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Abstract. We study continuous time linear dynamical systems of boundary

control/observation type, satisfying a Green–Lagrange identity. Particular at-

tention is paid to systems which have a well-defined dynamics both in the
forward and the backward time directions. As we change the direction of

time we also interchange inputs and outputs. We show that such a bound-

ary control/observation system gives rise to a continuous time Livšic–Brodskĭı
(system) node with strictly unbounded control and observation operators. The

converse is also true. We illustrate the theory by a classical example, namely

the wave equation describing the reflecting mirror.

1. Introduction

In this paper, we give simple necessary and sufficient conditions for the (scat-
tering) conservativity of linear boundary control/observation systems described by
differential equations of form

(1.1)

u(t) = Gz(t),

ż(t) = Lz(t),

y(t) = Kz(t), t ∈ R+ = [0,∞),

z(0) = z0.

These conditions are stated in terms of data given; namely the (unbounded) oper-
ators G, L, and K. In a typical application L is a partial differential operator, and
G and K are boundary trace operators.

We shall assume throughout that the operators G, L, and K in (1.1) give rise to
a boundary node of the following type.

Definition 1.1. A triple Ξ := (G,L,K) is a boundary node on the Hilbert spaces
(U ,X ,Y) if the following conditions are satisfied:

(i) G, L, and K are linear operators with the same domain Z ⊂ X ;
(ii)

[
G
L
K

]
is a closed linear operator mapping Z into U × X × Y;

(iii) G is surjective and N (G) is dense in X ;
(iv) The operator L|N (G) (interpreted as an operator in X with domain

N (G)) has a nonempty resolvent set.
This boundary node is internally well-posed (in the forward time direction) if, in
addition,
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(v) L|N (G) generates a C0 semigroup.

We call U the input space, X the state space, Y the output space, Z the solution
space, G the input boundary operator, L the interior operator, and K the output
boundary operator.

If Ξ = (G,L,K) is internally well-posed, then (1.1) has a unique solution for
sufficiently smooth input functions u and initial states z0 compatible with u(0).
More precisely, as we show in Lemma 2.6, for all z0 ∈ X and u ∈ C2(R+;U) with
Gz0 = u(0) the first, second and fourth of the equations (1.1) have a unique solution
z ∈ C1(R+;X ) ∩ C(R+;Z),1 and hence we can define y ∈ C(R+;Y) by the third
equation in (1.1). In the rest of this article, when we say “a smooth solution of
(1.1) on R+” we mean a solution with the above properties.

Definition 1.2. A boundary node Ξ on (U ,X ,Y) is energy preserving if it is
internally well-posed and all smooth solutions of (1.1) on R+ satisfy

(1.2)
d
dt
‖z(t)‖2X + ‖y(t)‖2Y = ‖u(t)‖2U , t ∈ R+.

As we show in Proposition 4.2, this identity is equivalent to the Green–Lagrange
identity

(1.3) 2Re 〈z, Lz〉X + ‖Kz‖2Y = ‖Gz‖2U , z ∈ Z = Dom
([

G
L
K

])
.

Many boundary nodes defined by PDE:s are time-flow invertible, i.e., they have
the property that they remain boundary nodes if we interchange the roles of K and
G.

Definition 1.3. A boundary node Ξ = (G,L,K) on (U ,X ,Y) is time-flow invert-
ible if the triple Ξ← := (K,−L,G) is a boundary node on (Y,X ,U). We call Ξ←

the time-flow inverse of Ξ.

Definition 1.4. A boundary node Ξ = (G,L,K) is conservative if it is time-flow
invertible and both Ξ itself and the time-flow inverse Ξ← are energy preserving.

The following theorem is the first of our main results.

Theorem 1.5. Let Ξ := (G,L,K) be a boundary node on (U ,X ,Y). Then Ξ is
conservative if and only if the following three additional conditions hold:

(i) K is surjective and N (K) is dense in X ,
(ii) ρ(L|N (G)) ∩ C+ 6= ∅,
(iii) ρ(−L|N (K)) ∩ C+ 6= ∅,
(iv) the Green-Lagrange identity (1.3) holds.

As shown by the first author in [Mal05, Theorem 5] using [MSW06, Theorem
4.4], it is possible to replace condition (iv) of Theorem 1.5 by two slightly weaker
conditions (with Z = Dom

([
G
L
K

])
):

(iv’) 2Re 〈x, Lx〉X + ‖Kx‖2Y = 0 for all x ∈ N (G),
(v’) 〈z, Lx〉X + 〈Lz, x〉X = 〈Gz,Gx〉U for all z ∈ Z and x ∈ N (K).

1Here we use the graph norm of
h

G
L
K

i
in Z, see (2.9).
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However, in practice it does not appear to be easier to check conditions (iv’) and
(v’) than to check the full Green–Lagrange identity (1.3).

The proof of Theorem 1.5 is based on the notion of a system node. In this
work we do not just study internally well-posed boundary nodes for their own sake,
but we interpret them as system nodes in a natural way. (See Definition 2.1 for
the exact definition.) This opens up the possibility of applying existing results for
system nodes (e.g., on feedback, generalized solutions; see [Sta05]) to internally
well-posed boundary nodes. For example, in the conservative case it is possible to
use the theory of well-posed linear systems to replace the class of smooth solutions
of (1.1) by solutions where u and y belong locally to L2 and z is continuous in the
space X .

A system node is a special case of an operator node. By this we mean a closed
densely defined linear operator S =

[
A&B
C&D

]
: [XU ] ⊃ Dom (S) →

[X
Y
]

which certain
additional properties. In the case of a system node it generates a dynamical system
through the equations

(1.4)
[
ż(t)
y(t)

]
= S

[
z(t)
u(t)

]
, t ∈ R+; z(0) = z0.

Here u ∈ C2(R+;U) and
[ z0

u(0)

]
∈ Dom (S), and equation (1.4) has a unique solution

z ∈ C1(R+;X ) and output function y ∈ C(R+;Y) (see Lemma 2.2). If dimX <∞,
then S can always be written as S = [ A B

C D ] where A, B, C, and D are bounded
linear operators between the appropriate spaces, and (1.4) takes the familiar form

(1.5)

ż(t) = Az(t) +Bu(t),

y(t) = Cz(t) +Du(t), t ∈ R+,

z(0) = z0.

Given a boundary node Ξ it is possible to construct a unique operator node S with
the property that, formally, the solutions of (1.1) coincide with those of (1.4). For
an internally well-posed boundary node Ξ this correspondence is not only formal
but actually valid for all smooth solutions of (1.1), and S is then a system node.
We give a complete description of those operator/system nodes S that arise in this
way from some boundary node Ξ. We say that these operator/system nodes are of
boundary control type

The main result in Section 3 is the following theorem.

Theorem 1.6. A boundary node Ξ is time-flow invertible in the sense of Definition
1.3 if and only if the corresponding operator node S (see Theorems 2.3 and 2.4) is
time-flow invertible in the usual operator node sense (see Definition 3.1).

We call an operator node S energy preserving if it is a system node and the
smooth solutions of (1.4) satisfy (1.2). Clearly, if S arises from an internally well-
posed boundary node Ξ, then S is energy preserving if and only if Ξ is energy
preserving. However, since the dynamics is now described by a different equation
(1.4), also the Green’s identity (1.3) takes a different form.

The standard definition of a conservative system node involves also the dual
node2 S∗. According to this definition, S is conservative if both S and S∗ are energy
preserving. This is the approach adopted in most systems theory papers, such
as [Aro79a, Aro79b, Aro99], [AN96], [Bro71b, Bro71a, Bro78], [MSW06], [Sta01,

2If S is a system node, then so is S∗; see [MSW06, Proposition 2.4] or [Sta05].
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Sta02a, Sta02b, Sta02c, Sta05], [SW02, SW04], [WT03], [WST01], and [TW03].
However, as we show in Proposition 4.3 below, this is equivalent to the requirement
that S is time-flow invertible and both S and its time-flow inverse S← are energy
preserving. This leads to the following conclusion.

Theorem 1.7. A boundary node Ξ is conservative if and only if the corresponding
operator node S (see Theorems 2.3 and 2.4) is conservative in the usual operator
node sense (see Definition 4.1).

The results obtained in this article lead to the following two new theorems about
time-flow invertible or conservative operator nodes. Note that the statements of
these two theorems contain no reference to boundary nodes (in spite of the fact
that their proofs depend heavily on such nodes).

Theorem 1.8. If an operator node S of boundary control type is time-flow invert-
ible, then the time-flow inverse S← is also of boundary control type.

This follows immediately from Theorem 1.6.

Theorem 1.9. Let S be a conservative system node. Then S is of boundary control
type if and only if the dual S∗ is of boundary control type.

This follows from Theorem 1.8 and Proposition 4.3 below.
The outline of this paper is the following. In Section 2 we introduce operator

nodes and explain the relationship between a boundary node and an operator node
of boundary control type, roughly following [Sal87], [Mal04], and [Sta05]. In Section
3 we discuss time-flow invertibility of boundary nodes, and connect this notion with
the time-flow invertibility of operator nodes as presented in [SW04] and [Sta05].
Conservative operator nodes are studied in Section 4 in the spirit of [MSW06]; see
also [WST01], [Sta01, Sta02a, Sta02b, Sta02c, Sta05] and [SW04]. The proof of
Theorems 1.5 and 1.7 are given in this section.

Finally, in Section 5 we apply Theorem 1.5 to a PDE describing a reflecting
mirror, and we conclude that it induces a conservative system node. The same
example has been treated earlier in [WT03] as an example of a “thin air” system.
The strong and exponential stability of the semigroup generated by the same PDE
(take u ≡ 0 in (5.2)) is studied by, e.g., Lagnese [Lag83] and Triggiani [Tri89], but
they do not pay attention to system theoretic properties of this example, such as
conservativity. Technically, our treatment resembles the one in [Lag83].

The boundary nodes that we present here have a long history. It started with
the boundary control of parabolic and hyperbolic PDEs; for the early history we
refer to [Lio71] and [Rus78]. The two volumes [LT00] contain a large collection of
examples and references to more recent work, as does [BDDM92]. The origin of our
abstract formulation dates back to Fattorini [Fat68], and significant progress was
made by Salamon [Sal87].

Even earlier in the former Soviet Union, the study of Sturm–Liouville and related
problems led Naimark [Neu40] and Krein [Kre47] to the question of finding sym-
metric and self-adjoint extensions of a symmetric operator, as described in [GG91,
Chapter 3] and [GGK89]. The final results have natural interpretations in the
context of conservative boundary nodes. We shall return to this in [MS06].

At the moment, not much has been written in the west on conservative boundary
control systems. Typical parabolic boundary control systems (arising e.g. from
thermodynamics) are not time-flow invertible, hence not conservative. However,
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many hyperbolic systems (coming e.g. from continuum mechanics) are conservative.
More specifically, conservative hyperbolic boundary control systems (or parts of
such systems where either the input or the output is either implicit or missing) are
found in [BHL+91], [RBZ95], [GL02], [BGSW02], [TW03], and [WT03].

2. Operator Nodes versus Boundary Nodes

The purpose of this section is to explain the one-to-one connection between
all boundary nodes and all operator nodes with injective and strictly unbounded
control operators. This connection is known in principle (see, e.g., [Sal87] or [Sta05,
Section 5.2]), but it cannot be found in the literature in exactly the form that we
need it.

2.1. Operator and System Nodes. Let us first recall the notions of an operator
node and a system node. This involves a densely defined unbounded (main) oper-
ator A on a Hilbert space X with a nonempty resolvent set. We define X1 to be
the domain of A with the graph norm ‖z‖2X1

= ‖Az‖2X + ‖z‖2X , and define X−1 to
be the dual of Dom (A∗) with the graph norm when we identify the dual of X with
itself. Then X1 ⊂ X ⊂ X−1 with continuous and dense embeddings. The operator
A has a unique extension to an operator A−1 ∈ L(X ;X−1).

Definition 2.1. Let U , X and Y be Hilbert spaces. An operator

S :=
[
A&B
C&D

]
:
[
X
U

]
⊃ Dom (S) →

[
X
Y

]
is called an operator node on (U ,X ,Y) if it has the following structure:

(i) A is a densely defined operator on X with a nonempty resolvent set (which
we extend to an operator A−1 ∈ L(X ;X−1) as explained above).

(ii) B ∈ L(U ;X−1).
(iii) Dom (S) =

{
[ x
u ] ∈ [XU ] : A−1x+Bu ∈ X

}
, andA&B =

[
A−1 B

]
|Dom (S);

(iv) C&D ∈ L(Dom (S) ;Y), where we use the graph norm

(2.1)
∥∥[ x

u ]
∥∥2

A&B
= ‖A−1x+Bu‖2X + ‖x‖2X + ‖u‖2U

of A&B on Dom (S).

If, in addition to the above, A generates a strongly continuous semigroup on X ,
then S is called a system node.

A system or operator node is of boundary control type if its control operator B
is injective and strictly unbounded, i.e., it satisfies Ran (B) ∩ X = {0}.

Every operator node is closed (as an operator from [XU ] to
[X
Y
]
). This follows

from the facts that A&B is closed, that C&D has the same domain as A&B, and
that C&D is continuous with respect to the graph norm of A&B. It is also true
that the graph norm of A&B on Dom (S) is equivalent to the full graph norm

(2.2)
∥∥[ x

u ]
∥∥2

S
=
∥∥A&B [ x

u ]
∥∥2

X +
∥∥C&D [ x

u ]
∥∥2

X + ‖x‖2X + ‖u‖2U
of S.

We call A ∈ L(X1;X ) the main operator of S, B ∈ L(U ;X−1) is its control oper-
ator, and C&D ∈ L(Dom (S) ;Y) is its combined observation/feedthrough operator.
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From the last operator we can extract C ∈ L(X1;Y), the observation operator of
S, defined by

(2.3) Cx := C&D
[
x
0

]
, x ∈ X1.

A short computation shows that for each α ∈ ρ(A), the operator

(2.4) Eα :=
[
1 (α−A−1)−1B
0 1

]
is a bounded bijection from [XU ] onto itself and also from

[X1
U
]

onto Dom (S). In
particular, for each u ∈ U there is some x ∈ X such that [ x

u ] ∈ Dom (S). Since[X1
U
]

is dense in [XU ], this implies that also Dom (S) is dense in [XU ]. Since the
second column of Eα maps U into Dom (S), we can define the transfer function of
S by

(2.5) D̂(α) := C&D
[
(α−A−1)−1B

1

]
, α ∈ ρ(A),

which is an L(U ;Y)-valued analytic function. Clearly, for any two α, β ∈ ρ(A),

(2.6) D̂(α)− D̂(β) = C[(α−A−1)−1 − (β −A−1)−1]B.

Each system node S =
[

A&B
C&D

]
generates a family of smooth solutions of the

differential/algebraic equation (1.4) of the following type:

Lemma 2.2. Let S =
[

A&B
C&D

]
be a system node on (U ,X ,Y). Then for all z0 ∈ X

and u ∈ C2(R+;U) with
[ z0

u(0)

]
∈ Dom (S) the equation

(2.7) ẋ(t) = A&B
[
x(t)
u(t)

]
, t ∈ R+, z(0) = z0,

has a unique solution z ∈ C1(R+;X ) such that [ z
u ] ∈ C(R+;Dom (S)). Hence we

can define y ∈ C(R+;Y) by

(2.8) y(t) = C&D
[
x(t)
u(t)

]
, t ∈ R+.

For a proof, see [MSW06, Proposition 2.5] or [Sta05, Lemma 4.7.8]. In the sequel,
by “a smooth solution of (1.4) on R+” we mean a solution with the above properties.
Additional information about system and operator nodes can be found in, e.g.,
[AN96], [MSW06], [Sal87, Sal89], [Šmu86], [Sta01, Sta02a, Sta02b, Sta02c, Sta05],
[SW02, SW04], and [WT03].

2.2. The Connection Between Operator and Boundary Nodes. We now
show that there is an one-to-one correspondence between boundary nodes and op-
erator nodes of boundary control type.

Let Ξ be a boundary node as in Definition 1.1. In that definition we denote the
common domains of K, L, and G by Z and call it the solution space. In the sequel
we shall throughout equip Z with the graph norm of

[
K
L
G

]
, i.e.,

(2.9)
Z := Dom (K) = Dom (L) = Dom (G) ,

‖z‖2Z := ‖z‖2X + ‖Kz‖2Y + ‖Lz‖2X + ‖Gz‖2U .

Clearly K ∈ L(Z;Y), L ∈ L(Z;X ), and G ∈ L(Z;U). We call A := L|N (G) the
(forward) main operator and A← := −L|N (K) the backward main operator.
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As our following theorem shows, every boundary node induces as an operator
node, and every internally well-posed boundary node induces as a system node.3 A
converse to this theorem is given in Theorem 2.4 below.

Theorem 2.3. Let Ξ := (G,L,K) be a boundary node on (U ,X ,Y). Then

(2.10) S =
[
A&B
C&D

]
:=
[
L
K

] [
1
G

]−1

, Dom (S) = Ran
([

1
G

])
,

is an operator node on (U ;X ;Y) of boundary control type. This operator node is a
system node if and only if Ξ is internally well-posed.

More precisely, the operator node S can be constructed as follows:
(i) The main operator A of S is given by A := L|Dom (A), where Dom (A) =

N (G). The spaces X1 ⊂ X ⊂ X−1 and the extended operator A−1 are
constructed as described in the paragraph before Definition 2.1. The norm
in X1 (i.e., the graph norm of A) is equivalent to the norm that X1 inherits
from the space Z defined in (2.9).

(ii) The control operator B ∈ L(U ;X−1) of S is uniquely determined by the
identity BG = L−A−1|Z.

(iii) [ 1
G ] is a boundedly invertible operator from Z onto

V :=
{
[ z
u ] ∈ [XU ] : A−1z +Bu ∈ X

}
,

equipped with the norm (2.1). In particular, V is continuously embedded
in [ZU ].

(iv) The observation/feedthrough operator C&D of S is given by C&D =[
K 0

]
|Dom (S).

(v) The space Z can be written as the direct sum of the closed subspaces

(2.11) Z = X1 uRan
(
(α−A−1)−1B

)
,

where α is an arbitrary number in ρ(A−1) = ρ(A), and

(2.12) G(α−A−1)−1B = 1, α ∈ ρ(A−1) = ρ(A).

Moreover, (u, x, y) is a smooth solution of (1.1) if and only if (u, x, y) is a smooth
solution of (1.4).

Proof. We build the operator node S from its components as described in (i)–(v),
and then, at the end of the proof, we show that S is given by (2.10).

We begin with condition (i). By the definition of a boundary node, A = L|N (G)
has a non-empty resolvent set. Let X ′1 := N (G) with the norm inherited from Z,
and let X1 := Dom (A) = N (G) with the graph norm. Let α ∈ ρ(A). Then
(α − A) ∈ L(X ′1;X ) is a bounded bijection, and hence it has a bounded inverse in
L(X ;X ′1). This implies that the norms in X ′1 and X1 are equivalent.

We continue by defining B = (L − A−1)G−1
right, where G−1

right ∈ L(U ;Z) is an
arbitrary right-inverse to G (such a right-inverse exists since G is bounded and
surjective). Then B ∈ L(U ;X−1), since Z ⊂ X ⊂ X−1 with continuous embeddings.
The operator B defined this way satisfies BG = L − A−1|Z, and this equation
determines B uniquely (since G is surjective).

3This theorem resembles [Sta05, Theorem 5.2.13]. That theorem was added to [Sta05] in the
proof reading process, and it was originally obtained as a part of the present work. A less precise

version of this result is also found in [Sal87, Section 2.2].
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Next we prove (2.11) and (2.12). We have

(2.13)
(α−A−1)−1B = (α−A−1)−1(L−A−1)G−1

right

= G−1
right + (α−A−1)−1(L− α)G−1

right,

where G−1
right ∈ L(U ;Z) and L − α ∈ L(Z;X ). This implies that (α − A−1)−1B

maps U continuously into Z. Moreover, since the last term in (2.13) belongs
to X1 = N (G), we find that (2.12) holds. In particular, B is injective and
Ran

(
(α−A−1)−1B

)
is closed in Z.

To complete our proof of (2.11), we still need to show that

X1 ∩Ran
(
(α−A−1)−1B

)
= {0}

and that X1 +Ran
(
(α−A−1)−1B

)
= Z. If x ∈ X1 ∩ Ran

(
(α−A−1)−1B

)
, then

Gx = 0 (since X1 = N (G)), and x = (α − A−1)−1Bu for some u ∈ U . Therefore,
by (2.12),

0 = Gx = G(α−A−1)−1Bu = u,

hence also x = 0. Thus X1 ∩ Ran
(
(α−A|X )−1B

)
= {0}, or equivalently, X ∩

Ran (B) = {0}. Given any z ∈ Z, we can define u = Gz and x = z−(α−A−1)−1Bu.
Then u ∈ U and

Gx = Gz −G(α−A−1)−1Bu = u− u = 0,

and so x ∈ X1. This completes the proof of the direct sum decomposition (2.11)
and the property (2.12).

We proceed to prove (iii), and begin by showing that

(2.14) Ran ([ 1
G ]) =

{
[ z
u ] ∈ [XU ] : A−1z +Bu ∈ X

}
.

One direction of this inclusion is immediate: if z ∈ Z and u = Gz, then, as we saw
above, w := A−1z + Bu = Lz ∈ X . Thus, Ran ([ 1

G ]) ⊂
{
[ z
u ] ∈ [XU ] : A−1z + Bu ∈

X
}
. For the converse inclusion we take some z ∈ X and u ∈ U and suppose that

w := A−1z +Bu ∈ X . Then by (2.11),

z = (α−A−1)−1(αz − w) + (α−A−1)−1Bu ∈ Z.

This proves (2.14).
By the continuity of L, G, and the embedding Z ⊂ X , each of ‖w‖X , ‖z‖X

and ‖u‖U are dominated by ‖z‖Z up to multiplicative constants. Thus [ 1
G ] is a

bounded bijection from Z onto V equipped with the norm (2.1). Therefore it also
has a bounded inverse.

Since V = Ran ([ 1
G ]), we find that V ⊂ [ZU ]. The embedding of V into [XU ]

is continuous, and since the range of this embedding operator is contained in [ZU ]
(where Z is continuously embedded in X ), also the embedding V ⊂ [ZU ] must be
continuous.

We continue by defining C&D as described in (iv). Then C&D is bounded
from V into Y (because of the continuous embedding V ⊂ [ZU ]). Finally, we define
S =

[
A&B
C&D

]
, where A&B =

[
A−1 B

]
|V and Dom (S) = V . It follows from what

we have proved so far that S is a system node. It only remains to show that S is
given by (2.10), or equivalently, that

(2.15)
[
A&B
C&D

] [
1
G

]
=
[
L
K

]
.
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The top row of this identity holds because

A−1z +BGz = A−1z + (L−A−1)z = Lz, z ∈ Z.

The bottom row follows directly from our definition of C&D.
The final claim about the equivalence of smooth solutions of (1.1) and (1.4)

follows immediately from (2.10). �

In Theorem 2.4 below we give a converse to Theorem 2.3. In this theorem we start
with a system node S of boundary control type and construct the corresponding
boundary node Ξ. This time we define the solution space Z to be the range of
(α − A−1)−1

[
1 B

]
: [XU ] → X , where A is the main operator and B the control

operator of S. Thus, B is injective and Ran (B) ∩ X = {0}. This implies that, for
each fixed α ∈ ρ(A), every w ∈ Z has a unique representation

(2.16) w = x+ (α−A−1)−1Bu, x ∈ X1, u ∈ U .

We can therefore define a Hilbert space norm on Z by

(2.17) ‖w‖2Z = ‖x‖2X1
+ ‖u‖2U where w = x+ (α−A−1)−1Bu.

With this norm the space Z is densely and continuously embedded in X , and
(2.11) holds, so that that the complementary projections in Z onto X1, respectively
(α − A−1)−1BU are continuous. Furthermore, the operator (α − A−1)−1B is a
bounded linear operator mapping U one-to-one onto its closed range, and it has
a bounded inverse defined on its range. Different values of α gives different but
equivalent norms in (2.17). For more details, see, e.g., [Sal87, p. 389] or [Sta05,
Lemma 5.2.2].

Theorem 2.4. Let S =
[

A&B
C&D

]
be an operator node on (U ,X ,Y) of boundary

control type with main operator A, control operator B, observation operator C, and
transfer function D̂. Define the spaces X1 and X−1 and the extended operator A−1

as described in the paragraph preceding Definition 2.1. Then S induces a (unique)
boundary node Ξ = (G,L,K) on (U ,X ,Y) in the following way:4

(i) The space Z is defined by (2.11) (as described above), with the norm defined
in (2.17).

(ii) There exists a unique operator G ∈ L(Z;U) such that

Dom (S) := Ran ([ 1
G ]) .

The operator G surjective and N (G) = X1 is dense in X . The operator
[ 1
G ] is a bounded bijection of Z onto Dom (S) (with the graph norm (2.1)

of A&B).
(iii) The operator L ∈ L(Z;X ) is defined by

L := A−1|Z +BG =
[
A−1 B

] [1
G

]
.

In particular, L|N (G) = A has a nonempty resolvent set.
(iv) The operator K ∈ L(Z;Y) is defined by

K := C&D [ 1
G ] .

4This is a slightly simplified version of [Sta05, Theorem 5.2.6]. A slightly less precise version
of this result is found in [Sal87, Proposition 2.8].
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The node Ξ is a internally well-posed boundary node if and only if S is a system
node. The operator node that we obtain by applying Theorem 2.3 to Ξ coincides
with the given operator node S.

Our proof of Theorem 2.4 uses the following alternative characterisation of a
boundary node, which is also of independent interest (see Section 5).5

Proposition 2.5. A triple Ξ := (G,L,K) is a boundary node on the Hilbert spaces
(U ,X ,Y) if and only if the following conditions are satisfied:

(i) There exists a Hilbert space Z, such that the embedding Z ⊂ X is dense
and continuous;

(ii) L ∈ L(Z;X ), G ∈ L(Z;X ) and K ∈ L(Z;Y);
(iii) G is surjective and N (G) is dense in X ; and
(iv) (α− L)|N (G) maps N (G) one-to-one onto X for some α ∈ C.

Proof. It is clear that (i)–(iv) are necessary conditions when Z is the solution space
of Ξ. For the sufficiency part we note that conditions (i), (ii) and (iv) imply (iv) of
Definition 1.1 since bounded bijections have bounded inverses.

We complete the proof by showing that
[

G
L
K

]
is closed with domain Z. Suppose

that zn ∈ Z, zn → z in X , xn := Lzn → x in X , un := Gzn → u in U and
yn := Kzn → y in Y. Choose α as in condition (iv). Then

[
G

−α+L

]
∈ L(Z; [ UX ])

is a bijection (see conditions (i) and (ii) for boundedness, and conditions (iii) and
(iv) for bijectivity), and it has a bounded inverse. As zn =

[
G

−α+L

]−1 [ un
−αzn+xn

],
we find that z ∈ Z, zn → z in Z and z =

[
G

−α+L

]−1 [ u
−αz+x ]. Thus u = Gz and

x = Lz, and by the continuity of K, y = Kz. Thus (ii) of Definition 1.1 holds. �

Proof of Theorem 2.4. We begin by proving (ii). Fix some α ∈ ρ(A). As we ob-
served in the paragraph preceding Theorem 2.4, each w ∈ Z has a unique decom-
position w = x+ (α−A−1)−1Bu where x ∈ X1 and u ∈ U . Define Gw := u. Then
G ∈ L(Z;U) and N (G) = X1 (G is the projection of Z onto (α−A−1)−1BU along
X1 followed by the inverse of (α−A−1)−1B).

We next show that [ 1
G ]Z = Dom (S), and begin with the inclusion [ 1

G ]Z ⊂
Dom (S). Let w ∈ Z, and split w as in (2.16). Then

A−1w +BGw = A−1(x+ (α−A−1)−1Bu) +Bu

= Ax+ α(α−A−1)−1Bu ∈ X .

Thus, [ 1
G ]Z ⊂ Dom (S). Conversely, suppose that [ w

u ] ∈ Dom (S), i.e., w ∈ X ,
∈ U , and z := A−1w +Bu ∈ X . Then

w = (α−A−1)−1(αw − z) + (α−A−1)−1Bu ∈ X1 + (α−A−1)−1BU = Z,
and Gw = u. Thus, Dom (S) = [ 1

G ]Z. The same argument shows that G is
surjective (as S is an operator node, for each u ∈ U there is some x ∈ X such
[ x
u ] ∈ Dom (S), and Gx = u).

All of ‖A−1w + BGw‖X , ‖w‖X , and ‖u‖ are dominated by ‖w‖Z up to multi-
plicative constants, so the mapping [ 1

G ] from Z into Dom (S) is continuous with
respect to the graph norm (2.1) of A&B, hence a bounded bijection. This is a
graph representation of Dom (S) over Z, and hence it determines G uniquely. This
completes our proof of (ii).

5This characterisation resembles the one used by Salamon [Sal87].
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The claim (iii) is obvious, and so is (iv). Since G, L and K, satisfy (i)–(iv) it
follows from Proposition 2.5 that (G,L,K) is a boundary node. It is also clear
that Ξ is internally well-posed if and only if S is a system node. The final claim of
Theorem 2.4 is also easily verified. �

We end this section by using the one-to-one correspondence between internally
well-posed boundary nodes and system nodes of boundary control type to get an
existence result for solutions of (1.1).

Lemma 2.6. Let Ξ := (G,L,K) be a internally well-posed boundary node on
(U ,X ,Y). Then, for all z0 ∈ X and u ∈ C2(R+;U) with Gz0 = u(0) the first, sec-
ond and fourth equation in (1.1) have a unique solution z ∈ C1(R+;X )∩C(R+;Z).
Hence we can define y ∈ C(R+;Y) by the third equation in (1.1).

Proof. This follows immediately from Lemma 2.2 and Theorem 2.3 (define z =
[ 1
G ]−1 [ x

u ], and use (2.10) to convert (1.4) into (1.1)). �

3. Time-Flow Invertibility

We now define what we mean by the time-flow invertibility of an operator node
and prove Theorem 1.6.

Definition 3.1. Let S =
[

A&B
C&D

]
be an operator node on (U ,X ,Y). We call this

operator node time-flow invertible if there exists an operator node S← =
[

[A&B]←

[C&D]←

]
on (Y,X ,U) which together with S satisfies the following conditions: the operator
[ 1 0
C&D ] maps Dom (S) continuously onto Dom (S←), its inverse is

[
1 0

[C&D]←
]
, and[

A&B
C&D

]
=
[
−[A&B]←

0 1

] [
1 0

[C&D]←

]−1

(on Dom (S)),(3.1) [
[A&B]←

[C&D]←

]
=
[
−A&B

0 1

] [
1 0
C&D

]−1

(on Dom (S←)).(3.2)

In this case we call S and S← time-flow inverses of each other.

For more details, see [Sta05, Section 6.5].

Proof of Theorem 1.6. Suppose that Ξ is time-flow invertible. Define the operator
node S by (2.10), and define S← by

(3.3) S← =
[
[A&B]←

[C&D]←

]
:=
[
−L
G

] [
1
K

]−1

, Dom (S←) = Ran
([

1
K

])
.

By Theorem 2.3, S← is an operator node. Clearly [ 1 0
C&D ] = [ 1

K ] [ 1
G ]−1 maps

Dom (S) one-to-one ontoDom (S←) with the bounded inverse [ 1
G ] [ 1

K ]−1 =
[

1 0
[C&D]←

]
.

Moreover, [
−A&B

0 1

] [
1 0
C&D

]−1

=
([
−L
G

] [
1
G

])([
1
G

]−1 [ 1
K

]−1
)

=
[
−L
G

] [
1
K

]−1

=
[
[A&B]←

[C&D]←

]
,

and a similar computation shows that also (3.1) holds. Thus, S is time-flow invert-
ible with time-flow inverse S←.
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Conversely, suppose that S is time-flow invertible with time-flow inverse S←. We
claim that Ξ is then time-flow invertible. The time-flow invertibility of S implies
that [ 1 0

C&D ] is a bijection between Dom (S) and Dom (S←). It follows from (2.10)
that [ 1 0

C&D ] = [ 1
K ] [ 1

G ]−1, and hence [ 1
K ]Z = Dom (S←). Since S← is an operator

node, for every y ∈ Y there is some x ∈ X such that [ x
y ] ∈ Dom (S←). Thus K is

surjective. By (2.10) and (3.2), S← is given by (3.3).
Denote the main operator of S← by A←. It follows from part (iii) of Definition

2.1 that Dom (A←) =
{
x ∈ X | [ x

0 ] ∈ Dom (S←)
}
. Since [ 1

K ]Z = Dom (S←),
this means that Dom (A←) = N (K). Finally, from (3.3) we also see that A← =
−L|N (K). By the assumption that S is time-flow invertible, Dom (A←) = N (K)
is dense in X , and A← = −L|N (K) has a nonempty resolvent set. Clearly,

[
K
−L
G

]
is closed since

[
G
L
K

]
is closed (with the same domain). By definition, Ξ is time-flow

invertible. �

The preceding proof gives us a little more that what is explicitly stated in The-
orem 1.6.

Corollary 3.2. Suppose that the boundary node Ξ is time-flow invertible, and
denote the corresponding time-flow invertible operator node by S. Then the time-
flow inverse S← of S is the operator node induced by the time-flow inverse Ξ← in
the way described in Theorem 2.3.

Proof. See (3.1)–(3.3). �

4. Conservative Systems

We now define what we mean by the conservativity of an operator node and
prove Theorems 1.5 and 1.7.

Definition 4.1. An operator node S on (U ,X ,Y) is energy preserving if it is a
system node and all smooth solutions of (1.4) on R+ satisfy (1.2). It is conservative
if both S and S∗ are energy preserving.

In the case of an energy preserving operator node the Green–Lagrange identity
(1.3) becomes

(4.1) 2Re
〈
z,A&B [ z

u ]
〉
X = ‖u‖2U − ‖C&D [ z

u ] ‖2Y , [ z
u ] ∈ Dom (S) .

Proposition 4.2. Let Ξ = (G,L,K) be a boundary node, and let S =
[

A&B
C&D

]
be

the corresponding operator node S (see Theorems 2.3 and 2.4) with main operator
A. Then the following conditions are equivalent:

(i) Ξ is energy preserving (in the sense of Definition 1.2).
(ii) S is energy preserving (in the sense of Definition 4.1).
(iii) ρ(L|N (G)) ∩ C+ 6= ∅, and (1.3) holds (here C+ = {α ∈ C | Reα ≥ 0}).
(iv) ρ(A) ∩ C+ 6= ∅, and (4.1) holds.

Proof. (i) ⇔ (ii): The equivalence of (i) and (ii) is an immediate consequence of
Definitions 1.2 and 4.1, and the one-to-one correspondence between solutions of
(1.1) and solutions of (1.4) established in Theorem 2.3.

(ii) ⇒ (iv): Assmue (ii). Clearly the internal well-posedness of S implies that
ρ(A) ∩ C+ 6= ∅. Let [ z0

u0 ] ∈ Dom (S), and let u be the constant function u(t) = u0

for all t ≥ 0. Let x be the solution of (2.7) with x(0) = x0 given by Lemma 2.2, and
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define y by (2.8). Then (1.2) with t = 0 implies that (4.1) holds with [ z
u ] replaced

by [ z0
u0 ] (since d

dt‖z(t)‖
2
X = 2Re 〈z(t), ż(t)〉X ).

(iv) ⇒ (ii): Taking z ∈ Dom (A) and u = 0 in (4.1) we find that A is dissi-
pative, i.e., Re 〈z,Az〉 ≤ 0 for all z ∈ Dom (A). This together with the condition
ρ(A) ∩C+ 6= ∅ implies that A generates a contraction semigroup; see, e.g., [Paz83,
Theorem 4.3, p. 14] or [Sta05, Theorem 3.4.8]. Thus, S is a system node. It
follows from (4.1) that all smooth solutions of (1.4) satisfy (1.2), and hence S is
energy-preserving.

(iii) ⇔ (iv): This follows directly from Theorem 2.3 and 2.4 (take u in (4.1) to
be u = Gz, and use (2.10)). �

Proof of Theorem 1.5. The necessity of (i)–(iv) for the conservativity of Ξ follows
directly from Definitions 1.1 and 1.3, and Proposition 4.2. Conversely, if these con-
ditions hold, then according to Definitions 1.1 and 1.3, Ξ is time-flow invertible.
Proposition 4.2 can be applied both to Ξ and to the time-flow inverse Ξ←: condi-
tions (ii) and (iv) imply that Ξ is energy preserving, and conditions (iii) and (iv)
imply that Ξ← is energy preserving. Thus, Ξ is conservative. �

Our proof of Theorem 1.7 is based on the following characterization of a conser-
vative system node.

Proposition 4.3. Let S be a system node. Then the following conditions are
equivalent:

(i) S is conservative.
(ii) S is time-flow invertible, and the time-flow inverse S← is given by S← =

S∗.
(iii) S is energy preserving and time-flow invertible, and the time-flow inverse

S← is a system node.
(iv) S is time-flow invertible, and both S and the time-flow inverse S← are

energy preserving.

This proposition is of some independent interest. It can be derived fairly easily
from the results presented in [MSW06], but unfortunately it was not included in
[MSW06]. Since a self-contained proof is would be rather long we assume below
that the reader has access to [MSW06].

Proof of Proposition 4.3. (i) ⇒ (ii): Let (i) hold. We denote the dual system node
by S∗ =

[
[A&B]d

[C&D]d

]
. By [MSW06, Theorem 4.2] (and its proof), [ 1 0

C&D ] is a bijection

of Dom (S) onto Dom (S∗) with inverse
[

1 0
[C&D]d

]
. The operator [ 1 0

C&D ] is contin-

uous from Dom (S) into
[X
Y
]

with range equal to Dom (S∗), so it is a bounded
bijection between Dom (S) and Dom (S∗) (both domains being equipped with the
respective graph norms). By [MSW06, Theorem 4.2],

S∗ =
[
−A&B

0 1

] [
1 0
C&D

]−1

.

Applying the same argument to the dual system we get the same identity where
S and S∗ have changed places. This implies that S is time-flow invertible, with
time-flow inverse S← = S∗.
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(ii) ⇒ (i): Let (ii) hold. Then, by Definition 3.1, [ 1 0
C&D ] maps Dom (S) onto

Dom (S∗) = Dom (S←) and

S∗ = S← =
[
−A&B

0 1

] [
1 0
C&D

]−1

.

By [MSW06, Theorem 3.2] S is energy preserving. We can then apply [MSW06,
Theorem 4.2] to conclude that S is conservative.

(i)&(ii) ⇒ (iv) ⇒ (iii): These two implications follow directly from the definition
of conservativity of an operator node.

(iii)⇒ (ii): Assume (iii). By Definition 1.3, [ 1 0
C&D ] mapsDom (S) ontoDom (S←)

and

S←
[

1 0
C&D

]
=
[
−A&B

0 1

]
,

By [MSW06, Theorem 3.2], [ 1 0
C&D ] mapsDom (S) intoDom (S∗), and henceDom (S←) ⊂

Dom (S∗). Moreover, by the same theorem,

S∗
[

1 0
C&D

]
=
[
−A&B

0 1

]
.

Thus, S← = S∗|Dom (S←), and, in particular, A← = A∗|Dom (A←) where A← and
A∗ are the main operators of S← and S∗, respectively. But both A← and A∗ are
the generators of C0 semigroups on X , and so their resolvent sets have a nonzero
intersection. This implies that their domains coincide; hence A← = A∗, and the
extended state spaces X←−1 and Xd

−1 also coincide. Recall that the control operator
of S∗ is C∗. Both both

[
A←−1 B←

]
and

[
A∗−1 C∗

]
are bounded operator from

[XU ] to X←−1 = X∗−1, and they coincide on the dense subset Dom (S←). This implies
that

[
A←−1 B←

]
=
[
A∗−1 C∗

]
. Since these two operators determine the domains

of S← and S∗, we have Dom (S←) = Dom (S∗) and S← = S∗. �

Proof of Theorem 1.7. Theorem 1.7 follows immediately from Theorem 1.6 and
Propositions 4.2 and 4.3. �

5. The Reflecting mirror

In this section we apply Theorems 1.5 and 1.7 to a PDE describing a reflecting
mirror, and we conclude that it induces a conservative system node. This example
is classical. A more general version has been treated as an example of a “thin
air” system in [WT03, Section 7] by means of a construction that bears some
resemblance to feedback techniques appearing in [Tri89]. Our approach resembles
the techniques of [Lag83].

Suppose that n ≥ 2 and let Ω ⊂ Rn be a bounded domain (open connected set)
with C2-boundary ∂Ω. We assume that ∂Ω = Γ0 ∪Γ1 with Γ0 ∩Γ1 = ∅ where both
Γ0 and Γ1 are nonempty.6 Thus Ω is not simply connected. A simple example of
this geometry in R2 is provided by the annulus

(5.1) Ω = {(ξ1, ξ2) ∈ R2 : 1/4 < ξ21 + ξ22 < 1}
with Γ0 = {(ξ1, ξ2) ∈ R2 : ξ21 + ξ22 = 1/4} and Γ1 = {(ξ1, ξ2) ∈ R2 : ξ21 + ξ22 = 1}, or
the other way around.

6The sets Γ1 and Γ0 are allowed to have zero distance in [WT03], and there Ω can be simply

connected. The analysis in [WT03] is based on stronger background results from [RBZ95].
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We consider the linear system described by the system of equations

(5.2)



ztt(t, ξ) = ∆z(t, ξ) for ξ ∈ Ω and t ≥ 0,√
2u(t, ξ) = zt(t, ξ) + ∂z

∂ν (t, ξ) for ξ ∈ Γ1 and t ≥ 0,√
2 y(t, ξ) = −zt(t, ξ) + ∂z

∂ν (t, ξ) for ξ ∈ Γ1 and t ≥ 0,
z(t, ξ) = 0 for ξ ∈ Γ0 and t ≥ 0, and
z(0, ξ) = z0(ξ), zt(0, ξ) = w0(ξ) for ξ ∈ Ω.

Here zt(t, ξ) stands for the time derivative and ∂z
∂ν (t, ξ) for the normal derivative

of z at time t at the boundary point ξ. Before going any further, let us recall the
definitions of the Sobolev spaces and the boundary trace mappings that we need.

The spaces Hm(Ω) = Wm
2 (Ω) for m = 1, 2, are defined as usual, i.e.,

(5.3) Hm(Ω) := {f ∈ L2(Ω) : Dαf ∈ L2(Ω) for all multi-indeces |α| ≤ m}
where the differentiation Dα is understood in the sense of distributions; see, e.g.,
[Gri85, Definition 1.3.2.1] or [LM72, p. 1]. There is yet another equivalent closure
definition for Hm(Ω), see, e.g., [AF03, p. 60]. We use the Hilbert space norm
‖f‖2Hm(Ω) =

∑
|α|≤m ‖Dαf‖2L2(Ω) in Hm(Ω).

We shall also need the fractional Sobolev space Hs(Ω) with s = 3/2. This space
can be defined in several different but equivalent ways. It can, for example, be
characterized (for any s > 0) as the restriction Hs(Ω) := {f |Ω : f ∈ Hs(Rn)} to Ω
of the set of all functions in Hs(Rn), where

Ĥs(Rn) := {f̂ ∈ L2(Rn) : (1 + | · |2)s/2f̂(·)) ∈ L2(Rn)}
is defined on the Fourier transform side; see [Gri85, Definition 1.3.1.3] or [LM72, p.
30]. By Plancherels theorem (see [Gri85, comment on p. 16]), Hs(Rn) = W s

2 (Rn),
where

W s
2 (Rn) :=

f ∈Wm
2 (Rn) :

∫∫
Rn×Rn

|Dαf(ξ)−Dαf(ν)|2

|ξ − ν|n+2σ
dξ dν <∞

 ,

s = m + σ, m ∈ Z+ and σ ∈ (0, 1)) for all s ∈ R \ Z+; see [Gri85, Definition
1.3.1.1]. We denote by W

s

2(Ω) := {f |Ω : f ∈ W s
2 (Rn)} the restrictions to Ω of the

set of functions in W s
2 (Rn), and define W s

2 (Ω) in the same way as W s
2 (Rn) with

Rn replaced by Ω. Then, by [Gri85, Theorem 1.4.3.1], Hs(Ω) = W s
2 (Ω) = W

s

2(Ω)
for all s > 0 and for all domains Ω that have a C2-boundary. Still another way
to characterize the same space Hs(Ω) is to interpolate between two spaces of type
Hm(Ω) with integer m as is done in [LM72, Theorem 9.1, p. 40].7 A Hilbert space
norm for Hs(Ω) can be introduced in a number of equivalent ways8 so that the
embedding Hs(Ω) ⊂ L2(Ω) becomes continuous.

The boundary spaces L2(∂Ω), L2(Γ0) and L2(Γ1) are defined using the standard
(n − 1)-dimensional Hausdorff measure for (n − 1)-dimensional hypersurfaces in
Rn. We shall write L2(∂Ω) = L2(Γ0) ⊕ L2(Γ1) by extending functions in L2(Γ0)
or L2(Γ1) by zero on the other component of Γ. The boundary Sobolev spaces
Hs(∂Ω), Hs(Γ0), and Hs(Γ1) are needed for s = 1/2, and they are defined for
s > 0 by covering the manifold ∂Ω with charts (Oj , ψj) of Rn such that φj(Oj ∩

7Note that Ω has a C∞-boundary in [LM72] but this assumption can be often relaxed.
8For example by interpolation theory, or by restriction of the natural norm of the space W s

2 (Rn)

above. The particular choice of the norm is irrelevant in this paper.
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∂Ω) ⊂ Rn−1 × {0} for j = 1, . . . ,m. Let αj ∈ D(∂Ω) be a partition of unity
satisfying

∑m
j=1 αj(ξ) = 1 and suppαj ⊂ Oj for j = 1, . . . ,m. Given f ∈ L2(∂Ω)

and y′ ∈ Rn−1, we define ψ∗j,f (y′) := (αjf)(ψ−1
j (y′, 0)) if (y′, 0) ∈ ψj(Oj) and

ψ∗j,f (y′) := 0 otherwise. Then

Hs(∂Ω) :=
{
f ∈ L2(∂Ω) : ψ∗j,f ∈ Hs(Rn−1) for all j = 1, . . . ,m

}
with the Hilbert space norm ‖f‖2Hs(∂Ω) =

∑m
j=1 ‖ψj,f‖2Hs(Rn−1). Recalling our

standing assumption Γ0∩Γ1 = ∅, we may choose the charts so that either Oj∩∂Ω ⊂
Γ0 or Oj∩∂Ω ⊂ Γ1 for all j, and thusH1/2(∂Ω) = H1/2(Γ0)⊕H1/2(Γ1). For further
details, see [LM72, pp. 34–35] for domains having a C∞-boundary. Additional
complications arise in the case of C2-boundary, see [Gri85, Definition 1.3.3.2] and
the discussion following it.

If the domain Ω is the annulus in (5.1), then a more intuitive description can
be given forH1/2(Γ1) (and similarly forH1/2(Γ0)) using the fact that the associated
Laplace-Beltrami operator is now given by (∆Γ1f) (cosφ, sinφ) = −

∑∞
j=−∞ j2aj e

ijφ

for all f ∈ C∞(Γ1) and φ ∈ (−π, π] where
∑∞

j=−∞ aj e
ijφ := f(cosφ, sinφ). Indeed,

then f ∈ H1/2(Γ1) if and only if {|j|1/2aj} ∈ `2(Z) by [LM72, Remark 7.6, p. 37].
The Dirichlet trace operator γ is first defined for functions f ∈ C∞(Ω) by set-

ting γf := f |∂Ω. This operator has a unique extension to a bounded operator
from H1(Ω) to L2(∂Ω) that actually satisfies γ ∈ L(H1(Ω);H1/2(∂Ω)) by [Gri85,
Theorem 1.5.1.3]. Let π be the orthogonal projection of L2(∂Ω) onto its subspace
L2(Γ1). Since γ ∈ L(H1(Ω);L2(∂Ω)), we have (I − π)γ ∈ L(H1(Ω);L2(∂Ω)) and
the space H1

Γ0
(Ω) := N ((I − π)γ) is a closed subspace of H1(Ω). With a slight

misuse of notation, we write henceforth πf = f |Γ1, (I − π)f = f |Γ0, and

(5.4) H1
Γ0

(Ω) =
{
f ∈ H1(Ω) : f |Γ0 = 0

}
.

Similarly, the operator γ0 := πγ|H1
Γ0

(Ω) is in L(H1
Γ0

(Ω);L2(Γ1)), and we abbreviate
it by writing γ0f = f |Γ1.

The Neumann trace operator γ ∂
∂ν is first defined on C∞(Ω) (with values in

L2(∂Ω)) by setting
(
γ ∂

∂ν f
)
(ξ) := ν(ξ) · ∇f(ξ) for all ξ ∈ ∂Ω where ν(ξ) denotes

the outward unit normal vector of ∂Ω at ξ. This operator has a unique extension
to an operator γ ∂

∂ν ∈ L(H3/2(Ω);L2(∂Ω)); see, e.g., [LM72, Theorem 9.4, p. 41] for
Ω having a C∞-boundary. This result holds also for domains with C2-boundaries,
as can be seen by using a continuously differentiable extension of ν(ξ) in a neigh-
bourhood of Ω (see [Gri85, Definition 1.2.1.1, p. 5 and the discussion on p. 37])
and noting that with this extension ∂

∂ν := ν ·∇ ∈ L(H3/2(Ω);H1/2(Ω)); see [Gri85,
Theorem 1.4.1.1 with s = 1/2 and the discussion following Theorem 1.4.1.2, p. 21].

After all these preparations, let us return to equations (5.2). We obtain first
order equations of form (1.1) by noting that ztt = ∆z is equivalent to the first
order equation d

dt [ z
w ] = [ 0 1

∆ 0 ] [ z
w ]. Let

(5.5) Z0 :=
{
f ∈ H1

Γ0
(Ω) ∩H3/2(Ω) : ∆f ∈ L2(Ω)

}
with the norm ‖f‖2Z0

= ‖f‖2H1(Ω) + ‖f‖2
H3/2(Ω)

+ ‖∆f‖2L2(Ω). The operator γ1 :=

πγ ∂
∂ν |Z0 is in L(Z0;L2(Γ1)), and we write γ1f = ∂f

∂ν |Γ1. The spaces Z, X and and
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operator L are defined by

L := [ 0 1
∆ 0 ] : Z → X with

Z := Z0 ×H1
Γ0

(Ω) and X := H1
Γ0

(Ω)× L2(Ω)

where H1
Γ0

(Ω) and Z0 are given by (5.4) and (5.5), respectively. For the space X ,
we use the energy norm

(5.6) ‖ [ z0
w0 ] ‖2X := ‖|∇z0|‖2L2(Ω) + ‖w0‖2L2(Ω).

By the Poincaré inequality, ‖z0‖L2(Ω) ≤M‖|∇z0|‖L2(Ω) for z0 ∈ H1
Γ0

(Ω). Therefore
(5.6) defines a norm on X , equivalent to the norm

‖ [ z0
w0 ] ‖2H1(Ω)×L2(Ω) := ‖z0‖2L2(Ω) + ‖|∇z0|‖2L2(Ω) + ‖w0‖2L2(Ω),

see, e.g., [Lag83, p. 168]. Thus Z ⊂ X with a continuous embedding and L ∈
L(Z;X ) when Z is given the norm

‖ [ z0
w0 ] ‖2Z := ‖z0‖2Z0

+ ‖w0‖2L2(Ω) + ‖|∇w0|‖2L2(Ω).

Defining U = Y := L2(Γ1), the above properties of the trace mappings imply that
G ∈ L(Z;U) and K ∈ L(Z;Y) when

G [ z0
w0 ] :=

1√
2

(
∂z0
∂ν

|Γ1 + w0|Γ1

)
and K [ z0

w0 ] :=
1√
2

(
∂z0
∂ν

|Γ1 − w0|Γ1

)
.

We have now constructed the triple Ξ = (G,L,K). To show that Ξ is a boundary
node on Hilbert spaces (U ,X ,Y), some facts from the elliptic regularity theory will
be required. Following [Tri89, p. 444], we denote the Neumann mapping Ñ by

(5.7) z0 = Ñg ⇔


∆z0 = 0 in Ω,
z0|Γ0 = 0 in Γ0,
∂z0
∂ν |Γ1 = g in Γ1,

where z0 ∈ H1
Γ0

(Ω) is the unique variational solution. By the elliptic regularity
theory, Ñ ∈ L(L2(Γ1);H3/2(Ω)) ∩ L(H1/2(Γ1);H2(Ω)). Moreover, if z0 ∈ H1

Γ0
(Ω)

is the unique variational solution of

∆z0 = f ∈ L2(Ω), z0|Γ0 = 0,
∂z0
∂ν

|Γ1 = 0,

then z0 ∈ H2(Ω), see [Lag83, Section 4]. Hence, the unique variational solution of

∆z0 = f ∈ L2(Ω), z0|Γ0 = 0,
∂z0
∂ν

|Γ1 = g

belongs to H3/2(Ω) (or to H2(Ω)) if g ∈ L2(Γ1) (or g ∈ H1/2(Γ1), respectively).
The following two consequences of the elliptic regularity theory are needed.

Proposition 5.1. Under the standing assumptions on Ω, we have

(5.8) Z0 = {z0 ∈ H1
Γ0

(Ω) : ∆z0 ∈ L2(Ω) and
∂z0
∂ν

|Γ1 ∈ L2(Γ1)}

and

(5.9) N (G) =
{[

z0
w0

]
∈
(
H1

Γ0
(Ω) ∩H2(Ω)

)
×H1

Γ0
(Ω) :

∂z0
∂ν

|Γ1 = w0|Γ1

}
.
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Proof. If z0 ∈ H3/2(Ω), then ∂z0
∂ν |Γ1 ∈ L2(Γ1) by [Gri85, Theorem 1.5.1.2]. Con-

versely, if z0 ∈ H1(Ω) is the variational solution of

∆z0 = f ∈ L2(Ω), z0|Γ0 = 0,
∂z0
∂ν

|Γ1 = g ∈ L2(Γ1),

then z0 ∈ H3/2(Ω) by what has been said above about elliptic regularity.
To verify (5.9), we argue as follows: If [ z0

w0 ] ∈ N (G), then w0 ∈ H1(Ω) and
hence w0|Γ1 ∈ H1/2(Γ1). But then z0 is the variational solution of

∆z0 = f ∈ L2(Ω), z0|Γ0 = 0,
∂z0
∂ν

|Γ1 = w0|Γ1 ∈ H1/2(Γ1),

and thus z0 ∈ H2(Ω) by the elliptic regularity theory. �

We remark that (5.8) is used as the definition of the space Z0 in [WT03, Section
7], and that it is not given by (5.5) in the setting of [WT03].

Proposition 5.2. Let the operators L, G, K and spaces Z, X be defined as above.
Then Ξ = (G,L,K) is a time-flow invertible boundary node that satisfies 0 ∈
ρ(L|N (G)) ∩ ρ(−L|N (K)).

Proof. It has been already shown in the above discussion that conditions (i) and
(ii) of Proposition 2.5 are satisfied.

Since Ñ ∈ L(L2(Γ1);H3/2(Ω)), we have ÑL2(Γ1) ⊂ Z0. Furthermore, for any
g ∈ L2(Γ1) we have γ1Ñg = g. Thus γ1Z0 = L2(Γ1) and G is surjective. It follows
from (5.9) that N (G) is dense in X = H1

Γ0
(Ω) × L2(Ω). Let ε > 0, [ z0

w0 ] ∈ X and
choose [ z̃

w̃ ] ∈
(
H1

Γ0
(Ω) ∩ C∞(Ω)

)
×H1

Γ0
(Ω) with ‖ [ z0

w0 ]− [ z̃
w̃ ] ‖X < ε. It is possible

to construct ŵ ∈ H1
Γ0

(Ω) satisfying ‖ŵ‖L2(Ω) < ε and ŵ|Γ1 = w̃|Γ1− ∂z̃
∂ν |Γ1; indeed,

such ŵ could be made to vanish in almost all of Ω except for points very close to
Γ1 by using a suitable smooth “mollifier”. Now

[
z̃0
w̃0

]
:= [ z̃

w̃ ] − [ 0
ŵ ] ∈ N (G) and

‖ [ z0
w0 ]−

[
z̃0
w̃0

]
‖X < 2ε. Thus condition (iii) of Proposition 2.5 is satisfied.

We proceed to show that LN (G) = X . Let [ z1
w1 ] ∈ X be arbitrary. By (5.9),

[ z1
w1 ] = L [ z0

w0 ] =
[ w0

∆z0

]
for [ z0

w0 ] ∈ N (G) if and only if w0 = z1 and the variational
solution z0 ∈ H1

Γ0
(Ω) of the problem

∆z0 = w1, z0|Γ0 = 0,
∂z0
∂ν

|Γ1 = −z1|Γ1

satisfies z0 ∈ H2(Ω). Since w1 ∈ L2(Ω) and z1|Γ1 ∈ H1/2(Γ1), this follows from
the same elliptic regularity result as Proposition 5.1.

Finally, [ z0
w0 ] ∈ N (L) ∩N (G) if and only if w0 = 0 together with

z0 ∈ H2(Ω), ∆z0 = 0, z0|Γ0 = 0 and
∂z0
∂ν

|Γ1 = w0|Γ1 = 0

if and only if w0 = 0 and z0 = Ñ0 = 0 in (5.7). Condition (ii) of Proposition 2.5
is now satisfied with α = 0, and thus Ξ = (G,L,K) is a boundary node. A similar
argument shows that Ξ← = (K,−L,G) is a boundary node, too. �

It is now almost trivial to check that Ξ = (G,L,K) is conservative.

Proposition 5.3. Let the operators L, G, and K together with spaces U , X , and
Y be defined as above, and use the energy norm (5.6) for X . Then the boundary
node Ξ = (G,L,K) associated to (5.2) is conservative. Consequently, it induces a
conservative system node S.
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Proof. For an arbitrary [ z0
w0 ] ∈ Z, the Green’s formula [Gri85, Lemma 1.5.3.8]

implies

2Re 〈[ z0
w0 ] , L [ z0

w0 ]〉X = 2Re
〈
[ z0
w0 ] ,

[ w0
∆z0

]〉
X(5.10)

= 2Re

〈∆z0, w0〉L2(Ω) +
∫
Ω

∇z0 · ∇w0 dΩ


= 2Re

 ∫
Γ0∪Γ1

∂z0
∂ν

w0 dω

 = 2Re
〈
∂z0
∂ν

|Γ1, w0|Γ1

〉
L2(Γ1)

because w0|Γ0 = 0. By the definition of operators G and K we obtain

〈G [ z0
w0 ] , G [ z0

w0 ]〉L2(Γ1)
(5.11)

=
1
2

∥∥∥∥∂z0∂ν |Γ1

∥∥∥∥2

L2(Γ1)

+ Re
〈
∂z0
∂ν

|Γ1, w0|Γ1

〉
L2(Γ1)

+
1
2
‖w0|Γ1‖2L2(Γ1)

and also

〈K [ z0
w0 ] ,K [ z0

w0 ]〉L2(Γ1)
(5.12)

=
1
2

∥∥∥∥∂z0∂ν |Γ1

∥∥∥∥2

L2(Γ1)

− Re
〈
∂z0
∂ν

|Γ1, w0|Γ1

〉
L2(Γ1)

+
1
2
‖w0|Γ1‖2L2(Γ1)

.

Putting (5.10), (5.11) and (5.12) together yields the Green–Lagrange identity (1.3).
Using then Proposition 5.2 and Theorem 1.5 completes the proof. �

We remark that the conservativity of the system node S in Proposition 5.3
opens up the possibility to apply operator theory techniques, developed especially
for conservative systems, to this PDE, such as canonical realizations and unitary
similarity of different conservative realizations.

The example discussed above has some additional important properties not men-
tioned above, such as the strong bi-stability of its semigroup. A more complete
discussion is found in [Mal04, Section 7.3].

References

[AF03] R. A. Adams and J. Fournier, Sobolev spaces, 2nd edition, Academic Press, 2003.

[AN96] D. Z. Arov and M. A. Nudelman, Passive linear stationary dynamical scattering systems

with continuous time, Integral Equations Operator Theory 24 (1996), 1–45.
[Aro79a] D. Z. Arov, Passive linear stationary dynamic systems, Sibir. Mat. Zh. 20 (1979), 211–

228, translation in Sib. Math. J. 20 (1979), 149-162.
[Aro79b] , Stable dissipative linear stationary dynamical scattering systems, J. Operator

Theory 1 (1979), 95–126, translation in [Aro02].

[Aro99] , Passive linear systems and scattering theory, Dynamical Systems, Control Cod-
ing, Computer Vision (Basel Boston Berlin), Progress in Systems and Control Theory,
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