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Abstract

We study the basic notions related to the stabilization

of an infinite-dimensional well-posed linear system in

the sense of Salamon and Weiss. We first introduce

an appropriate stabilizability and detectability notion,

and show that if a system is jointly stabilizable and

detectable then its transfer function has a doubly co-

prime factorization in Hm. The converse is also true:

every function with a doubly coprime factorization in

IP is the transfer function of a jointly stabilizable and

detectable well-posed linear system. We show further

that a stabilizable and detectable system is stable if

and only if its input/output map is stable. Finallyj we

construct a dynamic, possibly non-well-posed, stabiliz-

ing compensator. The notion of stability that we use

is the natural one for the quadratic cost minimization

problem, and it does not imply exponential stability.

Keywords: Stabilizability, detectability, in-

put /output stability, dynamic stabilization.

1 Notations

L(U; Y), L(U): The set of bounded linear operators

from U into Y or from U into itself, re-

spect ively.

R, R+, R-: R= (–ca, co), R+ = [O, m), and R- =

(-cO, O].

L2(J; U): The set of U-valued L2-functions on the

interval J.

L:(J; U): L:(J; U) = {u G L:..(J; U) I
(t I-+ e-w’u(t)) c L2(J; iY) }.

TICW (U; Y), TI” (U): The set of bounded, lin-

ear, time-invariant, and causal opera-

tors from L: (R; U) into L: (R; Y), or

from L; (R; U) into itself. TIC(U; Y) =

TIC’O (U; Y) and TIC(U) = TICo (U).

T’: The time shift group ~t u(s) = u(t + s)

(this is a left-shift when t >0 and a right-

shift when t < O).

~J : (~J~)(s) = u(s) ifs E J and (~J~)(S) = O

ifs @ J. Here J is a subset of R.

r+, T_: T+ = ~R+ and ~. = ~R- .

2 Well-Posed Linear Systems

We begin with a short presentation of the Salamon-

Weiss class of well-posed linear systems. This theory

has been developed in [1, 5, 10, 11, 12, 16, 17, 18, 19]

(and many other papers), and we refer the reader to

these sources for additional reading.

Definition 1 Let U, H’, and Y be Hilbert spaces, and

let w G R. A (causal) w-bounded well-posed linear sys-

tem on (U, H, Y) is a quadruple Q = [ # ~], where d,
B, C, and D are bounded linear operators of the follow-

ing type:

(i) A’: H + H is a strongly continuous serni-

group of bounded linear operators on H satisfying

SUPtGR+ lle-’’’’A’ll < co;

(ZZ) ~: L: (R; U) --+ H satisfies A’l?u = t?T’n_u for

all u c L~(R; U) andt G R+;

(iii) C: H + L; (R; Y) satisfies CA’Z = n+ I-’CZ for

allx EHandt ER~;

(iv) D: L~(R; U) + L; (R; Y) satisjies T’DU =

DT’u, ~-D~+u = O, and rr+Drr. u = CBU for

all u c L: (R; U) and t c R.

The system V! is stable if it is u-bounded with w = O,

and it is strongly stable i~ in addition, A’z -+ O as

t -+ cm for all x E H. It is exponentially stable iff it is

w-bounded for some w < 0.

The different components of Q are named as follows:

U is the input space, H the state space, Y the output

space, A the semigroup, B the controllability map, C

the observability map, and D the input/output map of

w.

It is not difficult to show that an w-bounded system is

a-bounded for all a > w.

Definition 2 We call ~ a well-posed linear system on

(U, H, Y) iff it is an w-bounded well-posed linear system
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on (U, H, Y) jor some w G R. The injimum of all the

numbers u for which Q M w-bounded is the exponential

growth rate of Q. Thus, Q is exponentially stable iff its

exponential growth rate is negative.

As Salamon [12] and Weiss [16, 17, 18] have shown, the

growth rate of a system W is equal to the growth rate

of its semigroup:

Lemma 3 The ezponenttal growth rate of a well-posed

linear system 9 is equal to the exponential growth rate

u = limt+w t-l log(lldtll) of its semigroup. In par-

ticular, V is exponentially stable iff its semigroup is

exponentially stable.

The axioms listed in Definition 2 describe standard

properties of the corresponding maps induced by “clas-

sical” system of the type

z’(i) = Az(t) + Bu(t),

y(t) = Cx(i) + Du(i), t > T, (1)

3(T) = $@.

Here A is the generator of a semigroup A on a Hilbert

space H, B ~ ,C(U; H), C ~ C(H; Y), and D c

.C(U; Y), where the input space U and the output space

Y are Hilbert spaces. Moreover, T is a given initial

time and XT a given initial value. We call u the con-

trol, x the state, y the output (or observation), A the

generator, B the control operators, G’ the observation

operator, and D the feed-through operator of this clas-

sical system. The state z is required to be a strong

solution of (1), i.e., the state a and output g are given

by

/

t

x(t) = AiXT + ~’-sBu(s) ds, t 2 T
T

/

t
y(t)= c/ttxT + cdt-s~u(s) ds + Du(t), t > T.

T

In this case we define B, C, and D by

/

o

t?u = d-S&(S) ds,

Cx = (;; Cdt x , tG R+),

U

t
Du== tti

)
G&s~U(S) ds + Du(t), t c R .

—CO

Thus, B is the mapping from the control u G

L: (R-; U) to the final state z(O) < H (take T = –co,

XT = O, and t = 0), C is the mapping from the ini-

tial state *O E H to the output y G L; (R+; Y) (take

T = O and u = O), and V is the mapping from the con-

trol u E L:(R; U) to the output y G L; (R; Y) (take

T=–co and z~ = O).

As a matter of fact, every well-posed linear system can

be written in a form similar to (1), namely

=’(’) = A4’) + ~4+)

y(t) = N(r(t), u(t)), t > T, (2)

z(T) = XT.

X()

-

x
“’4 l%-

Y CD

7T.L u

Figure 1: Input/state/output diagram of V

where A, B, and N are unbounded. This equation

cannot always be written in the form (1) due to the

nature of the domain of N. The system is regular if it

can be written in the form (1) with unbounded A, B,

and C (but bounded D).

The definitions of the controlled state and output of a

well-posed linear system are natural extensions of the

state and output of (1):

Definition 4 Let W = [~ ~ ] be a well-posed linear

system on (U, H, Y), and let u G L~oc(R+; U). The

controlled state x(t) at time t E R+ and the output y

of W with initial time zero, inttial value X., and control

u, are given by

We use diagrams of the type drawn in Figure 1 to rep-

resent the relation between the state x, the output y,

the initial value X., and the control u of V in the initial

value setting with initial time zero. In our diagrams we

throughout use the following conventions:

(i)

(ii)

Initial states and controls enter at the top or bot-

tom, and they are acted on by all the operators

located in the column to which they are attached.

In particular, note that Z. is attached to the first

column and u to the second.

Final states and outputs leave to the left or right,

and they are the sums of all the elements in the

row to which they are attached. In particular,

note that x is attached to the top row, and y to

the bottom row.

3 Feedback, Stabilizability and Detectability

The most basic feedback connection is the notion of

a (static) output feedback, drawn in Figure 2. Here

L is a bounded linear operator from the output space

into the input space, This feedback configuration with

initial time zero, initial value *O, and control v, gives

us the following formulas for the effective input u, the

state x(t) at time f ~ O, the output y, and the feedback
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Figure 2: Static output feedback

signal .2:

‘u=z+7r+’v,

~(t) = Atzo + I@u,

y = Czo +Du,

z = Ly,

which formally can be solved as

u = (1– LD)-l (LCXO +n+v) ,

z(t) = (At +B#L(I-DL)-l C)ZO

+B(I– LD)-l TtTi+V, (3)

y = (l– DL)-l (cm -i-Dn+v) ,

z = (1– LD)-l L(CZO +D~+V) .

We say that the feedback operator L is admissible

whenever these equations are valid:

Definition 5 Let O = [# ~] be a well-posed linear

system on (U, H, Y). Then L E ,C(Y; U) is called an

admissible output feedback operator for T aff the opera-

tor I– LD has an tnverse m TIC.(U) for some Q E R,

or equivalently, iff the operator I — DL has an tnverse

in TIC’s(Y) for some a G R.

As Weiss [19, Section 6] proved, x and y in (3) can

be interpreted as the state and output of another well-

posed linear system:

Proposition 6 Let ~ = [~ ~ ] be a well-posed linear

system on (U, H, Y), and let L G ,C(Y; U) be an admis-

sible output feedback operator for V. Then the system

[

A+ B~L(I– DL)-l C B(l– LD)-l~——
(l-’DL)-l C P(I– LP)-l 1

is another well-posed linear system on (U, H, Y). We

call this system the closed loop system wtth feedback

operator L. In the initial value setting with initial time

zero, initial ualue Xo, and control v, the controlled state

x(t) at time t and the output y of ~L are given by (3).

We remark that if we in the classical system (1) replace

u by u = Ly + v, then we get a new well-defined system

of the same type iff 1 – DL is invertible, or equivalently,

X(J

<

x
A l?r

Y

[1[1

CD
.2

)cF

7r+u~ + + ! u

Figure 3: State feedback connection

iff 1 —LD is invertible. In the new system the operators

[~ ~ ] have been replaced by

Observe the striking similarity between this formula

and the one given in Proposition 6.

Definition 7 The operator L c ,C(Y; U) is a

(strongly) [exponentially] stabilizing output feedback op-

erator for Q iff L is an admissible output feedback op-

erator for Q and the resulting closed loop system ~L is

(strongly) [exponentially] stable.

The notion of a state feedback can formally be reduced

to the notion of an output feedback. Intuitively, a state

feedback means that an additional output is created,

and this output is then fed back into the input, as

shown in Figure 3. In this figure the original system is

represented by [# ~]. We find two additional compo-

nents, namely a new observability map K (from the ini-

tial state to the new output) and a new input/output

map $ (from the original input to the new output).

The pair [X Z] is admissible if the resulting system

is well-posed, i.e., if [0 I] is an admissible output feed-

back operator for the extended system:

Definition 8 Let Q = [f ~ ] be a well-posed linear

system on (U, H, Y). The pair [K F] is an admis-

sible state feedback pair for IU iff the extended system

[[1[11
AB

~sF= C D

KY

w a well-posed linear system on (U, H, Y x U) and

[0 I] is an admissible output feedback operator for

~sF, i.e., I – F has an inverse in TIC7U (U) for some

w @ R. It is (strongly) [exponentially] stabilizing if the

resulttng closed loop system KS(strongly) [exponentially]

stable.

The notion of an output injection is analogous. In this

case a new input is created, into which we feed the

original output y plus a new perturbation Wx, as shown

in Figure 4. The original system is still represented
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w ?r+w~

T T+
I 1+m

Figure 4: Output injection connection

w’ 7r+ w

x -+ T,- 1

1-52-
7T+ u +: Ux

Figure 5: The extended system

by [~ ~]. In this figure we find a new controllability

map %! (from the new input to the state) and a new

input/output map ~ (from the new input to the original

output). The pair [ & ] is admwsible if the resulting

system is well-posed:

Definition 9 Let V = [~ ~] be a well-posed linear

system on (U, H, Y). The pair [ ~ ] is an admissible

output injection paw for @ iff the extended system

is a well-posed linear system on (Y x U, H, Y), and [~]

is an admissible output feedback operator for WOI, i.e.,
I – ~ has an inverse in TICU (Y) for some w E R. It

is (strongly) [exponentially] stabilizing if the resulting

closed loop system is (’strongly) [exponentially] stable.

In the sequel we shall need to study a case where we at

the same time want to add both a state feedback pair

[K Y] and an output injection pair [~] to a given
system [~ ~]. If we try to write a figure similar to Fig-

ures 3 and 4, we immediately observe that we need one

more input /output map Z (from the output injection

input to the state feedback output); see Figure 5. This

operator need not always exist, and this forces us to

introduce still another definition:

Definition 10 Let ‘1 = [~ ~] be a well-posed linear

system on (U, H, Y). The palm [K $] and [~] are

called jointly admissible state feedback and output in-

jection pairs for Q iff [K Z] is an admissible state

feedback pair for Q, [$] is an admissible output injec-

tion pair for Q, and m addition, there extsts a operator

~j called the interaction operator, such that and the

lox 7T+’W

La
u I4

Figure 6: Right coprime factor Vx

w r+w~

T l’” +

LQ-
U’ ;+ ! r+ u

Figure 7: Left coprime factor @x

combined extended system

is a well-posed linear system on (Y x U, H, Y x U).

Lemma 11 Let ~ = [# ~ ] be a well-posed linear sys-

tem on (U, H, Y). Then the following conditions are

equivalent:

(’i) The pan-s [K Y] and [~] are jointly admissi-

ble state feedback and output injection pairs with

interaction operator &;

(tt) The system ~,,t in Definition 10 is a well-posed

linear system on (Y x U, H, Y x U), and both [~ ~]

and [ ~ ~ ] are admissible output feedback operators

for ~,.t.

(iii) The system ~,xt in Definition 10 is a well-posed

linear system on (Y x U, H, Y x U), and I – F

and I – ~ haue inverses in T16’U (U) respectively

TICU (Y) for some w c R.

So far we have only looked at the joint admissibility

of state feedback and output injection pairs. If the

resulting closed loop systems drawn in Figures 6 and 7

are stable, then we call these pairs jointly stabilizing:

Definition 12 The pairs [K Z] and [~] are called

jointly (strongly) [exponentially] stabdzzing state feed-

back and output injection pan-s for W if they are jointly

admissible state feedback and output injection pairs

Proceedings of the 37th IEEE Conference on Decision & Control • Tampa, Florida USA • December 1998 TP04-3  16:40

0-7803-4394-8/98 $10.00 (c) 1998 IEEE 2754



with some interaction operator 8, and both the closed

loop systems J!x and Qx corresponding to the feedback

operators [~ ~] and [~ ~], respectively, are (strongly)

[exponentially] stable (see Figures 6 and 7, respec-

tively).

Definition 13 Let Q be a well-posed linear system.

(i)

(’ii)

(iti)

V is (strongly) [exponentially] stabilizable tfl there

exists a (strongly) [exponentially] stabilizing state

feedback pair for V.

@ M (strongly) [exponentially] detectable iff there

exists a (strongly) [exponentially] stabili.zmg out-

put injection pair for l!.

W is Jointly (strongly) [exponentially] stabiliz-

able and detectable iff there exist some jointly

(strongly) [exponentially] stabilizing state feed-

back and output injection pairs for T.

We do not know if it is possible for a system to be

both stabilizable and detectable without being jointly

stabilizable and detectable.

There is a simple connection between stability, de-

tectability, and input/output-stability:

Theorem 14 A (strongly) [exponentially] stabili,zable

and detectable well-posed linear system is (strongly)

[exponentially] stable iffitis input/output stable, i.e.,

its input/output map belongs to TIC(U; Y).

4 Coprime Factorization

Definition 15 Let U, Y, and Z be Hilbert spaces, and

let w

(i,)

(ii)

E R.

The operators N c TICU (U; Y) and M e

TIC’U (U; Z~ are right w-coprim~ iff there exist

operators Y E TIC. (Y; U) and X E TICW (Z; U)

that together with N and M satisfy the Be.zout

identity

5N+%M=I

m TICW (U). In the case where w = O we call N

and M right coprime, and in the case where w <

0 we call N and M exponentially right coprime.

The operators $ E TICU [U; Y) and ~ E

TICW (Z; Y) are left u-coprime iff there exist op-

erators Y E TICW ~; U) and X E TICW (Y; Z)

that together with N and ~ satisfy the Be,zout

identity

fiY+tiX=I

in TI~W(Y). In the case where w = O we call $

and M L#t copr~me, and m the case where w <0

we call N and M exponentially left coprime.

Thus, ~ and M are right cop~ime iff~ ] has a left in-

verse in TI_C(Y x Z; U), and N and M are left coprime

iff [~ M] has a right inverse in TIC(Y; U x Z).

Definition 16 Let U and Y be Hilbert spaces, and let

D c TICa(U; Y) for some a E R.

(i,) The pair (N, M) is a right [exponentially] co-

prime factorization of D if N G TIC(U; Y) and

M E TIC(U) are right [exponentially] coprime,

M has an inverse in TIC.(U), and D = NM-l.

(ii) The pair (n, ~) is a left ~xponentially] co-

p~ime factorization of ‘D if M G TIC(Y) and

N_E TIC(U; Y) are left [exponentially] c~rim~,

M has an inverse in TIC.(Y), and D = M-lN.

(iii) A doubly [exponentially] coprime factorization of

D consists of eight operators in TIC (of the ap-

propriate dimensions) satisfying

in TIC(U x Y; U x Y), and, in add~ao~ we re-

quire that (N, M) is a right and (M, N) a left

[exponentially] coprime factorization of V.

As the following theorem shows, if a well-posed linear

system is jointly stabilizable and detectable, then its

input /output map has a doubly coprime factorization,

A converse to this statement is true as well.

Theorem 17 (i) Let Ill = [~ ~] be a jointzy /’ex-

ponentially] stabilizable and detectable well-posed

linear system. Then, with the notations of Defi-

nitions 12 and 16,

[53 E x
[

_ 1+$7’Dx
1[

I – ~x –Dx
—

–$x I–3’ l$x I+FX 1

is a doubly [exponentially] coprime factorization

of D. (Here the left factor is the input/output

map of Qx in Figure 7, and the right factor is

the input/output map of Qx in Figure 6.)

(ii) Conversely, every D that belongs to TICG(U; Y)

for some Q E R and has a doubly [exponentially]

coprime factorization can be realized as the in-

put/output map of a jointly strongly [exponen-

tially] stabilizable and detectable well-posed linear

system W = [~ ~].

5 Dynamic Stabilization

Theorem 18 Let II? = [~ ~] be a jointly [exponen-

tially] stabilizable and detectable well-posed linear sys-

tem, and let IJe,t denote the system in Definition 10.

Then the system *; drawn in Figure 8 defines a pos-

stbly non-well-posed dynamic compensator which stabi-

lizes Ule,t in the sense that if we connect the outputs Wx

and u in Ftgures 8 and 10 to the inputs with the same

labels, then the resulting system is (well-posed and) [ex-

ponentially] stable.
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Figure 8: Possibly Non-Well-Posed Stabilizing Dynamic

Compensator V ~

A closely related result has been discovered indepen-

dently by Curtain, Weiss, and Weiss [4].

Remark 19 By using Theorem 18 one can easily de-
velop a Youla parametrization of the set of all stabiliz-

ing compensators for *,Xt. To get the Youla parameter-

i.zation we simply connect the Youla parameter Q from

G to iix in Figure 8 and connect this system to ~ext as

described in Theorem 18. The resulting input/output

map from w to Ux will be equal to Q.

6 Proofs

We refer the reader to [13] for more details and for

proofs of most of the results presented in Sections 3–

5. Related results have been obtained independently by

Ruth Curtain and George and Martin Weiss in [2,3, 4].

The exponentially stable version Theorem 14 is due to

Weiss and Rebarber [20].

The results presented here were originally developed to

support those presented in [14, 15].
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