subspace of X .

1) Z is outgoing invariant for Σ if and only if the following condition holds:

To each x ∈ Z there is a (unique) z ∈ Z such that
[

z
x
0

]
∈ V . (8.1)

2) Z is strongly invariant for Σ if and only if it the following implication is true:

If
[

z
x
w

]
∈ V and x ∈ Z, then z ∈ Z. (8.2)

6The connections between these notions and the unobservable and reachable subspaces are ex-
plained in Lemma 8.6 below.
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Proof. Proof of 1): The necessity of (8.1) for outgoing invariance is immediate (the

solution (x(·), 0) mentioned in part 1) of Definition 8.4 satisfies
[

x(1)
x(0)

0

]
∈ V .)

Conversely, suppose that (8.1) holds. Let x0 ∈ Z. Then (8.1) with x replaced

by x0 gives the existence of x(1) ∈ Z such that
[

x(1)
x0
0

]
∈ V . Applying (8.1)

once more with x replaced by x(1) we get the existence of x(2) ∈ Z such that[
x(2)
x(1)
0

]
∈ V . Continuing in the same way we get a sequence x(·) such that x(0) = x0

and (x(·), 0) is a trajectory of Σ on Z
+. According to Definition 8.4, Z is outgoing

invariant.
Proof of 2): To see that (8.2) is necessary for Z to be strongly invariant we

argue as follows. By part 1) of Proposition 2.2, the condition
[

z0
x0
w0

]
∈ V implies

that there exists a trajectory (x(·), w(·)) of Σ on Z+ with x(0) = x0, w(0) = w0,
and x(1) = z0. If, furthermore, x0 ∈ Z, then the strong invariance of Z implies
that x(n) ∈ Z for all n ∈ Z+. In particular, z0 = x(1) ∈ Z.

The proof of the converse part is similar to the proof of the converse part of
assertion 1), and it is left to the reader. �

The two main examples of outgoing invariant and strongly invariant sub-
spaces are the following:

Lemma 8.6. Let Σ = (V ;X ,W) be a state/signal system.

1) The unobservable subspace is the maximal outgoing invariant subspace for Σ,
i.e., it is outgoing invariant, and it contains every other outgoing invariant
subspace.

2) The reachable subspace is the minimal closed strongly invariant subspace for
Σ, i.e., it is strongly invariant, and it is contained in every other closed
strongly invariant subspace.

We leave the easy proof to the reader.
The following theorem is the main result of this section.

Theorem 8.7. Let Σ̃ =
(
Ṽ ; X̃ ,W)

and Σ =
(
V ;X ,W)

be two state/signal systems
with X̃ = X � Z (and with the same signal space). Then Σ̃ is a dilation along Z
of Σ if and only if the following conditions hold:

1) V is given by

V =

{

PZ
X z̃
x
w



∣∣∣∣∣ x ∈ X and




z̃
x
w


 ∈ Ṽ

}
. (8.3)

2) Z has a decomposition Z = Zo � Zi where Zo is outgoing invariant for Σ̃
and Zo � X is strongly invariant for Σ̃.
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One possible choice of the subspaces Zo and Zi in 2) is to take Zo = Zmax
o and to

take Zi to be an arbitrary direct complement of Zmax
o in Z, where

Zmax
o =

{
x̃0 ∈ X̃

∣∣∣∣
there exists a trajectory (x̃(·), 0) of Σ̃ on Z

+ with

x̃(0) = x̃0 satisfying PZ
X x̃(n) = 0 for all n ∈ Z

+

}
. (8.4)

The subspace Zmax
o is maximal in the sense that it contains every other space Zo

that can be used in the decomposition in 2).

We shall call Zo an outgoing subspace and Zi an incoming subspace of Σ̃.7

Proof. We begin by proving necessity of 1) and 2), assuming that Σ̃ is a dilation of
Σ, and begin with condition 1). Let

[
z̃0
x0
w0

]
∈ Ṽ with x0 ∈ X . By Proposition 2.2, Σ̃

has a trajectory (x̃(·), w̃(·)) on Z+ with x̃(1) = z̃0, x̃(0) = x0, and w(0) = w0. By
condition 2) in Definition 8.1, (x(·), w̃(·)) with x(·) = PZ

X x̃(·) is a trajectory of Σ.

In particular,
[

x(1)
x(0)
w0

]
=
[

PZ
X z̃0
x0
w0

]
∈ V . This shows that the right-hand side of (8.3)

is contained in V . The opposite inclusion follows from a similar argument which
replaces condition 2) in Definition 8.1 by part 1) of Lemma 8.2.

To prove the existence of a decomposition of the type described in part 2)
we define Zo = Zmax

o by (8.4). It is easy to see that Zmax
o is a closed subspace

of X , and it is contained in Z since PZ
X Zmax

o = 0. Let Zi be an arbitrary direct
complement of Zmax

o in Z. We claim that this decomposition of Z has the two
properties mentioned in 2).

It is easy to see from Definition 8.4 that Zmax
o is outgoing invariant for Σ̃,

so it remains to show that Zmax
o � X is strongly invariant for Σ̃. Let (x̃(·), w(·))

be a trajectory of Σ̃ on Z+ with x̃(0) = z0 + x0, where z0 ∈ Zmax
o and x0 ∈ X .

Since Zmax
o is outgoing invariant, there is a trajectory (x̃1(·), 0) of Σ̃ on Z+ with

x̃1(0) = z0 satisfying x̃1(n) ∈ Zmax
o for all n ∈ Z+. Define x̃2(·) = x̃(·) − x̃1(·).

Then (x̃2(·), w(·)) is a trajectory of Σ̃ on Z+ with x̃2(0) = x0 ∈ X . Define x(·) =
PZ
X x̃2(·). By Condition 2) in Definition 8.1, (x(·), w(·)) is a trajectory of Σ on

Z+. In particular, it is also a trajectory on [1,∞). By assertion 2) of Lemma
8.2, applied to the time interval [1,∞), there is a trajectory (x̃3(·), w(·)) of Σ̃ on
[1,∞) satisfying x̃3(1) = x(1) and PZ

X x̃3(n) = x(n) for all n ∈ [1,∞). Define
x̃4(·) = x̃2(·)− x̃3(·). Then (x̃4(·), 0) is a trajectory of Σ̃ on [1,∞), and it satisfies
PY
X x̃4(n) = PY

X x̃2(n) − PY
X x̃3(n) = x(n) − x(n) = 0 for all n ∈ [1,∞). It follows

from (8.4) (after we have shifted the trajectory (x̃(·), 0) one step to the left) that
x̃4(0) ∈ Zmax

o . Thus, x̃(1) = x̃1(1) + x̃3(1) + x̃4(1) where x̃1(1) ∈ Zmax
o , x̃3(1) =

x(1) ∈ X , and x̃4(1) ∈ Zmax
o , so x̃(1) ∈ Zmax

o �X . This proves that the implication
(8.2) holds with Z replaced by Zmax

o � X . By Lemma 8.5, Zmax
o � X is strongly

invariant.
To prove the maximality of Zmax

o it suffices to observe that if Zo is outgoing
invariant, then for each z0 ∈ Zo there is a trajectory (x̃(·), 0) of Σ̃ on Z+ with

7The reason for these names will be explained in Part II of this paper.
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x̃(0) = z0 satisfying x̃(n) ∈ Zo ⊂ Z for all n ∈ Z
+, and hence PZ

X x̃(n) = 0 for all
n ∈ Z+. This implies that z0 ∈ Zmax

o .
For the converse proof we assume that 1) and 2) hold. It follows from (8.3)

that the two systems Σ̃ and Σ have the same canonical input space U0, so condition
3) of Definition 8.1 is satisfied.

Our proof of the fact that also condition 2) of Definition 8.1 holds is based
on the following implication:

If
[

z̃
x̃
w

]
∈ Ṽ and x̃ ∈ Zo � X , then

[
PZ

X z̃

PZ
X x̃
w

]
∈ V . (8.5)

The proof of (8.5) goes as follows. Let
[

z̃
x̃
w

]
∈ Ṽ with x̃ = z0 + x0, where z0 ∈ Zo

and x0 ∈ X . Since Zo is outgoing invariant, there is some z1 ∈ Zo such that[
z1
z0
0

]
∈ Ṽ (see Lemma 8.5). Since Ṽ is a subspace also

[
z̃−z1

x0
w

]
∈ Ṽ . We can

now apply (8.3) to conclude that
[

PZ
X (z̃−z1)

x0
w

]
∈ V . But PZ

X (z̃ − z1) = PZ
X z̃ since

z1 ∈ Zo ⊂ Z and x0 = PZ
X x̃ since x̃ − x0 = z0 ∈ Zo ⊂ Z. Thus, we conclude that[

PZ
X z̃

PZ
X x̃
w

]
∈ V . This proves (8.5).

Let (x̃(·), w(·)) be a trajectory of Σ̃ on Z+ with x̃(0) ∈ X . Because of the
strong invariance of Zo �X , this implies that x̃(n) ∈ Zo �X for all n ∈ Z

+. Define
x(·) = PZ

X x̃(·). Then it follows from (8.5) that (x(·), w(·)) is a trajectory of Σ on
Z+. Thus, condition 2) in Definition 8.1 holds, and we conclude that Σ̃ is a dilation
of Σ. �

Let us record the following fact which we observed in the preceding proof.

Corollary 8.8. Let the state/signal system Σ̃ = (Ṽ ; X̃ ,W) be a dilation along Z
of Σ = (V ;X ,W), and let X̃ = Zo � X � Zi be the decomposition of X̃ given in
Theorem 8.7. Denote Zo � X by Xo. Then V is given by

V =

{


PZ
X z̃

PZ
X x̃
w



∣∣∣∣∣ x̃ ∈ Xo and




z̃
x̃
w


 ∈ Ṽ

}
. (8.6)

This follows from (8.3) and (8.5).

Corollary 8.9. Let Σ̃ =
(
Ṽ ; X̃ ,W)

be a state/signal system. Assume that X̃ =
X � Z, and define V by (8.3). Then Σ =

(
V ;X ,W)

is a state/signal node. It
is a compression along Z onto X of Σ̃ if and only if Z can be decomposed into
Z = Zo � Zi in such a way that Zo is outgoing invariant for Σ̃ and Zo � X is
strongly invariant for Σ̃.

Proof. If V is given by (8.3), then V clearly has properties (i) and (iii) in Definition
2.1. That it also has properties (i) and (iv) follows from Lemma 2.4, because if
we denote the operator in part 3) of Lemma 2.3 corresponding to Ṽ and V by F̃
and F , respectively, then F = PZ

X F̃ with D(F ) = D(F̃ ). Thus Σ is a state/signal
node. The remaining claims follow from Theorem 8.7. �
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Remark 8.10. It is possible to reformulate condition 2) in Theorem 8.7 by focusing
on the subspace Xo := Zo �X instead of focusing on Zo. We claim that condition
2) in Theorem 8.7 is equivalent to the following condition:
2′) X̃ has a decomposition X̃ = Xo � Zi, where Zi ⊂ Z, X ⊂ Xo, Xo is strongly

invariant for Σ̃, and Xo ∩ Z is outgoing invariant for Σ̃.
Clearly, 2′) follows from from 2) if we take Xo = Zo � X . It is almost as easy to
derive 2) from 2′), with Zo = Xo ∩ Z; the only slightly nontrivial part is to show
that X̃ = Zo � X � Zi, or equivalently, that Xo = (Xo ∩ Z) � X . However, this
follows from the assumptions that X̃ = X � Z = Xo � Zi where Zi ⊂ Z and
X ⊂ Xo, which implies that PX

Z − PXo

Zi
is a projection with kernel X � Zi and

range Xo ∩ Z (we leave the proof of this to the reader). The same replacement of
2) by 2′) can be carried out in Corollary 8.9, too. The final conclusion of Theorem
8.7 says that if Zo is an arbitrary subspace of Z satisfying the properties listed in
2), then Zo ⊂ Zmax

o . This result implies that the subspace Xmax
o := Zmax

o �X has
an analogous maximality property: if Xo is an arbitrary subspace of X̃ satisfying
the properties listed in 2′), then Xo ⊂ Xmax

o . A similar argument shows that all
the subspaces Zo in 2) and all the subspaces Xo in 2′) satisfy Zmin

o ⊂ Zo and
Xmin

o ⊂ Xo, where Zmin
o and Xmin

o are defined in Theorem 8.11 below.

Theorem 8.11. Among all the decompositions X̃ = Zo�X�Zi in Theorem 8.7 there
is one for which the outgoing subspace Zo is the smallest possible, i.e., there is an
outgoing invariant subspace Zo = Zmin

o which can be used in this decomposition,
and which is contained in every outgoing subspace Zo for every other choice of
decomposition. The subspace Zmin

o can be constructed as follows: Let Xmin
o be the

closure in X̃ of all the possible values of the state components x̃(·) of all trajectories
(x̃(·), w(·)) of Σ̃ on Z+ satisfying x̃(0) ∈ X , and define Zmin

o = Xmin
o ∩ Z.

Proof. Define Xmin
o and Zmin

o as described in Theorem 8.11, and let Zi be an
arbitrary direct complement to Zmin

o in Z. Then X̃ = X � Z = X � Zmin
o � Zi.

We have both X ⊂ Xmin
o and Zmin

o ⊂ Xmin
o , so Zmin

o � X ⊂ Xmin
o . To see that we

actually have Zmin
o � X = Xmin

o it suffices to show that Xmin
o ∩ Zi = {0} (since

Xmin
o ⊂ X̃ = (Zmin

o � X ) � Zi). But this is true because

Xmin
o ∩ Zi = (Xmin

o ∩ Z) ∩ Zi = Zmin
o ∩ Zi = {0}.

Thus Xmin
o = Zmin

o � X and X̃ = Xmin
o � Zi = Zmin

o � X � Zi.
It is easy to see that Xmin

o is the smallest (closed) strongly invariant subspace
of X̃ which contains X . In particular, for each decomposition X̃ = Xo�Zi satisfying
condition 2′) in Remark 8.10 we must have Xmin

o ⊂ Xo. As we saw in Remark 8.10,
this implies that if Zo is an arbitrary subspace which satisfies the conditions listed
in 2) of Theorem 8.7, then Zmin

o ⊂ Zo. This proves the claim about the minimality
of Zmin

o (and of Xmin
o ). It only remains to show that Zmin

o is outgoing invariant
for Σ̃. To do this we argue as follows.

Choose some arbitrary decomposition X̃ = Zo � X � Zi of the type given in
Theorem 8.7, and define Xo := Zo�X . Since Xmin

o is the smallest (closed) strongly
invariant subspace of X̃ which contains X we must have X ⊂ Xmin

o ⊂ Xo. It follows
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from (8.3) and (8.6) that (8.6) also holds if we replace Xo by Xmin
o . Take some

arbitrary z0 ∈ Zmin
0 = Xmin

o ∩Z ⊂ Xo∩Z = Zo. Then there exists some trajectory
(x̃(·), w(·)) of Σ̃ on Z+ with x̃(0) = z0. By (8.6) with Xo replaced by Xmin

o , if we
define x(·) = PZ

X x̃(·), then (x(·), w(·)) is a trajectory of Σ. Observe that x(0) = 0.
By part 1) Lemma 8.2, there exists a (unique) trajectory (x̃1(·), w(·)) of Σ̃ on Z+

with PZ
X x̃1(·) = x(·) (in particular, x̃1(0) = 0). Define x̃2(·) = x̃(·) − x̃1(·). Then

(x̃2(·), 0) is a trajectory of Σ̃ with x̃2(0) = z0 and PZ
X x̃2(·) = x(·)−x(·) = 0. Thus

x̃2(n) ⊂ Z for all n ∈ Z+. But on the other hand, by the strong invariance of Xmin
o ,

x̃2(n) ⊂ Xmin
o for all n ∈ Z+. Thus, x̃2(n) ⊂ Z ∩Xmin

o = Zmin
o for all n ∈ Z+ and,

as we recall, x̃2(0) = z0. This proves that Zmin
o is outgoing invariant. �

It is often useful to split a compression or dilation into the product of two
successive dilations or compression.

Lemma 8.12. Let Σ̂ = (V̂ ; X̂ ,W) be a compression of Σ̃ = (Ṽ ; X̃ ,W) along Ẑ
onto X̂ , and let Σ = (V ;X ,W) be a compression of Σ̂ along Z onto X . Then
Σ = (V ;X ,W) is a compression of Σ̃ along Ẑ � Z onto X , and P Ẑ�Z

X = PZ
X P Ẑ

X̂ .

The easy proof is left to the reader.
Two particularly simple types of dilations are those where one of the two

subspaces Zo and Zi in Theorem 8.7 can be taken to be zero.

Definition 8.13. The state/signal system Σ̃ = (Ṽ ; X̃ ,W) is an outgoing dilation
along Z of the state/signal system Σ = (V ;X ,W), or equivalently, the state/signal
system Σ is an outgoing compression along Z onto X of the state/signal system
Σ̃, if the following conditions hold:

1) X̃ = X � Z,
2) If (x̃(·), w(·)) is a trajectory of Σ̃ on Z+, then (PZ

X x̃(·), w(·)) is a trajectory
of Σ on Z+.

3) There is at least one decomposition W = Y �U of W which is admissible for
both Σ̃ and Σ.

Clearly, every outgoing dilation is also a dilation.

Lemma 8.14. Let Σ̃ =
(
Ṽ ; X̃ ,W)

and Σ =
(
V ;X ,W)

be two state/signal systems
with X̃ = X � Z (and with the same signal space). Then the following conditions
are equivalent.

1) Σ̃ is an outgoing dilation along Z of Σ,
2) V is given by

V =




PZ
X 0 0
0 PZ

X 0
0 0 1X


 Ṽ =

{


PZ
X z̃

PZ
X x̃
w



∣∣∣∣∣




z̃
x̃
w


 ∈ Ṽ

}
. (8.7)

3) (8.3) holds and Z is outgoing invariant for Σ̃.
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Proof. The proof of the fact that 1) implies 2) is essentially the same as the proof
of the necessity of (8.3) in Theorem 8.7, and the proof of the converse implication
is a simplified version of the sufficiency part of the proof of the same theorem.
That 1) and 2) together imply 3) is a simplified version of the final paragraph of
the proof of Theorem 8.11 (replace Zmin

o by Z, replace Xmin
o by X̃ , and use the

facts that Σ̃ is a dilation of Σ and that (8.6) now holds with Xo replaced by X̃ ).
Finally, that 3) implies 2) follows from Corollary 8.8. �
Definition 8.15. The state/signal system Σ̃ = (Ṽ ; X̃ ,W) is an incoming dilation
along Z of the state/signal system Σ = (V ;X ,W), or equivalently, the state/signal
system Σ is an incoming compression along Z onto X of the state/signal system
Σ̃, if the following conditions hold:

1) X̃ = X � Z,
2) If (x̃(·), w(·)) is a trajectory of Σ̃ on Z

+ with x̃(0) ∈ X , then x̃(n) ∈ X for
all n ∈ Z+ and (x(·), w(·)) is a trajectory of Σ on Z+.

3) There is at least one decomposition W = Y �U of W which is admissible for
both Σ̃ and Σ.

Lemma 8.16. Let Σ̃ =
(
Ṽ ; X̃ ,W)

and Σ =
(
V ;X ,W)

be two state/signal systems
with X̃ = X � Z (and with the same signal space). Then the following conditions
are equivalent.

1) Σ̃ is an incoming dilation along Z of Σ,
2) V is given by

V = Ṽ ∩


X̃
X
W


 =

{


z̃
x
w


 ∈ Ṽ

∣∣∣∣∣ x ∈ X and




z̃
x
w


 ∈ Ṽ

}
. (8.8)

3) (8.3) holds and X is strongly invariant for Σ̃.

This proof is similar to the proof of Lemma 8.14 and it is left to the reader.

Definition 8.17. A state/signal system is minimal if it is not a (nontrivial) dilation
of any other state/signal system (along any direction).

Theorem 8.18. An state/signal system is minimal if and only if it is controllable
and observable.

Proof. Let Σ̃ be state/signal system, and let Σ be a compression of Σ̃. If Σ̃ is
observable, then the outgoing subspace Zo in the decomposition in Theorem 8.7
is trivial (since it is part of the unobservable subspace), and if Σ̃ is controllable,
then the incoming subspace Zi in the decomposition in Theorem 8.7 is trivial
(since Zo � X contains the reachable subspace). Thus, if Σ̃ is both controllable
and observable, then it does not have any nontrivial dilation.

The converse claim follows from Theorem 8.19 below (which shows that every
non-observable or non-controllable system has a nontrivial compression). �
Theorem 8.19. Σ = (V ;X ,W) be a state/signal system. Denote the reachable
subspace of Σ by R and the unobservable subspace of Σ by U.
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1) Let O be a direct complement to U in X , define X◦ := PU
OR, and let Oi be a

direct complement to X◦ in O. Define V◦ by

V◦ :=
{[

P
U�Oi
X◦ z

x
w

] ∣∣∣∣ x ∈ X◦,
[

z
x
w

]
∈ V

}
. (8.9)

Then Σ◦ = (V◦;X◦,W) is a minimal state/signal systems which is a com-
pression of Σ along U � Oi. Here U is outgoing invariant for Σ and U � X◦
is strongly invariant for Σ, so that we can take Zo = U and Zi = Oi in the
decomposition in Theorem 8.7.

2) Let Q be a direct complement to R in X , define Ro = R ∩ U, and let X• be
a direct complement to Ro in R. Define

V• :=
{[

P Ro�Q
X• z

x
w

] ∣∣∣ x ∈ X•,
[

z
x
w

]
∈ V

}
. (8.10)

Then Σ• = (V•;X•,W) is a minimal state/signal systems which is a com-
pression of Σ along Ro � Q onto X•. Here Ro is outgoing invariant for Σ
and Ro � X• is strongly invariant for Σ, so that we can take Zo = Ro and
Zi = Q in the decomposition in Theorem 8.7.

Proof. Proof of 1). We begin by performing an outgoing compression of Σ along
U onto O, i.e., we define

V 1
◦ :=

{[
P U

Oz
x
w

] ∣∣∣ x ∈ O,
[

z
x
w

]
∈ V

}
.

According to Lemma 8.6, U is outgoing invariant for Σ, so by Corollary 8.9, Σ1◦ :=
(V 1

◦ ; O,W) is a compression of Σ along U. Moreover, it follows from Lemma 8.3
that Σ1

◦ is observable.
We continue by performing an incoming compression of Σ1◦ along Oi onto its

reachable subspace, which according to Lemma 8.3 is equal to X◦. Thus, we define

V◦ :=
{[

P
Oi
X◦ z
x
w

] ∣∣∣∣ x ∈ X◦,
[

z
x
w

]
∈ V 1

◦

}
.

The subspace X◦ is strongly invariant for Σ1
◦ (see Lemma 8.6), so by Corollary

8.9, Σ◦ := (V◦;X◦,W) is a compression of Σ1
◦ along Oi. By Lemma 8.12, this

system is the same one which we defined in Part 1), and by Lemma 8.3, Σ◦ is both
controllable and observable.

It remains to show that U � X◦ is strongly invariant for Σ. However, this
follows from the fact that the maximal outgoing subspace Zmax

o defined in (8.4)
always is contained in the unobservable subspace U, and in this particular case it
coincides with U. Thus, U � X◦ coincides with the space Zmax

o � X◦, and it must
therefore be strongly invariant.

Proof of 2). We begin by performing an incoming compression of Σ along Q
onto R, i.e., we define

V 1
• :=

{[
P Q

R z
x
w

] ∣∣∣ x ∈ R,
[

z
x
w

]
∈ V

}
.
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According to Lemma 8.6, R is strongly invariant for Σ, so by Corollary 8.9, Σ1
• :=

(V 1
• ; R,W) is a compression of Σ along Q. Moreover, it follows from Lemma 8.3

that Σ1• is controllable.
We continue by performing an outgoing compression of Σ1

• along its unob-
servable subspace, which according to Lemma 8.3 is equal to Ro. That is, we
define

V• :=
{[

P Ro
X• z
x
w

] ∣∣∣ x ∈ X•,
[

z
x
w

]
∈ V 1

•

}
.

The subspace Ro is outgoing invariant for Σ1
• (see Lemma 8.6), so by Corollary

8.9, Σ• := (V•;X•,W) is a compression of Σ1• along Ro. By Lemma 8.12, this
system is the same one which we defined in Part 1), and by Lemma 8.3, Σ• is
both controllable and observable. We already observed above that Ro is outgoing
invariant and that Ro � X• = R is strongly invariant for Σ. �

Theorem 8.20. Every realizable signal behavior has a minimal state/signal realiza-
tion (i.e., the behavior has a state/signal realization which is minimal).

This follows from Theorem 8.19 (since a compressed system is externally
equivalent to the original system).

Up to now we have not used any specific representation of a state/signal
system in our study of dilations and compressions. For completeness we interpret
some of our results in terms of driving variable, output nulling, and input/state/
output representations. We begin with the following description of the crucial
formula (8.3) in Theorem 8.7.

Lemma 8.21. Let Σ̃ =
(
Ṽ ; X̃ ,W)

and Σ =
(
V ;X ,W)

be two state/signal systems
with X̃ = X � Z (and with the same signal space).

1) The following conditions are equivalent:
(a) V is given by (8.3).
(b) If

([
Ã

′
B̃

′

C̃
′

D̃
′

]
; X̃ , L̃,W

)
is a driving variable representation of Σ̃, then([

PZ
X Ã

′|X PZ
X B̃

′

C̃
′|X D̃

′

]
;X , L̃,W

)
is a driving variable representation of Σ.

(c) If
([

Ã
′′

B̃
′′

C̃
′′

D̃
′′

]
; X̃ ,W , K̃

)
is an output nulling representation of Σ̃, then([

PZ
X Ã

′′|X PZ
X B̃

′′

C̃
′′|X D̃

′′

]
;X ,W , K̃

)
is an output nulling representation of Σ.

(d) If
([

Ã B̃
C̃ D̃

]
; X̃ ,U ,Y

)
is an input/state/output representation of Σ̃ cor-

responding to some admissible input/output decomposition W = Y �U ,

then
([

PZ
X Ã|X PZ

X B̃

C̃|X D̃

]
;X ,U ,Y

)
is an input/state/output representation

of Σ corresponding to the same admissible decomposition of W.
2) Assume that the equivalent conditions (a)–(d) above hold. Then every driv-

ing variable representation of Σ is of the form described in (b), every output
nulling representation of Σ is of the form described in (c), and every in-
put/output representation of Σ is of the form described in (d).
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Proof. The equivalence of (a)–(d) follows from (3.3), (4.3), (5.2), and (8.3).
That every input/state/output representations of V must be of the type

given in (d) follows from the uniqueness of such a representation (see Theorem
5.1). The proof of the claim that all possible output nulling representations of V
are of the type (c) is similar to the proof of the claim that all possible driving
variable representations of V are of the type (b), so let us only prove the latter
claim.

Let
([

A′ B′
C′ D′

]
;X ,L,W)

be an arbitrary driving variable representation of Σ,

and let
([

Ã
′

B̃
′

C̃
′

D̃
′

]
; X̃ , L̃,W

)
be the driving variable representation of Σ̃ mentioned

in part (b). Then by Theorem 6.1, there exist operators K ′ ∈ B(X ; L̃) and M ′ ∈
B(L; L̃), with M ′ boundedly invertible, such that[

A′ B′

C′ D′

]
=
[
PZ
X Ã′|X + PZ

X B̃′K ′
1 PZ

X B̃′M ′

C̃ ′|X + D̃′K ′
1 D̃′M ′

]
.

Define K̃ ′ = K ′PZ
X . Then[

A′ B′

C′ D′

]
=
[
PZ
X (Ã′ + B̃′K̃ ′)|X PZ

X B̃′M ′

(C̃ ′ + D̃′K̃′)|X D̃′M ′

]
.

By Theorem 6.1,
([

Ã
′
+B̃

′
K̃

′
B̃

′
M ′

C̃
′
+D̃

′
K̃

′
D̃

′
M ′

]
; X̃ , L̃,W

)
is a driving variable representation

of Σ̃, and hence
([

A′ B′
C′ D′

]
;X ,L,W)

is of the type (b). �
Definition 8.1 is very closely related to the following definition of a dilation

of a input/state/output system.

Definition 8.22. We say that the input/state/output system

Σ̃i/s/o =
([

Ã B̃
C̃ D̃

]
; X̃ ,U ,Y

)

is a dilation along Z of the input/state/output system

Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y),

or equivalently, that Σi/s/o is a compression along Z onto X of Σ̃i/s/o, if X̃ = X�Z
and the following condition holds: For each x0 ∈ X and each input sequence u(·) ∈
UZ

+
the corresponding trajectories (x̃(·), u(·), ỹ(·)) and (x(·), u(·), y(·)) of Σ̃i/s/o,

respectively, Σi/s/o, with initial state x̃(0) = x(0) = x0, satisfy x(·) = PZ
X x̃(·) and

ỹ(·) = y(·).
As usual, we shall call an input/state/output system minimal if it is not a

(nontrivial) dilation of any other input/state/output system (along any direction).

Lemma 8.23. Let Σ̃ = (Ṽ ; X̃ ,W) and Σ = (V ;X ,W) be two state/signal systems
with X̃ = X � Z (and with the same signal space W).

1) Suppose that Σ̃ and Σ have a common admissible input/output decomposition
W = Y �U . Denote the corresponding input/state/output representations by
Σ̃i/s/o, respectively, Σi/s/o. If Σ̃i/s/o is a dilation along Z of Σi/s/o, then Σ̃
is a dilation along Z of Σ.
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2) Conversely, if Σ̃ is a dilation along Z of Σ, then the two systems have the
same admissible input/output decompositions W = Y � U , and if we denote
the corresponding input/state/output representations by Σ̃i/s/o and Σi/s/o,
respectively, then Σ̃i/s/o is a dilation along Z of Σi/s/o.

Proof. Proof of 1). Let (x̃(·), w(·)) be a trajectory of Σ̃ on Z+ with x̃(0) ∈ X . Then
(x̃(·), u(·), y(·)) with u(·) = PY

U w(·) and y(·) = PU
Y w(·) is a trajectory of Σ̃i/s/o.

By Definition 8.22, (x(·), u(·), y(·)) with x(·) = PZ
X x̃(·) is a trajectory of Σi/s/o,

and hence (PZ
X x̃(·), w(·)) is a trajectory of Σ. Thus, Σ̃ is a dilation along Z of Σ.

Proof of 2). That the two systems have the same admissible input/output
decompositions follows from Lemmas 5.7 and 8.2. Let W = Y �U be a decomposi-
tion which is admissible both for Σ̃ and for Σ. Let (x̃(·), u(·), y(·)) be a trajectory
of Σ̃i/s/o on Z+ with x̃(0) = x0 ∈ X . Then (x̃(·), w(·)) with w(·) = y(·) + u(·)
is a trajectory of Σ̃, and by Definition 8.1, (PY

X x̃(·), w(·)) is a trajectory of Σ.
Hence (PY

X x̃(·), u(·), y(·)) is a trajectory of Σi/s/o. More precisely, it is the unique
trajectory of Σ with the initial state x0 and the input data u(·). Thus, Σ̃i/s/o is a
dilation along Z of Σi/s/o. �

Theorem 8.24. Let Σ̃i/s/o =
([

Ã B̃
C̃ D̃

]
; X̃ ,U ,Y

)
and Σi/s/o =

(
[ A B
C D ] ;X ,U ,Y) be

two input/state/output systems with X̃ = X � Z (and with the same input and
output spaces). Then Σi/s/o is a compression along Z onto X of Σ̃i/s/o if and only

if Z can be decomposed into Z = Zo � Zi such that the decomposition of
[

Ã B̃
C̃ D̃

]

with respect to the decomposition X = Zo �X �Zi has the following form (where
∗ stands for an irrelevant block)

[
Ã B̃
C̃ D̃

]
=




∗ ∗ ∗ ∗
0 A ∗ B
0 0 ∗ 0

0 C ∗ D


 . (8.11)

This is a non-orthogonal version of [Aro79, Proposition 4]. For completeness
we include a short proof based on Theorem 8.7.

Proof of Theorem 8.24. Let Σ̃ and Σ be the state/signal systems induced by Σ̃i/s/o

and Σi/s/o, respectively.

If
[

Ã B̃
C̃ D̃

]
is of the form (8.11), then it is easy to see that Zo is outgoing

invariant and Zo �X is strongly invariant for Σ̃. Moreover, it follows from Lemma
8.21 that (8.3) holds. Thus, by Theorem 8.7, Σ̃ is a dilation along Z of Σ, and
consequently, by Lemma 8.23, Σ̃i/s/o is a dilation along Z of Σi/s/o.

Conversely, suppose that Σ̃i/s/o is a dilation along Z of Σi/s/o. Then, by
Lemma 8.23, Σ̃ is a dilation along Z of Σ. Let X̃ = Zo�X�Zi be the decomposition
in Theorem 8.7. Then it is easy to see that the fact that Zo is outgoing invariant
and Zo �X is strongly invariant imposes the structure (8.11) on

[
Ã B̃
C̃ D̃

]
. That the
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entries in positions (2, 2), (2, 4), (4, 2), and (4, 4) are A, B, C, and D follows from
(8.3) and Lemma 8.21. �

It is not difficult to see that the decomposition (8.11) of
[

Ã B̃
C̃ D̃

]
with respect

to the decomposition X̃ = Zo � X � Zi is valid if and only if (we denote Zo � Zi

by Z)
R (B̃) ⊂ Zo � X , Zo ⊂ N (C̃) ,

R (Ã|Zo) ⊂ Zo, R (Ã|Zo�X ) ⊂ Zo � X ,

A = PZ
X Ã|X , B = PZ

X B̃, C = C̃|X , D = D̃.

(8.12)

Thus, in particular, Ã ∈ B(X̃ ) is an dilation of A ∈ B(X ), i.e.,

An = PZ
X Ã|nX , n ∈ Z

+. (8.13)

Orthogonal dilations (i.e., dilations where X and Z are orthogonal) play an es-
sential role in the Nagy–Foiaş theory of harmonic analysis for operators in Hilbert
space (see [SF70]) which is intimately connected with the Lax–Phillips scattering
theory (see [LP67] and [AA70]).

Theorem 8.25. An input/state/output system is minimal if and only if it is con-
trollable and observable. Moreover, an input/state/output system Σ which is not
minimal can be compressed into a minimal system (i.e., there is a minimal input/
state/output system which is an compression of Σ).

This is a non-orthogonal version of [Aro79, Propositions 3 and 4, p. 151]. It
is easy to deduce this theorem from Theorems 8.18 and 8.19 in the same way as
we derived Theorem 8.24 from Theorem 8.7. We leave the details to the reader.

Theorem 8.26. Let Σ be a state/signal system. Then the following conditions are
equivalent:

1) Σ is minimal.
2) Σ is controllable and observable.
3) Σ has a minimal input/state/output representation.
4) Σ has a controllable driving variable representation and an observable output

nulling representation.
5) Every input/state/output representation of Σ is minimal.
6) Every driving variable representation of Σ is controllable, and every output

nulling representation of Σ is observable.

Proof. This follows from Propositions 3.5 and 4.5, Corollary 5.5, and Theorems
8.18 and 8.25. �

Lemma 8.27. Let Σ̃i/s/o =
([

Ã B̃
C̃ D̃

]
; X̃ ,U ,Y

)
and Σi/s/o =

(
[ A B
C D ] ;X ,U ,Y) be

two input/state/output systems with X̃ = X � Z. Denote the four block transfer

functions of Σ̃i/s/o and Σi/s/o by
[

Ã(z) B̃(z)

C̃(z) D̃(z)

]
and

[
A(z) B(z)
C(z) D(z)

]
, respectively. Then

the following conditions are equivalent:
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1) Σ̃i/s/o is a dilation along Z of Σi/s/o.
2) For all n ∈ Z

+,

An = PZ
X Ãn|X , AnB = PZ

X ÃnB̃,

CAn = C̃Ãn|X , CAnB = C̃ÃnB̃, D = D̃.
(8.14)

3) For all z in some neighborhood at zero,
[
A(z) B(z)
C(z) D(z)

]
=
[
PZ
X Ã(z)|X PZ

X B̃(z)
C̃(z)|X D̃(z)

]
. (8.15)

Proof. The equivalence of 1) and 2) follows from (6.7), and the equivalence of 2)
and 3) follows from (6.6). �

Theorem 8.28. Let Σ̃ = (Ṽ ; X̃ ,W) and Σ = (V ;X ,W) be two state/signal systems
with X̃ = X � Z (and with the same signal space W).

1) Σ̃ is a dilation of Σ if and only if there exist driving variable representations
Σ̃dv/s/s and Σdv/s/s of Σ̃ and Σ, respectively, with the property that Σ̃dv/s/s is
a dilation along Z of Σdv/s/s (in the input/state/output sense; in particular
they have the same driving variable space).

2) If Σ̃ is a dilation of Σ, then to every driving variable representation Σdv/s/s

of Σ there exists at least one driving variable representation Σ̃dv/s/s of Σ̃
such that Σ̃dv/s/s is a dilation along Z of Σdv/s/s (in the input/state/output
sense).

Proof. Assertion 1) follows from Remark 5.2 and Lemma 8.23.
To prove assertion 2) we take an arbitrary driving-variable representation

Σdv/s/s =
([

A′ B′
C′ D′

]
;X ,L,W)

of Σ. Let Σ̃dv/s/s =
([

Ã
′

B̃
′

C̃
′

D̃
′

]
; X̃ , L̃,W

)
be the

driving variable representation of Σ̃ mentioned in part 1). Then by Theorem 6.1,
there exist operators K ′ ∈ B(X ; L̃) and M ′ ∈ B(L; L̃), with M ′ boundedly invert-
ible, such that

[
A′(z) B′(z)
C′(z) D′(z)

]
=
[
PZ
X Ã′(z) P̃Z

XB′(z)
C̃′(z) D̃′(z)

]

×
[

1X 0
−K ′PZ

X Ã′(z) 1L − K ′PZ
X B̃′(z)

]−1 [1X 0
0 M ′

]
,

Define K̃′ = K ′PZ
X . Then the right-hand side is the compression along Z of the

function
[
Ã′(z) B̃′(z)
C̃′(z) D̃′(z)

] [
1X̃ 0

−K̃′Ã′(z) 1L − K̃ ′B̃′(z)

]−1 [1X̃ 0
0 M ′

]
,

which according to Theorem 6.1 is the four-block transfer function of the driving
variable representation

[
Ã

′
B̃

′

C̃
′

D̃
′

] [
1X̃ 0

K̃
′

M ′

]
of Σ̃. By Lemma 8.27, Σ̃dv/s/s is a dilation

along Z of Σdv/s/s. �
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Theorem 8.29. Let Σ̃ = (Ṽ ; X̃ ,W) and Σ = (V ;X ,W) be two state/signal systems
with X̃ = X � Z (and with the same signal space W).

1) Σ̃ is a dilation of Σ if and only if there exist output nulling representations
Σ̃s/s/on and Σs/s/on of Σ̃ and Σ, respectively, with the property that Σ̃s/s/on is
a dilation along Z of Σs/s/on (in the input/state/output sense; in particular
they have the same error space).

2) If Σ̃ is a dilation of Σ, then to every output nulling representation Σs/s/on of
Σ there exists at least one output nulling representation Σ̃s/s/on of Σ̃ such that
Σ̃s/s/on is a dilation along Z of Σs/s/on (in the input/state/output sense).

The proof of this theorem is similar to the proof of Theorem 8.28, and we
leave it to the reader.

9. Stability

Below we shall introduce and study different stability notions for state/signal sys-
tems. These are related to the stability of different representations of the system. In
this connection we interpret each representation as an input/state/output system,
and apply the following notion of stability.

Definition 9.1. A input/state/output system is
1) stable, if the following implication holds for all its trajectories (x(·), u(·), y(·)):

u(·) ∈ �2(Z+;U) ⇒ x(·) ∈ �∞(Z+;X ) and y(·) ∈ �2(Z+;Y). (9.1)

2) strongly stable, if the following implication holds for all its trajectories
(x(·), u(·), y(·)):

u(·) ∈ �2(Z+;U) ⇒ lim
n→∞x(n) = 0 and y(·) ∈ �2(Z+;Y). (9.2)

3) power stable, if there exists a constant r > 1 such that the following implica-
tion holds for all its trajectories (x(·), u(·), y(·)):

u(·) = 0 ⇒ lim
n→∞ rn‖x(n)‖ = 0. (9.3)

It is clear that (9.2) implies (9.1).

Lemma 9.2. An input/state/output system Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y) with the four

block transfer function
[

A B
C D

]
is stable if and only if the following four conditions

hold:
1) There is a constant C > 0 such that ‖An‖ ≤ C for all n ∈ Z+.
2) B(z)∗x ∈ H2(D;U) for all x ∈ X .
3) C(z)x ∈ H2(D;Y) for all x ∈ X .
4) D ∈ H∞(D;U ,Y).

This lemma is undoubtedly known, but we have not been able to find an
explicit statement in the literature. (A continuous time version of this lemma can
easily be derived from [Sta05].) For completeness we therefore include a short
proof.
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Proof. Clearly, Σi/s/o is stable if and only if the four input-state-output maps
listed in (6.8) have the following properties:

1′) Ǎ maps X into �∞(Z+;X );
2′) B̌ maps �2(Z+;U) into �∞(Z+;X );
3′) Č maps X into �2(Z+;X );
4′) Ď maps �2(Z+;U) into �2(Z+;Y).

We claim that each one of these conditions is equivalent to the corresponding
condition listed in the statement Lemma 9.2. It is easy to see that all of these
operators are always closed as operators between the indicated spaces, so by the
closed graph theorem, 1′)–4′) are equivalent to the corresponding statements where
we require each of these maps to be bounded, i.e.,

1′′) Ǎ ∈ B(X ; �∞(Z+;X ));
2′′) B̌ ∈ B(�2(Z+;U); �∞(Z+;X ));
3′′) Č ∈ B(X ; �2(Z+;X ));
4′′) Ď ∈ B(�2(Z+;U); �2(Z+;Y)).

Obviously, 1) is equivalent to 1′′). Condition 1) implies that D ⊂ ρ(A), and hence
all the transfer functions listed in 2)–4) are defined and analytic on D. That 3) is
equivalent to 3′′) follows from the fact that the Z-transform is a bounded linear
map from �2(Z+;U) onto H2(D;Y) with a bounded inverse. The equivalence of
4) and 4′′) is well known: a causal convolution operator Ď maps �2(Z+;U) into
�2(Z+;Y) if and only if its symbol D belongs to H∞(D;U ,Y).

The equivalence of 2) and 2′′) remains to be established. It is easy to see that
2′′) is equivalent to the following condition:

2′′′) the sequence {B̃n}n∈Z+ of operators defined by B̃nu =
∑n

k=0 AkBu(−k− 1)
is uniformly bounded in B(�2(Z−;U);X ).

Assume that 2′′′) holds. Then, for each u ∈ �2(Z−;U), the sequence B̃nu is a
Cauchy sequence in X (since the norm in �2(Z−;U) of the sequence {u(k)}k<m

tends to zero as m → −∞). Denote the limit by B̃. Then B̃u =
∑∞

k=0 AkBu(−k−
1) and B̃ ∈ B(�2(Z−;U);X ). By duality, B̃∗ ∈ B(X ; �2(Z−;U)). This is equivalent
to the statement that the operator x �→ B∗(A∗)nx, n ∈ Z+, maps X into �2(Z+;Y),
which equivalent to 2) (in the same way as 3) is equivalent to 3′)). Thus, 2′′′) ⇒
2). Conversely, if 2) holds, then the operator that we denoted by B̃∗ above is
bounded, hence so is B̃, and this implies 2′′′). �

Lemma 9.3. An input/state/output system Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y) is strongly

stable if and only if it is stable and A is strongly stable, i.e., limn→∞ Anx = 0 for
all x ∈ X .

Also this lemma must be known, but we have not found an explicit proof in
the literature (a proof of the well-posed continuous time version of this lemma is
given in [Sta05], and the discrete time proof is the same). For the convenience of
the reader we therefore again include a short proof.
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Proof. It is easy to see that if Σi/s/o is strongly stable then it is stable, and
limn→∞ Anx = 0 for all x ∈ X . Let us therefore only prove the converse part.

Let (x(·), u(·), y(·)) be a trajectory of Σi/s/o on Z+ with u ∈ �2(Z+;U). Fix
ε > 0. Choose m large enough so that

∑∞
k=m‖u(k)‖2 ≤ ε2. Then we have for all

n ≥ m,

x(n) = An−mx(m) +
n−m−1∑

k=0

An−k−1Bu(m + k)

Here An−mx(m) → 0 as n → ∞ (because of the strong stability of A), and the
norm of the second term is at most Cε, where C is the norm of the mapping
B̌ ∈ B(�2(Z+;U); �∞(Z+;X )). Since ε was arbitrary, this implies that x(k) → 0 as
k → ∞. �
Remark 9.4. As is well known, conditions 2) and 3) in Lemma 9.2 imply that the
sums

C :=
∑

n∈Z+

AnBB∗(A∗)n, (9.4)

O :=
∑

n∈Z+

(A∗)nC∗CAn, (9.5)

converge monotonically in the strong sense to nonnegative operatorsO ∈ B(X ) and
C ∈ B(X ), respectively. These are called the infinite time controllability, respec-
tively, observability Gramians of the system. They are the minimal nonnegative
solutions of the Stein equations

H − AHA∗ = BB∗, (9.6)

G − A∗GA = C∗C, (9.7)

respectively. If A is strongly stable, then the nonnegative solution H of (9.6) is
unique (hence H = C), and if A∗ is strongly stable (i.e., (A∗)nx → 0 for all x ∈ X ),
then the nonnegative solution G of (9.7) is unique (hence G = O).

Lemma 9.5. Let Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y) be an input/state/output system. Then

the following conditions are equivalent:
1) Σi/s/o is power stable;
2) D := {z ∈ C | |z| ≤ 1} ⊂ ΛA;
3) There exists constants q < 1 and C > 0 such that ‖An‖ ≤ Cqn.

Proof. Clearly 2) and 3) are equivalent. It is also clear that 3) implies 1). For the
converse implication we observe that condition 1) says that there is some r > 1
such that limn→∞ rnAnx = 0 for all x ∈ X . By the uniform boundedness principle,
supn∈Z+ rn‖An‖ < ∞. This implies 3) with γ = 1/r. �
Lemma 9.6. Every power stable input/state/output system is strongly stable.

Proof. This follows from Lemmas 9.2, 9.3, and 9.5. �
Thus, power stability implies strong stability, which further implies stability.
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We call a driving variable or output nulling representation of a state/signal
system stable, or strongly stable, or power stable, if it has this property when it
is interpreted as an input/state/output system, as explained in Remark 5.4.

Definition 9.7. A state/signal system is

1) stabilizable (or strongly stabilizable, or power stabilizable) if it has a stable (or
strongly stable, or power stable, respectively) driving variable representation.

2) detectable (or strongly detectable, or power detectable) if it has a stable (or
strongly stable, or power stable, respectively) output nulling representation.

3) LFT-stabilizable8 (or strongly LFT-stabilizable, or power LFT-stabilizable),
if it has a stable (or strongly stable, or power stable, respectively) input/
state/output representation.

Next we shall show that the above notions are closely connected to the cor-
responding (better known) notions for input/state/output systems.9

Definition 9.8. An input/state/output system Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y) is

1) stabilizable (or strongly stabilizable, or power stabilizable) if there exists an
operator L ∈ B(X ;U), called a state feedback operator, such that the new in-
put/state/output system with input �(·) and output w(·) =

[
y(·)
u(·)

]
, described

by the system of equations

x(n + 1) = Ax(n) + Bu(n),

y(n) = Cx(n) + Du(n),

u(n) = Lx(n) + �(n), z ∈ Z
+,

(9.8)

is stable (or strongly stable, or power stable, respectively).
2) detectable (or strongly detectable, or power detectable) if there exists an

operator H ∈ B(Y;X ), called an output injection operator, such that the
new input/state/output system with input w(·) =

[
e(·)
u(·)

]
and output y(·),

described by the system of equations

x(n + 1) = Ax(n) + Hy(n) + Bu(n),

y(n) = Cx(n) + e(n) + Du(n), z ∈ Z
+,

(9.9)

is stable (or strongly stable, or power stable, respectively).
3) output feedback stabilizable (or strongly output feedback stabilizable, or power

output feedback stabilizable) if there exists an operator K ∈ B(Y;U), called
a output feedback operator, such that 1U −KD has a bounded inverse and the

8LFT stands for Linear Fractional Transformation.
9A number of slightly different ways of presenting these notions do exist. We have chosen to
present a version which makes the connection to the state/signal theory as simple as possible.
This is a discrete time analogue of the treatment in [Sta05, Chapter 7].
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new input/state/output system with input �(·) and output y(·), described by
the (implicit) system of equations (where u(n) should be eliminated)

x(n + 1) = Ax(n) + Bu(n),

y(n) = Cx(n) + Du(n),

u(n) = Ky(n) + �(n), z ∈ Z
+,

(9.10)

is stable (or strongly stable, or power stable, respectively).
4) LFT-stabilizable (or strongly LFT-stabilizable, or power LFT-stabilizable),

if there exists Hilbert spaces Ỹ and Ũ and an operator Ψ =
[

Ψ11 Ψ12
Ψ21 Ψ22

] ∈
B(
[ Y
U
]
;
[
Ỹ
Ũ

]
), called an LFT-feedback operator, such that both Ψ itself and

Ψ21D+Ψ22 have bounded inverses, and such that the new input/state/output
system with input u1(·) and output y1(·), described by the (implicit) system
of equations (where u(n) and y(n) should be eliminated)

x(n + 1) = Ax(n) + Bu(n),

y(n) = Cx(n) + Du(n),

y1(n) = Ψ11y(n) + Ψ12u(n),

u1(n) = Ψ21y(n) + Ψ22u(n), z ∈ Z
+,

(9.11)

is stable (or strongly stable, or power stable, respectively).

More explicitly, the resulting input/state/output systems have the following
structure. If we denote the system in part 1) by ΣL =

([
AL BL

CL DL

]
;X ,U ,

[ Y
U
])

, then

[
AL BL

CL DL

]
=




A + BL B

C + DL D
L 1U


 . (9.12)

If we denote the system in part 2) by ΣH =
([

AH BH

CH DH

]
;X ,

[ Y
U
]
,Y), then

[
AH BH

CH DH

]
=

[
A + HC H B + HD

C 1Y D

]
. (9.13)

If we denote the system in part 3) by ΣK =
([

AK BK

CK DK

]
;X ,U ,Y), then

[
AK BK

CK DK

]
=
[
A + BK (1Y − DK)−1

C B (1U − KD)−1

(1Y − DK)−1
C D (1U − KD)−1

]

=
[
A B
C D

] [
1K 0

−KC 1U − KD

]−1

=
[
1Y −BK
0 1Y − DK

]−1 [
A B
C D

]
.

(9.14)
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If we denote the system in part 4) by ΣΨ =
([

AΨ BΨ

CΨ DΨ

]
;X , Ũ , Ỹ), then (see also

Lemma 10.1)
[
AΨ BΨ

CΨ DΨ

]
=
[

A B
Ψ11C Ψ11D + Ψ12

] [
1X 0

Ψ21C Ψ21D + Ψ22

]−1

, (9.15)

or equivalently,

AΨ = A − B(Ψ21D + Ψ22)−1Ψ21C,

BΨ = B(Ψ21D + Ψ22)−1,

CΨ = Ψ11C − (Ψ11D + Ψ12)(Ψ21D + Ψ22)−1Ψ21C,

DΨ = (Ψ11D + Ψ12)(Ψ21D + Ψ22)−1.

(9.16)

When we apply Definition 9.8 to various systems it is often more convenient
to use the following equivalent characterization:

Lemma 9.9. Let Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y) be an input/state/output system.

1) The system ΣL =
([

AL BL

CL DL

]
;X ,U ,

[ Y
U
])

whose coefficient matrix is given by
(9.12) is stable (or strongly stable, or power stable) if and only if the system
([AL B

C 0
L 0

]
;X ,U ,

[ Y
U
])

has the same property.

2) The system ΣH =
([

AH BH

CH DH

]
;X ,

[ Y
U
]
,Y) whose coefficient matrix is given

by (9.13) is stable (or strongly stable, or power stable) if and only if the system([
AH H B

C 0 0

]
;X ,

[ Y
U
]
,Y) has the same property.

3) The system ΣK =
([

AK BK

CK DK

]
;X ,U ,Y) whose coefficient matrix is given by

(9.14) is stable (or strongly stable, or power stable) if and only if the system([
AK B
C 0

]
;X ,U ,Y) has the same property.

4) The system ΣΨ =
([

AΨ BΨ

CΨ DΨ

]
;X , Ũ , Ỹ) whose coefficient matrix is given by

(9.15) is stable (or strongly stable, or power stable) if and only if the system([
AΨ B
C 0

]
;X ,U ,Y) has the same property.

Proof. Proof of 1): The latter system differs from ΣL only in the sense that we
have subtracted a multiple of the first input from the second input and modified
the feedthrough term, and this does not affect stability.

Proof of 2): The latter system differs from ΣH only in the sense that we have
subtracted a multiple of the second output from the first output and modified the
feedthrough term, and this does not affect stability.

Proof of 3): The latter system differs from ΣK only in the sense that we have
multiplied both the input and the output by bounded invertible operators and
modified the feedthrough term, and this does not affect stability.

Proof of 4): The latter system differs from ΣΨ only in the sense that we
have multiplied both the input and the output by bounded invertible operators
and modified the feedthrough term, and this does not affect stability. Indeed, the
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operator multiplying C to the left is invertible, because of the invertibility of Ψ
and the following Schur factorization:[

Ψ11 Ψ12

Ψ21 Ψ22

] [
1Y D
0 1U

] [
1Y 0

−(Ψ21D + Ψ22)−1Ψ21 1U

]

=
[
Ψ11 − (Ψ11D + Ψ12)(Ψ21D + Ψ22)−1Ψ21 Ψ11D + Ψ12

0 Ψ21D + Ψ22

]
. �

Lemma 9.10. Let Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y) be an input/state/output system.

1) If Σi/s/o is output feedback stabilizable (or strongly output feedback stabiliz-
able, or power output feedback stabilizable), then it is also LFT-stabilizable
(or strongly LFT-stabilizable, or power LFT-stabilizable, respectively).

2) If Σi/s/o is LFT-stabilizable (or strongly LFT-stabilizable) with an LFT-
feedback operator Ψ =

[
Ψ11 Ψ12
Ψ21 Ψ22

]
where Ψ22 has a bounded inverse, then it

is also output feedback stabilizable (or strongly output feedback stabilizable,
respectively).

3) If Σi/s/o is LFT-stabilizable (or strongly LFT-stabilizable) and D = 0, then
it is also output feedback stabilizable (or strongly output feedback stabilizable,
respectively).

4) If Σi/s/o is power LFT-stabilizable then it is also power output feedback sta-
bilizable.

5) If Σi/s/o is LFT-stabilizable, then it is both stabilizable and detectable.

Proof. Proof of 1) : Take Ỹ = Y, Ũ = U , and Ψ =
[ 1Y 0
−K 1U

]
.

Proof of 2): Use parts 3)–4) of Lemma 9.9, and take K = −Ψ−1
22 Ψ21.

Proof of 3): This follows from 2), since the assumption that D = 0 implies
that Ψ22 = Ψ21D + Ψ22 has a bounded inverse.

Proof of 4): The claim 2) remains valid also in the power stabilizable case,
with the same proof. However, in the power stabilizable case the spectral radius
of the operator AΨ lies strictly inside the unit disk. This implies that the set of all
LFT-feedbacks Ψ which power stabilize Σi/s/o is open. Therefore, if it is nonempty,
it must contain some element Ψ for which Ψ22 is invertible. Thus, by the power
stable version of part 2), Σi/s/o is power output feedback stabilizable.

Proof of 5): Use parts 1), 2) and 4) of Lemma 9.9, and take L = −(Ψ21D +
Ψ22)−1Ψ21C and H = −B(Ψ21D + Ψ22)−1Ψ21. Also note that L is a left multiple
of C and that H is a right multiple of B, which implies that in this case ΣL is
stable if and only if

([
AL B

C 0

]
;X ,U ,Y) is stable, and ΣH is stable if and only if

([
AH B

C 0

]
;X ,U ,Y) is stable. �

Theorem 9.11. Let Σ = (V ;X ,W) be a state/signal node.
1) The following conditions are equivalent.

(a) Σ is stabilizable (or strongly stabilizable, or power stabilizable);
(b) Σ has a stabilizable (or strongly stabilizable, or power stabilizable) input/

state/output representation;
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(c) every input/state/output representation of Σ is stabilizable (or strongly
stabilizable, or power stabilizable).

2) The following conditions are equivalent.
(a) Σ is detectable (or strongly detectable, or power detectable);
(b) Σ has a detectable (or strongly detectable, or power detectable) input/

state/output representation;
(c) every input/state/output representation of Σ is detectable (or strongly

detectable, or power detectable).
3) The following conditions are equivalent.

(a) Σ is LFT-stabilizable (or strongly LFT-stabilizable, or power LFT-sta-
bilizable);

(b) Σ has a LFT-stabilizable (or strongly LFT-stabilizable, or power LFT-
stabilizable) input/state/output representation;

(c) every input/state/output representation of Σ is LFT-stabilizable (or
strongly LFT-stabilizable, or power LFT-stabilizable).

Proof. The proofs of the strongly stable and power stable versions of this theorem
are identical to the proofs of the basic version, so below we shall only prove the
basic “stable” version.

Proof of 1): We prove this by showing that (b) ⇒ (a) ⇒ (c) (the implication
(c) ⇒ (b) is trivial).

Let Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y) be a stabilizable input/state/output represen-

tation of Σ, and let L ∈ B(Y;U) be a stabilizing state feedback operator. Then the
system ΣL whose coefficient matrix is given by (9.12) is stable. This system has
an obvious interpretation as a driving variable representation of Σ (with driving
variable space U). Thus, according to Definition 9.7, Σ is stabilizable.

Conversely, suppose that Σ is stabilizable (in the sense of Definition 9.7). Let
Σdv/s/s =

([
A′ B′
C′ D′

]
;X ,L,W)

be a stable driving variable representation of Σ, and
let Σi/s/o =

(
[ A B
C D ] ;X ,U ,Y) be an arbitrary input/state/output representation

of Σ. We can alternatively interpret this representation, too, as a driving variable
representation as explained in Remark 5.2. Split C′ and D′ into C′ =

[
C′

1
C′

2

]
and

D′ =
[

D′
1

D′
2

]
in accordance with the splitting W = Y � U . Then, by Theorem

3.3, there exist operators L ∈ B(X ;U) and M ′ ∈ B(L;U), with M ′ boundedly
invertible, such that




A′ B′

C′
1 D′

1

C′
2 D′

2


 =




A B
C D
0 1U



[
1 0
L M ′

]
=




A + BL BM ′

C + DL DM ′

L M ′


 . (9.17)

This coefficient matrix is identical to the one in (9.12) apart from the fact that
the input variable has been multiplied by the invertible operator M ′. This means
that L is a stabilizing state feedback operator for Σi/s/o.
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The proof of Part 2) is similar to the proof of Part 1), and it is left to the
reader (this time we interpret the input/state/output representation as an output
nulling representation as explained in Remark 5.2).

Proof of 3): The implication (a) ⇒ (c) follows from Theorem 5.11 (take Ψ to
be the operator Θ defined in (1.6)), and the implication (c) ⇒ (b) is trivial. Thus,
it remains to prove the implication (b) ⇒ (a).

Let Σi/s/o =
(
[ A B
C D ] ;X ,U ,Y) be an input/state/output representation of

Σ with a LFT-stabilizing feedback operator Ψ ∈ B(
[ Y
U
]
;
[
Ỹ
Ũ

]
), and let ΣΨ =

([
AΨ BΨ

CΨ DΨ

]
;X , Ũ , Ỹ) be the stable input/state/output system whose coefficient

matrix is given by (9.15). We claim that there exists an admissible input/output
decomposition W = Y1 �U1 of W such that the corresponding input/state/output
representation is stable. The proof of this claim is by direct construction.

We begin by interpreting Ψ as an operator Ψ =
[

Ψ1
Ψ2

] ∈ B(W ;
[
Ỹ
Ũ

]
), where

Ψ1 = Ψ11P
U
Y + Ψ12P

Y
U and Ψ2 = Ψ21P

U
Y + Ψ22P

Y
U . The bounded inverse of this

operator belongs to B(
[
Ỹ
Ũ

]
;W), and it can be decomposed into Ψ̃ := Ψ−1 =[

Ψ̃1 Ψ̃2

]
. Define

Y1 = N ([
Ψ2

])
, U1 = N ([

Ψ1

])
.

Define P ∈ B(W) and Q ∈ B(W) by

P := Ψ̃
[
Ψ1

0

]
, Q := Ψ̃

[
0

Ψ2

]
.

Clearly P + Q = 1W . For all w ∈ Y1 we have Qw = 0, hence Pw = w, and
for all w ∈ U1 we have Pw = 0, hence Qw = w. This implies that P and Q are
complementary projections in W , with R (P ) = N (Q) = Y1 and N (P ) = R (Q) =
U1, i.e., P = PU1

Y1
and Q = PY1

U1
. In particular, this implies that W = Y1 � U1.

Furthermore, Ψ1 maps Y1 one-to-one onto Ỹ with the bounded inverse Ψ̃1, and
Ψ1 maps U1 one-to-one onto Ũ with the bounded inverse Ψ̃2.

Let Φ :=
[

P
U1
Y1

|Y P
U1
Y1

|U
P

Y1
U1

|Y P
Y1
U1

|U

]
. This is the same operator that we find in (1.6),

corresponding to the two decompositions W = Y�U = Y1 �U1, and it is explicitly
given by

Φ =
[
Ψ̃1Ψ11 Ψ̃1Ψ12

Ψ̃2Ψ21 Ψ̃2Ψ22

]
.

In particular, Φ12D+Φ22 = Ψ̃2(Ψ12D+Ψ22) is invertible, and by Theorem 5.11, the
decomposition W = Y1 �U1 is admissible. Let us denote the corresponding input/
state/output system by Σ1

i/s/o =
([

A1 B1
C1 D1

]
;X ,U1,Y1

)
. This system is obtained

from ΣΨ by multiplying the input by Ψ̃−1
2 and the output by Ψ̃1. Thus, Σ1

i/s/o is
stable. �
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10. Appendix

Lemma 10.1. Let A ∈ B(X ;Z) and B ∈ B(Z;X ).
1) 1X −BA has a bounded inverse if and only if 1Z−AB has a bounded inverse.
2) If 1X − BA has a bounded inverse, then

(1Z − AB)−1 = 1X + A(1X − BA)−1B,

B(1Z − AB)−1 = (1X − BA)−1B.
(10.1)

For a proof see, e.g., [Sta05, Appendix A4].
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vol. 1, Birkhäuser-Verlag, Basel Boston Berlin, 1979.

[BS05] Joseph A. Ball and Olof J. Staffans, Conservative state-space realizations of
dissipative system behaviors, To appear in Integral Equations Operator Theory
(2005), 63 pp.

[Fuh74] Paul A. Fuhrmann, On realization of linear systems and applications to some
questions of stability, Math. Systems Theory 8 (1974), 132–140.

[Hel74] J. William Helton, Discrete time systems, operator models, and scattering the-
ory, J. Funct. Anal. 16 (1974), 15–38.

[LP67] P.D. Lax and R.S. Phillips, Scattering theory, Academic Press, New York, 1967.



State/Signal Systems 177

[PW98] Jan Willem Polderman and Jan C. Willems, Introduction to mathematical sys-
tems theory: A behavioral approach, Springer-Verlag, New York, 1998.
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