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Abstract

We study the infinite horizon quadratic cost minimiza-
tion problem for a well-posed linear system in the sense
of Salamon and Weiss. The quadratic cost function
that we seek to minimize need not be positive, but it
is convex and bounded from below. We assume the

system to be jointly stabilizable and detectable, and
give a feedback solution to the cost minimization prob-
lem. Moreover, we connect this solution to the compu-
tation of either a (J, S)-inner or an S-normalized co-
prime factorization of the transfer function, depending

on how the problem is formulated. In the case where

the system is regular it is possible to show that the
feedback operator can be computed from the Riccati

operator, and that the Riccat i operator is a stabiliz-
ing self-adj oint solution of an algebraic Riccati equa-
tion. This Riccati equation is nonstandard in the sense
that the weighting operator in the quadratic term dif-
fers from the expected one, and the computation of the
correct weighting operator is a nontrivial task. We ap-
ply the general theory to get factorization versions of
the bounded and positive real lemmas.

1 Notations

.C(U; Y), C(U): The set of bounded linear operators
from U into Y or from U into itself, re-
spectively.

AzO: A is (selfadjoint and) positive definite

A >>0: A > CI for some E >0, hence A is invert-

R, R+,

L2(J; U

R-: R= (–co,co),R+ =[0, co), and R- =
(–-,0].

The set of U-valued L2-functions on the
interval J.

L~(J; U): Lfi(J; U) = {w. s L;OC(J; U) I

(t ~ e-W’u(t)) 6 L2(J; U) }.

TICU (U; Y), TIW (U): The set of bounded lin-
ear time-invariant causal opera-
tors from L; (R; U) into L; (R; Y),
or from L~ (R; U) into itself.
TIC(U; Y) = TICO (U; Y) and
TIC(U) = TICO(U) .

T’: The time shift group ~tu(s) = u(t + s)
(this is a left-shift when t >0 and a right-
shift when t < O).

~J : (r.Tu)(s) = u(s) ifs ~ J and (n~u)(s) = O
ifs@ J, Here JCR.

This work is a continuation of [15], and we refer the
reader to this paper for additional definitions.

2 Quadratic Cost Minimization

Definition 1 Let @ = [~ ~ ] be a well-posed linear

system on (U, H, Y), and let J = J“ E ,C(Y), The
(nonstandard) quadratic cost minimization problem for

V with cost operator J consists of finding, for each

xo c H, the injimum of the cost

Q(xo, U)= (Y,JY)L2(R+;Y) ~ (1)

over all those u c L2(R+; U) for which the correspond-

ing observation y = Cxo + lh~u of V satisfies v E
L2(R+; Y), If there exists an operator II = II* E L(H)
such that the optimal cost is given by

then fI is called the Riccati operator of W with cost
operator J.
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Definition 2 Let J = J* c Z(Y), and let a ~ O. Xo
—

(2)

(22)

The system W = [f ~ ] on (U, H, Y) is J-coercive
if there exist constants M > 0 and e > 0 such

that the cost Q defined in (1) satisfies

( )
Q(zo, ~) Z e ll”&R+;~) + htliz(R+;Y) (2)

— Mllwlli

for all those X. E H and u E L2(R+; U) for which

y= CZO+D7r+U CL2(R+; Y).

The operator D c TICa(U; Y) is J-coerciue if

there exists a constant c >0 such that

(Dn+U, J2k+u)Lz(R+;Yj

for all those u E L2(R+; U) for which Dn+u E
L2 (R+; Y) .

Lemma 3 Let J = J* G L(Y), and let T = [~~]

be a jointly stabilizable and detectable [15, Definition

13] well-posed linear system on (U, H, Y). Then *

is J-coercive ifl its input/output map D is J-coercive.
In this case the quadratic cost minimization problem

with cost operator J has a unique minimizing solution
~cwt(zo) ~ LZ(R+; U) and a bounded Riccati operator

rI=rI* CL(H).

The idea behind the proof of this lemma is to first sta-
bilize the system by using a preliminary feedback, and

to then apply the theory for stable systems presented
in [14].

The solution given by Lemma 3 is not yet complete in
the sense that it does not give a feedback representa-
tion of the solution. Our next task will be to develop
such a feedback representation in terms of a right co-
prime factorization of the input/output map V with
the special property that its numerator is (J, S)-inner.

This notion is defined as follows:

Definition 4 Let J = J* c L(Y), let S = S* G Z(U)

be invertible, let D G T16’a(U; Y) for some a ~ O,

and let (N, M) be a right coprime factorization of D
in TIC’.

(i)

(ii)

(iii)

The operator N E TIC’(U; Y) is (J, S)-inner if

WJN=S.

If N is (J, S)-inner, then (N, M) is a (J, S)-

inner right coprirne factorization of D.

If[fi] is (I, S)-inner, i.e., zfWN+M*M = S,
then (N, M) is an S-normalized right coprime
factorization of D.

wx d t?T
Y

[1[1
CDz KF

rr+u~ + +
1 u

Figure 1: Optimal state feedback connection I@, in The-
orem 5

(iu) In each case S is called the sensitivity operator of

N or of the factorization.

The following is our first main result:

Theorem 5 Let J = J* c Z(Y), let S c Z(U),
S >> 0, and let Ill = [f ~] be a J-coercive jointly
stabilizable and detectable well-posed linear system on

(U, H, Y). Let ZOP’(ZO), yO@ (zo), and UOP’(ZO) be the
optimal state, output, and control for the quadratic cost

minimization problem for W, and let II be the corre-

sponding Riccati operator (cJ Lemma 3).

(i) Let (N, M) be a (J, S)-inner right coprime fac-
torization of D. Then there
map K such that [K ~] =

an stabilizing state feedback

8] for IL, and

r35rl=E$lx

is a unique feedback

[K (I-M-’)] is
pair [15, Definition

[1
At + t?MTtK

C+NK XO

MK

is equal to the state and output of the closed loop

system Wx defined by

“’”[t] Ell”wr [-a]

with initial value XO, initial time zero, and zero
control u ~ (see Figure 1). The feedback map

K is determined uniquely by the fact that Cx =

C + N/c G ,C(H; L2(R+; Y)), K. = MK E

(22)

.C(H; L2(R+; U)), and n+WJCx = O. More-
over, the Riccati operator of v is given by

II= C~JCx = (C +NK)*J(C +NK).

If g = C. XO+ Dx W+u. i~ the first output of the
optimal closed loop system ~ x in (i) with initial
state X. c H and control Ux E L2(R+; U) (see
Figure 1), then the closed 100P cost Q’ (XO, UX) is
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(222)

given by

Qx(zo, ~x) = (!bb)~~(R+;Y)

= (~0, HxO)~ + (~x, SUX)L2(R+,Y) .

If W is exponentially stabilizable and detectable

[15, Definition 13], and if N and M in (i) are
right exponentially coprime [15, Definition 15.1],
then the closed loop system ~x is exponentially

stable.

We also have the following partial converse to Theo-
rem 5:

Theorem 6 Make the same hypothesis as in Theo-

rem 5. Suppose that the solution to the quadratic
cost minimization problem is of state feedback type

in the sense that
[%:;1

is equal to the output of

the closed loop system Qx with initial ualue X., ini-
tial time O, zero input u x, and some stabilizing state

feedback pair [K ~]. Define M = (1 – Y)-l and

N = DM. Then there exists a positive invertible oper-
ator S = S E L(U) such that N is (J, S)-inner, and
the claim (ii) in Theorem 5 is true for this closed loop

system. IL moreover, N and M are right coprime,

then (N, M) is a (J, S) -inner right coprime factoriza-

tion of D. This is, in particular, true whenever @ is
exponentially stabilizable.

The minimization problem considered in Theorem 5
leads to an inner coprime factorization. If instead we

use the different cost function

Ql(zo>~) = llyl\iz(R+,Y) + llu&R+;u) 1 (3)

then we get a normalized coprime factorization:

Corollary 7 Let V = [# ~] be a jointly stabilizable
and detectable well-posed linear system on (U, H, Y).

Let r“pt (zo), yO@ (LEO), and uO@(*o) be the optimal

state, output, and control for the quadratic cost min-
imization problem described in Definition 1, but with

the cost function Q(zO, u) replaced by the cost function

Ql(zo, u) in (’3). If S = 9 c Z(U) and (N, M) is
an S-normalized right coprime factorization of V (in

the sense of Definition ~), then there is a unique feed-
back map K such that [K F] = [K (1 – M-l)] is
an admissible stabilizing state feedback pair for W, and

[yErl=E1’o=r;vg’l’o

as equal to the state and output of the closed loop system

Vx defined b~

‘x”[i:] Ell=mr [3]

with initial value Xo, initial time zero, and zero in-
put Ux (see Figure 1). The feedback map K is de-
termined uniquely by the fact that Cx = C + NIC E
L(H; L2(R~; Y)), lCX = MK G ,C(H; L2(R+; U)), and

n+ (N*CX +M*&) = O.

Moreover, the Riccati operator of V is given by

rI=c;cx+K~Kx

= (C+NK)*(c+NK) + (MK)*(MK).

3 Regular Systems

In order to discuss the algebraic Riccati equation we
need a regularity notion introduced by Weiss [18]:

Definition 8

(i)

(ii)

(iii)

(iv)

An operator D E TIC(U; Y) is regular if the

strong limit

Dvo := ~li~m b(~)Vo

exists for every V. E V; he? A tends to +co along
the positive real axis and ‘D is the transfer func-
tion (the distribution Laplace transform) of ‘D.

The operator D: V -+ Y defined above is called
the feed-through operator of D.

A regular operator D G TIt7(V; Y) is called

strictly proper if its feed-through operator van-
ishes.

We say that D is regular together with its ad-
j’oint iff, in addition to (i), the strong limit

lim~~+m @ (A)yo exists for every y. G Y. (’This
limit is equal to D*yo whenever it exists.)

The input/state/output relation of a well-posed linear
system can be always written in the form (for smooth
inputs u)

z’(t) = A%(t) + ~U(t),

y(t) = N(z(t), u(t)), t >0, (4)

z(o)= X().

Here A is the generator of d, B c ,C(U; range(13))
(where range(B) > H) is the control operator, and

N E ,C(dom(N); Y)) (where dom(iV) c H x U) is the
combined observation and feed-through operator. In
general it impossible to write lV in the more familiar
form h’ = C’g + Du, due to the structure of dom(i’V)
(the domain of x e+ iV(x, u) depends on u, and the
domain of u + N(x, u) depends on Z). However, if
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the system is regular, then is possible to split N into
N(z, u) = CZ + Duj and we get

d(t) = Ax(t) + Bu(t),

y(t) = Cz(t) + Du(t), t >0, (5)
z(o)= Zo.

where A and B are as above, C s X(dom(C’); Y))
(where dom(A) c dom(C) C H) is (the Weiss exten-

sion of) the observation operator, and D is the feed-
through operator. We refer to the operators [$ ~ ]as

the generating operators of V. If the full system in
Figure 1 is regular, then there are, of course, two
more generating operators, namely (the Weiss exten-
sion of) a feedback operator K E ,C(dom(K); Y))
(where dom(A) c dom(K) c H) induced by Z and

a feed-through operator F induced by T.

4 The Algebraic Riccati Equation

Theorem 9 Make the same assumptions and intro-

duce the same notations as in Theorem 5. Extend the

system W into

[[1[11

Al?
*= c D

KF

by adding the optimal state feedback pair [X F], and

suppose that this extended system is regular together

with its ad~oint. Denote the generating operators of

@ by the same letters as the corresponding operators.
Then it is possible to normalize the feed-through oper-
ators F of F to F = O. With this normalization,

(i) the feedback operator I< is given by

1(z = –S-l (B*ll + D*,JC) z, z G dom(A);

(ii) the Riccati operator II satisfies the algebraic Ric-
cati equation

(Azo, ~z~)~ + (~i), IIAzI)~ + (CZO, JC$I)Y

= ((B* II+ D* JC)ZO, S-’ (B* II+ D* JC)ZI)U ,

ZO,ml c dom(A).

This theorem differs from the corresponding classical
result in the sense that it cent ains a new parameter,
namely the sensitivity operator S. This operator is
always invertible, and it can be computed as follows:

Theorem 10 Make the same assumptions and intro-
duce the same notatzons as in Theorem 9.

(i) For all U. ● U, we haue

In particular, S = D* JD ifl the limit above is
zero for all uo E U.

(ii) If for some U. c U it is true that Buo E H, then

Suo = D*JDuO

(iii) The difference S – D* JD is positive [negative]

dejinite whenever II is positive [negative] dejinite

on the reachable subspace.

5 Applications: The Bounded and Positive
Real Lemmas

By applying the preceding theory we can derive the first
available versions of the strict bounded and positive
(real) lemmas for general well-posed linear systems. In
these lemmas we need a cost function containing both
the output y and the control u. To get such a cost
function we adjoin a copy of the control to the output,
i.e., we study the augmented system

[[1 [11

Al?
waug= CD. (6)

01

To get the positive real lemma we let V be stable, and
choose the cost operator J for ‘Jaug to be

J=
[1
–I O

0 y21 ‘

where ~ is a real constant. Then the extended system
is J-coercive if and only if the input/output map ‘D
sat isfies

Thus, Theorem 5 applies iff (7) holds. In this case the
formulae in Theorem 5 applied to W~~g become

D= JVM-l, y2M”M –N*JV = S,

K = S-ln+N*C, #n~M*Kx = n~N*Cx,

[21 = H+HK= M+KIS-’”+WC
rI = Y2K;KX – C;CX = –C* (I+ NS-lm+JW) C.

The equations in Theorem 9 applied to ~aug become
(for Z. and xl c dom(A))

Observe that the parameter y enters these equations
only through the sensitivity operator S which is given

by the strong limit (for each fixed uo c U)

Suo = (T21 – D*D) uo + J~mND*H(al – A)-~Buo.

SUO = D*JDuO + ~lmm B* II(al – A)-lBuo.
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We remark that in our setting II is negative definite;

to get the standard setting where II is positive [2, The-

orem 3.7. 1] we must replace J by —J and maximize

instead of minimize. This will replace S by –S and II

by –II.

The strictly positive (real) lemma is a statement about

a stable system V = [f g ] on (U, If, U) (i.e., the output
space of this system is equal to its input space). The
input/output map D of V is strictly positive iff

J( ((~~+~)(s),4s))rj
R+

for all u E L2(R+; U) and some e > 0. Clearly, D
is strictly positive iff the extended system ~~~g is J-

coercive with respect to the operator

[1

J=OI
IO”

Thus, Theorem 5 applies with this J to W..g iff V is

strictly positive. The formulae of Theorem 5 become
in this case

D= Jf/f/f-l, M“N+N*M = S,

K = –S-~r~M”C, n+ (M*CX +N*KX) = O,

[:1 = M+ [w= k]- [f2s”1”+M*c

II = K~Cx +C:KX = –K*SK = –C” MS-lr+M*C.

The equations in Theorem 9 applied to Waug become
(for XOand z, E dom(A))

and the sensitivity operator S is given by the strong
limit (for each fixed U. E U)

SUO = (D+ D“)uo + hmNB*II(al –A)-lBuo.

Again II is negative; to get a positive II we should
change the sign of J and maximize instead of minimize
[2, Problem 3.25].

6 Proofs and Extensions

We refer the reader to [13, 14, 15, 16] for more details
and proofs. In the stable case some of the results pre-
sented here were obtained independently by Martin and
George Weiss [22]. These results were first presented
in [10] and [21].

See [9] and [20] for examples illuminating the correction
term to the sensitivity operator S Theorem 10.

A converse of Theorem 9 has been proved in [5].

Extensions to the full information Hw problem
given in [16, 17].
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