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Abstract

A discrete time invariant linear state/signal system ¥ with a Hilbert state space
X and a Krein signal space W has trajectories (z(-),w(-)) that are solutions of the
equation xz(n + 1) = F( {‘ZEZ;]), where F' is a bounded linear operator from [15(\/}
into X with a closed domain whose projection onto X is all of X'. This system is
passive if the graph of F' is a maximal nonnegative subspace of the Krein space
—X [+] X [+] W. The future behavior Wy, of a passive system 3 is the set of all
signal components w(-) of trajectories (z(-),w(:)) of ¥ on Z* with z(0) = 0 and
w(-) € fa_ (W). This is always a maximal nonnegative shift-invariant subspace of the
Krein space ki(W), i.e., the space Ei (W) endowed with the inner product inherited
from W. Subspaces of k%r (W) with this property are called passive future behaviors.
In this work we study passive state/signal systems and passive behaviors (future,
full, and past). In particular, we define and study the input and output maps of
a passive state/signal system, and the past/future map of a passive behavior. We
then turn to the inverse problem, and construct two passive state/signal realizations
of a given passive future behavior 20, one of which is observable and backward
conservative, and the other controllable and forward conservative. Both of these are
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canonical in the sense that they are uniquely determined by the given data 20,
in contrast to earlier known realizations that depend not only on 20, but also on
some arbitrarily chosen fundamental decomposition of the signal space W. From
our canonical realizations we are able to recover the two standard canonical de
Branges—Rovnyak input/state/output shift realizations of a given operator-valued
Schur function in the unit disk.
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1 Introduction

In this work we continue our study of passive linear discrete time invariant
s/s (state/signal) system begun in [AS05]-[AS07c]. However, the approach
taken here is somewhat different from the approach in [AS05]-[AS07c], and
the present article is essentially self-contained.
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The s/s systems theory differs from the standard i/s/o (input/state/output)
systems theory in the sense that no distinction is made between input and
output signals, only between an “internal” states x € X and “external” in-
teraction signals w € W. In [AS05] it was assumed that both the state space
X and the signal space VW were Hilbert spaces, but in the subsequent articles
[AS07a]-[AS07c] dealing with passive systems the signal space W was replaced
by a Krein space (the state space X still remains a Hilbert space).

A trajectory (z(-),w(-)) of a linear discrete time-invariant s/s system % on a
discrete time interval I C Z consists of an X-valued state sequence x(-) and a
Wh-valued signal sequence w(-) satisfying the equations

x(n+1):F[i((’:LH, nel, (1.1)
where F' is a bounded linear operator with closed domain D (F) C [;},] and
values in X with the property that the projection of D (F') onto X is all
of X. The last property is equivalent to the following property of the set of
trajectories of X: for every discrete time interval I with finite left end-point
m and for every z,, € X there exists at least one trajectory (z(-),w(-)) of
Y on [ with initial state z(m) = x,,. Earlier in [AS05]-[AS07¢c] we primarily
restricted our attention to the interval I = Z* := {k € Z | k > 0}, but below
we shall, in addition, consider the cases [ = Z and [ = Z~ :={k € Z | k < 0},
as occasionally some other intervals.

A s/s system is called forward passive if, for every discrete time interval I and
every trajectory (x(:),w(-)) of ¥ in I, it is true that

—llz(n + D% + lz()l% + [w(n), wn)w >0,  nel.  (12)

where ||-||x is the norm in the Hilbert space X and [+, -],y is the inner product
in the Krein space W. In view of the time-invariance of (1.1), it is enough that
property (1.2) holds on the interval I = {0}. This property can be dressed in
a geometric form in terms of the Krein (node) space & := —X [+] X [+] W as
follows: condition (1.2) holds if and only if the graph V' of the operator F' in
(1.1) is a nonnegative subspace of . By replacing F' in (1.1) by its graph V/
we can rewrite (1.1) in the equivalent form

x(n) ev, nel. (1.3)

The subspace V' above is called the generating subspace of ¥, since condition
(1.3) defines the set of all trajectories (x(-),w(-)) of ¥ on any interval I.

The above discussion can be summarized as follows. By a linear discrete time-



invariant s/s system we mean a colligation ¥ = (V; X, W), where X is a
Hilbert (state) space, W is a Krein (signal) space, and V is a generating
subspace of the Krein (node) space 8 = —X [+] X [+] W, i.e., a subspace
which is the graph of an operator F with the properties described in the
connection with (1.1).

Given a s/s system 3 = (V; X', W), there is another s/s system %, = (V,; X', W,),
called the adjoint of X, where W, = —W (this is the same space as W but

with the inner product [-,-] .y = —[-, -]w), and
V= {fl i ]vm, (1.4)
0 0 1y

where VI is the orthogonal companion to V in R The system ¥ is called
backward passive if ¥, is forward passive, and X is called passive if it is both
forward and backward passive. This implies that if a s/s system X is passive,
then its generating subspace V' is a mazimal nonnegative subspace of the node
space R.

Conversely, suppose that V' is an arbitrary maximal nonnegative subspace of
K. Let W = =Y [4+] U be a fundamental decomposition of W (i.e., Y and U
are Hilbert spaces, and the sum is orthogonal). Then, by standard Krein space
theory, V' has a graph representation of the type

8

where [4 B] is a linear contraction X @8 — X & ). This means that V is the
graph of the operator F' defined by

Ax+Bu
T
Cx+Du
u

xeXanduEU}, (1.5)

P[] =t s D) = {[E] € [§]|w=cnDuf
Trivially, this operator F' satisfies the conditions listed below (1.1), and hence
¥ = (V; X, W) is a passive s/s system. Thus, we conclude that V' is the gener-
ating subspace of a passive s/s system if and only if V' is maximal nonnegative
in the node space K. In this article we discuss only passives s/s systems.

In the terminology of [AS05,AS07al, the existence of the graph representa-
tion (1.5) means that every fundamental decomposition of W is admissi-
ble for the passive s/s system Y. The corresponding i/s/o system X;/;/, =
([é B1; X,L{,y) is called a (scattering) i/s/o representation of 3. If we de-
compose the signal w(-) in (1.3) into w(-) = u(-) + y(-), where the values of
u(-) and y(-) lie in U and Y, respectively, then (1.3) takes the form

z(n+1) = Az(n) + Bu(n),



See [AS05,AS07a] for more details.

Since every Krein space W that is neither a Hilbert space nor an anti-Hilbert
spaces has infinitely many fundamental decompositions, this means that a
passive s/s system ¥ = (V; X, W) with a Krein signal space W usually has an
infinite family 3;//, = ([é Bl,x.U, y) of scattering i/s/o representations (in
the exceptional cases X;/,/, is unique, but it has no input or no output). Each
such system %5/, has a scattering matrix S(z) = C'(1—zA) " 'B+D which is a
Schur class function, i.e., a B(U; Y)-valued analytic contractive function in the
unit disk. This function has a power series expansion S(z) = 332, D(k)2"* with
contractive coefficients D(k) € B(U; ). Different choices of the fundamental
decomposition gives different systems ¥;/,/, and different scattering matrices.
Using the coefficients D(k) of each scattering matrix S(z) we can define a
block-Toeplitz operator D: (2(U) — (*()) by

(Du)(n) = i D(n—kwu(k), neZ, u(-)ecl*(Z:U),

k=—00

and we can also define two additional block Toeplitz operators ® , : (*(ZT;U) —
C(Z+;Y) and D_: C(Z7;U) — C(Z7;Y) by D4 = Dl|pg+u) and D_ =

Prz-3»)D|e@-wu)- A crucial fact is that although ®, ©,, and ©_ do depend

on the fundamental decomposition 20 = —) [+] U, the graphs of these three

operators do not. We call these three graphs the full, future, and past behav-

iors, respectively, of X.

Above we defined the full, future and past behaviors of a passive s/s system %
in terms of an i/s/o representation of ¥, but they can also be defined directly
by means of trajectories of 3. To do this we first need to introduce the notion of
an externally generated stable trajectory of a passive s/s system. A trajectory
(z(+),w(-)) of X on a discrete time interval I is called stable if

x(-) € £°°(1; X) and w(-) € (I; W) (1.7)

(see Section 2 for details). If (z(),w(+)) is a trajectory of ¥ on I, then by
(12),

lo(n + DIIE < lz(m)||% + Zf: [w(k), w(k)w, m, nel, m<n. (18)

Thus, if I is an interval with finite left end-point m, then the first condition
x(-) € £*°(I; X) in (1.7) is implied by the second condition w(-) € £*(I; W),
so to guarantee the stability of the trajectory it suffices to require that w(-) €
C2(I; W). If z(m) = 0, then we call this trajectory externally generated. If the
left end-point of the interval I is —oo, then we call a trajectory externally
generated if z(m) — 0 in X as m — —oo. Also such a trajectory is stable if
and only if w(-) € £2(I;W); this follows from (1.8) by letting m — —oc.



The sum in (1.8) (where we allow m = —oo or n = oo or both) can be
interpreted as an indefinite inner product in ¢2([m,n]; W), where [m,n] :=
{k€Z|m <k <n} (and we replace “<” by “<” if m = —oc0 or n = ).
By k*(I; W) we denote the space £2(I; W) equipped with the indefinite inner
product

[w1(-), wa (ke (rowy = D_[w(k), w(k)]w- (1.9)

kel

It is easy to see that this is a Krein space. We shall make frequent use of
the special time intervals Z*, Z, and Z~, and therefore abbreviate k3 (W) :=
KX (ZT W), K2(W) = k*(Z; W), and k> (W) = K*(Z~; ).

By the future, full, and past behaviors of the passive s/s system 3 = (V; X', W)
we mean the set of all the signal parts w(-) of all the externally generated
stable trajectories (z(-),w(-)) on Z*, Z, and Z~, respectively. We often denote
these three sets by g, Wy, and W, respectively. (Earlier, in [AS07al],
we have studied possibly non-stable future behaviors of 3 and called these
simply “behaviors”). It turns out that the maximal nonnegativity of V' in &
implies that 203, , Wiy, and 207, are maximal nonnegative subsets of k% (W),

k*(W), and k% (W), respectively, with some additional properties that we shall
describe next.

Because of the time-invariance of (1.3), if we shift a trajectory of X left or right,
then it is still a trajectory of ¥ (on a new shifted interval). This implies that
Wi, Wiy, and W, are shift-invariant in the following sense. Let us denote
the standard right-shift operators in k% (W), k*(W), and k* (W) by Sy, S,
and S_, respectively. Then that 20¢, is S, -invariant, 203, is S-reducing (it is
invariant under both S and S™'), and Qﬂgast is S_-invariant. In addition, 20%,,
has one extra property, called causality (see Section 2 for the exact definition).
It turns out that there is a one-to-one correspondence between the three sets
W, Wiy, and W - it is possible to construct natural maps that take g,
one-to-one onto W, and W, one-to-one onto W, ;.

Since the future, full, and past behaviors induced by a passive s/s system have
the properties described above, we use this fact as a motivation to introduce
the following notions: by a passive future behavior Qg on the Krein signal
space W we mean a maximal nonnegative S, -invariant subspace of k% (W),
by a passive full behavior W,y on VW we mean a maximal nonnegative S-
reducing causal subspace of k*(W), and by a passive past behavior s on
W we mean a maximal nonnegative S_-invariant subspace of k* (W).

The theory which we have summarized above is developed in full detail in
Section 2. Adjoint systems and behaviors, as well as anti-passive reflected s/s
systems are studied in Section 3. In Section 4 we present two Hilbert spaces
H(2,) and H(fm[,L ]) that play fundamental roles in the remainder of this
article. Here H(20,) is the subspace of the quotient k% (W)/20, consisting



of all those equivalence classes whose H (20, )-norm, defined in (4.17) below,
is finite. The Hilbert space H(fm[_L ]) is constructed in a similar way, with
20, replaced by the orthogonal companion to a passive past behavior 20_,
interpreted as a maximal nonnegative subspace of —k*(W). Both of these
spaces are special cases of the spaces H(Z) introduced and studied in [AS08],
where Z is a maximal nonnegative subspace of a Krein space X. A short

review of the spaces H(Z) is given in Section 4, including the descriptions
and properties of the two spaces H (20, ) and H(QU[_l }).

In Section 5 we develop the passive s/s systems theory further and introduce
the input map By, and the output map €y of a passive s/s system Y. Here
By, is a contraction from H(Qﬁ[f }) to X, which is the unique extension to
7'{(5217[_L ]) of the map from the signal part w(-) of an externally generated
trajectory (z(-),w(:)) on Z~ to x(0), whereas € is a contraction from X" to
H(20, ), which is equal to the map from the initial state 2:(0) of a stable
trajectory (z(-),w(:)) on Z* to its signal part w(-) factored over the future
behavior 20, . In Section 6 we introduce the past/future map gy of a passive
full behavior 25. This map plays a decisive role in our study of the inverse
problem described below. It is a contraction from H(QU[,l }) to H(20, ), and it is
the unique extension of the map from the past behavior 20_ to the restriction
of the full behavior 20 to Z* factored over the future behavior 20, . Moreover,
[y, = €Wy whenever ¥ is a passive s/s system with full behavior 20.

Sections 7 and 8 are devoted to the so called inverse problem: given a passive
future, full, or past behavior, find a passive s/s system X with some appropriate
extra properties (that will be discussed in the next two paragraphs) whose
future, full, or past behavior coincides with the given behavior. This is the s/s
analogue of the inverse problem in i/s/o system theory (in scattering form):
find a (scattering) passive i/s/o system whose transfer function (scattering
matrix) is equal to a given Schur class function.

In order to give a more complete description of the inverse problem we need
to introduce some more notions. A s/s system Y is forward conservative if
(1.2) holds in the form of an equality for all trajectories of ¥, and it is
backward conservative if the adjoint system X, is forward conservative. Thus,
Y = (V; X, W) is passive and forward conservative if and only if V' is maximal
nonnegative and V' C VI (this inclusion means that V' is neutral), and ¥ is
passive and backward conservative if and only if V' is maximal nonnegative
and VI c V. Both of these conditions hold if and only if V is a Lagrangian
subspace of K, in which case X is called conservative. For a conservative sys-
tem the inequality (1.2) holds in the form of an equality, both for the original
system and for the adjoint s/s system.

The subspace of X' that we get by taking the closure in X" of all states z(n) that
appear in externally generated trajectories (z(-),w(:)) of ¥ on Z* is called the



(approximately) reachable subspace, and we denote it by Ry. If Ry, = X, then
> is called controllable. The subspace of all zyp € X with the property that
there exists some trajectory (z(-),w(:)) of X on Z* with z(0) = o for which
w vanishes identically is called the unobservable subspace, and it is denoted by
Us. If Uy, = {0}, then ¥ is called (approximately) observable. A s/s system 3
is called simple if X = Ry, + Us:, or equivalently, if Us N Ry = {0}, and it is
manimal if it is both controllable and observable.

The following solution to the inverse problem can be derived from the proof
of [ASO7a, Theorem 8.6].

Theorem 1.1. Let W be a Krein space, and let 20, be an arbitrary maximal
nonnegative Sy -invariant subspace of the Krein space k3 (W). Then there exist
passive s/s systems X with future behavior W satisfying one of the following
sets of additional conditions:

1) X is observable and backward conservative;
2) X is controllable and forward conservative;
3) X is simple and conservative;
4) ¥ is minimal.

Fach of the three s/s systems in 1)-3) are uniquely defined by LW, up to
unitary similarity, and the systems in 8) and 4) can be obtained by dilations
and compressions, respectively, from the systems in 1) an 2).

The notion of unitary similarity of s/s systems used above is defined in a
natural way; see Definition 7.6 below.

In Sections 7 and 8 we present special realizations of types 1) and 2) of a given
future behavior 20, . These realizations are canonical in the sense that they
are uniquely determined by the given data 2J., in contrast to the realizations
given in [AS07a] that depend not only on 20, but also on some arbitrarily
chosen fundamental decomposition of the signal space W. The state space
in the first canonical model is H (20, ), and the state space in the second
canonical model is H(QU[,“). We shall return elsewhere to the question of how
to construct a special canonical realization of the type 3).

Finally, in Sections 9 and 10 we explain the relationship between our two
canonical models and the two canonical i/s/o de Branges—-Rovnyak scatter-
ing models whose scattering matrices coincide with a given Schur function ¢
in the unit disk. This involves mapping the space H(Z) (where Z is either
205, of it ]) onto a de Branges complementary space H(A). The general con-
struction is of the following type (see Section 9 for more details). Let Z be a
maximal nonnegative subspace of a Krein space X', and fix some fundamental
decomposition X = —Y [+] Y. Then, with respect to this decomposition, Z
is the graph of a linear contraction A: & — Y. In [AS08] we showed that the



mapping 7' from an equivalence class h € H(A) containing a vector Lﬂ onto
Th = gy — Au is a unitary operator from H(Z) onto the de Branges comple-
mentary Hilbert space H(A). That space, with a suitable choice of A, was
used as the state space in the two de Branges-Rovnyak models constructed
in [dBR66a,dBR66b]. In operator theory these systems are called “operators
nodes with a given characteristic function ®” that are either “co-isometric
and closely outer connected” or “isometric and closely inner connected”, re-
spectively. To obtain these two i/s/o models from our canonical s/s models
we fix some fundamental decomposition W = —) [+|U of the signal space W,
which induces the fundamental decompositions k3 (W) = —¢2.(Y) [+] (2. (U).
The operator A is replaced by either @Jr or @i, where @ are the frequency
domain versions of the block Toeplitz operators ®, mentioned earlier. There
is a small technical difference between the second canonical model that we
obtain and the one in, e.g., [ADRdS97], namely the state space of our ver-
sion of this model model in a subspace of the Hardy space H? defined on the
outside of the unit disk ® ., whereas the state space of the standard model
is a subspace of H? in the unit disk itself. However, this difference is not
significant, since H? can be mapped onto H2 by the unitary transformation
Uy (2) = a_(2) == 271 (1/2).

Our final formulas for the coefficients A, B, C, and D of the controllable
forward conservative i/s/o model depend in a crucial way on the frequency

domain input/output version F@* 5, of the past/future map I'gy mentioned

earlier. The map I' 5. 3 | is a unitary image of the operator f(2) — f(2)

in [dBR66a, Theorem 5, p. 350] and also of the operator A* in [ADRdAS97,
Theorem 3.4.1, p. 107] (the setting in [ADRAS97] is slightly more general in
the sense that it permits the state space to be a Pontryagin space and the
scattering matrix to be a generalized Schur function).

Acknowledgement. The authors thank Prof. James Rovnyak for sharing
with us his expertise on the two canonical de Branges—Rovnyak i/s/o scatter-
ing models discussed in Sections 7 and 8.

Notations. The following standard notations are used below. C is the complex
plane, D, :={z€ C||z| <1}, D_:={2€C||z| > 1} U{o0}, T={2z€ C|
2| =1}, Z={0,41,+2,.. )}, Z+ ={0,1,2,...},and Z~ = {—1,-2,-3,...}.
For any set €2, we denote the closure of € by €, and we denote the closed linear
span of a collection {€,}aea of sets in a Hilbert or Krein space by Vaea€q.

The space of bounded linear operators from one Krein space U to another
Krein space ) is denoted by B(U;)). The domain, range, and kernel of a
linear operator A are denoted by D (A), R (A), and N (A), respectively. The
restriction of A to some subspace Z C D (A) is denoted by A|z. The identity
operator on U is denoted by 1;,, or by 1 if the space is clear from the context.



The orthogonal projection onto a closed subspace ) of a Krein space K is
denoted by Py.

The inner product in a Hilbert space X" is denoted by (-,-)x, and the inner
product in a Krein space K is denoted by [, |x. The orthogonal sum of &/ and
Y is denoted by U @ U in the case of Hilbert spaces, and by U [+] V) in the
case of Krein spaces. The anti-space —K of a Krein space is algebraically the
same space as K, but it has a different inner product [-,-]_x := —[, k.

We denote the orthogonal product of two Krein or Hilbert spaces ) and U
by Dﬂ If £ is a set of vectors in a Krein space, then £ is the orthogonal
companion to L, i.e.,

LM ={zeck|zylx=0foralyec L}

If w(-) is a sequence with values in a Krein or Hilbert space W defined on
some discrete time interval I, then S*!w is the sequence w(-) shifted one step
to the right or left, respectively (this includes a right or left shift of [ if I # Z).
For sequences w(+) defined on Z* we define (S w)(n) = w(n + 1), n € Z7,
and for sequences w(-) defined on Z~ we define (S_w)(n) = w(n+1),n < =2,
w(—1) = 0. If we want to emphasize that the values of w lie in W we write
SYW instead of S.

2 Passive Future, Full, and Past Behaviors.

Passive State/Signal Systems. A passive linear discrete time invariant s/s
system ¥ = (V; X, W) has a Hilbert (state) space X', a Krein (signal) space
W, and a (generating) maximal nonnegative subspace V' of the Krein space
R =X [HX[+|W. A trajectory of ¥ on a discrete time interval I is a pair of
sequences (z(-),w(-)) satisfying (1.3). Observe that w(-) is always defined on
I, but that x(-) is defined at one extra point at the right end if / is bounded
to the right, i.e., if w(-) is defined on I = (m,n) :={k € Z | m < k < n}, then
x(-) is defined on (m,n] :={k € Z | m < k < n} (here we allow m = —oo; if
n = 400, then these two sets coincide. Earlier, in Parts I-IV, we most of the
time took the interval I to be I = Z* = {k € Z | k > 0}, but below we shall
also consider other intervals, finite or infinite. In particular, in addition to Z*
we shall frequently take I = Z or I =7~ = {k € Z | k < 0} (in which case
x(k) is also defined for k = 0). By a past trajectory we mean a trajectory on
7, by a full trajectory we mean a trajectory on Z, and by a future trajectory
we mean a trajectory on Z*. In the case where the interval I is bounded to
the left we call a trajectory (z(-),w(-)) on I externally generated if x vanishes
at the left end-point of I, i.e., x(m) =0if I = [m,n) :={z€Z|m < z<n}

10



(where we allow n = 00), and if I is unbounded to the left we call the trajectory
externally generated if z(m) — 0 in X as m — —oo.

Stable Trajectories of Passive State/Signal Systems. All the s/s sys-
tems in this article will be passive. A trajectory (z(-),w(-)) of the passive s/s
system X = (V; X, W) on an interval [ is called stable if

w(-) € K*(I; W) and x(-) € £=(I; X). (2.1)

Here (>°(X) is the Banach space of bounded X'-valued sequences on the interval
I. The space k*(I; W) is a Krein space whose inner product is defined in (2.3)
below. A sequence w(-) with values in W belongs to k%(W) if and only if

> llw(k)[5y < oo, (2.2)

kel

where ||-||yy is some admissible Hilbert space norm in the Krein space W, given
by
w3y = —[Pw_w, Pw_wlw + [Py, w, Py, w]w

for some fundamental decomposition W = —W_ [+] W, where W_ and W,
are Hilbert spaces with the norms inherited from —X and X', respectively.
Different fundamental decompositions give different norms ||-||,y, but they are
all equivalent, so (2.2) is independent of the chosen admissible norm in the
sense that if (2.1) holds for one admissible norm ||-||yy, then it holds for all
admissible norms ||-|[yy. The space k*(I; W) does not have a unique positive
inner product (only a family of equivalent inner Hilbert space inner products),
but it does have a natural indefinite inner product, namely

[wi(+), wa (k2w = Y_wi(k), wa (k). (2.3)

kel

Because of (2.2), the sum above converges absolutely for all w € k*(W). With
this inner product k*(I; W) becomes a Krein space, and each fundamental
decomposition W = =Y [+] U induces a fundamental decomposition

F(LW) = (1Y) [+] C(L:U), (2.4)

where the norms in —) and U are the norms inherited from —W and W,
respectively, and ¢2(I; V) and (*(I;U) stand for the standard Hilbert £>-spaces
on the interval I: if X is a Hilbert space and I an discrete interval then ¢2(I; X)
consists of all X-valued sequences z(-) on I satisfying

Iz ) = D_ll2(k)[Fy < oo. (2.5)
kel

In the sequel we abbreviate the cases where I is one of the intervals Z~, Z, or

11



7t as follows:

BEOWV) = kKHZ7W),  BEOW) =K (Z:W), W)=k Z5W),
(X)) =7 X), (X)) = 13(Z; X), C(X) =25 X).

If I and I’ are two intervals with I C I’, then we frequently identify k*(I; W)
with the subspace

{we (I W) | w(k)=0for k ¢ I}

of k*(I';W), and in the same way we identify ¢*(I; X') with a subspace of
(I ).

As the following lemma shows, the condition € ¢*°(I; X) in (2.1) is often
redundant or almost redundant.

Lemma 2.1. Let ¥ = (V; X, W) be a passive s/s system, and let I be an
discrete time interval, and let (z(-),w(-)) be a trajectory of ¥ on I.

1) If I = [m,00) for some finite m, then
(x(-),w(+)) is stable if and only if w(-) € K*(I;W).
2) If I is unbounded to the left, then (x(-),w(:)) is stable if and only if
w(:) € K*(I; W) and limsup,, ,__|lz(m)||x < .

Proof. Tt follows from the nonnegativity of V' that (1.8) holds. This implies
both 1) and 2) since the sum in (1.8) stays bounded as n — oo or m —
—00. U

In the case of externally generated trajectories the preceding result simplifies
as follows.

Lemma 2.2. Let ¥ = (V; X, W) be a passive s/s system, and let I be an
discrete time interval, and let (x(-),w(-)) be an externally generated trajectory
of X on I. Then (z(-),w(-)) is stable if and only if w(-) € k*(I; W). Moreover,
if I =[m,00) for some finite m, then

lz(n+ DI < [w(), wC)lke@maw), — n €L (2.6)

and if I = (—o0, k) (where we allow k = c0), then

lz(n+ DII% < [w(), wC)le(-cnm), — n€L (2.7)

In particular, if I = 7™, then
lz(0) 1% < [w(-), w(-)]kz o) (2.8)

Proof. This follows from Lemma 2.1 and the definition of an externally gen-
erated trajectory. O
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Formulas (1.8)—(2.8) explain why the Krein spaces k*(I; W) appear naturally
in connection with passive s/s systems.

In the sequel we shall need the following basic facts about stable trajectories
of X.

Lemma 2.3. The set of stable trajectories of a passive s/s system ¥ =
(V; X, W) have the following properties.

1) Both the set of all stable trajectories and the set of all externally generated
stable trajectories of ¥ on some interval I (finite or infinite) are closed
subspaces of (*°(I; X) x (2(I; W).

2) If (z(-),w(-)) is a stable trajectory of X on some interval I and n € 7Z,
then (S™x, S™w)) is a stable trajectory of & on S"I ={k € Z | k—n € I},
and (z(-),w(+)) is externally generated on I if and only if (S"x, S"w)) is
externally generated on S™I.

3) The restriction of a stable trajectory on some interval I' to a subinterval
I C I is a stable trajectory of ¥ on I, and if I and I' have the same
left end-point, then the restricted trajectory is externally generated if and
only if the original trajectory is externally generated.

4) If (z(-),w(-)) is an externally generated stable trajectory of ¥ on an in-
terval I = [m,n) (where we allow n = oo), and if we define (k) = 0 and
w(k) =0 for k < m, then this extended pair of sequences is an externally
generated stable trajectory of 3 on (—oo,n).

5) Let W = =Y [+]U be a fundamental decomposition of W. Then, for each
zo € X and each u € (% (U) there exists a unique stable future trajectory
(x(-),w(-)) of ¥ satisfying x(0) = z¢ and Pp ) = u.

6) Every stable trajectory on some interval I = (m,n| (where we allow m =
—00) can be extended to a stable trajectory of ¥ on (m, 00).

7) To each [g}%} € V there ezists at least one stable future trajectory (x(-), w(-))
of ¥ satisfying x(0) = xg, (1) = x1, and w(0) = wy.

Proofs of 1)-4).. Claim 1) follows from (1.3) and the fact that V' is maximal
nonnegative, and hence closed in the node space K. Properties 2)-4) follow
immediately from the definition of a stable trajectory.

Proof of 5). Let W = =Y [+] U be a fundamental decomposition. Then, by
Theorem I1.5.7, this decomposition is admissible for ¥, which means that for
each o € X and u € U”" the system X has a unique trajectory (z(-),w(-))
on Z* satisfying #(0) = x¢ and P,z+w(-) = u(-). For example, we may take
u € (2(U). Tt then follows from (1.8) that the corresponding trajectory is
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stable, since we have for all n € ZT,

n

lz(n+ D% = > Tw(k), wk)lw

k=0
, < (2.9)
— Jla(n+ D[% + Sl Pyw(k)l} - znPuw 2
k=0
< Jlzolf3-

Proof of 6). By Property 2), we may without loss of generality suppose that
n = —1. Let (2/(-),w'(:)) be the stable future trajectory of ¥ given by 5)
that satisfies 2/(0) = #(0) and Ppz gyw(-) = 0. By defining x(k) = #'(k) and
w(k) = w'(k) for k > 0 we get an trajectory on I’ = (m, 0o) whose restriction
to [ = (m, —1] is the given trajectory of 3.

Proof of 7). This is a special case of 6) with I = {0}. O

Lemma 2.4. Let ¥ = (V; X, W) be a passive s/s system, and let [ = (—o0,n)
(where we allow n = 0o). Then the set of all compactly supported externally
generated stable trajectories (i.e., trajectories (x(-), w(-)) that satisfy x(k) =0
and w(k) = 0 for all k in some interval (—oo,m|) is dense in the set of all
externally generated stable trajectories of X2 on I in the topology inherited from

(>(1; X) [H k(L W).

Proof. Let (x(-), w(- )) be an externally generated stable trajectory of ¥ on I,

and let W = =) [+] U be a fundamental decomposition of W. By Clalms

2)-5) of Lemma 2.3, for each m € I there is a unique externally generated

stable trajectory (z,,(+),wn(:)) of ¥ on I satisfying z(k) = 0 and w(k) = 0

for k < m and Pp(rynywm = Pe@maww. Define z), (-) = 2(-) — 2,(-) and
/

wl (1) = w(-) —wp(-). Then (2!, (-),w'(-)) is an externally generated trajectory

m

of ¥ on I, and by (2.7), for all k € I,

27, (k + D)3 + | Pe((—oo1:)Wra I” < | P ((—o0kzey Wi
< HPZQ( —00,m) w”

This implies that
1271750 ((—omst) + 1P ((—oomymyWinll® < 21| Pe((—compznywl|®,

where the right-hand side tends to zero as m — —oo. Thus, z,, — x in
(2((—o0,n|; X) and w,, — w in k*(I; W) as m — —oo. O

Behaviors of Passive State/Signal Systems. By the (stable) behavior
induced by the passive s/s system ¥ on the interval I we mean the set

{w(-) | (z(-),w(+)) is an externally generated stable trajectory of ¥ on I},
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and we denote it by 20% (7). Here we sometimes omit the upper index ¥ if it
is clear from the context which system this behavior is induced by. The cases
where I is one of the intervals Z~, Z, and Z" are especially important, and
we refer to these behaviors as the past behavior 20, the full behavior Wy,
and the future behavior 20, induced by the passive system Y. Thus,

o
QI]past

= mE<Z7)7 QI]fzull = an:(Z)v QI]fzut = mE<Z+)

The following result is immediate.

Lemma 2.5. To each w € 20y, there exists a unique x € (5°(X) such that
(x(+),w(-)) is an externally generated stable trajectory of X2 on Z*. The same
statement remains true if we replace Wy, by Wy, or by W, and at the
same time replace Z" by 7 or 7, respectively.

Proof. This follows from the definitions of 20%,, 202, and 20> . and Lemma

pas

2.2. 0

The right-shift operators on k2 (W), k*(W), and k% (W), are denoted by S_, S,
and S, , respectively. The operator S_ is a co-isometry on k? (W), the operator
S is unitary on k*(W), and the operator S is an isometry on k% (W). The
operators S_ and Sy can be expressed in terms of the operator S by

So=m_5k2 ow), Sy = S|k2+(W),
where 7_ is the orthogonal projection of k*(W) onto k% (W).

It will be shown in Theorem 2.8 below that the full behavior 20%, of a passive
s/s system ¥ = (V; X, W) is a maximal S-reducing subspace of k*(W) (i.e.,
it is invariant under both S and S~'). However, the converse is not true: 203,
has one extra property, called causality, which is not a consequence of the
fact that 20%, is maximal nonnegative and S-reducing. Let 20 be a maximal
nonnegative subspace of k?(W), and let W = —Y [+] U be a fundamental
decomposition of W. Then k*(W) = —(*(Y) [+] (*(U) is a fundamental de-
composition of 2. It follows from (2.8) that

l2O)I% < =[1Pe gywlliz vy + 1 Pz oyl o)

In particular, if || P2 w7 w =0, then m_w =0.

Definition 2.6. A mazimal nonnegative S-reducing subspace 20 of k*(W) is
causal if it is true for some fundamental decomposition W = =Y [+]U of W
that

w(-) €W and Pp yyw = 0= m_w(-) = 0. (2.10)
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We shall see later that the choice of the fundamental decomposition W =
—Y[+]U in Definition 2.6 is not important: if (2.10) holds for one fundamental
decomposition, then it holds for every fundamental decomposition of W.

Not every maximal nonnegative S-reducing subspace of k?(W) is causal, as
the following counter-example shows.

Example 2.7. Let U be a Hilbert space, and let X be the Krein space X =
—Y [+ U where Y =U. Then k*(W) = —02(Y) [+] *(U). Let

W = {[%"] |ue )} (2.11)

where Sy is the right-shift in (2(U). It is easy to see that W = N, i.e., W
is Lagrangian, hence maximal nonnegative (and also mazimal nonpositive). It
is also S-reducing. However, it is not causal: if u € (3 (U) and u(0) # 0, then

[(5%1(11)1(;1)} = [“%0)}, so condition (2.10) does not hold.

Theorem 2.8. Let ¥ = (V; X, W) be a passive s/s system. Then the behaviors
induced by 3 have the following properties.

., is a mazimal nonnegative Sy -invariant subspace of k3 (W).
0% is a mazimal nonnegative S-reducing causal subspace of k*(W).
= . is a maximal nonnegative S_-invariant subspace of k*(W).
an%t = Wiy Nk (V).

Wi = Vaez+ S Wiy

QHFX):ast =T an{:ﬂl'

Wy = Nuezs {w(-) € KW | 757w € W}

S O W N~

)
)
)
)
)
)
)

\]

Proof. Step 1: Proofs of 4), 6), and 7). These identities follow from Lemma
2.3.

Step 2: Proof of 1). The nonnegativity of 20%, follows from (2.6), and the
S, -invariance of 2, follows from Lemma 2.3. It remains to prove that 203,
is mazimal nonnegative in k% (W).

By definition, w(-) € 0%, if and only if there exists (a unique) bounded
sequence z(-) such that (z(-),w()) is an externally generated stable trajectory
of ¥ on Z*. Let W = =Y [4+] U be a fundamental decomposition of W. Then
(2.4) with I = Z7" is a fundamental decomposition of k% (W), and by (2.9)
with n = 0 and x(0) = 0,

[Pyw()lle ) < [Puw-)lle e

By part 5) of Lemma 2.3, the function Pyw(-) can be an arbitrary function in
(% (U). This implies that there exists a bounded linear operator D such that

imfzut: {[Qﬁu]

ue U}, (2.12)
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Thus, 207, is the graph of a contraction @ : 2 () — (2(Y) and hence
maximal nonnegative.

Step 3: Wiy, is closed in k*(W). Let w;(+) be a sequence in 20, converging
to some w € k*(W). Then, to each w; there corresponds a sequence z;(-) €
(> (X) satisfying x;(n) — 0 asn — —oo such that (z;(-), w;(-)) is an externally
generated full stable trajectory of ¥. The sequence w;(-) is a Cauchy sequence
in k*(W), and it follows from (2.7) that z;(-) is a Cauchy sequence in £>°(X).
Thus, x;(-) tends to a limit x(-) in ¢*°(X) satistying x(n) — 0 as n — —oo.
The generating subspace V' is closed, and it follows from (1.3) that (z(-),w(-))
is an externally generated stable trajectory of ¥ on Z. Thus, w € 20%,,, and
this proves that 207, is closed.

Step 4: Proofs of 2) and 5). The nonnegativity of 20%,, follows from (2.7), and
that 0%, is S-reducing follows from Lemma 2.3.

Recall that 20, has the graph representation (2.12) for some contraction
Di: 3(U) — 3(Y), where W = =Y [+] U is a fundamental decomposition
of W. The S,-invariance of 2%, implies that ©, is shift-invariant in the
sense that ©,5, = S, D .. Let ¢2(U) be the subset of ¢*(If) consisting of
those sequences in ¢?(U) whose support is bounded to the left. It is possible
to define a contraction @: (2(U) — ¢(*(Y) in the following way: If u € (2(U)
vanishes on (—oo, n, then we define ®u = S~ S™u, where m is chosen
to be so large that S™u vanishes on Z~. The result is independent of the
particular value of m because ® S, = S, D,. Since (2(U) is dense in *(U)
we can extend D to a contraction ¢*(U4) — ¢*>()). This contraction is causal
in the sense that ©¢%(U) C (3 (Y), and it is shift-invariant in the sense that
DSu = SDu for all u € (*(U). Moreover, D, = D|p2y).

It follows from (2.12) with ©, = D|py) that

e} {3

—n
Syt uy

_ ST u
s "Qﬂﬁt:{{ »Diu

—n
Sy Muy

’u+ € ei(w},

where V,cz+ 2 (U) = C(U). Thus, V,ez+ S™"Why = {[%“] ‘ u € EZ(Z/{)}. This
graph representation implies that \/,cz+ S™"20F, is maximal nonnegative in

K2(W).

It follows from Lemma 2.3 that U,cz+ ST, C Wiy, and since W, is
closed, we have \/,cz+ ST, C Wk, Here ez S"A0E, is maximal non-
negative, and 203, is nonnegative. Thus, .oz S™"Wi, = WE,,, and hence
20}, is maximal nonnegative and 5) holds. In particular,

Wiy = {[2] | v e )}, (2.13)

That 203, is causal follows from this graph representation and the fact that
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DEWU) C ().

Step 5: Proofs of 8). That 0% . is S_-invariant follows from Lemma 2.3.

past

The graph representation (2.13) together with 6) and the fact that D62 (i) C
(2 (Y) implies that 203, has the graph representation

past

W = {50 ] | we ) = {12

ue 2 U)}, (2.14)

where ©_ := 7_D|2 ) is a contraction ¢* () — ¢2 (). This graph represen-

o
past

Corollary 2.9. Let ¥ = (V; X, W) be a passive s/s system. Then each one
of the past, full, and future stable behaviors 0%, Wy, and W, of ¥ de-
termines the other two uniquely.

tation implies that 20>  is maximal nonnegative in k% (W). O

Proof. This follows from Claims 4)-7) in Theorem 2.8. O

Passive Future, Full, and Past Behaviors. Let ¥ = (V; X, W) be a
passive s/s system. According to Theorem 2.8, the future behavior 0%, of X
is a maximal nonnegative S, -invariant subspace of k% (W), the full behavior
202 of ¥ is a maximal nonnegative S-reducing causal subspace of k*(W), and
the past behavior 207, of ¥ is a maximal nonnegative S_-invariant subspace
of k2 (W). It will be shown in section 7 that every maximal nonnegative S -
invariant subspace of k% (W) is the future behavior of a passive s/s system,
and ananlogusly, it will be shown in Section 8 that every maximal nonnegative
S_-invariant subspace of k% (W) is the past behavior of a passive s/s system.
We shall also see that every maximal nonnegative S-reducing causal subspace
of k(W) is the full behavior of a passive s/s system. In view of these three
facts the following definitions are natural.

Definition 2.10. Let W be a Krein space.

1) A mazimal nonnegative S, -invariant subspace of k3 (W) is called a pas-
sive future behavior on the Krein (signal) space W.

2) A mazimal nonnegative S-reducing causal subspace of k*(W) is called a
passive full behavior on the (signal) space W.

3) A mazimal nonnegative S_-invariant subspace of k% (W) is called a pas-
sive past behavior on the (signal) space WW.

The basic connections between passive future, full, and past behaviors are
described in the following theorem.
Theorem 2.11. Let W be a Krein space.

1) If 20 is a passive full behavior on 20, and if we define W, and W_ by

W, = WNEL(W), W =7 20, (2.15)
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then Wy and WW_ are passiwve future and past behaviors on W, respec-
tively, and 2J can be recovered from W, and from WI_ by the formulas

W=\ S"w,, (2.16)
W= {w()ePW)|r S wew }. (2.17)

2) If 2, is a passive future behavior on W, and if we define 20 by (2.16),
then 20 is a passive full behavior on W and 20 = 2 N kL(W).

3) If W_ is a passive past behavior on W, and if we define 20 by (2.17),
then 2 is a passive full behavior on W and 0_ = w_20.

Proof. Most of the proof of this theorem is very similar to the proof of Theorem
2.8, but some of the details are different.

Proof of 1). Let W = =Y [+] U be a fundamental decomposition of 20. Then
E2(W) = —(*(Y) [+] £2(U) is a fundamental decomposition of k*(W), and the
maximal nonnegativity of 2J implies that it has a graph representation

w = {[2

u

ue U} (2.18)

for some contraction D: (*(U) — (*(Y). Since W is S-reducing, we have
Sy® = DSy, and since W is causal, DL (U) C (2 (Y). This, together with
(2.15) implies that 20, have the graph representations

W, ={[?"]|ue W)}, (2.19)
w_={[?"]|ue W)}, (2.20)
where D, = @|£i(u) and D_ = 7_D|p o) are contractions (3 (U) — (2().

These two graph representations with respect to the fundamental decomposi-
tions k2 (W) = —(3.(Y) [+] 2 (U) imply that Q. are maximal nonnegative in
k3 (W). That 20, is S, -invariant follows from its definition 20, = 2Nk2 (W)
and the fact that S0 = S. The S_-invariance of 2J_ is proved by the following
computation:

S W_=71_8S7_W =T_T(_o0q)SW=7m_0 =W_. (2.21)
Thus, 20, and 20_ are passive future and past behaviors, respectively.

A proof of the fact that \/,cz+ S0, is maximal nonnegative in k*(W) is
contained in Step 4 of the proof of Theorem 2.8 (with 20% replaced by 20, ),
and essentially the same proof shows that \/,cz+ S0, = 20 (this time we
have U,cz+ ST, C 20 since W is S-reducing and W, C ).

Let 20,, := {w() € k*(W) ’ T_ST"w € Qﬂ_}, and let Q' := N,cz+ W,,. The
fact that 20 is S-reducing and that 7_20 = 20_ implies that 20 C 20J’. Each
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20, is nonnegative in k?((—oo, n|; W) since 2_ is nonnegative in k% (W). For
each w € 20" we have m(_q ,w(-) € 2y, and hence

[w(-), w)]keoy) = M [T(oonw (), T(—oomW(-)]k2((—somw) = 0, w € 2.

n—-4o0o

Thus, 20 C 20’ where 20 is maximal nonnegative and 20’ is nonnegative, and

hence 20 = 20'.

Proof of 2). Since 20, is maximal nonnegative, it has a graph representation
of the type (2.19) for some contraction ®,: 2 (U) — (2(Y), where W =
—Y [+]U is a fundamental decomposition of W. The same argument that we
used in Step 4 in the proof of Theorem 2.8 shows that \/,cz+ S~ is passive
full behavior on W, and that \/,cz+ S~ = 20 whenever 2U is a S-reducing
closed nonnegative subspace of k%(W) satisfying 20, C 20.

Proof of 3). Since 20_ is maximal nonnegative, it has a graph representation
of the type (2.20) for some contraction ®_: ¢2(U) — (*(Y), where W =
—Y [+]U is a fundamental decomposition of W. With the help of ©_ we can
define a contraction ©: *(U) — ¢*(Y) in the following way. We first define
the sequence of contractions @": (2(U) — (*(Y) by D"u = S"D_7m_S "u,
n > 0. The right-shift invariance of ® _ implies that, for all m > n,

M(—oon)Dm = S"n_S" "D _n_S7" = 5"D_n_ ST "n_ ST =D,

Thus, for each v € (U) and all m € Z%, | Dnulleyy < |ullew), and
T(—oonPmu is independent of m for m > n. This implies that ©,,u tends
weakly to a limit y € (3())

Thus, for each u € *(U) and m > n,

(D = Dn)ulle) < [Tm.o0) (Pm — Dn)ullew) < 2/7metllew,

which tends to zero as n — 4o00. Thus, ©,, tends strongly to a limit contraction
D: (*(U) — (*(). This contraction is causal in the sense that D¢ (U) C
(% (Y), and it is shift-invariant in the sense that D.Su = SDu for all u € (*(U).

Define 20 by (2.18). The, by construction, DS = SD, D2 (U) C (%(Y), and
D_ =7 D|p . This implies that 20 is a passive full behavior on W satisfying
20_ = 7_920. That formula (2.17) holds follows from Claim 1). O

Lemma 2.12. Let 03 be a passive past behavior on a Krein space VWW. Then
the set of all w(-) € W_ with finite support (i.e., w(k) = 0 for all k in some
interval (—oo,n]) is a dense subspace of 2 _.

Proof. By (2.15) and (2.16),
W_=rW=nr_\/ SWNEW)) =\ 7SNk (W),

neZ* neZ*
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where each sequence in 7_S™"(20 N k3 (W)) has finite support. O

Remark 2.13. By Theorem 2.11, the map 20 — 2 N k% (W) is a bijection
from the set of all passive full behaviors on W onto the set of all passive
future behaviors on W, with inverse W, +— \/,,cz+ S~ "W, . Likewise, the map
W — 7 is a bijection from the set of all passive full behaviors on VW onto
the set of all passive past behaviors on W, with inverse 20_ — ﬂnez+{w(-) €

k(W) ‘ T ST"w € QU_}. Thus, formulas (2.15), (2.16), and (2.17) define
one-to-one correspondences between a passive future behavior 2y, a passive
full behavior 20, and a passive past behavior L3 _: any one of these can be used
to define the two others.

Let us go back to Example 2.7.

Example 2.14. Let 20 be the Lagrangian subspace of k*(=Y [+]U) defined
in (2.11). As we saw in Example 2.7, 20 is not causal. Define Wy by (2.15).
Then

w, = {5 ]| u(-) € C.WU) withu(k) =0 for all k <0}, (2.22)
w_={[s%] [v() e O} (2.23)

The subspace W, is not mazximal nonnegative since the projection onto the
positive component in the fundamental decomposition EZ(W) = —2(Y) [+]
02 (U) is not all of (3. (U), and the subspace WW_ is not even nonnegative: if

u € 2 (U) with u(0) # 0, then m_ {5:“} € W_ and

Remark 2.15. Our proof of Claim 2) in Theorem 2.11 shows that a stronger
statement is true than the one recorded in the theorem: If 20 is a closed non-
negative S-reducing subspace of k*(W) which contains a maximal nonnega-
tive S, -invariant subspace 20, of k% (W), then 20 is given by (2.16). Thus,
25 is uniquely determined by W0, within the class of all closed nonnegative
S-reducing subspaces of k*(W), and not only within the class of all mazi-
mal nonnegative causal S-reducing subspaces of k*(W). A similar extension
of Claim 3) is also valid, as explained in Remark 3.10 below.

3 Anti-Passive Reflected Systems and Behaviors.

Since the generating subspace V of a passive s/s system ¥ = (V; X', W) is max-
imal nonnegative, its orthogonal companion V* is maximal nonpositive, and
it generates an anti-passive reflected state/signal system Lf = (VI X W),
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The trajectories (z7(-),w'(+)) of X1 satisfy

+
=

x'(n

attn) | €eVH  nel (3.1)

It differs from a standard passive s/s system in the sense that trajectories
always can be continued backward in time instead of forward in time, and
it is not a special case of a state/signal system in the sense of Parts I-1V.
If we define V, by (1.4), then V, is maximal nonnegative in the Krein space
—X [+] X [+] =W, and it generates a standard passive s/s system X, =
(Vi; X, —=W), which we in Parts II-IV called the adjoint of the s/s system
Y. Here we shall instead refer to ¥, as the passive dual of ¥, and call Xf
the anti-passive dual of ¥.. The trajectories of ¥, and X' differ from each
other by a time reflection, and, in addition, their signal spaces also differ from
each other (the signal space of X' is W and their signal space of 3, is —W).
Because of the indexing conventions used in (1.3) and (3.1), the reflections
in the state component z(-) differs slightly from the reflection in the signal
component w(+): (z(-),w(-)) is a trajectory of X, on an interval I if and only
if the function (27(-), w'(+)) defined by z'(n) = 2(—n) and w'(n) = w(—n—1)
is a trajectory of Xt on IT={2 € Z| -2 -1 € I}.

Stable trajectories of an anti-passive reflected s/s system are defined in the
same way as for a passive s/s system, and we still refer to trajectories defined
on Z~, Z, and Z* as past, full, and future trajectories. Past, full, and future
trajectories are also defined in the same way as for passive s/s systems, i.e.,
“past” always refers to the time interval Z—, “full” to the time interval Z,
and “future” to the time interval Z*. However, since the natural direction
of evolution of an anti-passive reflected s/s system is opposite to the natural
direction of evolution of a passive system, a trajectory (z(-),w(-)) of an anti-
passive reflected s/s system is externally generated if the state vanishes at the
right end-point of the interval of definition, i.e., z(n) = 0 when I = (m,n)
and lim,, ;o z(n) = 0 when I = (m, c0).

Lemma 3.1. Let ¥ = (V; X, W) be a passive s/s system, and let T =
(VI 2 W) be its anti-passive dual.

1) ¥ is forward conservative if and only if every trajectory of ¥ on every
interval I is also a trajectory of X1 on I.

2) X is backward conservative if and only if every trajectory of X1 on every
interval I is also a trajectory of X on I.

3) ¥ is conservative if and only if ¥ and X7 have the same set of trajectories
on every interval I.

Proof. This is true, because, by definition, ¥ is forward conservative if and
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only if V- VI, 3 is backward conservative if and only if VIH € V| and &
is conservative if and only if V = VI, O

The trajectories of the original passive s/s system X are “orthogonal” to tra-
jectories of the anti-passive dual system X in the following sense:

Lemma 3.2. Let ¥ = (V; X, W) be a passive s/s system, and let T =
(VI X, W) be the anti-passive dual of ¥.. Let I be a subinterval of Z, let
2(-),w(:)) be a stable trajectory of ¥ on I, and let (27(-),w'()) be a stable
trajectory of X1 on I.

1) If I = [m,n) for some finite n > m, then

(2(n), o (n))x = (x(m), 2’ (m)x + [w(), W (zaw). (32)
2) [ffl = (—o0,n) for some finite n, then lim,, . o (x(m),x"(m))x ezists,

(@(n), 2 (n)x = lim_(z(m),2"(m))x + [w(), w (Vg (3:3)

3) If I = [m,0) for some finite m, then lim,_, | oo(x(n), 27 (n))x exists, and

lim _(z(n), 2" (n))x = (z(m), 2" (m))x + [w(), W (Vegaw).  (34)

n—-4oo

Proof. This follows immediately from (1.3) and (3.1). O

By the (stable) behavior induced by the anti-passive s/s system X' on the
interval I we mean the set

{w'(:) | (2(-),w'(-)) is an externally generated stable trajectory of ¥ on I},

and we denote it by QBET(I ). We refer to the behaviors on the intervals Z~,
Z, and Z* as the past behavior = the full behavior QHE:H, and the future

past?
behavior Qﬁleft induced by the anti-passive system .

In the next theorem we need the notion of an anti-causal maximal nonpositive
S-reducing subspace of k?(W).
Definition 3.3. A mazimal nonpositive S-reducing subspace 201 of k(W) is
anti-causal if it is true for some fundamental decomposition W = =Y [+] U
of W that

wi() € W' and P gyw=0= mw()=0. (3.5)

Note, in particular, that the projection here is onto the negative component
in the fundamental decomposition k3 (W) = —3(Y) [+] /3 (U), and that 7_
in Definition 2.6 now has been replaced by 7.
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Theorem 3.4. Let 203, ., Wiy, and W, be the past, full, and future behav-

iors of a passive s/s system ¥ = (V; X, W), and let Qﬂgst, QUE;S“ Qﬁgst be

the past, full, and future behaviors of the anti-passive dual ©F = (VI 2, W).
Then

1) anast is a mazimal nonpositive S* -invariant subspace of k* (W).
2) QUqu is a mazimal nonpositive anti-causal S-reducing subspace of k*(W).
3) Qﬁﬁjt is a mazimal nonpositive S -invariant subspace of k3 (W).
4) QUgst = wfull Nk (W)
5) anull vn€Z+ Snwpast
6) anut = 7T+2Ufull
7) Wy = ﬂn€Z+{w< ) € K*(W ‘ TS w € Qﬁfut}
t
8) QHIX):ast - (mgast) anull - (anull) ) and anut - (anit)[L]

Proof. Claims 1)-7) are proved in the same way as in Theorem 2.8, either by
repeating essentially the same argument with ¥ replaced by X', or by applying
Theorem 2.8 to the passive dual X, of > and then doing a time reflection and
replacing —W by W to get the anti-passive dual 7. If one chooses the second
alternative one needs to know the connections between 20, QHEFL ], and 250
explained in Lemma 3.5 below.

The three identities in Claim 8) are in principle proved in the same way,
so we only prove one of these. If z(-),w(-)) and let 27(-),w'(:)) are stable
externally generated trajectories of ¥ and %I, respectively, then by Lemma
3.2, [w(-), w'(-)]x2owy = 0. This implies that Qﬂfuu C (W5, Since W, is

maximal nonpositive and (20%,,)!*! is nonpositive, this implies that QﬂfEuTu =

(25) . O
Lemma 3.5. Let 20 be a closed subspace of k*(W), and define Wy by (2.15).
Then _

w =l ng2ow),  wlH =x 2 (3.6)

Conversely, if (3.6) hold, then 20, = W N k2(W) and W_ = 7_20. Here
QU[JI“ is the orthogonal companion of W in k2. (W) and 0™ is the orthogonal
companion of W in k*(W).

Proof. For eachw_ € k* (W) and w € k*(W) we have [w_, w|i2on) = [w_, T_w];2 o).
This gives

(r_20)F :{w € k? (W)‘ w_, wyl2 oy = 0 for all w), € 7_ QU}
:{w Gk‘z(W)‘w ﬂwkz(w)—OforalleQU}
w_ € k* (W)‘ w2y = 0 for alleQU}
= N k2 (W)
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Thus, if 20_ = 7_27, then ! = i n k% (W). Conversely, if D) (o

20 N k2 (W), then by the above computation, ! = (7_20)), and hence
W_ = (WY = ((r_20)HH = 7 9pl.

For the second half of (3.6) we use essentially the same computation to get

(recall that (20H)H = 97 since 20 is closed)

(m, 2o

{w+ € k2 (W) } [wy, wylgz ) = 0 for all wy € mﬁﬁm}
{w+ € k2 (W) ‘ (W, T w2y = 0 for all w € Qﬂm}
{w+ € k2(W) ‘ [wi, w]gzony = 0 for all w € QUM}

= (WHHYH N2 (W) = W k2 (W).

Thus, if 20, = 29 N k2(W), then 205 = ((r 204 = 7, 990, Con-
versely, if QHEFL - 7 W then the above computation together with the fact
that 20, is closed gives

W, = (W) = (rwE)Y = (ry ) H =02 (w). O
Definition 3.6. Let W be a Krein space.

1) A mazimal nonpositive S* -invariant subspace of k* (W) is called a anti-
passive past behavior on the Krein (signal) space W.
2) A mazimal nonpositive S-reducing anti-causal subspace of k*(W) is called
a anti-passive full behavior on the (signal) space V.
3) A mazimal nonpositive S% -invariant subspace of k% (W) is called a anti-
passive future behavior on the (signal) space V.
Theorem 3.7. Let VW be a Krein space.

1) If 0" is an anti-passive full behavior on 20, and if we define QUIL and
)il by

w o =wink2w), W =0 (3.7)

then 20" and QHL are anti-passive past and future behaviors on VW, respec-

tively, and 201 can be recovered from 26" and from Qﬂl by the formulas

wh=\/ s, (3.8)
w'= N {w) e W) |7 5"wewl}. (3.9)

2) [fﬂlﬂ is an anti-passive past behavior on W, and if we define 201 by (3.8),
then W' is an anti-passive full behavior on W' and 201 = Wi n k2 (W).

3) If QUL is an anti-passive future behavior on W, and if we define 257 by
(3.9), then W' is an anti-passive full behavior on W and 20} = 7, 201,
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Proof. This is the anti-passive version of Theorem 2.11. O

Lemma 3.8. Let 20, be a passive future behavior on a Krein space W. Then
the set of all w'(-) € QULLH with finite support (i.e., wi(k) = 0 for all k in some
interval [m,o0)) is a dense subspace of QH[JFH.

Proof. The set 0% := QHEFL Vis an anti-passive future behavior on W. By (3.7)
and (3.8),

wh =W =7, \/ S"WNREW) = \/ 7.S"WNEW)),

neZ* neZ*

where each sequence in 7. S™"(20" N k2 (W)) has finite support. O

In some cases the following simple lemma is also useful.
Lemma 3.9. Let 20 be a closed S-reducing subspace of k*(W), and define
0. by (2.15). Then

S, cw,, S =l (3.10)
S =w_, Swcat (3.11)

Proof. The two inclusions in (3.10) and (3.11) are obvious. That the equality
in (3.11) holds follows from (2.21). To prove the equality in (3.10) we use
Lemma 3.5 and the fact that 201 is S-reducing to compute

St = 1 S W = 7, 71y 0 ST = 0 = 9t O

Remark 3.10. The following analogue of Remark 2.15 is true: If 0T is a S-
reducing subspace of k*(WW) with the property that 90 is nonpositive and
that 7_20 contains some maximal nonnegative S_-invariant subspace 20_ of
k% (W), then 20 is given by (2.17). This can be proved by applying the extended
version of Claim 2) to the orthogonal companion 20 of 9, using Lemma
3.5.

4 The Hilbert Spaces H(20.) and H(20™)

In this section we shall present two special Hilbert spaces that play a central
role throughout the rest of this article. Among others, they will be used as the
state spaces of two of our canonical realizations of a passive behavior. These
two spaces are special cases of the Hilbert space H(Z) constructed in [AS08],
where Z is a maximal nonnegative subspace of a Krein space K. We begin
with a short review of those results in [ASO8] which are relevant here.
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The Hilbert Space H(Z). Let Z be a maximal nonnegative subspace of the
Krein space K, and let £/Z be the quotient of X modulo Z. We define H(Z2)
by

H(Z)={h e K/Z |sup{—[z,z]c | x € h} < c0}. (4.1)
It turns out that sup{—[z,z|x | * € h} > 0 for all h € H(Z), that H(Z) is a
subspace of I, that H(Z) is a Hilbert space with the norm

1/2
HhHH(Z) = (sup{~[zalx |z €h}) ", heH(2) (4.2)
and that H(Z) is continuously contained in X' /Z. We denote the equivalence
class h € K/Z that contains a particular vector x € K by h = z + Z. Thus,
with this notation, (4.1) and (4.2) can be rewritten in the form

HZ)={z+Z2cK/Z||z+ Z||${(Z) < 00}, (4.3)

Hx - ZHj{(a = (sup{—[x +z,x+ 2|z € Z}), x € H(Z). (4.4)

A very important (and easily proved fact) is that if we define
HY(Z) = {oF + 2 | 2F € 2111}, (4.5)

then H°(Z) is a subspace of H(Z). However, even more is true: H°(Z) is a
dense subspace of H(Z), and for every 2f € ZIH it is true that

It + 23z = — [, 21, e 21 (4.6)

Furthermore, it is easy to compute the inner product in H(Z) of a vector in
H°(Z) with any vector in H(Z). To explain how this is done we introduce the
notation

KZ)={zeK|xz+ZecH(Z)} (4.7)

Thus, H(Z) ={z+Z | x € K(Z)}, and K(Z2) is the domain of the restriction
of the quotient map 7z := x — x + Z to those x € X for which mzx € H(Z).
Let us denote this restriction by R and interpret it as a map X — H(Z) with
domain K(Z). Then R is a closed and surjective linear operator; this follows
from the definition of K(Z) and the fact that H(Z) is continuously contained
in X/Z (for the closedness it is important that we use the H(Z)-norm in
the range space). In particular, R has a bounded right-inverse H(Z) — K.
Moreover, if z,, € K(Z) and z, + Z — x + Z for some z € K(Z), then there
exists a sequence z, € Z such that x,, + 2z, — x in K; this is true because
H(Z) is continuously contained in X'/Z and 7z has a bounded right-inverse.
The rule for computing the inner product of a vector z' + Z € H°(Z) and a
vector z + Z € H(Z) is the following:

(M 4+ 2,04+ 2z = —[h 2]k, e zZ2H zeK(2) (4.8)
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See [AS08] for more details.

In this article we shall need the results cited above with either K = k% (W)
for some Krein space W and Z = 20, for some passive future behavior 20

on W, or K=—k2(W) and Z = W™ for some passive past behavior 20 on
W, interpreted as a maximal nonnegative subspace of —k? (W).

The Hilbert Space H(20.). Let 20, be a given passive future behavior
on a Krein signal space W, i.e., 20, is a maximal nonnegative S -invariant
subspace of k% (W). We take K = k% (W) and Z = 20 in the discussion above,
and adapting our earlier formulas to this case we get the following result.
Theorem 4.1. Let 0. be a passive future behavior on the Krein space k% (W).
Define

H(W ) = {hy € B2 (W)/20, | SUP{—[’LUJranr]ki(W) | wy € hy} < oo}, (4.9)

and define ||-|[320,) by

1/2
= (Sup{—[eranr]ki(W) | wy € h+}) / g hy € H(204).
(4.10)
Then H(204) is a Hilbert space with the norm ||-||x,) that is continuously
contained in k3 (W)/20,. The set

[ e,

HOW,) = {w + 20, |w] €W} (4.11)
is a dense subspace of H(20,), and
lwh + W 3w,y = —[wh () wh iz ory,  wh € 208, (4.12)

The set
K(W,) = {w () € KLOWV) [wi () + 20, € H(,)} (4.13)
is a subspace of k3 (W), and

(w] () + W, w(-) + W ) pgan, ) = —[wh (), w ()2 o).

N (4.14)
if wh (-) € W and w, (-) € K(20,).

The restriction Ry of the quotient map may, : wy(-) — w4 (-) + Wy to those
wy () € kL(W) for which wan, wy € H(W..), regarded as an operator k1 (W) —
H(20,), is closed and surjective with domain K(20,), and it has a bounded
right-inverse. Moreover, if w%(-) € K(20;) and w* () + 2 — w(-) + W,
in H(Wy) for some wi(-) € K(2W,.), then there exists a sequence ¥ (-) € W
such that w¥ (-) + 25 (-) — wi () in L (W).

Lemma 4.2. Let 20, be a passive future behavior on the Krein space V.
Then the set

HO(W,) = {w! + 20, |wl e QHE] and wh. has finite support}
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(which is contained in H°(2W,)) is a dense subspace of H(2,) .

Proof. Let wi S QHEFL]. Then by Lemma 3.8, there exists a sequence w” (-) €

QULLL }, where each w” has finite support, such that w? — wl in k3 (W) as

k — oo. This implies that [w* — w],w? — wi]ki(w) — 0 as n — oo, and
according to (4.12), this means that w® + 20, — wh 4+ 20, in H(20,) as
n — oo. Since H°(20, ) is dense in H (20, ), this proves the lemma. O

Lemma 4.3. If w,(-) € K(20,), where 2, is a passive future behavior on
the Krein space W, then Stwy € K(204) and

157wy + W4 1w,y < Nlws + 204 [ Fan, ) + [w(0), w (0)]y. (4.15)

Ifwy(-) € WM then w (-) € K(20,) and (4.15) holds as an equality.

Proof. We have for all w, () € K(204) and all z € 20,

= [STws + 2, STwy + 2z ) = —[SL(wy + 552), S (ws + S42)]k2 o)
= —[ws + Siz, 0 + Sizliz o) + [W4(0), w4 (0)]w
< lwy + Wy [Fan, ) + [w1(0), wi (0)]w,

From here we get (4.15) by taking the supremum over all z € 20,. If w, €
25 then w, + 20, € HO(2W,) C H(2W,), and by (4.10),

IS5 W + 2 3yan, ) — lws + 204 (300,

= —[Stwy, Siw-i-]k%r(W) + [w+aw+]k2+(W) = [04+(0), w(0)jw. O

The Hilbert Space H(201). Let 20_ be a given passive past behavior on
a Krein signal space W, i.e., 20_ is a maximal nonnegative S_-invariant sub-
space of k? (W). Then W is a maximal nonpositive S*-invariant subspace
of k2 (W), and hence it can be interpreted as a maximal nonnegative S*-
invariant subspace of the anti-space —k? (W). This time we take K = —k* (W)
and Z = 25" in the definition of H(Z). Adapting our earlier formulas to this
case we get the following result.

Theorem 4.4. Let 2_ be a passive past behavior on the Krein space k* (W),

and interpret W as o mazimal nonnegative S* -invariant subspace of the

anti-space —k*(W). Define
R = {he € —k2 W)/ | sup{[w- (). w-( )z ow) | w-() € h-f < 00},

(4.16)
and define ||-||H(m[_l]) by

1A= gy = sup{lw- (), w-(Vezowy | w-() € b} (417)
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Then H(QU[_H) is a Hilbert space with the norm H'HH(%M) that is continuously
contained in —k:%(W)/QU[_H The set

HO(WM) = {w_ () + W | w () e w_} (4.18)
is a dense subspace of H(2™), and
Ju + 22 ) = [w-()y oz owy, wo() €W (4.19)
The set
KM = {fw_() € EOW) | w_(-) + W € 1)y (4.20)
is a subspace of k* (W), and

(w- () + 0 () + ), = o (), vz ows o

The restriction R_ of the quotient map myyu: w_(-) — w_(-) + 2w 1o
those w_(-) € k>(W) for which mnw_ € H(QH[}]), regarded as an opera-

tor K2 (W) — H(QU[_H), is closed and surjective with domain IC(QITM), and it
has a bounded right-inverse. Moreover, if w* () € /C(QILL) and wk (- )+QIT[ ]
w_ () + W in =@M for some w_(-) € KM, then there exists a se-
quence ¥ (+) € W such that wk () + 25 () = w_(-) in K2(W).
Lemma 4.5. Let 20_ be a passive past behavior on the Krein space W. Then
the set

HY = {w_ + W | w_ € W_ and w_ has finite support}

(which is contained in HO(QU[_H)) is a dense subspace of H(QU[_H) :

Proof. The proof of this lemma is analogous to the proof of Lemma 4.2. [

Lemma 4.6. If w_(-) € K(20™), then S_w_ € K20 and

IS—w- + 22 ) < o + W2 — T (1), wo (<D (4.22)

H(wH)

Ifw_(-) € W_, then w_() € /C(QU[_H) and (4.22) holds as an equality.

Proof. The proof of this lemma is analogous to the proof of Lemma 4.3. [
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5 The Output and Input maps

The Output Map €s. We begin by presenting the output map of a passive
s/s system.

Lemma 5.1. Let ¥ = (V; X; W) be a passive s/s system with future behavior
Wi If (x(-),w(:)) is a stable future trajectory of 3, then

w(-) € K(Waw) and [[w(-) + W[, < [2(0)]|x- (5.1)

Proof. Let (z(-),w(-)) be a stable future trajectory of X, let 2(-) € Wiy,
and let (z1(-),2(+)) be the corresponding externally generated stable future
trajectory of 3. Then (z(-) + z1(-), w(-) + z(+)) is a stable future trajectory of
¥, and by (1.8),

—[w() +2(),w() + 2( )iz oy < [l2(0) + 21 (0)[|% = |2(0)|%-

Taking the supremum over all z € g, we find that (5.1) holds. O

Lemma 5.2. Let ¥ = (V; X; W) be a passive s/s system with future behavior
Wiui. Then the formula

Q:gxo = {Uhr + anut

w4 (+) is the signal part of some stable future (5.2)
trajectory (z(-),wy(-)) of ¥ with z(0) = xg '

defines a linear contraction €51 X — H(Wiy)-

Proof. Let (x(:),w(-)) be a stable future trajectory of X. If (z1(-),w:(+)) is
another stable future trajectory of ¥ with the same initial state z;(0) = 2(0),
then wy(-) — w(-) € Wiy, and conversely, if wq(-) — w(-) € Wiy, then there
exist a stable future trajectory (x1(-),ws(-)) with z1(0) = x(0). Thus, the set
of all signal parts w(-) of the stable future trajectories (z(-),w(-)) of ¥ with
fixed initial state 2(0) = xq is an equivalence class in k% (W)/Wiy. By (5.1),
the map €x from xy to this equivalence class is a contraction X — H(QWiy).
It is easy to see that this map is linear, and by Part 5) of Lemma 2.3, the
domain of €y is all of X. O

Definition 5.3. The contraction €x in Lemma 5.2 is called the output map
of X.

In our next lemma we need the subspace &g, of k2 (W) which is defined as

follows:

&he = {w() € EOW) | w + Wiy € R(Ex) }. (5.3)

We remark that, by Lemma 5.1, it is always true that &%, C K(Wsy), where
K (W) is the space defined in (4.13).
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Lemma 5.4. Let ¥ = (V; X; W) be a passive s/s system with future behavior
Wi, and output map s, and define S, by (5.3). Then every stable future
trajectory (z(-),w(+)) of ¥ satisfies

w(-) € 6, and Exz(n) = (5%)"w + Wiy, n € ZT. (5.4)

Proof. That w(-) € &, follows immediately from (5.3). To get (5.4) we simply
shift the trajectory (z(-),w(-)) to the left n steps and apply (5.2) with xg
replaced by z(n). O

Definition 5.5. By an unobservable future trajectory of a passive s/s system
Y we mean a (stable) future trajectory of ¥ of the type (x(-),0) (i.e., the
signal part is identically zero). The unobservable subspace s, of ¥ consists of
all the initial states x(0) of all unobservable trajectories of 3. The system ¥
is observable if Us; = {0}.

Lemma 5.6. The unobservable subspace Us of a passive s/s system ¥ =
(V; X, W) is equal to the null space of its output map Cs.

Proof. Tt follows directly from Definition 5.5 and Lemma 5.4 that if ¢ € Uy,
then 0 C €gxg, and hence Cxxq is the zero element in H (W, ). Conversely,
suppose that zy € /\/((’Ig), ie., €gxy = Wyy. By Part 5) of Lemma 2.3,
there exists a stable future trajectory (x1(-),ws(-)) of ¥ with x1(0) = o,
and by Lemma 5.4, wy(-) € €sxg = Wiy Let (x2(+), w1(-)) be the externally
generated future trajectory of ¥ whose signal part is w;(-) (cf. Lemma 2.5),
and define z(-) = z1(-) — x2(+). Then (z(-),0) is a stable future trajectory of
¥ with z(0) = zo, and hence xy € is.. O

Lemma 5.7. Let ¥ = (V; X, W) be a passive s/s system with output map Cs,,
and define &%, by (5.3).

1) &% is invariant under S, i.e., STw € GF, whenever w € Sg,.

2) To each [2‘2] €V, there exists some w € &, such that

ey = STw + Wiy,
(’:EZL‘Q =w+ Qﬂfut, (55)
wy = w(0).

3) A vector [u0] € [5%] satisfies the condition [1%})] e V for some x, € X if

and only if
wy = w(0) for some w € Exxy. (5.6)

Proof of 1).. The S -invariance of &(X) follows from the fact that every left-
shifted stable future trajectory of ¥ is still a stable future trajectory of X.
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Proof of 2). Let [gﬁuﬂ € V. According to assertion 7) of Lemma 2.3, there
exists a stable future trajectory (x(-),w(-)) with x(0) = o, z(1) = x;, and
w(0) = wy. In particular, w € &f,. By applying (5.4) with n = 0 to this

trajectory we see that (5.5) holds.

Proof of 3). That [g}é} € V implies (5.6) follows from (5.5). Conversely, if
(5.6) holds, then there exists some w(-) € k% (W) with w(0) = wp such that
w—+ Wiy, = Cxxo. By definition, this means that there exists some (z1(-), w(-))
with w(0) = wy which is a stable future trajectory of ¥. By Lemma 5.4,
Cy21(0) = w+Wiy. Thus, Ex(xg—21(0)) = Wiy, and by Lemma 5.6, xo—z(0)
belongs to the unobservable subspace of X'. This means that there exists a
stable future trajectory (z2(+),0)) of ¥ (whose signal part is identically zero)
with 22(0) = x9 — 21(0). Define z(-) = 21(-) + x2(-). Then (z(-),w(-)) is
a stable future trajectory of ¥ with z(0) = zo and w(0) = wp, and hence
[mﬁ))} ev. -
wo

Lemma 5.8. If the passive s/s system ¥ = (V;X; W) is observable, then
(x(-),w(-)) is a stable future trajectory of ¥ if and only if (5.4) holds.

Proof. The necessity of (5.4) follows from Lemma 5.4 and (5.3). Conversely,
suppose that (5.4) holds. According to (5.3) there exists at least one stable
future trajectory (z1(-),w(-)) of ¥, and by Lemma 5.4, (5.4) holds with z(-)
replaced by z1(-). By Lemma 5.6 and the observability assumption on 3, €s
is injective, and hence (5.4) implies that z(n) = z;(n) for all n € Z*. This
implies that (z(-),w(-)) is a stable future trajectory of ¥. O

Lemma 5.9. Let ¥ = (V; X, W) be a passive s/s system with oulput map
Cx. Then (x(-),w(:)) is a stable future trajectory of ¥ if and only if x(-) =
x1(:) + z2(+), where (x1(-),0) is an unobservable future trajectory of ¥ and
(xo(+),w()) is a stable future trajectory of 3 with x9(0) € (N(Q:g))J‘. This
decomposition is unique, and (5.4) also holds x(-) replaced by xs(-).

Proof. Trivially, if z(-) has a decomposition of the type described in the lemma,
then (z(-),w(-)) is a stable future trajectory of X.

Conversely, let (z(-),w(-)) be a stable future trajectory of . Define z1(0) =
Pyx(0) and z(0) = P x(0). Then z(0) = z1(0) + 22(0) and 2:1(0) € Us.
The latter condition implies that 1(0) is the initial state of some unobservable
trajectory (z1(-),0) of ¥. Define x5(-) = x(-) — 21(-). Then (x2(:),w(-)) is a
stable future trajectory of ¥ and z(-) = x1(-) + x2(+). That (5.4) also holds
x(+) replaced by z5(-) follows from the fact that (z5(+),w(+)) is a stable future
trajectory of X. O

)
)
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The Input Map By. We now proceed to the construction of the input map
By, of a passive s/s system X.
Lemma 5.10. Let ¥ = (V; X; W) be a passive s/s system with past behavior

Wast- Then there exist a unique linear contraction By, : H(Qﬁpast) — X whose
restriction to HO(QUpaSt) s given by

By (w_ +Whl) = 2(0), w_(-) € Wpast, (5.7)

where (z(-),w_(-)) is the unique stable externally generated past trajectory of
Y. whose signal part is w_(-) (cf. Lemma 2.5).

Proof. Let w(-) € Whiast, and let (z(-), w(-)) be the externally generated stable
past trajectory of ¥ with signal part w(-). Then by (2.8) and (4.19)

l2(0)[1% < [w(), w2 ow) = llw+ ﬁﬁpastHH(gm[é

This implies that the mapping w + Qﬁpﬁst — x(0) is a linear contraction
HO(QﬂpaSt) — X. Since HO(QHpast) is dense in H(Qﬁpast) this mapping has
a unique extension to a linear contraction By : H(QHLJ;]St) — X. O

Definition 5.11. The contraction By, in Lemma 5.10 is called the input map
of X.

Lemma 5.12. Let ¥ = (V;X; W) be a passive s/s system with past behav-
1017 Whast, future behavior Wiy, input map By, and output map Cs. Then
(x(),w(-)) is an externally generated stable past trajectory of ¥ if and only if

w € Wiast and z(n) = Bx(S-"w + Qﬁpast) n <0, (5.8)

and (x(-),w(-)) is an externally generated stable full trajectory of ¥ if and only
of
w € Wiy and x(n) = By(n_S "w + Qﬁgﬁlt), n € Z. (5.9)

In the latter case we have, in addition,

Csx(n) = 1S "w + Wiy, n € Z. (5.10)

Proof. The proof of the claim about past trajectories is an easy modification
of the proof of the first claim about full trajectories, so let us only prove the
two claims about the full trajectories.

Let (x(:),w(-)) be an externally generated stable full trajectory of 3. Then
w(-) € Wy, and (5.7) implies that (5.9) holds with n = 0. By shifting the tra-
jectory to the left or right |n| steps and applying (5.7) to the shifted trajectory
we get (5.8) for all values of n € Z.

34



Conversely, let w(-) € 2Wgy. Then there exists a sequence z(-) such that
(z(-),w(-)) is an externally generated stable full trajectory of ¥, and by the
first part of the proof, the sequence z(-) is given by (5.9).

That also (5.10) holds follows from Lemma 5.4 and the fact that the restriction
to ZT of any left- or right-shifted externally generated stable full trajectory of
3] is a stable future trajectory of 3. O

Definition 5.13. By the finite time exactly reachable subspace of a passive
s/s system X = (V; X, W) we mean the set

{SL’()GX

by the infinite time exactly reachable subspace of ¥ we mean the set

{SL’QEX

and by the H(%Lﬁ}st)-exactly reachable subspace of X we mean the range of
the input map By, of 3. The system X is exactly reachable in one of the above
senses if the corresponding exactly reachable subspace is all of X. The closure
of the first of these three subspaces is called the (approximately) reachable
subspace. Finally, ¥ is approximately reachable or controllable if the approz-
imately reachable subspace is all of X .

Lemma 5.14. All the different types of exactly reachable subspaces in Defini-
tion 5.13 have the same closure, equal to the approximately reachable subspace.

xo = x(0) for some (stable) past
trajectory of ¥ with finite support

xo = x(0) for some stable extemally}

generated past trajectory of X

Proof. The three different types of exactly reachable subspaces defined in Def-
inition 5.13 are (in the order that they appear) the range of the restriction of

By, to the space Hg(ﬁﬂgjst) defined in Lemma 4.2, the range of the restriction

of By, to the space HO(QITE;]St), and the full range of By. That these three
subspaces have the same closure follows from the fact that when one restricts
the bounded linear operator By to a dense subset of its domain, then the

closure of its range remains the same. O

Lemma 5.15. If ¥ is a passive forward conservative s/s system, then the
input map By, of X is an isometry. If, in addition, 3 is controllable, then By,
18 unitary.

Proof. That By is an isometry follows from the fact that we have equality in
(2.8) whenever 3 is forward conservative. In particular, R(%g) is closed. If,

in addition, X is controllable, then R(%g) is dense in X', and hence equal to
X. O
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Lemma 5.16. In the setting of Lemma 5.12, the subspace

v xf((i)i) c [ﬁ} (z(4),w(-)) is a stqble externally (5.11)
w(—1) wl | generated past trajectory of X

of V is dense in 'V if and only if the system 3 is controllable, and it is equal
to V if and only if ¥ is infinite time exactly reachable.

Proof. Suppose that V is dense in V. This implies that the infinite time exactly
reachable subspace is dense in X', and by Lemma 5.14, this implies that X is
controllable.

Conversely, suppose that ¥ is controllable. By Lemma 2.3, every stable exter-
nally generated past trajectory of ¥ can be extended to a stable externally
generated full trajectory of ¥, and equation (5.11) can be rewritten in the
equivalent form (where we have shifted the extended trajectory one step to
the left)

v igé; c [iﬁ} (z(+),w(:)) is a stz‘ible externally (5.12)
w(0) wl | generated full trajectory of X

Let W = =Y [+] U be a fundamental decomposition of W. This induces a
fundamental decomposition

- [§]-[3]mlf

of the node space K. We claim that the orthogonal projection of V onto the
uniformly positive subspace [%} in this decomposition is dense in [%} This
projection is equal to

{[ o )] < [4] | (2(-),w(-)) is a stable externally}

Pyw(0 generated full trajectory of ¥

The above set does not change if we replace the trajectory (z(-),w(-)) in
the parametrization above by (z(:),w(:)) = (x1(-) + 22(:), wi(-) + wa(+)),
where (z1(+),w1(+)) is a stable externally generated full trajectory of ¥ and
(2(+),wsa(+)) is a stable externally generated future trajectory of ¥ (since the
result is still a stable full externally generated trajectory of X). By part 4) of
Lemma 2.3, if one first fixes (x1(-), wy(+)), and hence fixes x(0), then it is still
possible to choose (z(+), we(+)) in such a way that Pyw(0) = Py(w1(0)+wy(0))
is an arbitrary vector in . This implies that the orthogonal projection of 1%

0
onto [%} is {«Z\;o }, where X} is the infinite-time exactly reachable subspace of

Y. This is a dense subspace of {%}, as claimed.
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Since V' is maximal nonnegative, it has a graph representation of the form

=

for some contraction [4 B]: [¥] — BS] The subspace V is equal to

|

Ax+Bu
T
Cx+Du

xEXanduGL[}, (5.13)

Ax+Bu
T
Cx+Du

r € Xy anduEL{}. (5.14)

Since H/ﬂ is dense in [ ], this implies that V is dense in V. It is equal to V
if and only if Xy = X, i.e., if ¥ is infinite time exactly reachable. O

The Adjoints of €5 and By. The rest of this section is devoted to the study
of the adjoints of the input and output maps of a passive s/s system.

Lemma 5.17. Let ¥ = (V; X, W) be a passive s/s system with past and future
behaviors Was, and Wiy, Tespectively, and let Y= (V[“; X, W) be the anti-

passive dual of ¥ with past and future behaviors QULla]St and QHHQ, respectively.

1) There exists a unique contraction By : H(Wia) — X such that (z7(-), w'(+))
is an externally generated stable future trajectory of X1 if and only if
wt e W, and

z'(n) = By (S7)"w', nezt, (5.15)

2) There ezists a unique contraction Csi: X — H(Qﬁgﬁ}st) satisfying

Corz(—n) = (S-)"w' + Wl (5.16)

for every stable past trajectory (x'(-),w'(-)) of XT.

Proof. Claim 1) is the anti-passive version of Lemma 5.12, and Claim 2) is
the anti-passive version of Lemma 5.4. They can be proved by either repeating
the proofs of these two lemmas, or by applying Lemmas 5.12 and 5.4 to the
passive dual X, of X. O

Definition 5.18. The contractions Byi and Csi are called the input and
output maps of XF, respectively.

Lemma 5.19. Let ¥ = (V; X, W) be a passive s/s system with input map By,
and output map Cs;, and let X1 be the anti-passive dual of ¥, with the input
map By and output map Csi. Then By = €% and Cxr = BY,.

Proof. Let Was, and Wy, be the past and future behaviors of ¥, respec-
tively. Let (x(-),w(-)) be an externally generated past trajectory of ¥, and let
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(z7(+),w'(-)) be a stable past trajectory of XI. Then, by (3.3) and (5.8),

(B (w + 2Whik), 21(0)) e = (2(0), 27(0 >>
-0 'Ol
= (U}( ) + past7 T( ) QUP&St)H(mLt]st)
= (U}( ) +20 past7 Q:fo <0))'H(Qﬁ£i;lt)

This implies that (Bgh,z")xr = (z, QZMT) Hani] for every h € HO(QUpaSt)

and every 2f € X. Since HO(QUpaSt) is dense in H(Qﬁpa]st) this implies that
%2 — Q:ET.

The proof of the fact that €sx+ = B3, is similar to the one above, and it is left
to the reader (start by taking a stable future trajectory (x(-),w(:)) of X and
a stable externally generated future trajectory (x'(-), w'(-)) of 3. O

Lemma 5.20. If ¥ is a backward conservative passive s/s system, then the
output map Cs, of ¥ is a co-isometry. If, in addition, ¥ is observable, then €x
18 unitary.

Proof. The first claim follows from the fact that if ¥ is backward conservative,
then the anti-passive dual X1 is forward conservative, and hence its input map
By = € is an isometry. The second claim follows from the first claim since
¢y is injective iff ¥ is observable. O

6 The Past/Future Map of a Passive Full Behavior

We begin by constructing the past/future map of a given passive full behavior
25, and then investigate what can be said about this map in the case where
27 is the full behavior of a passive s/s system 3.
Lemma 6.1. Let 20 be a passive full behavior on W with the correspond-
ing passive past behavior W_ = w_W and passive future behavior W, =
0 N k2 (W). Then there exists a unique contraction I'gy: H(W) - H(W,)
satisfying

Cog(m_w + Qﬁ[_ﬂ) =myw~+ Wy, w e W. (6.1)

Proof. Since 20 is nonnegative in k*(W) and 20, = 20 N k% (W), we have for
all w e W and all z € W,

0<[w+zw+zlizoy) = [T-w, T_wlie2 o) + [Trw + 2, 7w + 2]z W)
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Consequently;,

L
—[mw + 2z, mpw + 2z ) < [Tow, Tow]iz ) = [lTow + g H?{(mﬂ“)
for every w € 20 and every z € 20,. This implies that 7 w + 20, € H(2,),
and that

7w + D fogaw,y < llr-w + W (6.2)

}HH(QB[,“)'

If both w; € 2 and wy € W and 7_(w; — we) € QU[,“, then by the above
argument, 7, (w; — we) € W, and

]”H(mﬂf]) =0

7w — 7wy + W flrgan, ) < [l (wr — ws) + 28
Consequently, 7wy —mwe € 20, Thus, formula (6.1) defines a (unique) lin-
ear contraction H°(20™) — H(20,), and since HO(20M) is dense in H/(20M),
it has a unique extension to a linear contraction I'yy: H (20 — H(20,). O

Definition 6.2. The contraction I'gy: H(QIT[_H) — H(20,) in Lemma 6.1 is
called the past/future map of the full behavior 0. If A is the full behavior
of a passive s/s system 3, then we also call T'sy the past/future map of ¥ and
denote it by I's.

Lemma 6.3. The past/future map Us, of a passive s/s system 3 = (V; X, W)
factors into the product

PZ = (’:z%z (63)

of the input map By, and the output map Cs, of 3. In particular, if ¥;, 1 = 1,2,
are two externally equivalent passive s/s systems, with input maps By, and
output maps Cs,, then €5, By, = €5, By,.

Proof. Let (z(-),w(-)) be an externally generated stable full trajectory of X.
Then the restriction of (z(-),w(-)) to Z~ is an externally generated stable past
trajectory and the restriction of (z(-),w(-)) to Z" is a stable future trajectory
of ¥. Thus, by (5.8), (0) = Byr_w and by (5.4), €xx(0) = 71 w—+Wiy,. Thus,
the two operators I'gy and €xBy, coincide on the dense subspace HO(QH[,L ])
of H(QU[_H), and hence on all of H(QU[_H). If the systems %;, i = 1,2 are
externally equivalent, then they have the same full behavior 20 and hence the
same past/future map [gy. Thus €5, By, = 'y = €5, By, . O

Lemma 6.4. Let 25 be a full behavior with the corresponding past behavior
W _ and future behavior W .. Then there is a unique contraction Uggy: H(W, ) —
H(QIT[_H) satisfying

Loy (myw’ +20,) = m_w' + b)(ial w' € (6.4)
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Proof. The proof is the same as the proof of Lemma 6.1 with the following
replacements: We interchange 7_ < 7y, 20 < -0 20, < —pt =
— W N E2(W) and 2« —wH N E2Z(W). O

Definition 6.5. The contraction Dgy;: H(QU[_H) — H(W,) in Lemma 6.1
is called the future/past map of the anti-passive full behavior Q0. If 251
is the full behavior of a passive anti-causal s/s system X', then we also call
Dyoyie) the future/past map of T and denote it by Tsy.

Lemma 6.6. The future/past map Ui of the anti-passive full behavior 2213&1]1
induced by a anti-passive reflected s/s system ST factors into the product

FET == Q:ET%ET (65)

of the input map By of BT and the output map Cxt of 1.

Proof. The proof is analogous to the proof of Lemma 6.3. U
Lemma 6.7. The adjoint of the past/future map Tsy of the full behavior 20
is the future/past map g1y of the dual behavior 2.

Proof. This follows from Lemmas 6.3, 5.19, and 6.6. 0

Lemma 6.8. Let 20 be a passive full behavior with the corresponding passive
past behavior W_ = 7_20 and passive future behavior W, = WN LA (W). Let

w_ € /C(QU[_H), wy € K(W,.), and suppose that
wy + W, = Tgn(w_ + W), (6.6)

Denote w := w_ +w, Then, for alln € Z+, n_S™"w € /C(QU[_H), T,.ST"w €
IC<QI]+)7

TS+ W, = Tap(r_ S "w + W), nezt, (6.7)
—n—1 [L]}2
HTF*S w + 2 ”'H(ﬂﬁ[f]) (6 8)
_n 1 :
= |78 "w + QHUH;(%% + [wy(n),wi(m)y, neZ".
Moreover, there exists a sequence w* € 20 such that
T ST WP + W, — 1 ST w4+ W, in H(W,), neZ", (6.9)
7 Sk + W s + W i HP),  nezt,  (6.10)
Tt — wy in KL(W), (6.11)

as n — 00, where the convergence in (6.9) and (6.10) is uniform in n.
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Proof. Step 1: Proofs of (6.9)—(6.11) with n = 0. Since HO(QU[_H) is dense in
H(Qﬂ[f]), there exist a sequence w* € 20_ such that w* + 20 — w_ 4 251

in H(QU[,“) as k — 0o. As 20 = 7 20, it is possible to extend each w* to
a function w* € 20, i.e., w* = 7_w*. Then (6.10) holds with n = 0 for this
sequence w”. By the definition of I's;,

mow () + W, = Dop(r_w*(-) + W), kez’. (6.12)

Since oy € B(H(20M); H(20,), this implies that

mowk(-) + W, — Taglw_ + QIT[_H) in H(204).

This together with (6.6) gives (6.9) with n = 0. Then, by Theorem 4.1, there
exist a sequence zi € 20, such that 7 w* + zi — wy in k2 (W). If we replace
w* by @F = wh+ 2k | then (6.9) and (6.10) remain valid, and also (6.11) holds.

Step 2: Proof of (6.8) with n = 0. Let w* be a sequence satisfying (6.9)—(6.11)
with n = 0. Then S~'w"* € 20, and consequently 7_ S~ 'w* € 20_. By Lemma
46, S_m_S"'wk € KM and

— 1 — 4
IS_m_s™rwk + 2, ) = oSt + 2

= [(m_S7 ") (=1), (m-S"w") (= 1)
Here S_7_S~lw* = 7_w* and (7_S~1w*)(—1) = w*(0) = w, (0) where w, =
m,w. Consequently,

_ k [L]12

+ [w*(0), w*(0)]w.

_ 1
H’YT,S 1U)k + QH[, } H?—{(Qﬁ[f]

By (6.10) with n = 0 and by (6.11), the right-hand side of this identity tends to
the right-hand side of (6.8) with n = 0, so to prove (6.8) with n = 0 it suffices
to show that 7_S~ 1wk + 0 — 7_ 51w 4+ 20t in H(Qﬁ[f]) as k — 0o. We
begin by showing that the limit limy_., 7S~ wk + 2w exists in H(QU[_H).
The identity (6.13) also holds with w* replaced by w* — w’ for all k, ¢ € Z*.
From this and conditions (6.9) and (6.10) follows that m_S~*w* + W s a
Cauchy sequence in H(QU[_H), and hence 7_S~'w* + W — b, in H(Qﬂ[_ﬂ)
for some h; € H(Qﬂ[f]). We still have to show that h; = 7_S~lw + 207, By

Theorem 4.4, there exists a sequence z* € W™ such that m_w* + 28 — w_
in k2 (W). Then, by (6.11),

wh +2F =r (W + ) et s wo v =w
and

TS (wF + %) — 1S w in KL (W) (6.14)
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as k — oo. Moreover,
S (wh 4+ 2F) + W = 2 g7k + w0 by in HEOM)  (6.15)

as k — oo. By Theorem 4.4, the restriction of the quotient map w(-) —
w(-) + W to K@) is a closed operator k2(W) — H(W™), and thus
7 S~ w 4+t = hy, as claimed.

Step 3: Proof of (6.7) with n = 0. Formula (6.12) also holds with w* replaced
by S~!'w*, and by applying I'gy to m_S~tw* 4 W we get

TS W + 0, = Dap(r_ S~ b + W) = Tog(r_ 5w + 201 in H(20,)

as k — o0o. By Theorem 4.1, the restriction of the quotient map w(:) —
w(-) + Wy to K(W,) is a closed operator k(W) — H(20,), and, recalling
also (6.14), we get (6.7) with n = 0.

Step 4: Proof of (6.7) and (6.8) by induction. Suppose that (6.7) and (6.8)
hold with n replaced by m > 0. Then (6.6) holds with w_ replaced by w_ :=
m_S7™w and w, replaced by w, := 7,5 ™w. We can then repeat Steps 2
and 3 above with w_ replaced by w_ and w, replaced by w, to get (6.7) and
(6.8) with n replaced by m + 1.

Step 5: Proof (6.9) and (6.10). The assumption of Lemma 6.8 is still satisfied
if we replace w by w* — w (see, in particular, (6.12)), and hence (6.8) holds
if we replace w by w* — w. If we furthermore replace n by £ =0,1,...,n and
add the resulting identities, then we get

o 1
sk —w) + 2

n

=l (e = w) + W2+ D[ (n) = wi(n),w'(n) = wi (n)hw.

=0
(6.16)
Here the right-hand side tends to zero as k — oo, uniformly in n € Z*,
and consequently 7_S"wk + W — 7 g7mw + W in QW) as &k —
oo, uniformly in n € Z*. The uniform convergence of 7, S~ "w* + 2, to
7. .S™"w, + 20, in H(20,) then follows from (6.7) with w replaced by w* —
w. U

Lemma 6.9. Let ¥ = (V; X, W) be a passive s/s system with input map B,
past behavior Wyast, future behavior Wy, and past/future map U's,. Then the
following two conditions are equivalent:

1) (z(+),wy(-)) is a stable future trajectory of ¥ satisfying x(0) € R(’Bz);
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2) There exists some w_(-) € IC(QITpast) such that

U}+ - K(wfut),
wy + Wy = Dog(w_ + Wily) and (6.17)
z(n) = By(r_S™"(w_ +wy) + Qﬁpast) neZ’.

When these equz’valent conditions hold, then (6 17) remains true for every
( ) S K<mpast) SCLt’LSfyZTLg .T(O) %2(’11] =+ QI]paust)

Proof. We first suppose that (x(-), w(-)) is a stable future trajectory of 3 sat-
isfying z(0) € R(%g) and show that (6.17) holds for every w_(-) € K(Qﬂpast)

satisfying z(0) = By (w_ + anast)

x(1)

That w, € K(2Wpy) follows from Lemma 5.1. By assumption, l 2(0) 1 € V and
w4 (0)

z(0) = By(w_ + QUI[;}St) for some w_ € K(Qﬂpalst) By Lemma 5.2, (’ng(O)

W + slUfuta and hence wy + s.‘ZUfut - Q:E%Z(w + in[ala}st) = F (w + s.“):Upaust)
la

This proves the first two claims in (6.17), and it remains to prove the formu
for x(n) given in (6.17).

Denote w = w_ + w,. By Lemma 6.8, there exists a sequence w* € Wpn
such that 7T+w — wy in K2(W) as k — oo and 7_ST"w" + gt

past

w_ S~ w+§mpast in H(Qﬁpast) as k — oo, uniform in n € Z*. Let (2%(-), w*(-))
be the externally generated stable full traJectory of ¥ whose signal part is
wk(+) (cf. Lemma 2.5). By Lemma 5.12, z%(n) = Bx(r_S™ +QU1[Oa}St), which
tends to x1(n) = Bx(r_S™"w + QULﬁLt) as k — oo, uniformly in n € Z*. In
particular, z%(0) — Bx(w_ + Qﬁgﬁit) = 21(0) = x(0). Since the restriction of
(2%(-), wk(-)) to Z* is a future trajectory of ¥ for each k, it follows from Part
1) of Lemma 2.3 that the limit (z1(-), w4 ()) is a stable future trajectory of
Y. This trajectory has both the same initial state z(0) and the same signal
part w, () as the given trajectory (z(-),wy(-), and hence x1(n) = z(n) for all
n € Z*. This proves that the last claim in (6.17) holds.

The proof of the converse direction is based on induction over the length of
the interval where (z(-),w(-)) is a solution of ¥. We begin by showing that
if (6.17) holds, then (z(-),w(+)) is a trajectory of ¥ on the one-point interval

[0,0] = {0}.

Suppose that (6.17) holds for n = 0, 1. Thus, in particular, (0) = By (w_ +
QULﬁLt) and wy + Wey = I (w_ + QITLJQ]St) By Lemma 6.3, wy + Wey = Cxxg.

(1)

By Part 3) of Lemma 5.7, lx(o)] € V for some z(1) € X. By Part 7) of
w(0)

Lemma 2.3, there exists a stable future trajectory (zi(-), w;(+)) of ¥ satisfying
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21(0) = x(0) and w,(0) = w4 (0). By the first part of the proof, z1(1) =
B (r_ S~ Hw_ +w) +Qﬁ1[oﬁ}st). Here 7_ S~ w_ +w,) = 7_ S~ w_ +w, ) since
w1(0) = w,(0), and hence z1(1) = Bx(r_S"H(w_ + w,) + QITLJQ]St) Since we
assume that (6.17) holds (for n = 1), we get x(1) = z1(1), and consequently

z(1)
[ (0)

w4(0)
one-point interval {0}.

€ V. This proves that (z(-),wy(:)) is a trajectory of ¥ on the the

One can use essentially the same argument to show that if we know that
(x(+),wy(+)) is a trajectory of ¥ on an interval [0, k], then it is also a trajectory
on [0,k + 1], i.e., one shifts the trajectory k + 1 steps to the left, and then
apply the above argument. The invariance of the first two conditions in (6.17)
under this left-shift follows from Lemma 6.8. Thus, by induction, (z(-),w(-))
is a future trajectory of . By Lemma 2.1, this trajectory is stable. O

7 The Observable Backward Conservative Realization.

In this section we shall construct a canonical model So0¢ = (Voo : Xt W)
of a passive observable backward conservative s/s system with a given passive
future behavior 20, .
Theorem 7.1. Let 20, be a passive future behavior on the Krein space W .
Let X0 = H(20,), where H(20,) is the space defined in Theorem 4.4, and
let
ST w4204 H(24)
Vo = {[ w2, ] € [Hgfmi)} ‘ w e lC(QILJ}, (7.1)
w(0) w

where KC(20) is the space defined in (4.20). Then St = (Vot H(20,), W)

obc o

is a passive observable backward conservative s/s system whose future behavior
is equal to W, . Moreover, (x(-),w(-)) is a stable future trajectory of Sovs if

and only if

w e K(2W,) and x(n) = (S5)"w+ W, ne Z*. (7.2)

Proof. Tn this proof we denote the node space of St by &, = —H(20,) [+]
H(W,) [HW.

Step 1: %ﬁ* is a nonnegative subspace of K, . It follows from Lemma 4.3 that

%ﬁ* C Ry, and that Voﬂbi* is nonnegative in K. It is a subspace of K, since

it is a linear image of the subspace C(20,) of k3 (W).
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Step 2: Voor s closed and (Voor )1 c V22 Define Vi, by
. S* ZT+Qn+
Vipe = H Ty, ] e mﬁ”}. (7.3)
21(0)

Then Vipe C Vi since HO(QU+) C H(2,). We claim that (Vo) = Voot

o

Clearly, this implies that VO be 1s closed, and that (VQH*)M C Voﬂbi* since
(VI = (Vope) D s the closure of Vope.

obc

A vector k = L%H belongs to (f/obc)m if and only if 1, 7o € K(20,), wy € W,

and

— (w1, ST2T W )pgqan,) + (w0, 2 + W rams) + [wo, T (0)w =0, 2T e Wl

(7.4)
Since 2, is S -invariant, its orthogonal companion QHEFL Vis S’ -invariant, i.e.,
Szt e QULLH whenever 2 € QIT[JFL]. By (4.14), for every vy € x; and vy € o,
(7.4) can therefore be rewritten in the form

* 1
[v1, 85272 oy = [vo, 21Tz owy + [wo, 2T(0)w = 0, 2T € 20, (7.5)

Define the sequence w € k% (W) by w(0) = wy and w(n) = 0 for n > 0, and
let P be the orthogonal projection in &% (W) onto the subspace of vectors k()
satisfying k(n) = 0 for n > 0. Then (7.5) can be rewritten as

[S+1)1 — v + Pow, ZT]ki(W) = 0, ZJr S Q:UL_L]

Since (QHM) = 20, this is equivalent to
Sivy —vg+ Pw==z2
for some z € 20, . Define v = vy + 2. Then v € xy, and
Siv; —v+ Pyw = 0.
This is equivalent to the pair of equations
v(0) = wy and v; = STv.

Thus, {g}%] € (\O/Obc)m if and only if zg = v+ 2, 21 = Siv+ W, and
wy = v(0) for some v € K(20,,), or equivalently, if and only if k € Vot

Step 3: VbC generates a passive and backward conservative s/s system Zobc =
(V2 H(20,), W). By Steps 1 and 2), Vit is closed and nonnegative, and

obc obc
(V) is neutral, hence nonpositive. By, e.g., [AS07a, Proposition 2.2(5)],
VO%){* is a maximal nonnegative subspace of &, and hence, by [AS07a, Corol-
lary 5.13], it generates a passive backward conservative s/s system.
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Step 4: S is observable. Let (z(-), w(-)) be an unobservable future trajectory

obc

of B, ie., w(n) = 0 for all n € Z*. Let 2 € 201, and define zf(n) =
zf (n41)

(S2)"2'+20,, n € Z*. Then it follows from (7.3) that l xt(n)
#f(n)

n € Z*. Since Vype C V[bj, this means that (z(-), 27(+)) is a future trajectory of

[¢]

€ Vobc for all

the anti-passive dual of Eobc (and also a future trajectory of Eobc) Moreover,
z'(n) — 0 in H(2W, ) as n — oo, because by Theorem 4.1,

() 3 4cam,) = —[(ST)"2", (S7)"2 iz oy = =21, 2T ie(n,oorw)

which tends to zero as k — oo. By Part 3) of Lemma 3.2 and Theorem 4.1
(recall that w(-) = 0),

(2(0), 2" + W )pam,) = ((0), 27(0)) 320,y = —[w(-), ZT(')]ki(W) =0.

Thus, x(0) is orthogonal to HO(QH+) and since H°(20. ) is dense in H (20, ),
this implies that 2(0) = 0. Thus, S0 is observable.

C

Step 5: If (7.2) holds, then (x(-),w(-)) is a stable future trajectory of Sivt.

Let w € K(20,) and define z(n) = (S*) w+ W, n > 0. Then it is easy to
see that (z(-), w(-)) is a trajectory of L with w € k2 (W). Tt is stable since

obc

> is passive and w(-) € (% (W) (see Lemma 2.1).

obc

Step 6: The future behavior of Zggz 15 equal to W, . It follows from Step 5 that
the future behavior 20% of S22 contains 204, and hence 0% = 20, since,
by Theorem 2.8, 20% is nonnegative, and by assumption, 20, is maximal

nonnegative in k3 (W).

Step 7: If (z(-),w(:)) is a stable future tmjectory of 2% then (7.2) holds.
Let (2(-),w(-)) be a stable future trajectory of 0t . By Lemma 5.1, w(-) €
K(25,). As we saw above, if we define z1(n) = (S*) w+W,, n€Z", then
(z1(-),w(-)) is another stable future trajectory of $1t with the same signal

part (-). Since L2 is observable, this implies that 2:(n) = 21 (n) for all n € Z*,
i.e., (7.2) holds. O

Definition 7.2. We call the system Eobc the canonical model of an observable
passive backward conservative s/s system with future behavior . .
Corollary 7.3. The system Zobc is approximately null-controllable, i.e., the
set of all the initial states x(0) of all those future trajectories of Eobj wzth
have finite support is dense in Xope = H(20, ).

Proof. This follows from Theorem 7.1 and Lemma 4.2. O

In Theorem 2.11 we established the connections (2.15), (2.16), and (2.17)
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between passive past, future, and full behaviors 20_ =27, 00, = 20, and
20 = 20 (see Remark 2.13). In particular, they permit us to define unique full
behavior 20 in terms of a given future behavior 20,. Once we have the full
behavior 20, we can also define the past/future map I'gy by (6.1).

Lemma 7.4. The input map of Y2 s the past/future map Tag of W, and

obc
Wy

the output map of Xt is the identity on H(20,).

Proof. Tt follows from Lemma 5.4 and Theorem 7.1 that we for every stable
future trajectory (z(-),w(-)) of X% have

obc

€ ., 2(0) = w+ W, = z(0).

obc

RIS
obc

Thus, the output map of X7, ¥ is the identity. This implies that the input map

of Egﬁg is I'gy, since the product of the input and output maps must be equal

to Fgg ]

Lemma 7.5. A sequence (z(-),w(-)) is an externally generated stable past
trajectory of Lope if and only if w € W_ and x(—n) = Dgy(S™w + QIT[_L]),

n > 0.
Proof. This follows from Lemmas 5.4 and 7.4. U
Definition 7.6. A bounded linear operator E: X, — X, intertwines the two

passive s/s systems Xy = (Vi; X1; W) and 3y = (Vao; Xo; W) (with the same
signal space W) if

EO0 0 Xy
0E 0|V=Virn|R(E)|. (7.6)
00 1y W

If E is a contraction, then we say that 31 and Yo are contractively intertwined
by E. If E has a bounded inverse, then we say that ¥, and 5 are similar,
and if E is unitary, then we say that 31 and X5 are unitarily similar.

Lemma 7.7. The two passive s/s systems 31 = (V1; X1; W) and g = (Va; Xo; W)
are intertwined by the operator E € B(Xy; Xy) if and only if the formula

(21(-), w(-)) = (E1 (), w(-)) (7.7)

defines a map from the set of all stable future trajectories (x1(+),w(-)) of ¥4
onto the set of all stable future trajectories (xo(-), w(-)) of L satisfying x4(0) €
R (E). In particular, if 31 and 3y are boundedly intertwined, then they have
the same future behavior.
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Proof. Let us first comment on the last claim: For externally generated tra-
jectories of ¥y the condition x5(0) € R (E) is trivially true, and so there is a
one-to-one correspondence between the externally generated future trajecto-
ries of ¥; and ¥, (an externally generated trajectory is uniquely determined
by its signal part w(-). This implies that the two systems have the same future
behavior.

Suppose next that (7.6) holds, i.e., that F intertwines ¥; and 5. Then triv-
ially, if (z1(+),w(-)) is a stable future trajectory of ¥q, then (Ez(-),w(:)) is a
stable future trajectory of ;. Conversely, suppose that (zo(-), w(-)) is a stable
future trajectory of 5. Then

x2(n)

z2(n+1)
[2() eVe, nelZt. (7.8)

Taking n = 1 above we can use (7.6) to conclude that there exists a vector
z1(1) x2(1) Ex1(1)

[xi(o)] € Vi such that lxim] = [Ea;i(o)], In particular, z5(1) € R(E). We
w(0) w(0) w(0)

can therefore repeat the same argument with n = 1 to conclude that there

z1(2)
exists (a unique) x1(2) € X; such that n) | € Vi and z9(2) = Ex1(2). By

w(1)
repeating this argument indefinitely (or by using induction) we get a sequence
x1(+) such that (z1(-),w(-)) is a future trajectory of 3, and such that xo(-) =
Exq(+). By Lemma 2.1, the trajectory (z;(+), w(+)) is stable. Thus, the mapping
defined in (7.7) is surjective.

We then turn to the converse statement, and suppose that the stable future tra-

jectories of X1 and X, are related as described in the lemma. Let (z1(+), w(+))

be a stable future trajectory of ¥;. Then, by the assumption, (Exq(-), w(-))
Ex1(1)

be a stable future trajectory of ;. In particular, [Em(o)] € V5. By Part 7)
w(0)

(1)
of Lemma 2.3, the vector lm(o) can be an arbitrary vector in V. This shows
w(0)

that the that the left-hand side of (7.6) is a subset of the right-hand side. On
the other hand, if (z5(-),w(+)) is an arbitrary stable future trajectory of ¥
satisfying z5(0) € R (E), then by assumption, there exists a future trajectory

z2(1)

(z1(+),w(+)) of ¥y such that xs(-) = Fxq(-). Here [m(o)} represents an arbi-

trary vector in the right-hand side of (7.6), and we ha\;lé shown that it belongs
to the left-hand side of (7.6). Thus, we have equality in (7.6). O

Theorem 7.8. Let ¥ = (V; X, W) be a passive s/s system with output map
Cs and future behavior . Then ¥ and St = (Vort; X300 W) are con-

obc o obc
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tractively intertwined by €y, i.e.,

¢z 0 0 X0
0¢ 0|V=Varn|es,|. (7.9)
0 0 1y w

Proof. Let (z(-),w(-)) be a stable future trajectory of ¥. By Lemmas 5.1

and 5.4, w(-) € K(Wey) and Cxz(n) = (ST)"w + Wiy, n € Z*. Define

zo(-) = €xx(-). Then zo(n) = (S%)"w+Wy, n € Z* (where Wy is the future

behavior of ), and by Theorem 7.1, (z,(-), w(-)) is stable future trajectory of
z(1)

»2 By Part 7) of Lemma 2.3, the vector | =z(0) | can be an arbitrary vector

w(0)

zo(1) Cxxz(1)

in V', and since [$o(0)‘| [QEJ»‘(O ] € VbC , this implies that the left-hand side
w(0) w(0)

of (7.9) is a subset of the right-hand side.

obc

To prove the converse inclusion we let (z,(+), w(+)) be a stable future trajectory
of B2+ and suppose that z,(0) € &Z,. Then, by Part 7) of Lemma 2.3, the

obc
zo(1)
vector :vg(O) represents an arbitrary vector in the right-hand side of (7.9).
w(0)
Choose some arbitrary z(0) € X such that €xx(0) = 2,(0). Recall that the
output map of »2+ s the identity. By Part 3) of Lemma 5.7 applied to
2

Yobt, wo € (€52,(0))(0), and by the same lemma applied to the system X,
z(1)

there exists some x(1) € X such that lx(o)] € V. By the first inclusion that
w(0)

obc

Coa(l )
we already proved, this implies that [éaz ] € Ver But here the last two
w(0)

components of V T determine the first component uniquely, and hence we
zo(1) Cox(l) (1)

must have x,(0) = ngx(O). Thus, [$o(0)‘| = [C;x(O)], where lx(o) € V. This
(0) w(0) w(0)

proves that the right-hand side of (7.8) is contained in the left-hand side. [

Corollary 7.9. Let ¥ = (V; X W) be a passive s/s system with output map
Cy and full behavior 0, and let Zobc be the canonical model of an observable
backward conservative s/s system with full behavior 0. Then the formula

(), w(-)) = (Czz(-), w(-)) (7.10)
defines a map from the set of all stable future trajectories of ¥ onto the set of

all stable future trajectories (zo(-),w(-)) of S2t satisfying xo(0) € R((’Zg)).

Proof. This follows from Lemma 7.7 and Theorem 7.8. O
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Corollary 7.10. Any two observable and backward conservative realizations
of a given full behavior DT are unitarily similar to each other.

Proof. This is true, because, by Lemma 5.20, the output maps of these two
systems are unitary, and hence, by Corollary 7.9, both systems are unitarily

S M,
similar to X, . O

8 The Controllable Forward Conservative Realization.

In this section we shall construct a canonical model E?fi‘ = (Vc%f_; Xcﬂff_, W)
of a passive controllable forward conservative s/s system with a given passive
past behavior 2J_. The results for this model are analogous to the results on

the model Zggz obtained in the preceding section. The state space of szi’

is the Hilbert space H(QU[_l }) presented in Theorem 4.4 (whereas the state
space of X% is the Hilbert space H(20, ) presented in Theorem 4.1). The

obc

full description of the generating subspace Vc%f‘ is more complicated than
the description of %anc*, and in our next theorem we first give a preliminary

definition of Vo~ as the closure of the set

o om w_ 4+t H(wH)
Vet = | Scwovai ) | € | gyapit]y | |w- € W . (8.1)
w_(—1) w

Since every w_ € 2J_ can be extended to a function w € 20, and since
m_w € W_ whenever w € W, equation (8.1) can alternatively be written in
the form (where we have shifted the extended function one step to the left)

o o 7r,S*1w+QB[f] ’H(ﬂﬁ[f])
‘/cfc = n,w-i-ﬂﬂ[_l] S H(ﬂﬁ[“) w € Ws. (82)
w(0)

A full description of Vi~ will be given later in Theorem 8.6.

Theorem 8.1. Let W be a Krein space, and let 23_ be a passive past behavior
on W. Let Xcﬂff‘ = H(Qﬁ[f]) and let VC%S_ be the closure of the set VC%EL
defined in (8.1) in the Krein space &_ := —H (W) [+] HQ™)) [+ W. Then
S = (VC%?_;H(QH[,“),W) is a passive controllable forward conservative s/s
system whose past behavior is equal to 2W_. Moreover, the following claims are

true:

1) The sequence (x(-),w(-)) is an externally generated stable past trajectory
of E?fi’ if and only if

w e W_ and x(n) = S"w + 2w n <o (8.3)
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2) If (x(-), w(-)) is a stable past trajectory of Sa . then

cfc ’

w e K@M and z(n) = S"w + 20 n <o, (8.4)

e s a neutral subspace of K. Recall that w + wl e
HO(QIT_L]) C H(Qﬂ[ ]) for every w E 20 _. Since _ is S_-invariant, it is
also true that S_w + 20 € H(QH ) for every w € 2W_. This implies that

VC%S’ is a subspace of K_. To show that V ~ is neutral it suffices to show

that V2

cfc
Lemma 4.6.

Proof. Step 1: vE

~ is dense in V . However, this follows from

~ is neutral, since Vo e

cfc

Step 2: VC%S’ is mazimal nonnegative in K_. Let W = =) [4+] U be a funda-
mental decomposition of W. This induces a fundamental decomposition of the

node space
—H(H) L] , 0
R_ = H(QH[L]) == H(zﬁ7 ) ] [‘I’] [H(mu]) :|
W7 _y Z/[

Arguing in the same way as we did in the proof of Lemma 5.16 with x(0)
replaced by m_w + 2w and x(—1) replaced by 7_Sw + W™ we find that
the projection of Vﬁf‘ onto the positive component of this fundamental de-
composition is equal to {HO(QM”[} ])}, which is dense in {H(ng])}. We know

that Vo~ is neutral, and hence it is the graph of an isometric operator

[ég D} : [HO(‘Z’{”[—H)} — [H(QSM)} (ie., Ay and Cy are defined on HO(0™),
and B and D are defined on Uf). This implies that [AO BO} has a unique ex-

tension to an isometric operator [4 B] : [H(m’[—“)} — | R y— ] Since Vo~ is

u
the closure of Vfc , it is the graph of [4 5], and hence maximal nonnegative.

Step 3: VC%S’ 1s the generating subspace of a passive and forward conservative
s/s system Sp = (Vo s H(20_), W). This follows from Steps 1 and 2.

cfc

Step 4: If (8. 3) holds, then (z(-),w(:)) is a stable externally generated past
trajectory of L . When w € 20_ and z(n) = (S',n‘w) + 99 n <0, then

z(n+1)
[ a(n) | € V - c V2 for all n € Z~. Thus, by definition, (z(),w(-)) is a

w(n)
past trajectory of £ . Clearly w € k2 (W) To see that z(n) — 0 asn — —oo

we argue as follows. The subspace v

e 1s neutral in &_, and hence, for all
nez,

o I2, gy = 2(0) gy — Zickaluw(k). (k).
As n — —o0, the last sum tends to [w (), w(-)]x2 o). However, by (4.19),

12 O) 13 gty = llw + ZH2, ) = [w(), wOlaz oy
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This implies that z(n) — 0 in H(20™) as n — —oo.

Step 5: The past behavior of szi’ 15 equal to W _. It follows from Step 4 that
the past behavior 20 of Zfﬁ* contains 20_, and hence 20* = 2U_ since,
by Theorem 2.8, 20% is nonnegative, and by assumption, 2J_ is maximal
nonnegative in k% (W).

Step 6: Xege 15 controllable. 1t follows from Step 4 that if w € 20_ has compact

support, then w + ] belongs to the reachable subspace of Eg?;. According

to Lemma 4.5, this set is dense in H(QIT[_L]). Thus, the set of states that can
[1]

be reached in a finite time is dense in the state space H (202 of X%, and

SO Zfﬁ’ is controllable.

Step 7: If (x(-),w(-)) is a stable past trajectory of Sa, then (8.4) holds. By

cfec

Lemma 3.1, every stable past trajectory (z(-),w(-)) of S is also a stable

cfc
past trajectory of the anti-passive dual X of Zzﬁ’. By applying the reflected
version of Theorem 7.1 to the system Xf we find that w € H(fm[_L ]) and

z(—n) = (S"w) + w n>o0.

Step 8: If (x(:),w(+)) is a stable externally generated past trajectory of fo{‘,
then (8.3) holds. This follows from Steps 5 and 7. O
Definition 8.2. We call the system Zg’fij the canonical model of a passive
controllable forward conservative s/s system with full behavior 2.

In Theorem 2.11 we established the connections (2.15), (2.16), and (2.17)
between passive past, future, and full behaviors 20 = 27, 90, = 20, , and
20 = 20 (see Remark 2.13). In particular, they permit us to define unique
full behavior 2 in terms of a given past behavior 2J_. Once we have the full
behavior 20, we can also define the past/future map I'gy by (6.1).

Lemma 8.3. The input map of Zf’fij is the identity on H(QU[_H), and the
output map of fo{‘ is the past/future map Loy of 0.

Proof. 1t follows from Lemma 5.12 and Theorem 8.1 that the ‘Bzm_ acts as

cfc
the identity on H°(28")), and since H°(25™7)) is dense in H/(20)), this
means that %Em, is the identity. This implies that the output map of 23%1* is

cfc
Iy, since the product of the input and output maps must be equal to I'yy. O

Corollary 8.4. The system Efﬁ‘ is both H(Qﬁ[f])—emctly controllable and
constructable (observable in backward time), i.e., if the signal part w(-) of a
past stable trajectory (z(-),w(-)) of X2 is zero, then also the state part (-

1S Zero.
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Proof. The first claim follows from Lemma 8.3 and the second claim follows
from (8.4). O

Lemma 8.5. The pair of sequences (x(-),w4(-)) is a stable future trajectory
of E?fi’ if and only if

w+ € K(Qﬂfut),
we + Wiy = Dag(w_ + W) and (8.5)
z(n) = 1_S " (w_ +w,) + W, nezt

for some sequence w_ € IC(QH[,“) satisfying x(0) = w_ + g

Proof. This follows from Lemma 6.9, taking into account that the input map
of S0 is the identity on H(20). O

Lemma 8.5 gives us the following description of the generating subspace V-

o cfc
of ¥ :

Theorem 8.6. Let 0T be a passive past behavior on the Krein space VWW. Then

the generating subspace VC%CB’ of the canonical model Zf’fij = (VC%L; XC%ICL, W)

of a passive controllable forward conservative realization of L _ s given by
o { [w-s-lw?f]] w=w_+w,, w_ € KW), w, € KEQU,), }
cfc — m_ w2

and wy + W, = Cog(w_ + QIT[_H)

w(0)
(8.6)

Proof. This follows from Lemma 8.5 and the fact that [%}é } e V22~ if and only

if there exists a stable future trajectory (z(-),w(:)) of L3 with 2(0) = o,
z(1) = x1, and w(0) = wy. O

Theorem 8.7. Let ¥ = (V; X, W) be a passive s/s system with input map
By and full behavior V. Then By, intertwines Zfﬁ* = (X/C%f*; Xfff’,W) with
Y) in the sense that

By, 0 0 X
0 By 0|V =VnN R(Bs)| - (8.7)
0 0 1y w

Proof. This follows from Lemmas 6.9, 7.7, and 8.5. O

Corollary 8.8. Any two controllable and forward conservative realizations of
a gwen past behavior 20_ are unitarily similar to each other.
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Proof. This is true, because by Lemma 5.20, the input maps of these two
systems are unitary, and hence, by Theorem 8.7, both systems are unitarily
similar to E:‘Zﬁ’. O

Theorem 8.9. The operator Ty intertwines the two s/s systems Zfﬁ’ and

Zgﬁg, i.€e.,
Tog 00 X0
0 Ty 0 [Vt =V N |R(Dar)|- (8.8)
0 0 1w w

Proof. This follows from Theorem 7.8 and Lemma 7.4, and also from Theorem
8.7 and Lemma 8.3. O

The orthogonal companion of Vc%f‘ can be characterized as follows:
Lemma 8.10. The orthogonal companion of VC%f‘ s given by

o w_+QH[_L]
(Vize ) = (Vi ) = { {s_w_wn[“ ‘ w_ € /C(QU[_“)}. (8.9)

w_(—1)

Proof. The proof of this lemma is analogous to Step 2 in the the proof of
Theorem 7.1 which shows that (Vo,e)t = Ogb%, where V. is the subspace

of R, defined in (7.3). We leave this proof to the reader (interchange the first

two components in Vipe with each other, replace 20, by —ptt ], replace Z*
by Z~, and replace Sy by S*). O

9 Frequency Domain Versions of Passive Behaviors

The Fourier Transform. Up to now we have throughout worked in the time
domain, and formulated all our results in terms of sequences in k*(I; W), where
I is a discrete time interval. It is also possible to work in the frequency domain
instead, replacing all the signal sequences w(-) by their Fourier transforms. In
this section we assume, for simplicity, that the signal space W is separable.

As is well-known, for each Hilbert space X', the Fourier transform F, formally
defined by (Fw(:))(z) := w(z) = Yoo w(n)z", w(-) — w(-) is a unitary
map from ¢%(X) onto the Lebesgue space L?(X) := L*(T; X). The restrictions
Fr=Flg ) of F to (%(X) are unitary maps of from ¢2 (X') onto the Hardy
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spaces H?(Dy; X)), where

D, :={z€Z]| |z <1},
D_:={z€Z]||z| > 1} U{o0},
T:={z€Z]||z| =1}.

Functions in H%(X) are analytic in D, they have boundary values a.e. on T,
L*(X) = H2(X) ® H?(X), and the norm in these three spaces are given by
the same formula

1
2T

() Z2() = ]{ () dC]. (9-1)
CeT
Constant X-valued functions belong to H? (X), and every w € H? (X) satisfies

w(oo) = 0. The inverse Fourier transform is given by

1 1
= — B0} Z. 2
win) = 5§ TR ne 9:2)
If we 2 (X) so that w € HY(X), and if n € Z*, then this is equal to
(™ (0
w(n) = wT‘(), nezt. (9.3)

A similar formula is valid when w € ¢%(X) and n € Z~, involving derivatives of
the function w(1/z) at the origin. Since £*(X) = 2 (X) @ (1 (X) also L*(X) =
H? (X)@H3(X). We denote the orthogonal projections of L*(X) onto H3 (X)
by 7. They are explicitly given by

(r10)(2) = 5 f_(C— M0, we W), zeD., o
(F_)(2) = —QLM, 7{@(4 (O A, e LAW), zeD..

Above we discussed the situation where X is a Hilbert space. A correspond-
ing theory applies to the case where X is replaced by a Krein space WW. We
denote the images of k2 (W), k*(W), and k2 (W) under the Fourier transform
by K2(W) := K*(D4; W), K2(W) := K*(T; W), and K2(W) := K*(D_; W),
respectively, and define the indefinite inner products in these spaces so that
the Fourier transform is a unitary operator in each case. This means that, if
we fix some admissible Hilbert space inner product in WV, then the functions in
KX(W), K*(W), and K2 (W) belong to H*(W), L*(W), and H2 (W), respec-
tively, and that these three spaces share the same Krein space inner product

1

[D1(-), Wa ()] 2oy = 7

]{eT[wl(C),wz(C)]w |dc]. (9.5)
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Every fundamental decomposition W = —) [4+|U of the signal space gives rise
to the three fundamental decompositions

H2(W) = —H2(Y) [+] H(WU),
L*(W) = =L*(Y) [+] LX),
H2(W) = —H2(Y) [+] H2(U).

Under the Fourier transform the three shift operators Sy, S, and S_ and their
adjoints are mapped into the frequency domain shift operators

Sii(z) == zi(z), w(-) € K2(W),
Sy (z) = (i (z) — b(0)), () € KE(W),
Sab(z) == zi(z), () € K2(W),
810 (z) = La(2), () € K2OW), (9:6)
Si(z) = zi(z) = lim Ca(Q), () € K2(W),
S* i (z) == Li(z), () € K2(W).

Frequency Domain Behaviors. Under the Fourier transform the class of
all passive future behaviors 20, on W is mapped onto the class of all maximal
nonnegative S+ invariant subspaces 2 of K2 1 (W), the class of all passive past
behaviors 20 on W is mapped onto the class of all maximal nonnegative S_-
invariant subspaces 20 of K2(W), and the class of all passive full behaviors
27 is mapped onto the class of all maximal nonnegative §-reducing causal
subspaces 20 of K?(W). The definition of causality in the frequency domain
is analogous to the definition of causality in time domain, i.e., a S-reducing

maximal nonnegative subspace 0 is causal if it is true for some fundamental
decomposition W = =) [+] U of W that

w(-) € W and Pyz g = 0 = 7_1d(-) = 0. (9.7)

The frequency domain analogue of the space H(20,) is the Hilbert space

H(20,.), where 20, is a maximal nonnegative S, -invariant subspace of K2 W),

and the frequency domain analogue of the space H(QH ]) is the Hilbert space

H(Q/I\TM) where 20_ is a maximal nonnegative S_-invariant subspace of K2 W).
These spaces are defined in the same way as in Section 4, with k2(W) re-

placed by K2(W) and with 9, replaced by 2. Since the F is a unitary

map of k%(W) onto H3Z (W), and since the frequency domain constructions

are identical to the time domain constructions, the Fourier transform induces

two unitary maps H () — H (201 ) which map H°(20..) isometrically onto

HO (QAI&) We shall use the same notation F, for these two unitary maps.
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Given a passive full behavior 20 we define the frequency domain version of
the past/future maps of 2 by I'g, = F TopF-L. Thus, if 20 is a passive full
behavior on W with the corresponding passive future and past behaviors 20,
and 20_, then I'g; is the unique linear contraction H(WM) — (20, ), which
is defined by the relation

—

Ao+ W, = Do(A_tb + W), w e W,

on the dense subspace HO(Q/ﬁM) = { W+ _[1]
and then extended to H(QH ) by continuity.

A_} of H(WM)

Graph Representations of Frequency Domain Behaviors. We next de-
velop graph representations of 20, 20, , and 2U_ by using the graph represen-
tations (2.12), (2.13), and (2.14) of 20, 20, and W_. As is well-known and
easy to prove, the operators ®,, ©, and ©_ in appearing in (2.12), (2.13),
and (2.14) have the expansions

(D, wy)(n znj D(n (k), wy€kiU), neZr, (9.8)
k=0
— Y Din—kuw(k), wekU). nel (9.9)
k=—o00
(D_w_)(n) = ki D(n —k)yw(k), w_€k*U), neZ, (9.10)

with identical coefficients D(k), k € Z*. If we define ®(z) by

= iOD(n)z", (9.11)

then ® is a Schur class function in the unit disk Dy, i.e., a B(U,U)-valued
analytic contractive function in D, . The radial limits

D(Q) =lm®(r¢),  CET. (9.12)

exist in the strong sense a.e. on T. The frequency domaln analogues of the

three operators ®, ®,, and ®_ are D = FOF! @+ = ©|H2(L{ and
D = ﬁ+55| u2 ) Here ® is a Laurent operator (multlphcatlon operator)

with symbol ®, and @Jr, and D_ are the appropriate compressions of @, ie.,

(Dw)(Q) = 2(Qw(Q), e L2 (W), (€T,
(D1104)(2) = P(2)1w4(2), wy € HE (W), 2 €Dy, (9.13)
S _ 1 2(Q)w—(¢) A 2
(D--)(2) = —5— 7{@ —o, G w € HIW), zeD.
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The adjoint D* of D is the Laurent operator whose symbol is ®*(¢), ¢ € T, and
’}5*+ and 2‘51 are the appropriate compressions of D*. The symbol ®*(({) is the
radial boundary value of the function ®*(1/%), z € D_, which is a Schur class
function in D_. In terms of the three operators D and D the Fourier images

20 = FW and Q/ﬁi = F2W of 2T and W, have the graph representations

—~

W= {o=[%]]ae LU

iﬁi = {ﬁ)i = [5gfi] Uy € Hi(U)}

(9.14)

The de Branges Complementary Spaces H(D,) and H(D*). We next

describe how the spaces H(Q/I\Lr) and 7'{(52/1\1[_L ]) can be mapped unitarily onto
the de Branges complementary spaces H(®D, ) and H(D* ).

The most important fact in the construction of H(D,) and H(D*) is that

both of the operators 2‘5+ and D* are contractions, and below we describe
how one constructs the de Branges complementary space H(A) for a given
contraction A: U — )7 where U/ and )7 are Hilbert spaces. This space is is
defined by the formulas

H(A) = {7 € V| 13llrca) < oo}, (9.15)

where _

1711344y = sup{llg — Aall5; — llall5 | @ € U} (9.16)
This is a Hilbert space continuously contained in Y. It was introduced and
used in [dBR66a,dBR66b] with A replaced by ©, as the state space in the
canonical de Branges—Rovnyak model of a scattering i/s/o observable back-

ward conservative system with a given Schur class scattering matrix ®. We
shall derive this model from our s/s model in the next section.

Later it was observed that H(A) has another alternative characterization:

H(A) = R((1— AA)'?),

3 S } (9.17)
1Gll3a) = 111 — AAT) 215, g € H(A),

where the upper index [! represents a pseudo-inverse, i.e., BI71: R (B) —
(M (B))* is the inverse of the injective operator Bl pyr — R (B). The
operator (1 — AA*)Y/2 is usually called the defect operator of the contraction
A*. See [ADRAS97] and [Sar94] for more details.

In [ASO8] it was explained how the space H(Z) described in Section 4 is
related to the space H(A), where A is the contraction appearing in the graph
representation

z={[4|aeu}
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of the maximal nonnegative subspace Z of K with respect to some fundamental
decomposition K = —) [+]U. The connection is the following. There exists a
unitary map T: H(Z) — H(A) with the property that the image of z + Z €
H(Z) under T is the unique vector ¢ in this equivalence class whose projection
onto U is zero. Explicitly this means that

)

—
ISR
Rl
?ﬁ
D
\_/

T(|7]| +Z) =yg— Az,
() +2)=7 019
Ty =[]+ 2
The operator T maps H°(Z) one-to-one onto the dense subspace R (1 — AA*)
of H(A). In the sequel we denote H°(A) := R (1 — AA*).

_.
N}
Il
@z
E
I
\_/

We now apply the theory described above with the following alternative re-
placements:

1) Z=,, A=, U=H>U),Y =H>(Y),and T =T},
2) Z=0M A=D" U=H2(Y),Y=H>U),and T =T"_.

We leave it to the reader to carry out these substitutions in (9.15), (9.16), and
(9.17). When we do the same substitution in (9.18) we get

T, ({UJ JFQU+) =iy — Dy, [Zﬂ € K(2),

T (|5 }+?zﬂ”) :aj —@*,Ayf,, (-] e k@, 0.19)
IOy = [yJ] + 20, g+ € H(24),
Tl = [ |+, a_ € H(WH)

The Past /Future Map From H(®* ) to H(D.). By using the unitary maps
T : HWOM) — H(D*) and T, : H(W,) — H(D,) we can define a version
of the past /future map gy of a passive full behavior which is a contraction
from H(D*) to H(D), namely

5P -l —17—1
T3 5, =D Twl ™ =T F Ty T

This map is related to but not identical with the Hankel operator

~

T5:=#, D7 : H2(U) — H2(Y)

o)
induced by D. Before we explaining the exact connection we first prove the

following lemma. .
Lemma 9.1. Let w € 20, and write w in the form w = [%ﬂ} where 1 =
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P2yt € L*(U) (cf. (9.14)). Then

I (7 + W = (1 -9 D )a_, (920
T (frytd + 24) = I'zu-, .

where i = 7_u € H*(U).

Proof. Since 7_w = [7}*5@} = [5rﬁ*}, we get from (9.19),

T_u U—

7 il

T (7 o+W =0 +D @ a4 )=1-92"D )i_,
which is the first claim in (9.20). Analogously,

eyt = [720] = [y ] 4 [Fai- ] (9.21)

T+ U4 0
where @y = 7,4 € H3(Y). The first component in the above sum belongs to

20, , and hence by (9.19), T (7410 + Q/I\L) =Txu_. O

Lemma 9.2. The operator I' 1s the unique linear contraction H(@i) —

(D, D4)

H(@+), which is defined by the relation

PN
Tz 5, =Ta(1-929) (9.22)

on the dense subspace H°(D*) = R(l —2‘5*_55_) of H(D*) and then extended
to H(D*) by continuity.

Proof. By the Fourier transformed version of Lemma 6.1,

L +W) =70+ W, weW. (9.23)

This together with (9.20) gives
Tt =Ty (7 + W) = T D + W) = T, 7711 - DD )i
Here 4 can be an arbitrary function in H? (), and consequently

5 =T 5,

1-9°9D_). (9.24)

By applying the pseudo-inverse (1 — ’}5*_’}5_) = to both sides of (9.24) we get

the conclusion of Lemma 9.2 O

The operator 1 — DD appearing in Lemma 9.2 has a natural interpretation:
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Lemma 9.3. The adjoint of the inclusion map H(D*) — H2(U) is the op-
erator 1 —D*D_: H2(U) — H(D*).

Proof. By (9.17), every 4_ € H(®*) can be written in the form 4_ = (1 —

o \1/2
’D*_’D_) / tip for some 1y € H?(U). Therefore, for every 4, € H*(U) (to get
the third equality sign below we polarize the second identity in (9.17))

10 Input/Output Representations of Passive Behaviors

Frequency Domain Versions of the Canonical S/S Models. By using
and chc

into the frequency domain, to get two canonical frequency domain models Zobc

and Zcfc whose frequency domain full behavior is 0. The generating subspace
of the frequency domain passive observable and backward conservative model

the Fourier transform we can map the two canonical models Eobc

S5 is given by

obc
-~ Sto+20, H(2W, )
2 + o A+
Vope = {{ W+20 ] € [H(Qm)

w(0) w

e IC(QAIL)}, (10.1)

and the generating subspace of the frequency domain controllable and forward
conservative model is

5 #_ S Lo+t
Vie = i+t

w4.(0)

W= 0_ 4y, v_ € K@), b, e K(20,), }
and 0y + 2, =5 (- + Qﬂm)

(10.2)

The First Canonical de Branges—Rovnyak Model. We continue by de-

veloping a description of the i/s/o representation of Eobc corresponding to a
fundamental decomposition W = =Y [+] U of the signal space WW. We begin

+
obc

the state space H(QILr) of 220 by the state space H(D,) of the new system

by applying the unitary s1m1lar1ty transform T to £ in order to replace
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yO

obe. With generating subspace

T, 0 0
Ve =10 Ty 0| Vi
0 0 Ly

We decompose the parameter w,. € K(20,) in (10.1) in the form 0, = {37* }

(5%
R j Sx - 514
Then w,(0) = H:Eg”, and (S¥wy)(z) = {iyj Thus, by (9.19), for all
A D+,

(T4 (Siy +24))(2) = (5194 — DyS1)(2)
= L (34() — 52(0) — B(2) (04 (2) — i 0).

Denoting

fo =Ty (s +W,) =Gy — Dty

uy = u4(0),
and observing that £, can be an arbitrary vector in H(@Jr) and uy can be an
arbitrary vector in U we get

,35 Aobe®0+Bobcuo H(5+)

+ _ ots) o

‘/;bC - CVobc:iO‘i'cvobCuO 6 H(§+)
uo u

Zo € H(D,) and ug € Z/I}, (10.3)

where
1 ~
(Aobelo)(2) = ;(500(2) - 500(0)), To € H(D4), z€Dy
1
(Bobetio)(2) = ;(q)(z) ~®(0)) up, ug€U, zeDy, (10.4)
Copeiio = 20(0), io € H(DL),

Dobc - (I)( )

obc Eobc

Here [éobC BO‘”} : {H(SH} — [H(?ﬁ)} is a linear co-isometric operator, and

(10.3) is a graph representation of V¢ of the type (1.5). Thus, the i/s/o
representation

A5 AO C BO C . e
Soie = ([ e | 1(D4).4. D)
of Eg;g that we obtain in this way is the canonical de Branges-Rovnyak model

of an observable backward conservative scattering system with the scatter-
ing matrix ¢ mentioned above. This system is observable since E?JC is ob-
servable, i.e., ﬂnzoN(CobcAgbc) = {0}, and the scattering matrix zCop.(1 —

2 Agbe) " Bobe + Dope Of this system is equal to ®(z2).
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The Second Canonical de Branges—Rovnyak Model. By applying the
unitary similarity transformation T to the system » ofc Whose generating sub-

space is given in (10.2) we get another system E whose generating subspace
is

70 0]
Vi =0T 0|Va. (10.5)
0 0 1y

This subspace contains the dense subspace

-0 0
V2 =lo 7 o |V, (10.6)
0 0 1y
where chc’ is the frequency domain version of the subspaceV,~ defined in
(8.2), i.e
o Q/\B T_ S w+ﬂﬁ .
Vege = { . wmm 7 u W e QU}. (10.7)
w(0)

We parametrize w in (10.7) b 12)

= } where 4 = P2y is a free parameter
in L?(U), and denote iy = 714. By (9.20)

33
U
(9.

~

T (w+ W) =1-9"D )a_.

Recalling that Du =D _ti_ + D, i, + ['5a_ and using (9.19) we get

~

(T_ (78" + W) (2) = (7_ §*1a><z)

Denoting

io=(1-D"D )i,

U, = U4 (0),
and using Lemma 9.2 and the fact that o can be an arbitrary vector in
H°(D*) and ug can be an arbitrary vector in U we get

o D" Acte®o+ Bereuo H(D")
Vere = l Do ] e | n@)
Yy

CetcZo+Descuo
uo

Zo € HO(®*) and ug € Z/l}, (10.8)
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where

~

(Aado)(z) = - (30(2) = (/)T . 5,)70)(0), G0 € H(D?), z€D.
1

(Beetio)(2) = ;(m — ®*(1/2)®(0) )uo, uw e, zeb._,
C1cfcfi‘0 - (F(5i75+)j0)(0)7 Zi'o € H(@i),
Dege = ©(0).

~ - (10.9)
Since H°(D*) is dense in H(D*) we find that

~ Acfci'Oj‘Bcfcu() H(E:)i )
VE- = [ Zo ] e | H®)
y

Ccfci0+ccfcu0
uo

~

Zo € H(D*) and ug € U}. (10.10)

Here [éCfC g‘?f‘?} : [H(S*—)} — {H(?L)} is an isometric operator, and (10.10) is a

cfc Lefe

graph representation of Vo~

of the type (1.5). Thus, the i/s/o representation
Aﬁ* Acc Bcc . A *
Zi/s/o = ([Ccic Dci‘ci| ,H(@,),L{, y)

of Egj that we obtain in this way is the canonical de Branges-Rovnyak

model of a controllable forward conservative scattering system with the scat-

tering matrix ®. This system is controllable since Egc’ is controllable, i.e.,

\/nZOR<AQfCBCfC) = X, and the scattering matrix 2C.(1 — 2Acte) " Bege + Dege
of this system is equal to ®(z).

The formulas for the adjoints of the operators Act, Bete, Cete, and Deg. in
(10.9) are simpler than the formulas for these operators themselves, and they
are also easier to compute. This can be done without any knowledge of the

past /future map F@* 5.) Explicitly, these adjoints are given by

o~

(Adgeo)(2) = z&0(2) — lim (2o (C), To € H(DZ), zeD_

{—o0
B io = lim Cio(C), to € H(D*),
cfc0 CEEOCJTO(C) To ( ) (10.11)
(Cowo)(2) = (®°(1/2) = ®*(0)) o, W€V, z€D.,
D:fc:q)*<0)

The most straightforward way to compute these adjoints is to repeat the
computation leading to (10.4) with (7.1) replaced by (8.9), 20, replaced by

QU[_H, D, replaced by D%, and S} replaced by S_. However, they can, of
course, also be computed directly from (10.9). We leave the proof of (10.11)
to the reader.

Input and Output Maps of I/S/O Representations Let ¥ = (V; X, W)
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be a passive s/s system, and let By : H(QIT[_H) — X and €x: X — H(2,)

be the input and output maps of 3, where 20_ = 207, and 20, = Wy, are
the past and future behaviors of ¥. We again map ’H(im[,L ]) unitarily onto
H(W™) by means of F_ and H(20,) unitarily onto H(W,) by means of

F.. Under these transformations By, and €y are mapped onto the frequency
domain input and output maps

Bs = By F !, ¢ = Fes. (10.12)
It follows from Lemma 5.10 that B¢ is the unique contraction 7'{(52/1\7[_L ]) — X
whose restriction to ’HO(Q/I\T[,l }) is given by

Be (i + Whil) = 2(0), @) € Wha, (10.13)

where (x(-), F~'b_(+)) is the unique stable externally generated past trajec-
tory of 3 whose signal part is F~'w_(-). By Lemma 5.2, €5 is the contraction
defined by

Csxo = {I@Jr + Wyt

Wy = .7-:1124 is the signal part of some stable }

future trajectory (z(-),wy(-)) of ¥ with z(0) = zq
(10.14)

Let W = =Y [+] U be a fixed fundamental decomposition of W, and let
T : HW™M) - H(D*) and T, : H(W,) — H(D,) be the two unitary oper-
ators in (9.19). Under these transformations B¢ and €5 are mapped into the
two contractions

B2 = BF 1T HDY) — X,
DR (27) A (10.15)
=T, Frey X — H(D,).

These two maps can be characterized more explicitly in terms of the co-
efficient matrix [ B] of the corresponding scattering i/s/o representation
Yijsjo = ([ég] ;X,Z/I,y)) of the s/s system 3. This coefficient matrix is

the contraction appearing in the graph representation

x1 X
V= { FIE M
uQ u
of the generating subspace V' of ¥ corresponding to the fundamental decom-
position W = =Y [+] Y. This means that (x(-),w(:)) is a trajectory of 3 on
some interval [ if and only if (z(-),u(:),y(+)) is a trajectory of ¥i/s/o on I,
where w(-) = HEH and (1.6) holds.

Fo € X, up €U, and [3] = [gg][zg]} (10.16)

The maps %g_ and Cg‘ are related to but not identical with the standard
input and output maps By, and &y, = of the i/s/o system Y. These two
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maps are defined as follows: If (z_(-), u_(),y_(-)) is a stable externally gener-
ated past trajectory of 3/, then

%Ei/s/ou*<') =T (0)7

and if (x4 (-), us(-), y+(-)) is a (stable) future trajectory of 3; /5, with u(-) = 0,
then

Q:E'L/s/ox“r <0> = y+(')-

By using (1.6) one get the following explicit formulas for these two operators:

Byt = D A Bu(k),  u- € 2,
her (10.17)
Q:Ei/s/ol’o = {CAkxO}kEZ+, Ty € X7

see, e.g., [Sta05, p. 697]. It follows from (2.8) that By, is a contraction
2 (U) — X, and it follows from (1.8) with m = 0 that €y is a contraction
and Cy, by

We denote the frequency domain version of By,

i/s/o i/s/o

=By, F ', & =F.Cy

. o (10.18)

/ji/s/o i/s/o

The operators Cg* and €y are related in the following way.

i/s/o

Lemma 10.1. The operator ng_/ , is the composition of Cg’ and the inclu-
sion map H(D 1) — H2(Y).

Proof. This follows from (9.19). O

Lemma 10.2. The operator Ba~ is the unique linear contraction H(@’i) —
X, which is defined by the relation

%g— =85 (1- 35*_55_)[_“, (10.19)

Ei/s/o

on the dense subspace H°(D*) = 72(1 — @*,@,) of H(D*) and then extended
to H(D*) by continuity.

Proof. The proof of this is a simplified version of the proof of Lemma 9.1, and
it is left to the reader. O
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