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Conservative state-space realizations of dissipa-
tive system behaviors

Joseph A. Ball and Olof J. Staffans

Abstract. It is well known that a Schur-class function S (contractive operator-
valued function on the unit disk) can be realized as the transfer function
S(z) = D + zC(I − zA)−1B of a conservative discrete-time linear system
(x(n + 1) = Ax(n) + Bu(n), y(n) = Cx(n) + Du(n) with U = [ A B

C D ] unitary).
One method of proof of this result (the “lurking isometry” method) identifies
a solution U of the problem as a unitary extension of a partially defined isom-
etry V determined by the problem data. Reformulated in terms of the graphs
of V and U , solutions are identified with embeddings of an isotropic subspace
of a certain Krĕın space K constructed from the problem data into a La-
grangian subspace (maximal isotropic subspace of K). The contribution here
is the observation that this reformulation applies to other types of realization
problems as well, e.g., realization of positive-real or J-contractive operator-
valued functions over the unit disk (respectively over the right half plane) as
the transfer function of a discrete-time (respectively, continuous-time) conser-
vative system, i.e., an input-state-output system for which there is a quadratic
storage function on the state space for which all system trajectories satisfy
an energy-balance equation with respect to the appropriate supply rate on
input-output pairs. The approach allows for unbounded state dynamics, un-
bounded input/output operators and descriptor-type state-space representa-
tions where needed in a systematic way. These results complement recent re-
sults of Arov-Nudelman, Hassi-de Snoo-Tsekanovskĭı, Belyi-Tsekanovskĭı and
Staffans and fit into the behavioral frameworks of Trentelman-Willems and
Georgiou-Smith.
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1. Introduction

Given a linear, discrete-time, input-state-output (i/s/o) system

ΣDT :
{

x(n + 1) = Ax(n) + Bu(n), x(0) = 0
y(n) = Cx(n) + Du(n), (1.1)

application of the Z-transform

x̂(z) =
∑

n∈Z+

x(n)zn

to the system equations (1.1) and elimination of the state variable leads to

ŷ(z) = TΣDT
(z) · û(z) (1.2)

as the relation between the transformed input and the transformed output, where

TΣDT
(z) = D + zC(I − zA)−1B (1.3)

is the transfer function (or frequency response function) of the linear system ΣDT

(1.1).1 Similarly, given a linear, continuous-time i/s/o system

ΣCT :
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t), (1.4)

application of the Laplace transform and elimination of the state-variable yields

ŷ(s) = TΣCT
(s) · û(s) (1.5)

as the relation between the transformed input and transformed output, where the
continuous-time transfer function TΣCT

(s) has the form

TΣCT
(s) = D + C(sI −A)−1B. (1.6)

In (1.1) and (1.4), we are assuming that A, B, C, D are all bounded operators
which can be organized into a connection matrix (also called colligation) U =
[ A B
C D ] : [HU ] 7→

[H
Y

]
for Hilbert spaces H, U and Y. Note that formula (1.3) yields

an L(U ,Y)-valued function which is analytic in a neighborhood of the origin in the
complex plane while (1.6) yields an L(U ,Y)-valued function which is analytic in
a neighborhood of infinity. Conversely, it is well-known that any analytic function
which is analytic in a neighborhood of the origin (respectively of infinity) can
be realized as the transfer function (1.3) (respectively (1.6)) of a linear system
(1.1) (respectively, (1.4)). The formula (1.3) or (1.6) is the basic tool behind the
connection between state-space and frequency-domain methods in linear system
theory.

Similar formulas arose independently in the operator-theory community but
in the more structured context of functions mapping the unit disk (or a half-plane)
into contraction operators (or operators with positive real or imaginary part). We
mention four such instances.

1Some authors use bx(z) =
P

n∈Z+
x(n)z−n as the definition of the Z-transform, in which case

TΣDT
(z) has the form TΣDT

(z) = D + C(zI −A)−1B.
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1. If S(z) is an L(U ,Y)-valued function analytic on the unit disk D such that
‖S(z)‖ ≤ 1 for each z ∈ D, then S has a realization as in (1.3) where U =
[ A B
C D ] is unitary. This class of functions and realizations is connected with

the model theory for Hilbert space contraction operators due to Sz.-Nagy
and Foiaş (see [36]) and of de Branges and Rovnyak (see the H(B) and D(B)
spaces in [11, Appendix]) for Hilbert-space contraction operators.

2. If ϕ(z) is an L(U)-valued function analytic on D with positive real part
(<ϕ(z) = 1

2 (ϕ(z) + ϕ(z)∗) ≥ 0), then ϕ(z) has a realization as in (1.3)
with U = [ A B

C D ] satisfying

A∗A = AA∗ = IH, C = B∗A, B∗B = D∗ + D.

This class of functions and realizations is connected with functional models
for isometries and unitary operators with given cyclic subspace (see the L(ϕ)
and E(ϕ) spaces in [11, Appendix]).

3. If S(s) is an L(C+,U)-valued function analytic on the right half plane C+

such that ‖S(s)‖ ≤ 1 for each s ∈ C+ and S(s) is analytic in a neighborhood
of the point at infinity with value at infinity S(∞) equal to IU , then S has
a realization as in (1.6) where U = [ A B

C D ] satisfies

A + A∗ = −BB∗, C = −B∗, D = IU . (1.7)

Functions and realizations of this class (and generalizations thereof where
one allows the values S(s) to be J-contractive for some signature matrix J)
are connected with the triangular models of Livšic (see [23, 13]) for operators
close to selfadjoint.

4. If ϕ(s) is an L(C+,U)-valued function analytic on the right half-plane C+

with values having positive real part (<ϕ(s) ≥ 0) for s ∈ C+ which in addition
is analytic in a neighborhood of infinity, then ϕ(s) has a realization as in (1.6)
with U = [ A D

C D ] satisfying

A = −A∗, C = B∗, D = −D∗. (1.8)

This class of functions and realizations is closely connected with models for
symmetric and selfadjoint operators with given cyclic subspace (see [11]), and
is also important in network and filtering theory (see [20]).

The systems underlying these four types of realizations actually can be treated
in a unified way. Such systems are conservative with respect to a certain sup-
ply rate sQ in the sense of Willems— see [42, 43, 2] where the closely related
notion of dissipative system is also discussed; the case of contractive-valued func-
tions corresponds to scattering-conservative systems associated with supply rate
sQ(u, y) = ‖u‖2 − ‖y‖2 while the case of positive-real functions corresponds to
impedance-conservative systems associated with supply rate sQ(u, y) = 2<〈u, y〉.

While the results as stated here for the discrete-time case have a natural, de-
finitive level of generality, those for the continuous-time case are somewhat special,
due to the requirement that the transfer function be analytic at infinity. For the
continuous-time case, it has now been known for some time that one should at least
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allow A more generally to be a possibly unbounded generator of a C0-semigroup,
and, in order to enlarge the collection of interesting examples still further, B and C
should be allowed to be unbounded in a certain sense as well, and the feedthrough
operator D in general may not even be well-defined (see [15, 35]). The proper
definition of “unbounded node” or “unbounded colligation” originates in the work
of Salamon [32] and continues with the work of Weiss and Staffans (see [35] for
a full account). For the more structured case where the transfer function has val-
ues which are contractive or with positive real part on a half-plane, while there
has been some work on “unbounded Livšic nodes” (see [7, 8, 9, 19]), the version
closest to what we use here originates in the work of Šmuljan [33] as later codified
and refined by Arov and Nudelman [4]; the latter obtained the analogue of (1.7)
without the assumption that S is analytic with value IU at infinity. Further results
along this line (including extensions of (1.8) to the case where ϕ need not be ana-
lytic in a neighborhood of infinity) were obtained in [34]. These authors obtained
their results by using a linear-fractional change of variable (i.e., Cayley transform)
in various forms with careful bookkeeping to carry the discrete-time realization
formulas over to the more complicated continuous-time case involving unbounded
operators with concomitant domain problems.

The purpose of this paper is to derive the realization results for these four
structured settings in a unified, streamlined way. The underlying technique is to
translate the realization problem to a problem in Krĕın-space geometry, namely:
the problem of embedding a given isotropic subspace of a Krĕın space as a subspace
of a Lagrangian subspace of a possibly larger Krĕın space, with an additional
nondegeneracy side-constraint. The Cayley transform is required only to prove
that the nondegeneracy side-constraint can be achieved, and thereby plays only a
cameo rather than the lead role in the analysis.

For the discrete-time scattering-conservative case (where one seeks to realize
a contractive-valued analytic function on the unit disk as the transfer function
of a discrete-time scattering-conservative linear system), the satisfaction of the
nondegeneracy side-constraint is automatic and the problem of embedding a given
isotropic subspace into a Lagrangian subspace of a possibly larger Krĕın space
can be reformulated operator-theoretically as the problem of extending a given
partially defined isometry to a unitary operator acting on a possibly larger Hilbert
space. In this form the technique has a long history, originating in the work of
Neumark [25] in the Cayley-transformed version of self-adjoint extensions of sym-
metric operators, and continuing in the work of Sz.-Nagy and Koranyi [37, 38] and
the approach of the Potapov school to interpolation theory—see a particular in-
carnation of this approach in [21]. More recently, the method has had applications
to realization problems for certain types of multidimensional conservative linear
systems—see [6] for a survey of this topic.

In addition to the results discussed above for i/s/o systems, we formulate a
notion of conservative, latent-variable state-space system in a behavioral frame-
work close to that of [41] and to the graph approach to linear system theory of
Georgiou-Smith [17, 18]. The “behavior” of such a system is characterized by a
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function M(s) generating an image representation for the behavior. In the in-
put/state/output setting of the rest of the paper, the behavior consists of signals
w = [ u

y ] consisting of input-output pairs (u, y), and the function M roughly cor-
responds to the function

[
D(s)
N(s)

]
where TΣ(s) = N(s)D(s)−1 is a stable coprime

fractional representation of the transfer function TΣ(s) rather than to the transfer
function TΣ(s) itself. The realization problem then is to find a conservative, latent-
variable state-space system whose behavior has an image representation generated
by a preassigned operator-valued function M(s). We show how the same technique
(i.e., embedding an isotropic subspace into a Lagrangian subspace) can be used to
solve this conservative behavioral realization problem. This result serves to give
a unified, behavioral-theoretic framework for the results on i/s/o systems. Here,
however, there remain many outstanding questions and we offer this section as a
direction for future work.

The paper is organized as follows. Following the present Introduction, Section
2 presents the preliminaries on Krĕın space operator theory and geometry needed in
the sequel. Section 3 presents our approach to the realization of analytic operator-
valued functions on the unit disk with values equal to contraction operators or
to operators with positive real part, including the basics concerning conservative,
discrete-time linear systems. Section 4 presents the parallel but more complicated
theory for analytic operator-valued functions on the right half-plane with values
equal to contractions or to operators with positive real part, along with the basic
ideas underlying conservative, continuous-time linear systems. Finally Section 5
presents the extension of the ideas of the previous sections to the continuous-time
behavioral setting.

2. Preliminaries on Krĕın spaces

For the reader’s convenience we collect here various results concerning the geom-
etry of and operator theory on Krĕın spaces which we shall use in the sequel. For
more thorough treatments of Krĕın spaces we refer to [5, 10, 16].

By a Krĕın space we mean a linear space K endowed with an indefinite inner
product [·, ·]K which is complete in the following sense: there are two subspaces K+

and K− of K such that the restriction of [·, ·]K to K+ × K+ makes K+ a Hilbert
space while the restriction of −[·, ·]K to K− ×K− makes K− a Hilbert space, and
K = K++̇K− is a [·, ·]K-orthogonal direct-sum decomposition of K. In this case the
decomposition K = K+[+̇]K− is said to form a fundamental decomposition for the
Krĕın space K. A fundamental decomposition is never unique, except in the trivial
situation where K− or K+ is the zero space. It is true that n+ := dimK+ and
n− := dimK− are uniquely determined; in case either one of n+ or n− is finite,
then K is said to be a Pontryagin space. In this case it is usually assumed that n−
is the finite index; then n− is said to be the Pontryagin index for K. A choice of
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fundamental decomposition K = K+[+̇]K− determines a Hilbert space norm

‖k+[+̇]k−‖2(K+,K−) = [k+, k+]K − [k−, k−]K for all k+ ∈ K+ and k− ∈ K−.

While the norm itself ‖·‖(K+,K−) depends on the choice of fundamental decomposi-
tion (K+,K−) for K, the resulting norm- and weak-topology are each independent
of the choice of the fundamental decomposition. In particular, the weak topol-
ogy is the weakest topology with respect to which each of the linear functionals
`k : k′ 7→ [k′, k]K is continuous with respect to the (uniquely determined) norm
topology on K. Any ‖ · ‖ on K arising in this way from some choice of fundamental
decomposition (K+,K−) for K we shall say is an admissible norm on K.

A subspace G of a Krĕın space is said to be positive, isotropic or negative if
[g, g]K ≥ 0 for all g ∈ G, [g, g]K = 0 for all g ∈ G (in which case it then follows
that [g′, g′′]K = 0 for all g′, g′′ ∈ G by the Cauchy-Schwarz inequality or by polar-
ization), or [g, g]K ≤ 0 for all g ∈ G, respectively. If it is the case that [g, g] > 0
for all g ∈ G with g 6= 0 we say that G is strictly positive; similarly, G is strictly
negative if [g, g]K < 0 for all g ∈ G with g 6= 0. In case that there is a δ > 0 so
that [g, g]K ≥ δ‖g‖2K (respectively, [g, g]K ≤ −δ‖g‖2K) for some admissible choice of
norm ‖ · ‖ on K, we shall say that G is uniformly positive (respectively, uniformly
negative). Note that since all admissible norms are topologically equivalent, these
notions of uniformly positive and uniformly negative subspaces are independent
of the choice of admissible norm. Note also that K+ is uniformly positive and K−
is uniformly negative whenever the pair (K+,K−) forms a fundamental decompo-
sition for K.

If we fix a fundamental decomposition (K+,K−), we may view elements of K
as consisting of column vectors

k =
[
k+

k−

]
∈

[
K+

K−

]
where we view K+ and K− as Hilbert spaces, and the Krĕın-space inner product
on K is given by〈[

k+

k−

]
,

[
k′+
k′−

]〉
K

=
〈[

IK+ 0
0 −IK−

] [
k+

k−

]
,

[
k+

k−

]〉
K+⊕K−

= 〈k+, k′+〉K+−〈k−, k′−〉K− .

In this representation, positive, isotropic and negative subspaces are easily char-
acterized.

Proposition 2.1. Let K be a Krĕın space represented in the form K =
[
K+
K−

]
with

Krĕın space inner product equal to the quadratic form [·, ·]J induced by the operator
J =

[
IK+ 0

0 −IK−

]
in the Hilbert space inner product of

[
K+
K−

]
as above. Then:

1. G is negative if and only if there is a Hilbert-space contraction operator
X : D− 7→ K+ from some domain D− ⊂ K− into K+ such that

G =
[

X
IK−

]
D− =

{[
Xd−
d−

]
: d− ∈ D−

}
. (2.1)
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2. G is positive if and only if there is a contraction operator Y : D+ 7→ K− from
some domain D+ ⊂ K+ into K− such that

G =
[
IK+

Y

]
D+ =

{[
d+

Y d+

]
: d+ ∈ D+

}
. (2.2)

3. G is isotropic if and only if there is an isometry V mapping a subspace D−
of K− isometrically onto a subspace D+ of K+ (or equivalently, an isometry
V ∗ mapping D+ ⊂ K+ isometrically onto D− ⊂ K−) such that

G =
[

V
IK−

]
D− =

[
IK+

V ∗

]
D+. (2.3)

Proof. See Theorem 11.7 page 54 of [10]. �

Remark 2.2. Note that the representation for G in (2.1), (2.2) and (2.3) is as a
graph space of an operator (X, Y , V or V ∗); if we start with a subspace G of
a space K having a block decomposition K =

[
K+
K−

]
and G has a representation

as in (2.1), (2.2) or (2.3), we refer to the associated operator X, Y , V or V ∗ as
the associated angle operator of G. To determined the angle operator, we of course
must specify whether we want its domain to be a subspace of K− or of K+. We note
that a subspace G has an angle operator with domain in K− (and is then recovered
as the graph of its angle operator) if and only if G ∩

[
K+
{0}

]
= {0}. Similarly, G

has an angle operator Y with domain in K+ if and only if G ∩
[
{0}
K−

]
= {0}. As

reported in [10], the idea of using this angle-operator–graph correspondence for
positive or negative subspaces in a Krĕın space originates in work of Phillips [26]
on understanding maximal dissipative extensions of a given dissipative operator.

Given a subspace G of a Krĕın space K, the orthogonal complement G[⊥] of
G in the Krĕın space inner product [·, ·]K is defined as

G[⊥] = {k ∈ K : [k, g]K = 0 for all g ∈ G}.
Note that by definition G is isotropic if and only if G ⊂ G[⊥]. A stronger notion
than isotropic subspace is that of Lagrangian subspace: we say that G ⊂ K is
Lagrangian if G = G[⊥]. In the same spirit as the results in Proposition 2.1, we
have the following characterization of Lagrangian subspaces.

Proposition 2.3. Let K =
[
K+
K−

]
be a Krĕın space with Krĕın space inner product

equal to the quadratic form induced by J =
[

IK+ 0

0 −IK−

]
in the Hilbert space inner

product of K+⊕K− as above, and let G be a subspace of K+. Then G is Lagrangian
if and only if G has the form

G =
[

U
IK−

]
K− =

[
IK+

U∗

]
K+ (2.4)

where U is a Hilbert-space unitary operator from K− onto K+. In particular, there
exist Lagrangian subspaces of K if and only if dimK+ = dimK−.
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Proof. If G is an isotropic subspace of the form (2.3) for an isometry V from a
subspace D− onto a subspace D+, then one can compute that G[⊥] has the form

G[⊥] =
[
IK+

V ∗

]
D+ [+̇]

[
D⊥+
D⊥−

]
=

[
V

IK−

]
D− [+̇]

[
D⊥+
D⊥−

]
and hence G[⊥] = G if and only if both D− = K− and D+ = K+, i.e., V is in fact
a unitary operator from K− onto K+. �

To check whether a given subspace is Lagrangian, the following criterion is
sometimes useful.

Proposition 2.4. A closed subspace G of a Krĕın space K is Lagrangian if and only
if both G and its Krĕın-space orthogonal complement G[⊥] are isotropic.

Proof. The necessity of the criterion is obvious. Conversely, suppose that both G
and G[⊥] are isotropic. By definition, this means that

G ⊂ G[⊥] and G[⊥] ⊂ (G[⊥])[⊥]. (2.5)

A familiar Hilbert-space fact which remains true in the Krĕın-space setting is that
(G[⊥])[⊥] = G if G is closed. Hence (2.5) immediately gives us that G = G[⊥], i.e.,
G is Lagrangian. �

From the characterization of Lagrangian subspaces in Proposition 2.3, the
following characterization of subspaces of Lagrangian subspaces is transparent.

Proposition 2.5. Suppose that G0 is an isotropic subspace of the Krĕın space K0 =[
K0+
K0−

]
with [·, ·]K0 = 〈J ·, ·〉K0+⊕K0− and J = IK0+ ⊕ −IK0− as above. Then G0

can be embedded into a Lagrangian subspace G ⊂ K0 (so G0 ⊂ G) if and only if
dimK0+ = dimK0−. In any case, there is a Krĕın space K̃ containing K0 as a
Krĕın subspace and a Lagrangian subspace G of K such that G0 ⊂ G.

The proof of Proposition 2.5 amounts to the operator-theoretic fact that a
(possibly partially defined) Hilbert-space isometry can always be extended to a
unitary operator (possibly defined on a larger Hilbert space). The following is a
more refined version of this fact which we shall need in the sequel. Here we use the
notation A&B for an operator defined on a domain D contained in the external
direct sum H ⊂

[H1
H2

]
but where D itself does not necessarily split in the form

D =
[D1
D2

]
for subspaces D1 ⊂ H1 and D2 ⊂ H2.

Proposition 2.6. Suppose that X0, U and Y are all Hilbert spaces, D is a closed
subspace of

[X0
U

]
, and

U0 =
[
U0

11&U0
12

U0
21&U0

22

]
: D 7→ R ⊂

[
X0

Y

]
is isometric (with range R). Set

D1 :=
{

x ∈ X0 :
[
x
0

]
∈ D

}
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and define U0
11 : D1 7→ X0 by

U0
11x = U0

11&U0
12

[
x
0

]
for x ∈ D1.

Assume that I + U0
11 is injective on D1. Then there exists a unitary operator

U =
[
U11 U12

U21 U22

]
:

[
X
U

]
7→

[
X
Y

]
(where X is a Hilbert space containing X0 as a subspace) such that U |D = U0 and
−1 is not an eigenvalue for U11.

Proof. Set ∆D =
[X0
U

]
	D and ∆R =

[X0
Y

]
	R and let ∆̃D and ∆̃R be another

copy of ∆D and of ∆R respectively, with unitary identification maps

i∆D : ∆D 7→ ∆̃D, i∆R : ∆R 7→ ∆̃R.

Define the universal unitary extension U of U0

U =

 0 U01 U02

U10 U11 U12

U20 U21 U22

 :

∆̃R
X0

U

 7→

∆̃D
X0

Y

 (2.6)

by

U
[ eδR

0

]
=

[
0

i∗∆R
(eδR)

]
for δ̃R ∈ ∆̃R,

U [ 0
d ] =

[
0

U0d

]
for d ∈ D ⊂

[X0
U

]
,

U
[

0
δR

]
=

[
i∆D (δD)

0

]
for δD ∈ ∆D ⊂

[X0
D

]
.

From the definitions it is easily verified that U is unitary. Moreover, the hypothesis
that U0

11 + I is injective on D1 can be expressed directly in terms of U as

(I + U11)|kerU01 is injective. (2.7)

Let

W =
[
W11 W10

W01 W00

]
:

[
XW

∆̃D

]
7→

[
XW

∆̃R

]
(2.8)

be any unitary transformation between the indicated spaces, where XW is another
(auxiliary) Hilbert space. Define the feedback connection FU[W ] of U with load
W connected between the first output and the first input of U to be the operator

from
[XW

X0
U

]
to

[
XW

X0
Y

]
given by

FU[W ]

xW

x0

u

 =

x′W
x′0
y


whenever δ̃D

x′0
y

 = U

δ̃R
x0

u

 ,

[
x′W
δ̃R

]
= W

[
xw

δ̃D

]
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for some choice of δ̃D ∈ ∆̃D and δ̃R ∈ ∆̃R. Due to the special structure of U (i.e.,
the fact that the feedthrough term U00 is zero in (2.6)), it turns out that FU[W ]
is well-defined for any unitary W as in (2.8), and in fact can be given explicitly as

FU[W ] =

 W11 W10U01 W10U02

U10W01 U11 + U10W00U01 U12 + U10W00U02

U20W01 U21 + U20W00U01 U22 + U20W00U02

 :

XW

X0

U

 7→

XW

X0

Y

 .

(2.9)

If we identify D ⊂
[X0
U

]
with [ 0

D ] ⊂
[ e∆R
X0
U

]
and R ⊂

[X0
Y

]
with [ 0

R ] ⊂
[ e∆D
X0
Y

]
,

then it is easily checked that the restriction of FU[W ] to D agrees with U0. It
is also easy to see that FU[W ] is unitary. Thus, FU[W ] is a unitary extension of
U0 acting from [XU ] to

[X
Y

]
where X =

[XW

X0

]
is a Hilbert space containing X0

(identified with
[

0
X0

]
) as a subspace. Moreover, by results of Arov and Grossman

(see [3]), any unitary extension U : [XU ] 7→
[X
Y

]
of U0 of this form arises in this

way for some unitary W :
[
XWe∆R

]
7→

[
XWe∆R

]
.

Given this parametrization of all unitary extension of a given U0 : D 7→ R,
we see that the result of Proposition 2.6 comes down to: under the assumption
(2.7), there exists a choice of Hilbert space XW and of unitary operator W =[

W11 W10
W01 W11

]
:

[
XWe∆D

]
7→

[
XWe∆R

]
so that the block operator matrix

FU[W ]10 :=
[

W11 W10U01

U10W01 U11 + U10W00U01

]
:

[
XW

X0

]
7→

[
XW

X0

]
(2.10)

does not have −1 as an eigenvalue.
Let us decompose the space X0 on the domain side of FU[W ]10 as X0 =

X0,1⊕X0,2 := kerU01⊕(kerU01)⊥. Writing FU[W ]01 as a 2×3-block matrix with
respect to this finer decomposition of X0 on the domain side then gives

I+FU[W ] =
[
IXW

+ W11 0 W10U01,i

U10W01 (I + U11)i (I + U11)ni + U10W00U01,i

]
:

XW

X0,1

X0,2

 7→
[
XW

X0

]
(2.11)

where (I + U11)i is injective on X0,1 and U01,i is injective on X0,2 (and (I +
U11)ni is not necessarily injective on X0,2). From this form of I + FU[W ], it is
easily checked that a sufficient condition (expressed completely in terms of the
unitary free-parameter W ) for I +FU[W ]10 to be injective is that: (i) the operator
P(im W10)⊥(IXW

+ W11) is injective on XW , and (ii) W10 is injective on X0,2.
Once the space XW is chosen with sufficiently large dimension, conditions (i)

and (ii) are true for a generic choice of unitary W =
[

W11 W10
W01 W00

]
:

[
XWe∆D

]
7→

[
XWe∆R

]
.

To see one such explicit choice which works for spaces ∆̃D and ∆̃R of arbitrary
dimension, set

XW =
[

`2(Z+, e∆D)

`2(Z+, e∆R)

]
, (2.12)



Vol. 99 (9999) Conservative realizations 11

let Se∆D = S ⊗ Ie∆D and Se∆R = S ⊗ Ie∆R be the unilateral shift operators on
`2(Z+, ∆̃D) on `2(Z+, ∆̃D) and `2(Z+, ∆̃R) respectively, where

S :

[ x0
x1
x2

...

]
7→

 0
x0
x1

...

 for

[ x0
x1
x2

...

]
∈ `2(Z+, C),

and define injection operators ie∆D : ∆̃D 7→ `2(Z+, ∆̃D) and ie∆R : ∆̃R 7→ `2(Z+, ∆̃R)
by

ie∆D : δ̃D 7→

 eδD
0
0
...

 , ie∆R : δ̃R 7→

 eδR
0
0
...


for δ̃D ∈ ∆̃D and δ̃R ∈ ∆̃R. We then define W =

[
W11 W10
W01 W00

]
:

[
XWe∆D

]
7→

[
XWe∆R

]
(with XW as in (2.12)) by

W11 =
[

S e∆D 0

0 S∗e∆R
]

, W10 =
[

i e∆D
0

]
, W01 =

[
0 i∗e∆R

]
, W00 = 0.

Then it is straightforward to check that W is unitary, that W satisfies condition
(ii), and that W satisfies condition (i) as well (from the fact that −1 is not an eigen-
value for the adjoint unilateral shift S∗). This completes the proof of Proposition
2.6. �

3. Conservative discrete-time systems

By a discrete-time, linear, input-state-output (i/s/o) linear system we mean a
system of equations of the form

Σ :
{

x(n + 1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n) (3.1)

Here, for each n ∈ Z (or often n ∈ Z+), x(n) takes values in the state space H,
u(n) takes values in the input space U and y(n) takes values in the output space
Y, all of which we take to be Hilbert spaces. The system (3.1) is determined by
its connection matrix or colligation U given by

U = UΣ =
[
A B
C D

]
:

[
H
U

]
7→

[
H
Y

]
. (3.2)

We say that any global solution n 7→ (u(n), x(n), y(n)) ∈ U ×H×Y of the system
equations is a trajectory of the system. We define the adjoint system Σ∗ of Σ by

Σ∗

{
x∗(n) = A∗x∗(n + 1) + C∗u∗(n)
y∗(n) = B∗x∗(n + 1) + D∗u∗(n). (3.3)

Note that Σ∗ is a system of the same form as Σ with connection matrix UΣ∗ = U∗,
but with the time-flow in the negative rather than in the positive direction. The
defining feature of the adjoint system Σ∗ is the adjoint pairing between system



12 Joseph A. Ball and Olof J. Staffans IEOT

trajectories: for any trajectories (u(·), x(·), y(·)) of Σ and (u∗(·), x∗(·), y∗(·)) of Σ∗
and for any integers M < N it holds that

〈x(N + 1), x∗(N + 1)〉 − 〈x(M), x∗(M)〉 =
N∑

n=M

[〈u(n), y∗(n)〉 − 〈y(n), u∗(n)〉] .

(3.4)
If we initialize the system at n = 0 with x(0) = 0 and apply the formal Z-transform

{x(n)}n∈Z+ 7→ x̂(z) =
∑

n∈Z+

x(n)zn

to the system equations (3.1), we arrive at

ŷ(z) = TΣ(z)û(z) (3.5)

as the relation between the Z-transform û(z) of the input signal {u(n)}n∈Z+ and
the Z-transform ŷ(z) of the output signal {y(z)}n∈Z+ , where

TΣ(z) = D + zC(I − zA)−1B (3.6)

is the transfer function of the system Σ (3.1).
We shall be primarily interested in conservative systems in the sense of [42,

43]. This notion in general depends on a choice of “supply rate” function s : U×Y 7→
R. For the linear case, it is natural to assume that s(·, ·) is a quadratic form on
U ⊕ Y:

s(u, y) = sQ(u, y) =
〈[

Q11 Q12

Q21 Q22

] [
u
y

] [
u
y

]〉
U⊕Y

for some selfadjoint weighting matrix

Q =
[
Q11 Q12

Q21 Q22

]
:

[
U
Y

]
7→

[
U
Y

]
.

To avoid degeneracies, we also assume that Q is invertible. We then say that the
system Σ is energy-preserving with respect to the supply rate s = sQ if the identity

‖x(n + 1)‖2 − ‖x(n)‖2 = sQ(u(n), y(n)) for all n ∈ Z+ (3.7)

for all trajectories (u(·), x(·), y(·)) of Σ. One can check from the definitions that,
if we set

TQ =
[

0 −IY
IU 0

] [
Q11 Q12

Q21 Q22

]
(3.8)

and define a transformation TQ : (u(·), x(·), y(·)) 7→ (u∗(·), x∗(·), y∗(·)) on system
trajectories by [

u∗(n)
y∗(n)

]
= TQ

[
u(n)
y(n)

]
, x∗(n) = x(n),

then, Σ being energy-preserving with respect to sQ is equivalent to TQ(u(·), x(·), y(·))
being a trajectory of Σ∗ whenever (u(·), x(·), y(·)) is a trajectory of Σ. Moreover,
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a consequence of (3.7) for Σ is that any trajectory (u∗(·), x∗(·), y∗(·)) of the ad-
joint system of the form TQ(u(·), x(·), y(·)) for some trajectory (u(·), x(·), y(·)) of
Σ itself satisfies the energy-balance law

‖x∗(n + 1)‖2 − ‖x∗(n)‖2 = sQ∗(u∗(n), y∗(n)) (3.9)

where we have set

Q∗ =
[

0 −IY
IU 0

]
Q−1

[
0 IU
−IY 0

]
. (3.10)

Finally, we say that Σ is conservative with respect to the supply rate sQ if and only
if (u(·), x(·), y(·)) being a trajectory of Σ is equivalent to TQ(u(·), x(·), y(·)) being
a trajectory of the adjoint system Σ∗ (i.e., TQ(u(·), x(·), y(·)) is a trajectory of Σ∗
for each trajectory (u(·), x(·), y(·)) of Σ, and every trajectory (u∗(·), x∗(·), y∗(·)) of
Σ∗ has this form). Equivalently, Σ is conservative with respect to sQ if and only
if every trajectory (u(·), x(·), y(·)) of Σ satisfies the energy-balance relation (3.7)
while every trajectory (u∗(·), x∗(·), y∗(·)) of Σ∗ satisfies the adjoint-energy-balance
law (3.9).

Remark 3.1. More generally the notion of conservative system is defined with a
storage functions x 7→ S(x) ∈ R+. For the linear case it is natural to assume that
the storage function is also a quadratic on H. Assuming that this quadratic form
is strictly positive definite, one can always define the norm in the state space to
be ‖x‖ =

√
S(x), after which we are back in the situation discussed above.

Various explicit choices of quadratic form 〈Q·, ·〉 correspond to various clas-
sical notions of energy measurement in circuit theory. We next discuss various of
these notions in turn.

3.1. Discrete-time scattering-conservative systems

The choice of Qscat. =
[

IU 0
0 −IY

]
gives rise to the notion of scattering-conservative

linear system. For this case Qscat.∗ as in (3.10) works out to be

Qscat.∗ =
[
−IY 0

0 IU

]
.

while TQ given by (3.8) works out to be

TQscat.
=

[
0 IY
IU 0

]
.

Hence the system Σ as in (3.1) being scattering-conservative can be characterized
either as

1. (u(·), x(·), y(·)) is a trajectory of Σ if and only if (y(·), x(·), u(·)) is a trajectory
of Σ∗, or

2. trajectories (u(·), x(·), y(·)) of Σ satisfy the energy-balance law

‖x(n + 1)‖2 − ‖x(n)‖2 = ‖u(n)‖2 − ‖y(n)‖2 (3.11)



14 Joseph A. Ball and Olof J. Staffans IEOT

while trajectories (u∗(·), x∗(·), y∗(·)) of the adjoint system Σ∗ satisfy the ad-
joint energy-balance relation

‖x∗(n)‖2 − ‖x∗(n + 1)‖2 = ‖u∗(n)‖2 − ‖y∗(n)‖2. (3.12)

From the definition of the system equations, it is easily deduced that Σ is scattering-
conservative if and only if the associated connection matrix UΣ : H⊕ U 7→ H ⊕ Y
is unitary. When this is the case, then we can iterate the energy balance relation
(3.11) to get

‖x(N + 1)‖2 − ‖x(0)‖2 =
N∑

n=0

[‖u(n)‖2 − ‖y(n)‖2]. (3.13)

If we assume that x(0) = 0, we see that

0 ≤ ‖x(N + 1)‖2 =
∞∑

n=0

[‖u(n)‖2 − ‖y(n)‖2]

from which it follows that {y(n)}n∈Z+ ∈ `2(Z+,Y) whenever {u(n)}n∈Z+ ∈ `2(Z+,U)
and we have the inequality in the time-domain

‖{y(n)}n∈Z+‖2`2(Z,Y) ≤ ‖{u(n)}n∈Z+‖2`2(Z+,U).

An application of the Z-transform and the Plancherel theorem therefore implies
that ŷ ∈ H2(D,Y) whenever û ∈ H2(D,U), and then

‖ŷ‖H2(D,Y) ≤ ‖û‖H2(D,U).

As ŷ(z) = TΣ(z)û(z) by (3.5), we see that multiplication by TΣ(z) acts as a
contraction operator from H2(D,U) into H2(D,Y) from which it follows that TΣ

is in the Schur-class of operator-valued functions S(D,U ,Y)), i.e., TΣ is analytic
on the unit disk D with values in the space L(U ,Y) of bounded operators from U
into Y, and moreover, the values of TΣ(z) are contraction operators for each z ∈ D:

‖TΣ(z)‖L(U,Y) ≤ 1 for all z ∈ D.

The Schur-class S(D,L(U ,Y) of L(U ,Y))-valued functions S can also be charac-
terized by the condition that the multiplication operator

MS : f(z) 7→ S(z) · f(z)

define an operator from H2(D,U) into H2(D,Y) with operator norm ‖MS‖op ≤ 1.
One can also see this contractive property for S(z) = TΣ(z) directly from the
realization formula (3.6) and the fact that U is unitary. Indeed, using the relations

BB∗ = I −AA∗, DB∗ = −CA∗, DD∗ = I − CC∗

coming from the fact that U is a coisometry (UU∗ = I), one can easily derive

I − TΣ(z)TΣ(w)∗

1− zw
= C(I − zA)−1(I − wA∗)−1C∗ for z, w ∈ D. (3.14)

Using the relations

C∗C = I −A∗A, D∗C = −B∗A, I −D∗D = B∗B
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one can also derive

I − TΣ(w)∗TΣ(z)
1− zw

= B∗(I − wA∗)−1(I − zA)−1B for z, w ∈ D. (3.15)

We have thus seen that the transfer function TΣ(z) = D + C(I − zA)−1B of
a conservative, linear, discrete-time system is in the operator-valued Schur class
S(D,L(U ,Y)) and the kernel factorizations (3.14) and (3.15) hold. The following
theorem gives the converse.

Theorem 3.2. Let z 7→ S(z) be an L(U ,Y)-valued function on the unit disk D.
Then the following are equivalent.

1. S is the operator-valued Schur-class S(D,L(U ,Y)), i.e., S is analytic with
contractive-operator values on the unit disk D or the multiplication operator
MS : H2(D,U) 7→ H2(D,Y) has ‖MS‖op ≤ 1.

2. The kernel kS(z, w) = (I −S(z)S(w)∗)/(1− zw) is positive in the sense that
there exists a Hilbert space H0 and an operator-valued function z 7→ H(z) ∈
L(H0,Y) such that

I − S(z)S(w)∗

1− zw
= H(z)H(w)∗ for z, w ∈ D. (3.16)

3. S(z) = TΣ(z) for some conservative discrete-time linear system Σ, i.e., there
is a Hilbert space H and a unitary operator

U :
[
H
U

]
7→

[
H
Y

]
so that

S(z) = D + zC(I − zA)−1B.

Proof. This theorem is now well-known in the literature; see e.g. [6], where various
generalizations to several variable settings are indicated. (The equivalence of (1)
and (3) was proved already in the late 60’s by B. Sz.-Nagy and C. Foiaş [36, Section
VI.3, pp. 248–259] in the case where the transfer function is purely contractive,
and it was extended to the general case by V. M. Brodskĭı [13]). Nevertheless, we
sketch the proof in order to provide a context for the ideas needed in the various
other settings studied below.

Note that the discussion preceding the theorem amounts to a proof of (3) =⇒
(1) and of (3) =⇒ (2). To see that ‖MS‖op ≤ 1 is equivalent to the kernel-positivity
condition (3.16), one uses the reproducing kernel Hilbert-space structure of H2 as
follows. If we let kw(z) = 1

1−zw , then kw has the H2-reproducing-kernel property

〈f, kwu〉H2(D,U) = 〈f(w), u〉U for all w ∈ D and u ∈ U

and one can verify

M∗
S : kwy 7→ kwS(w)∗y.
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Hence, for z, w ∈ D and y, y′ ∈ Y we have〈
I − S(z)S(w)∗

1− zw
y, y′

〉
Y

= 〈kwy, kzy
′〉H2(D,Y) − 〈M∗

S(kwy),M∗
S(kzy

′)〉H2(D,Y)

= 〈(I −MSM∗
S)kwy, kzy

′〉H2(D,Y . (3.17)

Since ‖MS‖op ≤ 1, I −MSM∗
S has a factorization

I −MSM∗
S = ΓΓ∗

for some Γ: H0 7→ H2(D,Y) for some Hilbert spaceH0. If we define H(z) : H0 7→ Y
(for z ∈ D) by

H(w)∗ : y 7→ Γ∗(kwy) for w ∈ D and y ∈ Y,

then from (3.17) we see that H provides the factorization (3.16) as wanted.
The most interesting part of the proof from our point of view is the proof

of (2) =⇒ (3). Assume that we have the factorization (3.16). Clearing out the
denominator and reorganizing gives us the identity

zwH(z)H(w)∗ + I = H(z)H(w)∗ + S(z)S(w)∗. (3.18)

We can interpret (3.18) as saying that the transformation V defined by

V :
[
wH(w)∗

I

]
y 7→

[
H(w)∗

S(w)∗

]
y (3.19)

extends by linearity and continuity to define an isometry from the domain space

D := span
w∈D,y∈Y

{[
wH(w)∗

I

]
y

}
⊂

[
H0

Y

]
onto the range space

R := span
w∈D,y∈Y

{[
H(w)∗

S(w)∗

]
y

}
⊂

[
H0

U

]
We may then extend V to a unitary operator

U∗ =
[
A∗ C∗

B∗ D∗

]
:

[
H
Y

]
7→

[
H
U

]
where H is a Hilbert space containing H0 as a subspace. From the fact that U∗

extends V and the defining property (3.19) of V , we then read off the system of
operator equations

A∗(wH(w)∗) + C∗ = H(w)∗

B∗(wH(w)∗) + D∗ = S(w)∗ (3.20)

As U is unitary, certainly A∗ is contractive; hence (I−wA) is invertible for w ∈ D
and we may solve the first of equations (3.20) for H(w)∗:

H(w)∗ = (I − wA∗)−1C∗. (3.21)

Substituting (3.21) into the second of equations (3.20) then gives

wB∗(I − wA∗)−1C∗ + D∗ = S(w)∗
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from which we get, upon taking adjoints and replacing w by z,

S(z) = D + zC(I − zA)−1B.

This completes the proof of (2) =⇒ (3) and our discussion of the proof of Theorem
3.2. �

As a foreshadowing of the approach which we shall take in the succeeding
sections of this work, we recast the main idea in the proof of (2) =⇒ (3) given
above. We introduce the space K0 := H0 ⊕ U ⊕ H0 ⊕ Y and view K0 as a Krĕın
space in the inner product [·, ·]K0 induced by the signature operator J0 := IH0 ⊕
IU ⊕−IH0 ⊕−IY , namely:


h0

u
k0

y

 ,


h′0
u′

k′0
y′



K0

=

〈
IH0 0 0 0
0 IU 0 0
0 0 −IH0 0
0 0 0 −IY




h0

u
k0

y

 ,


h′0
u′

k′0
y′


〉
H0⊕U⊕H0⊕Y

.

(3.22)
Instead of looking at V given by (3.19), we look at the graph GV ⊂ K0, namely

GV = span




H(w)∗

S(w)∗

wH(w)∗

IY

 y : w ∈ D, y ∈ Y

 ⊂ K0.

The interpretation of the identity (3.18) now is that GV is an isotropic subspace
of K0, i.e.,

[g, g′]K0 = 0 for all g, g′ ∈ GV .

We next interpret the next step of extending V to a unitary operator U∗ : H⊕Y 7→
H⊕U as really being the embedding of the isotropic subspace GV into a Lagrangian
subspace G of a possibly larger Krĕın space K of the form K = H⊕U⊕H⊕Y where
H is a Hilbert space containing H0 as a subspace, and where the K-Krĕın-space
inner product [·, ·]K is induced by the signature operator J := IH⊕IU⊕−IH⊕−IY :


h
u
k
y

 ,


h′

u′

k′

y′



K

=

〈
IH 0 0 0
0 IU 0 0
0 0 −IH 0
0 0 0 −IY




h
u
k
y

 ,


h′

u′

k′

y′


〉
H⊕U⊕H⊕Y

. (3.23)

By Proposition 2.3 applied to the situation K+ = [HU ] and K− =
[H
Y

]
, we know

that any such Lagrangian subspace G is of the form of a graph with a unitary
angle operator U∗ : : H⊕ Y 7→ H ⊕ U :

G = GU∗ = im


A∗ C∗

B∗ D∗

IH 0
0 IY

 .

One can now complete the proof as before.
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In the succeeding sections, similar embedding problems come up, but the sig-
nature operator J inducing the Krĕın-space inner product onK+⊕K− is something
other than J = IK+ ⊕−IK− . As we shall see, this complication encodes the extra
difficulties in the realization problem for transfer functions of conservative systems
with respect to other supply rates sQ.

3.2. Discrete-time impedance-conservative systems

Suppose that Σ is a linear discrete-time system as in (3.1) for which the input
space U and the output space Y are the same—we shall use the notation U for
this common space (the input-output space). The choice Q = Qimp. with

Qimp. =
[

0 IU
IU 0

]
in the definitions of “conservative with respect to supply rate sQimp.

” then leads
to the notion of discrete-time impedance-conservative. From the definitions (3.10)
and (3.8) it works out that

TQimp. =
[
−IU 0

0 IU

]
, Qimp.∗ =

[
0 −IU
−IU 0

]
.

Thus we say that the system Σ as in (3.1) is impedance-conservative if
1. (u(·), x(·), y(·)) is a trajectory of Σ if and only if (−u(·), x(·), y(·)) is a tra-

jectory of the adjoint system Σ∗, or, equivalently,
2. each trajectory (u(·), x(·), y(·)) of Σ satisfies the impedance-energy-balance

law
‖x(n + 1)‖2 − ‖x(n)‖2 = 2<〈u(n), y(n)〉 (3.24)

and each trajectory (u∗(·), x∗(·), y∗(·)) of the adjoint system Σ∗ satisfies the
adjoint impedance-energy-balance law

‖x∗(n)‖2 − ‖x∗(n + 1)‖2 = 2<〈u∗(n), y∗(n)〉. (3.25)

The energy-balance relation (3.24) is equivalent to the block-matrix identity[
A∗A− I A∗B − C∗

B∗A− C B∗B −D −D∗

]
=

[
0 0
0 0

]
(3.26)

while the adjoint-energy-balance relation (3.25) leads to[
AA∗ − I A∗B − C∗

CA∗ −B∗ CC∗ −D∗ −D

]
=

[
0 0
0 0

]
. (3.27)

We conclude that A is unitary and <D := 1
2 (D + D∗) = 1

2B∗B ≥ 0. If we set
V = A∗, Ψ = 1√

2
B and =D := 1

2i (D −D∗), we conclude that[
A B
C D

]
=

[
V ∗ √

2Ψ√
2Ψ∗V ∗ Ψ∗Ψ + i=D

]
:

[
H
U

]
7→

[
H
U

]
with V unitary and =D = (=D)∗. (3.28)
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Conversely, any connection matrix U = [ A B
C D ] of the form (3.28) satisfies the

conditions (3.24) and (3.25), and hence is the connection matrix for a discrete-
time impedance-conservative system.

The transfer function TΣ(z) for a discrete-time impedance-conservative sys-
tem Σ therefore has the form

TΣ(z) = D + zC(I − zA)−1B

= [Ψ∗Ψ + i=D] + z2Ψ∗V ∗(I − zV ∗)−1Ψ

= i=D + Ψ∗(I + zV ∗)(I − zV ∗)−1Ψ

= i=D + Ψ∗P(V, z)Ψ

where P(t, z) denotes the classical Poisson kernel

P(t, z) =
1 + zt

1− zt
for t ∈ T and z ∈ D. (3.29)

From the easily derived identity

P(t, z) + P(t, z) = 2
1− zw

(1− zt)(1− wt)

we deduce that
TΣ(z) + TΣ(w)∗

1− zw
= H(w)∗H(z) for z, w ∈ D (3.30)

where
H(z) =

√
2(I − zV ∗)−1Ψ.

In particular, it follows that <TΣ(z) := 1
2 (TΣ(z) + TΣ(z)∗) ≥ 0 for all z ∈ D.

The realization question is to characterize which analytic operator-valued
functions z 7→ ϕ(z) ∈ L(U) arise as the transfer function for a discrete-time
impedance-conservative linear system. By the discussion above, we see that it is
necessary that ϕ(z) have positive-real part for z ∈ D. That this condition is also
sufficient is given by the following theorem.

Theorem 3.3. Suppose that ϕ : D 7→ L(U) is an operator-valued function defined
on the unit disk D. Then the following conditions are equivalent.

1. ϕ is analytic on D with <ϕ(z) ≥ 0 for each z ∈ D.
2. There is a Hilbert space H0 and an operator-valued function z 7→ H(z) ∈
L(U ,H0) so that

ϕ(z) + ϕ(w)∗

1− zw
= H(w)∗H(z). (3.31)

3. ϕ(z) is the transfer function for a discrete-time, impedance-conservative lin-
ear system, i.e., there is a Hilbert space H and a colligation U of the form

U =
[

V ∗ √
2Ψ√

2ΨV ∗ Ψ∗Ψ

] [
H
U

]
7→

[
H
U

]
with V unitary
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so that ϕ(z) has a representation of the form

ϕ(z) = i=ϕ(0) + Ψ∗(I + zV ∗)(I − zV ∗)−1Ψ. (3.32)

This theorem is due to Arov [1] and is closely related to Neumark’s theorem
on operator-valued positive definite functions on groups (see Remark 3.6 below).

Before commencing with the proof of Theorem 3.3, we give a preliminary
lemma.

Lemma 3.4. Given a colligation

U =
[
A B
C D

]
:

[
H
U

]
7→

[
H
U

]
,

then U has the form (3.28) if and only if the graph of U

GU =




A B
C D
IH 0
0 IU

[
h
u

]
: h ∈ H, u ∈ U

 ⊂


H
U
H
U


is a Lagrangian subspace of the Krĕın space (K, [·, ·]K) where K = H⊕U ⊕H⊕U
with Krĕın-space inner product equal to the Hermitian form

[k, k′]K = 〈J k, k′〉H⊕U⊕H⊕U

induced by the signature operator

J =


−IH 0 0 0

0 0 0 IU
0 0 IH 0
0 IU 0 0

 . (3.33)

More generally, suppose that U = [ A B
C D ] is a closed operator with domain

D ⊂ [HU ] of the form D =
[D1
U

]
for a linear manifold D1 ⊂ H such that the graph

of U

GU =




A B
C D
IH 0
0 IU

[
d
u

]
: d ∈ D1, u ∈ U


is Lagrangian. Then D1 = H, U is bounded, and U has the form of the colligation
matrix (3.28).

Proof. Note that GU is isotropic in the 〈J ·, ·〉-inner product if and only if

[
A∗ C∗ IH 0
B∗ D∗ 0 IU

]
J


A B
C D
IH 0
0 IU

 =
[
0 0
0 0

]
.
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Upon multiplying out we see that

[
A∗ C∗ IH 0
B∗ D∗ 0 IU

]
J


A B
C D
IH 0
0 IU

 =
[
−A∗A + I −A∗B + C∗

−B∗A + C −B∗B + D∗ + D

]
.

We conclude that GU being isotropic is equivalent to the block-operator matrix
equation (3.26).

Next, note that the vector h⊕ u⊕ h′ ⊕ u′ ∈ G[⊥]
U if and only if

[
A∗ C∗ IH 0
B∗ D∗ 0 IU

]
J


h
u
h′

u′

 =
[
0
0

]

where multiplying out gives

[
A∗ C∗ IH 0
B∗ D∗ 0 IU

]
J


h
u
h′

u′

 =
[
−A∗h + C∗u′ + h′

−B∗h + D∗u′ + u

]
.

We conclude that G[⊥]
U has the characterization

G[⊥]
U =




IH 0
B∗ −D∗

A∗ −C∗

0 IU

[
h
u′

]
: h ∈ H, u′ ∈ U

 .

Then G[⊥]
U being isotropic means

[
IH B A 0
0 −D −C IU

]
J


IH 0
B∗ −D∗

A∗ −C∗

0 IU

 =
[
0 0
0 0

]
.

Multiplying out the left hand side gives

[
IH B A 0
0 −D −C IU

]
J


IH 0
B∗ −D∗

A∗ −C∗

0 IU

 =
[
−I + AA∗ B −AC∗

−CA∗ + B∗ −D + CC∗ −D∗

]
.

This set equal to zero is just (3.27). Thus both GU and G[⊥]
U being isotropic is

equivalent to the validity of both (3.26) and (3.27). By Proposition 2.4, it now
follows that the GU is Lagrangian if and only if (3.26) and (3.27) hold, and the
lemma follows.

Assume now that we are only given that U = [ A B
C D ] is a closed operator

with domain D of the form D =
[D1
U

]
⊃

[ {0}
U

]
for which GU is Lagrangian in the
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J -inner product, with J given by (3.33). We first verify that D is closed. Assume
therefore that {un}∞n=1 ⊂ U is such that un → u ∈ U and Dun → u′ ∈ U as
n →∞. Since GU is in particular isotropic in the J -inner product, we have

0 =

〈
−IH 0 0 0

0 0 0 IU
0 0 IH
0 IU 0 0




B(un − um)
D(un − um)

0
un − um

 ,


B(un − um)
D(un − um)

0
un − um


〉
H⊕U⊕H⊕U

=

〈
−B(un − um)

un − um

0
D(un − um)

 ,


B(un − um)
D(un − um)

0
un − um


〉
H⊕U⊕H⊕U

= −‖B(un − um)‖2H + 〈(D∗ + D)(un − um), un − um〉U . (3.34)

As {Dun}∞n=1 is Cauchy by assumption, we see that {Bun}∞n=1 must also be
Cauchy and hence converges to some h ∈ H. Thus[

Bun

Dun

]
= U

[
0
un

]
→

[
h
u′

]
is convergent. As U is by hypothesis closed, we conclude that[

h
u′

]
= U

[
0
u

]
=

[
Bu
Du

]
.

In particular, u′ = Du and we conclude that D is closed. As the domain of D is all
of U , we conclude next by the Closed Graph Theorem that in fact D is bounded.
From the identity (3.34), we see that

‖B‖2 ≤ ‖D + D∗‖

and hence B : U 7→ H is also bounded.
We next show that A is isometric on its domain D1. Indeed, again since GU

by assumption is isotropic in the J -inner product with J given by (3.33),

0 =

〈
−IH 0 0 0

0 0 0 IU
0 0 IH 0
0 IU 0 0




Ah
Ch
h
0

 ,


Ah
Ch
h
0


〉
H⊕U⊕H⊕U

=

〈
−Ah

0
h

Ch

 ,


Ah
Ch
h
0


〉
H⊕U⊕H⊕U

= −‖Ah‖2H + ‖h‖2H.

and it follows that A is isometric on D1. Again since GU is isotropic, we have

0 =

〈
−IH 0 0 0

0 0 0 IU
0 0 IH 0
0 IU 0 0




Ah
Ch
h
0

 ,


Bu
Du
0
u


〉
H⊕U⊕H⊕U

=

〈
−Ah

0
h

Ch

 ,


Bu
Du
0
u


〉
H⊕U⊕H⊕U

= 〈(−B∗A + C)h, u〉U
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for all u ∈ U . We conclude that C = B∗A is bounded. As all of A,B,C, D have
now been shown to be bounded, we conclude that U is bounded. As U is also
closed, its domain D ⊂ H⊕ U , and hence also D1 ⊂ H, is closed.

Suppose now that h ∈ H is orthogonal to D1 in H. Then it follows that

〈
−IH 0 0 0

0 0 0 IU
0 0 IH 0
0 IU 0 0




0
0
h
0

 ,


A B
C D
IH 0
0 IU

[
h′

u′

]〉
H⊕U⊕H⊕U

= 〈h, h′〉 = 0

for all h′ ∈ D1 and u′ ∈ U , i.e., 0⊕ 0⊕ h⊕ 0 ∈ G[⊥]
U . By the assumption that GU

is Lagrangian, it follows that 0⊕ 0⊕ h⊕ 0 is J -orthogonal to itself, i.e.,

0 =

〈
−IH 0 0 0

0 0 0 IU
0 0 IH 0
0 IU 0 0




0
0
h
0

 ,


0
0
h
0


〉
H⊕U⊕H⊕U

= ‖h‖2H

and hence h = 0. We conclude that in fact D1 = H and the domain D of U is the
entire space H ⊕ U . Now by the first part of the proof, we conclude that U is a
colligation as in (3.28). This completes the proof of Lemma 3.4. �

Remark 3.5. The assumption that D = D1 ⊕ U contains {0} ⊕ U is essential in
Lemma 3.4. Indeed, the subspace

I = {h⊕ u⊕ h⊕ 0: h ∈ H, u ∈ U}

is Lagrangian with respect to J in (3.33) but is not a graph space (with angle
operator having domain in {0} ⊕ {0} ⊕ H ⊕ U), as G ∩ (H ⊕ U ⊕ {0} ⊕ {0}) =
{0} ⊕ U ⊕ {0} ⊕ {0} is nontrivial. The positive-real function ϕ associated with I
is formally ϕ(z) = ∞.

We are now ready for the proof of Theorem 3.3.

Proof of Theorem 3.3. The proof of (3) =⇒ (2) was done in the discussion pre-
ceding the statement of the theorem. To see (1) =⇒ (2), note that <ϕ(z) ≥ 0 is
equivalent to ‖S(z)‖ ≤ 1 where S(z) = (I − ϕ(z))(I + ϕ(z))−1, and then use the
result of (1) =⇒ (2) in Theorem 3.2, applied to S̃(z) := S(z)∗ rather to S(z), to
deduce that

2(I + ϕ(w)∗)−1 [ϕ(w)∗ + ϕ(z)] (I + ϕ(z))−1 = H ′(w)∗H ′(z)

for some H ′ : D 7→ L(U ,X0). Now set H(z) = 1√
2
H ′(z)(I + ϕ(z))−1.

We now assume (2) and seek to prove (3). We clear out denominators in
identity (3.31) and rearrange to arrive at

−H(w)∗H(z) + ϕ(z) + zwH(w)∗H(z) + ϕ(w)∗ = 0. (3.35)



24 Joseph A. Ball and Olof J. Staffans IEOT

We view this identity as simply saying that the subspace

G0 := span




H(z)
ϕ(z)

zH(z)
IU

u : z ∈ D, u ∈ U

 ⊂


H0

U
H0

U

 (3.36)

is isotropic in the Krĕın-space J0-inner product on H0 ⊕ U ⊕H0 ⊕ U , where

J0 =


−IH0 0 0 0

0 0 0 IU
0 0 IH0 0
0 IU 0 0

 .

By Proposition 2.5, we may embed G0 into a Lagrangian subspace G of a
Krĕın space K containing K0 as a subspace. Without loss of generality, we take K
to have the form H ⊕ U ⊕ H ⊕ U , where H is a Hilbert space containing H0 as
a subspace, and where the Krĕın-space inner product [·, ·] on K is the Hermitian
form

[k, k′]K = 〈J k, k′〉H⊕U⊕H⊕U
on K ×K induced by the signature operator

J =


−IH 0 0 0

0 0 0 IU
0 0 IH 0
0 IU 0 0

 :


H
U
H
U

 7→


H
U
H
U

 .

We next check that

G ∩ (H0 ⊕ U ⊕ {0} ⊕ {0}) = {0}. (3.37)

Indeed, suppose that h⊕ u⊕ 0⊕ 0 ∈ G. As G is isotropic, we then have

0 =

〈
J


h
u
0
0

 ,


H(z)
ϕ(z)

zH(z)
IU

u′

〉
=

〈
−h
0
0
u

 ,


H(z)
ϕ(z)

zH(z)
IU

u′

〉
= 〈−H(z)∗PH0h + u, u′〉U

for all u′ ∈ U and for all z ∈ D. We conclude that u = H(z)∗PH0h = H(0)∗PH0h
for all z ∈ D and hence our element of G has the form h⊕H(0)∗PH0h⊕ 0⊕ 0 for
some h ∈ H. As h ⊕H(0)∗PH0h ⊕ 0 ⊕ 0 is in G and G is isotropic, we must also
have that

0 =

〈
J


h

H(0)∗PH0h
0
0

 ,


h

H(0)∗PH0h
0
0


〉

= −‖h‖2H0
.

Hence h = 0 from which also u = H(0)∗PH0h = 0, and (3.37) follows.
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We conclude that G has the form of a graph space

G =




A&B
C&D[

IH 0
0 IU

]
[

h
u

]
:

[
h
u

]
∈ D


for some closed linear operator U =

[
A&B
C&D

]
mapping some domain D ⊂ H ⊕ U

into H ⊕ U . By taking z = 0 in the form (3.36) of a generating vector for G0, we
see that the domain D of U contains {0} ⊕ U . Lemma 3.4 now implies that the
domain D must be all of H⊕ U and that the operator

U =
[
A B
C D

]
:

[
H
U

]
7→

[
H
U

]
is bounded and is a colligation matrix of the form (3.28).

Finally, from the fact that the G contains G0 as a subspace, we deduce that,
for each z ∈ D and u ∈ U , there exist hz,u ∈ H and uz,u ∈ U so that

A B
C D
IH 0
0 IU

[
hz,u

uz,u

]
=


H(z)
ϕ(z)

zH(z)
IU

u.

From the bottom two components we read off that uz,u = u and that hz,u =
zH(z)u. Then the top two components give the system of equations

zAH(z)u + Bu = H(z)u

zCH(z)u + Du = ϕ(z)u.

Canceling off the u gives a system of operator equations

zAH(z) + B = H(z)

zCH(z) + D = ϕ(z).

As we know that A is unitary and z ∈ D, we can solve the first equation for H(z)
to get H(z) = (I − zA)−1B. Plugging this into the second equation then gives

ϕ(z) = D + C(I − zA)−1B

and we have realized ϕ(z) as the transfer function of a discrete-time impedance-
conservative linear system as wanted. �

Remark 3.6. A standard approach to the proof of (2) =⇒ (3) in Theorem 3.3 is
to use the Poisson-integral representation

ϕ(z) = i=ϕ(0) +
∫

T
P(t, z)µ(dt), P(t, z) =

1− |z|2

|1− tz|2
(3.38)

combined with the Neumark dilation theorem for the positive operator-valued
measure µ: there exists a projection-valued measure ∆ 7→ E(∆) ∈ L(H) for some
Hilbert space H and a scale-operator Ψ: U 7→ H so that µ(ds) = Ψ∗E(ds)Ψ (see
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[12, Appendix I]). Then the Poisson representation (3.38) for ϕ converts imme-
diately to the realization formula (3.32) with V =

∫
T tE(dt). Here we recover

the same result via a different approach based on construction of Lagrangian sub-
spaces of an appropriate Krĕın space. In the continuous-time setting, the approach
through Lagrangian subspaces (see Section 4 below) appears to yield cleaner re-
sults than the approach through integral representations (see [7, 8, 9, 19]).

4. Conservative continuous-time systems

The continuous-time analogue of the linear i/s/o system given by (3.1) is a system
of the form

Σ :
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (4.1)

determined (as in the discrete-time case) by a colligation matrix, now denoted by
S, of the form

S =
[
A B
C D

]
:

[
X
U

]
7→

[
X
Y

]
.

As before we view the space X where the state vector x(t) has its values as the state
space, the space U where the input vector u(t) has its values as the input space,
and the space Y where the output vector y(t) has its values as the output space.
Experience shows that the assumption that A,B,C, D are all bounded operators
(i.e., the node S is a bounded operator) leads to a framework which leaves out
many examples of physical and mathematical interest. Even if one allows A to be
the (in general unbounded) generator of a C0-semigroup, if one still insists that
B and C are bounded (and that there is a well-defined feedthrough operator D),
the resulting class of systems is still too narrow to include many natural examples
of interest. For our purposes the natural class of systems to work with are those
associated with a “system node” in the sense of Staffans (see Section 2 of [34]).

In the sequel the system node S = [ A B
C D ] will be unbounded, to be thought

of as a single (unbounded) operator, mapping some domain D(S) ⊂ [XU ] into
[X
Y

]
.

The resulting system equations (4.1) are to be written in the form[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ 0, x(0) = x0.

As S maps into the direct-sum space
[X
Y

]
, it is always possible to split S as

S =
[

S1
S2

]
, S1 = A&B maps D(S) into X and S2 = C&D maps D(S) into Y.

It is not, in general, possible to split S1 = A&B apart as a block-row matrix
A&B =

[
A B

]
or S2 = C&D apart as a block row matrix C&D =

[
C D

]
(this

is possible only when D(S) splits into D(S) = D(S)1 ⊕ D(S)2 with D(S)1 ⊂ X
and D(S)2 ⊂ U). However, there is an extension

[
A B

]
of A&B with range in

a larger space X−1 ⊃ X which is defined on all of [XU ] and hence does split, and
with A&B equal to the restriction of

[
A B

]
to D(S).
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The extension
[
A B

]
of A&B is based on the familiar “rigged Hilbert space

structure” which was apparently originally introduced by Berezanskĭı and adapted
to this system-theory context independently by Salamon [32], Šmuljan [33], and
Weiss [40]. Let A be any closed (unbounded) densely defined operator on the
Hilbert space X with a nonempty resolvent set. Denote the domain D(A) by X1.
This is a Hilbert space with the norm ‖x‖X1 := ‖(αI − A)x‖X , where α is any
choice of number in the resolvent set ρ(A) of A. (Two different choices of α give
different but equivalent norms.) We also construct a larger Hilbert space X−1

defined to be the completion of X under the norm ‖x‖X−1 := ‖(αI − A)−1x‖X .
Then X1 ⊂ X ⊂ X−1 with continuous and dense injections. The operator A has a
unique extension to an operator in L(X ,X−1) which we denote by A|X (thereby
indicating that the domain of this operator is all of X ). The operators A and A|X
are similar to each other and have the same spectrum. Thus, for all α ∈ ρ(A), the
operator αI −A|X maps X bijectively to X−1 and its inverse (αI −A|X )−1 is the
unique extension to X−1 of the operator (αI −A)−1.

There are also dual versions of the spaces X1 and X−1. To obtain these, repeat
the construction described above with A replaced by the (unbounded) adjoint A∗

of A; the result is two more spaces, denoted by X d
1 (the analogue of X1) and X d

−1

(the analogue of X−1). If we identify the dual of X with X itself, then X d
1 becomes

the dual of X−1 and X d
−1 becomes the dual of X1. We denote the extension of A∗ to

an operator in L(X ,X d
−1) by A∗|X . This operator can be viewed as the (bounded)

adjoint of the operator A, regarded as an operator in L(X1,X ).
We are now ready for the formal definition of a system node S.

Definition 4.1. (See [34, Section 2], [24, Section 2] or [35, Section 4.7].) By a system
node S on three Hilbert spaces (U ,X ,Y), we mean a closed, linear operator

S =
[
A&B
C&D

]
:

[
X
U

]
⊃ D(S) 7→

[
X
Y

]
with the following properties:

1. A&B is the restriction to D(S) of
[
A|X B

]
, where A is the generator of a

C0-semigroup on X , inducing a rigged Hilbert space structure X1 ⊂ X ⊂ X−1

as described above.
2. The operator B is an arbitrary operator in L(U ,X−1).
3. C&D is an arbitrary linear operator from D(S) into Y.
4. The domain D(S) has the characterization

D(S) =
{[

x
u

]
∈

[
X
U

]
: A|Xx + Bu ∈ X

}
.

We note some consequences of the definition of a system node.

Proposition 4.2. Let S be a system node as in Definition 4.1. Then:

1. D(S) is a Hilbert space in the A&B norm.



28 Joseph A. Ball and Olof J. Staffans IEOT

2. The linear operator C&D : D(S) 7→ Y is actually a bounded linear operator
in L(D(S),Y), where we consider D(S) as a Hilbert space in the A&B-graph
norm.

3. D(S) is dense in [XU ].

This proposition can be derived from [24, Section 2] or [35, Section 4.7], but
for the convenience of the reader we include a proof.

Proof. From the boundedness of the operators A|X : X 7→ X−1 and of B : U 7→ X−1

combined with the characterization of D(S) in condition (4), it is easy to see that
A&B : [XU ] ⊃ D(S) 7→ X is a closed operator. Hence D(S) is a Hilbert space in
the A&B-graph norm. Using the fact that S is a closed operator, one can then
verify that C&D : S 7→ Y is a closed operator (where we consider D(S) with the
A&B-graph norm). By the closed-graph theorem, we then conclude that in fact
C&D ∈ L(D(S),Y) (where again D(S) carries the A&B-graph norm).

Using the characterization ofD(S) in (4), it is easily verified that
[

(αI−A|X )−1B
IU

]
u ∈

D(S) for any u ∈ U . It is then easy to see that[
X1

{0}

]
+̇

[
(αI −A|X )−1B

IU

]
U

is contained in D(S) and is dense in [XU ]. �

Remark 4.3. In Definition 4.1, the hypothesis that S is closed could be replaced
by the condition that A&B : [XU ] ⊃ D(S) 7→ X is closed combined with the as-
sumption that C&D : D(S) 7→ Y is closed (where D(S) is given the A&B-graph
norm). The key condition in Definition 4.1 is that the operator A be the generator
of a C0-semigroup.

In applications it is convenient to have conditions on a closed operator S : [XU ] ⊃
D(S) 7→

[X
Y

]
guaranteeing that S is a system node which are easier to check than

the definition itself.

Proposition 4.4. 2 Let S : [XU ] ⊃ D(S) 7→
[X
Y

]
be a closed operator. Define an

operator A : X ⊃ D(A) 7→ X by

Ax = A&B

[
x
0

]
for x ∈ D(A) :=

{
x ∈ X :

[
x
0

]
∈ D(S)

}
=: X1.

Suppose in addition that:
1. The operator A generates a C0-semigroup.

2. For each u ∈ U , there exists an xu ∈ X so that
[
xu

u

]
∈ D(S).

3. Given [ xn
un

] ∈ D(S) such that [ xn
un

] → [ x
u ] in [XU ]-norm as n → ∞ and

A&B [ xn
un

] → x′ in X -norm, it follows that there is a y′ ∈ Y such that
C&D [ xn

un
] → y′ in the weak topology of Y.

2This proposition is a slight extension of a result which was originally part of a preliminary
version of [24] but not included in the final manuscript. See also [35, Section 4.7].
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Then S is a system node.

Proof. We assume conditions (1), (2) and (3) in the statement of the Proposition
and seek to verify conditions (1), (2), (3), (4) in Definition 4.1. By the assumption
that A generates a C0-semigroup, it follows that A has nonempty resolvent and
we may introduce the rigged Hilbert space structure

D(A) =: X1 ⊂ X ⊂ X−1

induced by A, as explained in the beginning of this Section. Then A has an ex-
tension A|X : X 7→ X−1 to all of X , with the cost that A|X has values in X−1.
Moreover A|X ∈ L(X ,X−1); in fact, for any α ∈ ρ(A), αI−A|X is an isomorphism
from X to X−1.

Define the operator B : U 7→ X−1 by

B : u 7→ A&B

[
xu

u

]
−Axu for u ∈ U (4.2)

where xu is as in hypothesis (2) of Proposition 4.4. We check that B is well-defined
as follows. If x′u is another choice of vector in X for which

[
x′u
u

]
∈ D(S), then[

xu

u

]
−

[
x′u
u

]
=

[
xu − x′u

0

]
∈ D(S)

and hence xu − x′u ∈ X1. Hence(
A&B

[
xu

u

]
−A|Xxu

)
−

(
A&B

[
x′u
u

]
−A|Xx′u

)
= A&B

[
xu − x′u

0

]
−A(xu−x′u) = 0,

where the last step follows from the definition of A. We conclude that the formula
(4.2) is independent of the choice of xu and hence gives rise to a well-defined linear
operator B : U 7→ X−1. It is easy to see that B is linear.

We next check that

D(S) =
{[

x
u

]
∈

[
X
U

]
: A|Xx + Bu ∈ X

}
. (4.3)

Indeed, if [ x
u ] ∈ D(S), then the very definition (4.2) (with xu chosen equal to x)

gives that A|Xx+Bu = A&B [ x
u ] ∈ X . Conversely, if [ x

u ] ∈ [XU ] with A|Xx+Bu ∈
X , then we may choose xu ∈ X so that [ xu

u ] ∈ D(S) and A|Xxu+Bu = A&B [ xu
u ] ∈

X . But then

A|X (x− xu) = A|Xx−A|Xxu = (A|Xx + Bu)− (A|Xxu + Bu) ∈ X
from which we see that in fact x− xu ∈ X1. Hence[

x
u

]
=

[
x− xu

0

]
+

[
xu

u

]
∈ D(S).

and (4.3) follows.
We next check that A&B : [XU ] ⊃ D(S) 7→ X is closed. Suppose therefore

that [ xn
un

] ∈ D(S) with [ xn
un

] → [ x
u ] in [XU ]-norm and A&B [ xn

un
] → x′ in X -norm.

By hypothesis (3), it then follows that C&D [ xn
un

] converges weakly to some y′ ∈ Y.



30 Joseph A. Ball and Olof J. Staffans IEOT

Since S is closed, the graph GS of S is a closed subspace of X ⊕ Y ⊕ X ⊕ U . In
general, norm-closed subspaces of a Hilbert space are also weakly closed. As

A&B

[
xn

un

]
C&D

[
xn

un

]
xn

un

 ∈ GS and


A&B

[
xn

un

]
C&D

[
xn

un

]
xn

un

 →


x′

y′

x
u

 weakly,

it follows that x′ ⊕ y′ ⊕ x⊕ u ∈ GS , i.e., that[
x
u

]
∈ D(S) and

[
A&B
C&D

] [
x
u

]
=

[
x′

y′

]
.

In particular, [ x
u ] ∈ D(S) and A&B [ x

u ] = x′, and it follows that A&B is closed.
We next argue that B ∈ L(U ,X−1). As U is complete, by the closed-graph

theorem it suffices to show that B is closed. Let us therefore suppose that un ∈ U
is such that un → u in U-norm and Bun → x′ in X−1-norm as n → ∞. Choose
α ∈ ρ(A). It then follows that (αI −A|X )−1Bun → (αI −A|X )−1x′ in X . By the
characterization (4.3) of D(S) we see that

[
(αI−A|X )−1Bun

un

]
∈ D(S) and then by

definition (4.2) we have

A&B

[
(αI −A|X )−1Bun

un

]
= A|X (αI −A|X )−1Bun + Bun

= α(αI −A|X )−1Bun → α(αI −A|X )−1x′ (4.4)

where the convergence is in X -norm. Since we now know that A&B is closed, (4.4)
leads to

A&B

[
(αI −A|X )−1x′

u

]
= α(αI −A|X )−1x′. (4.5)

On the other hand, by direct computation using (4.3) and (4.2), we have

A&B

[
(αI −A|X )−1x′

u

]
= α(αI −A|X )−1Bu. (4.6)

Upon combining (4.5) and (4.6) we get Bu = x′, and we conclude that B is closed.
As mentioned above, an application of the closed graph theorem now gives that
B ∈ L(U ,X−1).

Collecting all the pieces, we have now verified conditions (1), (2), (3), (4) in
Definition 4.1, and we conclude that indeed S is a system node, and the proof of
Proposition 4.4 is complete. �

Given a system node S =
[

A&B
C&D

]
as above, we shall refer to the operator

A as the main operator or semigroup generator, the operator B as the control
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operator, the operator C&D as the combined observation/feedthrough operator,
and the operator C defined by

Cx := C&D

[
x
0

]
, x ∈ X1

as the observation operator of S.

Given a system node S as above, one can show that the operator
[

I (αI−A|X )−1B
0 I

]
is boundedly invertible as an operator from [XU ] to

[X
Y

]
and as an operator from[X1

U
]

into D(S). As
[X1
U

]
is dense in [XU ], we see that D(S) is dense in [XU ]. Fur-

thermore, the second column
[

(αI−A|X )−1B
I

]
of this operator maps U into D(S),

and hence we can define the transfer function of S, denoted as TS(s) or (in the
notation of [34]) D̂(s), by

D̂(s) := C&D

[
(sI −A|X )−1B

I

]
, s ∈ ρ(A) (4.7)

which is an L(U ,Y)-valued function on ρ(A). By the resolvent formula we have

D̂(α)− D̂(β) = C
[
(αI −A|X )−1 − (βI −A|X )−1

]
B (4.8)

= (β − α)C(αI −A)−1(βI −A|X )−1B. (4.9)

One of the main points from [34] is that a system node S determines a certain
type of dynamical system.

Lemma 4.5. Let S be a system node on (U ,X ,Y). Then, for each x0 ∈ X and
u ∈ W 2,1

loc (R+,U) with
[ x0

u(0)

]
∈ D(S), the equation[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ 0, x(0) = x0. (4.10)

has a unique solution (x, y) satisfying
[

x(t)
u(t)

]
∈ D(S) for all t ≥ 0, x ∈ C1(R+,X )

and y ∈ C(R+,Y).

Proof. See [24] or [35]. �

By taking Laplace transforms in (4.10), we see that, under the assumption
that u is Laplace-transformable with transform û, then the output y is also Laplace
transformable and (4.10) converts to

x̂(s) = (sI −A)−1x0 + (sI −A|X )−1Bû(s)
ŷ(s) = C(sI −A)−1x0 + D̂(s)û(s)

(4.11)

for <s large enough. Thus this definition of transfer function is equivalent to the
standard one in the classical case (where A,B,C and D are all bounded).
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Definition 4.6. By the linear system Σ generated by a system node S we mean the
family Σt

0 of maps defined by

Σt
0

[
x0

π[0,t]u

]
:=

[
x(t)

π[0,t]y

]
parametrized by t ≥ 0, where x0, x(t), u and y are as in Lemma 4.5 and π[0,t]u and
π[0,t]y are the restrictions of u and y to [0, t]. We call x the state trajectory, u the
input function, y the output function and the triple (u, x, y) the system trajectory
of Σ.

By initializing the system at a time −T < 0 instead of at 0 and letting
−T → −∞, we may also define a notion of system trajectory (u(·), x(·), y(·)) for
Σ over all of R.

It is also possible to consider less smooth system trajectories. First note
the equation ẋ(t) = A|Xx(t) + Bu(t) for t ≥ 0 and initial condition x(0) = x0

has a unique strong solution x ∈ W 1,1
loc (R+,X−1) for any u ∈ L1

loc(R+,U) (see
e.g. [35, Section 3.8]; note that A|X is the generator of the C0-semigroup obtained
by extending the semigroup generated by A to X−1). Thus there is no problem
making sense of the state trajectory x(t) generated by an arbitrary initial condition
x0 in X and input signal u locally norm-integrable (rather than smooth u with[ x0

u(0)

]
∈ D(S) as in Lemma 4.5), as long as we are willing to allow x(t) to take

values in X−1. One can make sense of the resulting output y(t) as a distribution
via the following trick (see [35, Section 4.7]). For x0 ∈ X and u ∈ L1

loc(R+,U), let
x ∈ W 1,1

loc (R+,X−1) be the corresponding state trajectory. If we define [ x2
u2 ] by[

x2(t)
u2(t)

]
=

∫ t

0

(t− s)
[
x(s)
u(s)

]
ds, t ≥ 0

(the second indefinite integral of [ x
u ] initialized with zero value at the origin), then[

x2(t)
u2(t)

]
∈ D(S) for all t ≥ 0 and we may define the output y by

y(t) =
(

C&D

[
x2(s)
u2(s)

])′′
, t ≥ 0 (4.12)

where we interpret the second order derivative in the distribution sense.
In the sequel, when we talk about a “smooth system trajectory” of Σ we shall

by this mean a triple of functions (u, x, y) which is of the type described in Lemma
4.5. For the discussion of the duality and the energy-balance relations below, it is
most of the time enough to consider smooth trajectories. However, in our discussion
of continuous-time scattering-conservative systems we shall sometimes reinterpret
an output as an input, and this output need not always belong to W 2,1

loc (R+,Y).
In this situation we revert to the distribution solution described above, with some
additional restrictions on the data. It is preferable (especially in Section 5) to have
a notion of a system trajectory which is symmetric with respect to the input and
the output. One such setting is to require that u ∈ L2

loc(R+,U), x ∈ C(R+,X ), and
y ∈ L2

loc(R+,Y). It is easy to see that the set of all (distribution) trajectories with
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this additional property is closed in L2
loc(R+,U)⊕C(R+,X )⊕L2

loc(R+,Y), and that
all of our “integral level” results (where we work with balance equations in integral
form) remain true for this class of trajectories. (To prove this it suffices to first show
the results for smooth trajectories, and then use the density of the set of smooth
trajectories.) However, in order to be able to work also on the differential level we
shall require below a little more, namely that u ∈ L2

loc(R+,U), x ∈ W 1,2
loc (R+,X ),

and y ∈ L2
loc(R+,Y). This is the class of trajectories that we mean when we simply

say “system trajectory”. Note that for each given system, the class of all its system
trajectories is a closed subset of L2

loc(R+,U) ⊕ W 1,2
loc (R+,X ) ⊕ L2

loc(R+,Y). This
notion of solution has one important property which simplifies many of the proofs:
it is the unique “classical” solution with the property that [ x

u ] ∈ L2
loc(R+,D(S))

(with the graph norm), and (4.10) holds for almost all t > 0 (see [35, Section 4.7]
for the proof of this).

Given a system node S as in Definition 4.1, it is of interest to understand the
adjoint S∗ of S, where S is considered as an operator from its domain D(S) ⊂ [XU ]
into

[X
Y

]
. We first recall that, given a system node S = [ A B

C D ], the rigged Hilbert
space structure X d

1 ⊂ X ⊂ X d
−1 is the one associated with the adjoint A∗ of A

(so X d
1 = D(A∗) with the A∗-graph norm and X d

−1 is the completion of X in the
norm ‖x‖Xd

−1
= ‖(αI − A∗)−1x‖X ). Then X d

−1 is the dual of X1 and X d
1 is the

dual of X−1 in the pairing induced by the X -inner product. As B : U 7→ X−1 and
C : X1 7→ Y, we have well-defined adjoint operators

B∗ : X d
1 7→ U , C∗ : Y 7→ X d

−1.

In terms of these objects (along with the value D(α) of the transfer function of Σ
at a point α ∈ ρ(A)), one can compute the adjoint S∗ of the node operator S as
follows.

Proposition 4.7. Let S be a system node on (U ,X ,Y) with domain

D(S) =
{[

x
u

]
∈

[
X
U

]
: A|Xx + Bu ∈ X

}
as in Definition 4.1. Then the adjoint S∗ of S has domain

D(S∗) =
{[

x∗
u∗

]
∈

[
X
Y

]
: A∗|Xx∗ + C∗u∗ ∈ X

}
(4.13)

with action given by

S∗ :
[
x∗
u∗

]
7→

[
A∗|Xx∗ + C∗u∗

B∗ [
x∗ − (αI −A∗|X )−1C∗u∗

]
+ D̂(α)∗u∗

]
(4.14)

for [ x∗
u∗ ] ∈ D(S∗) (the value of the second line is independent of α ∈ ρ(A)). In par-

ticular, S∗ is a system node on (Y,X ,U) with main operator A∗, control operator
C∗, and observation operator B∗. The transfer function TS∗ of S∗ is given by

TS∗(α) = D̂(α)∗, α ∈ ρ(A∗).
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This result is by now well-known; see, e.g., [24, Section 2], [33], or [35, Section
6.2]. For the convenience of the reader we have included a proof.

Proof. Suppose first that [ x∗
u∗ ] ∈

[X
Y

]
is in D(S∗). In particular, the map

x ∈ X1 7→
〈

S

[
x
0

]
,

[
x∗
u∗

]〉
= 〈x,A∗|X + C∗u∗〉X1×Xd

−1

is bounded with respect to the X -norm on x. This then forces A∗|X + C∗u∗ ∈ X .
We conclude that D(S∗) is contained in the domain given by (4.13).

Conversely, suppose that [ x∗
u∗ ] ∈

[X
Y

]
has the property that A∗|Xx∗+C∗u∗ ∈

X . We then compute, for [ x
u ] ∈ D(S),〈

S

[
x
u

]
,

[
x∗
u∗

]〉
X⊕Y

= 〈A
[
x− (αI −A|X )−1Bu

]
+ α(αI −A|X )−1Bu, x∗〉X

〈C
[
x− (αI −A|X )−1Bu

]
+ D̂(α)u, u∗〉Y

= 〈x− (αI −A|X )−1Bu, A∗x∗〉X1×Xd
−1

+ α〈u, B∗(αI −A∗)−1x∗〉U

+ 〈x− (αI −A|X )−1Bu,C∗u∗〉X1×Xd
−1

+ 〈u, D̂(α)∗u∗〉U
= 〈x− (αI −A|X )−1Bu, A∗|Xx∗ + C∗u∗〉X

+ α〈u, B∗(αI −A∗)−1x∗〉U + 〈u, D̂(α)∗u∗〉U
= 〈x,A∗x∗ + C∗u∗〉X

+ 〈u,−B∗(αI −A∗|X )−1(A∗x∗ + C∗u∗) + αB∗(αI −A∗)−1x∗〉U
+ 〈u, D̂(α)∗u∗〉U . (4.15)

The second term in the last quantity in the chain of equalities (4.15) simplifies to

〈u,−B∗(αI −A∗|X )−1(A∗x∗ + C∗u∗) + αB∗(αI −A∗)−1x∗〉U
= 〈u,−B∗(αI −A∗|X )−1

(
A∗

[
x∗ − (αI −A∗|X )−1C∗u∗

]
+ α(αI −A∗|X )−1C∗u∗

)
+ αB∗(αI −A∗)−1x∗〉U

= 〈u, B∗ [
x∗ − (α−A∗|X )−1C∗u∗

]
〉U . (4.16)

Combining (4.15) and (4.16), we see that [ x∗
u∗ ] ∈ D(S∗) with S∗ [ x∗

u∗ ] given by
(4.14) as wanted. This proves (4.13) and (4.14).

Checking Definition 4.1 we find that S∗ is a system node, with the given main
operator, control operator, and observation operator. The given formula for the
transfer function follows directly from (4.14) with α replaced by α. This completes
the proof of Proposition 4.7. �

We are now ready to define (anti-causal) adjoint systems and adjoint-system
nodes. Given a system node S =

[
A&B
C&D

]
, we define the associated (anti-causal)

adjoint-system node S∗ by

S∗ :=
[
S1∗
S2∗

]
=

[
A∗&B∗
C∗&D∗

]
=

[
−IX 0

0 IU

]
S∗ (4.17)
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where S∗ is the (standard) adjoint of the node operator S as computed in Propo-
sition 4.7. Note that, since A is the generator of a C0-semigroup, in general
A∗ = −A∗ is only the generator of a backward-time semigroup rather than of
the usual forward-time semigroup, meaning that one sets a final condition rather
than an initial condition and then lets the system evolve in backwards time. In
general we define a backward-time system node S∗ =

[
A∗&B∗
C∗&D∗

]
as in (4.1), so

A∗&B∗ is the restriction of
[
A∗ B∗

]
:

[ X
U∗

]
7→ X d

1 to its domain

D(A∗&B∗) =
{[

x∗
u∗

]
∈

[
X
Y

]
: A∗|X + B∗u∗ ∈ X

}
,

but now the assumption is that −A∗ generates a C0-semigroup. Then there is an
analogue of Lemma 4.5, but now we fix a value x0∗ of x at a final time tf and then
solve the system equations[

ẋ∗(t)
y∗(t)

]
=

[
A∗&B∗
C∗&D∗

] [
x∗(t)
u∗(t)

]
, t ≤ tf , x∗(tf ) = x0∗, (4.18)

in backwards time, under the assumption that u∗(t) is smooth and that
[ x∗0

u∗(tf )

]
∈

D(S∗). Then the associated backwards-time system Σ∗ can be defined as the col-
lection of maps

Σtf

t∗

[
x0∗

π[t,tf ]u∗

]
:=

[
x∗(t)

π[t,tf ]y∗

]
parametrized by t ≤ tf , where u∗, x∗, y∗ are as in (4.18), and where π[t,tf ]u∗ and
Π[t,tf ]y∗ are the restrictions of u∗ and of y∗, respectively, to the interval [t, tf ] for
t ≤ tf . In this way we may speak of a smooth state trajectory x∗(t) and of a
smooth system trajectory (u∗(t), x∗(t), y∗(t)) for a backwards-time system Σ∗. If
we omit the word “smooth” then we mean (as in the case of the original system Σ) a
distribution solution of (4.18) with the additional property that u∗ ∈ L2([0, tf ],Y),
x∗ ∈ W 1,2([0, tf ],X ), and y∗ ∈ L2([0, tf ],U).

The main point of the definition of the adjoint-system node S∗ (4.17) as-
sociated with the system node S is the following adjoint pairing between system
trajectories and adjoint-system trajectories.

Theorem 4.8. Suppose that S is system node with system-adjoint node S∗ =[−IX 0
0 IU

]
S∗ as defined in (4.17). Then, a given triple of functions (u∗(·), x∗(·), y∗(·))

on [0, tf ] is a system trajectory for the backwards-time system Σ∗ generated by S∗
if and only if the adjoint pairing

〈x(T2), x∗(T2)〉X − 〈x(T1), x∗(T1)〉X =
∫ T2

T1

[〈u(s), y∗(s)〉U − 〈y(s), u∗(s)〉Y ] ds

(4.19)
holds for all 0 ≤ T1 < T2 ≤ tf and all system trajectories (u(·), x(·), y(·)) for the
(forward-time) system Σ generated by the system node S.

Proof. In the class of trajectories that we consider (with input and outputs locally
in L2 and the state locally in W 1,2), the integral pairing (4.19) is equivalent to
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the corresponding differential pairing (valid almost everywhere, and with all the
involved functions locally in L2)〈[

ẋ(t)
y(t)

]
,

[
x∗(t)
u∗(t)

]〉
=

〈[
x(t)
u(t)

]
,

[
−ẋ∗(t)
y∗(t)

]〉
. (4.20)

If (u(·), x(·), y(·)) is a trajectory for the (forward-time) system Σ generated by
the system node S and (u∗(·), x∗(·), y∗(·)) on R is a system trajectory for the
backwards-time system Σ∗ generated by S∗, then, for almost all t, we have

[
x(t)
u(t)

]
∈

D(S),
[

x∗(t)
u∗(t)

]
∈ D(S∗) = D(S∗),

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, and

[
−ẋ∗(t)
y∗(t)

]
= S∗

[
x∗(t)
u∗(t)

]
.

This implies (4.20). Conversely, if (4.20) holds, then for almost all t,〈
S

[
x(t)
u(t)

]
,

[
x∗(t)
u∗(t)

]〉
=

〈[
x(t)
u(t)

]
,

[
−ẋ∗(t)
y∗(t)

]〉
.

Hence, for these t,
[

x∗(t)
u∗(t)

]
∈ D(S∗) and S∗

[
x∗(t)
u∗(t)

]
=

[
−ẋ∗(t)
y∗(t)

]
. This means that

(u∗(·), x∗(·), y∗(·)) on R is a system trajectory for the backwards-time system Σ∗
generated by S∗. �

As a continuous-time analogue of the definitions in Section 3 we say that the
system Σ generated by the system node S is energy-preserving with respect to the
supply rate

sQ(u, y) =
〈[

Q11 Q12

Q21 Q22

] [
u
y

]
,

[
u
y

]〉
U⊕Y

(where Q =
[

Q11 Q12
Q21 Q22

]
is a given positive-definite operator on U ⊕ Y) if

‖x(T2)‖2X − ‖x(T1)‖X =
∫ T2

T1

sQ(u(s), y(s))ds (4.21)

over all trajectories (u(·), x(·), y(·)) of the system Σ. If this is the case, then one
can check that the transformation

TQ : (u(·), x(·), y(·)) 7→ (u∗(·), x∗(·), y∗(·))

where[
u∗(t)
y∗(t)

]
= TQ

[
u(t)
y(t)

]
:=

[
0 IY
IU 0

] [
Q11 Q12

Q21 Q22

] [
u(t)
y(t)

]
, x∗(t) = x(t)

maps trajectories of Σ into trajectories of the adjoint system Σ∗. Conversely, if
(u∗(·), x∗(·), y∗(·)) is a system trajectory of Σ∗ of the form TQ(u(·), x(·), y(·)) for a
system trajectory (u(·), x(·), y(·)) of Σ, then we see that (u∗(·), x∗(·), y∗(·)) satisfies
the adjoint energy-balance relation

‖x∗(T2)‖2X − ‖x∗(T1)‖2X =
∫ T2

T1

sQ∗(u∗(s), y∗(s)) ds (4.22)
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where (as in (3.10)) we have set

Q∗ =
[

0 −IY
IU 0

]
Q−1

[
0 IU
−IY 0

]
. (4.23)

Finally, we say that the system Σ is conservative with respect to the supply rate sQ if
all smooth trajectories of Σ satisfy (4.21) and all trajectories of Σ∗ satisfy (4.22), or
equivalently, if (u(·), x(·), y(·)) is a trajectory for Σ if and only if (u∗(·), x∗(·), y∗(·))
is a trajectory for Σ∗.

4.1. Continuous-time scattering-conservative systems

We say that the system Σ generated by system node S is a (continuous-time)
scattering-conservative system if it is conservative with respect to the supply rate
sQscat.

in the sense given in Section 4, where

Qscat. =
[
IU 0
0 −IY

]
.

As in Section 3.1, we see that

TQscat.
=

[
0 IY
IU 0

]
, Qscat.∗ =

[
−IY 0

0 IU

]
and we have the two equivalent characterizations of the continuous-time linear
system Σ being scattering-conservative: Σ is scattering-conservative if and only if
either

1. (u(·), x(·), y(·)) is a trajectory of Σ if and only if (y(·), x(·), u(·)) is a trajectory
of Σ∗, or

2. each trajectory (u(·), x(·), y(·)) of Σ satisfies the energy-balance relation

‖x(T2)‖2X − ‖x(T1)‖2X =
∫ T2

T1

[
‖u(s)‖2U − ‖y(s)‖2Y

]
ds (4.24)

while each trajectory (u∗(·), x∗(·), y∗(·)) of Σ∗ satisfies the adjoint energy-
balance relation

‖x∗(T1)‖2X − ‖x∗(T2)‖2X =
∫ T2

T1

[
‖u∗(s)‖2Y − ‖y∗(s)‖2U

]
ds. (4.25)

The following Proposition gives an intrinsic characterization of which system
nodes S generate scattering-conservative linear systems S.

Proposition 4.9. Let

S =
[
A&B
C&D

]
:

[
X
U

]
⊃ D(S) 7→

[
X
Y

]
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be a closed operator with domain D(S). Then S is a system node which generates
a scattering-conservative linear system Σ if and only if the graph of S

GS :=


A&B
C&D

IX 0
0 IU

D(S) ⊂


X
Y
X
U


is JCT−scat.-Lagrangian, where we have set

JCT−scat. =


0 0 IX 0
0 IY 0 0
IX 0 0 0
0 0 0 −IU

 . (4.26)

In view of Proposition 4.9, we shall call a system node S with the additional
property that GS is JCT−scat.-Lagrangian as a scattering-conservative system node.

Proof. For the proof we abbreviate JCT−scat. given by (4.26) to simply J . Assume
first that S is a system node. In view of the form of the system equations (4.10),
we see that (u(·), x(·), y(·)) is a system trajectory for Σ if and only if

ẋ(t)
y(t)
x(t)
u(t)

 ∈ GS for almost all t ∈ R.

Next observe that 
x′∗
y∗
x∗
u∗

 ∈ G[⊥]J
S

means that, for all [ x
u ] ∈ D(S),

0 =

〈
J


A&B
C&D

IX 0
0 IU

[
x
u

]
,


x′∗
y∗
x∗
u∗


〉
X⊕Y⊕X⊕U

=

〈


x

C&D

[
x
u

]
A&B

[
x
u

]
−u

 ,


x′∗
y∗
x∗
u∗


〉

X⊕Y⊕X⊕U

=
〈[

x
u

]
,

[
x′∗
−u∗

]
+ S∗

[
x∗
y∗

]〉
X⊕U

.
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The density of D(S) in [XU ] (Property (3) in Proposition 4.2) therefore implies that[
x′∗
u∗

]
=

[
−IX 0

0 IU

]
S∗

[
x∗
y∗

]
.

From the system equations (4.18) for the adjoint system Σ∗, we see that adjoint-
system trajectories (u∗(·), x∗(·), y∗(·)) are characterized by the property that

ẋ∗(t)
u∗(t)
x∗(t)
y∗(t)

 ∈ G[⊥]J
S for almost all t ∈ R.

Now use the characterization of Σ being scattering-conservative as the equivalence
of (u(·), x(·), y(·)) being a trajectory of Σ and (y(·), x(·), u(·)) being a trajectory
of Σ∗ to conclude that Σ is scattering-conservative if and only if GS = (GS)[⊥]J .
We conclude that, for a given system node S, S generates a linear system Σ which
is scattering-conservative if and only if GS is J -Lagrangian.

More generally, suppose that initially we only know that S : [XU ] 7→
[X
Y

]
is

a closed operator whose graph GS is J -Lagrangian. To show that S is a system
node, it suffices to verify conditions (1), (2) and (3) in Proposition 4.4. We define

X1 :=
{

x :
[
x
0

]
∈ D(S)

}
and define operators A : X1 7→ X and C : X1 7→ Y by

A : x 7→ A&B

[
x
0

]
, C : x 7→ C&D

[
x
0

]
for x ∈ X1.

As in particular Ax⊕ Cx⊕ x⊕ 0 ∈ GS for each x ∈ X1 and GS is J -isotropic, we
have

0 =

〈
J


Ax
Cx
x
0

 ,


Ax
Cx
x
0


〉
X⊕Y⊕X⊕U

= 〈x,Ax〉+ ‖Cx‖2 + 〈Ax, x〉
and hence

2<〈Ax, x〉 = −‖Cx‖2 ≤ 0 for all x ∈ X1.

We conclude that A is dissipative. Next, from the identity

J = Γ∗J̃Γ

where we have set

J̃ =


IX 0 0 0
0 IY 0 0
0 0 −IX 0
0 0 0 −IU

 , Γ =


1√
2
IX 0 1√

2
IX 0

0 IY 0 0
− 1√

2
IX 0 1√

2
IX 0

0 0 0 IU

 (4.27)
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it follows that GS being J -Lagrangian is equivalent to Γ · GS being J̃ -Lagrangian.
A simple computation gives that

Γ


A&B

[
x
u

]
C&D

[
x
u

]
x
u

 =



1√
2
A&B

[
x
u

]
+ 1√

2
x

C&D

[
x
u

]
− 1√

2
A&B

[
x
u

]
+ 1√

2
x

u


.

By Proposition 2.3, we see that Γ · GS being J̃ -Lagrangian forces, in particular,
that 

− 1√
2
A&B

[
x
u

]
+ 1√

2
x

u

 :
[
x
u

]
∈ D(S)

 =
[
X
U

]
. (4.28)

In particular, we must have{
−A&B

[
x
0

]
+ x : x ∈ X1

}
= X

from which it follows that
im(A− I) = X .

From this it follows (see [26]) that A is maximal dissipative and hence also that
the right half-plane C+ is a subset of the resolvent set ρ(A) of A, and that A
generates an (in fact contractive) C0-semigroup, and condition (1) in Proposition
4.4 is verified. Another consequence of (4.28) is that for each u ∈ U there is an
xu ∈ X so that [ xu

u ] ∈ D(S). Thus we have verified condition (2) in Proposition
4.4.

We next verify condition (3) in Proposition 4.4 in the stronger form:

Claim: given a sequence {[ xn
un

]}∞n=1 ⊂ D(S) such that {[ xn
un

]}∞n=1 is Cauchy in [XU ]-
norm and also {A&B [ xn

un
]}∞n=1 is Cauchy in X -norm, it then follows that

{C&D [ xn
un

]}∞n=1 is Cauchy in Y-norm.

To see this, use the fact that G is J -isotropic to get

0 =

〈
J


A&B

[
xn − xm

un − um

]
C&D

[
xn − xn

un − um

]
xn − xn

un − um

 ,


A&B

[
xn − xm

un − um

]
C&D

[
xn − xm

un − um

]
xn − xm

un − um


〉

X⊕Y⊕X⊕U

= 2<
〈

A&B

[
xn − xm

un − um

]
, xn − xm

〉
X

+
∥∥∥∥C&D

[
xn − xm

un − um

]∥∥∥∥2

Y
− ‖un − um‖2
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and hence∥∥∥∥C&D

[
xn − xm

un − um

]∥∥∥∥2

Y
= ‖un−um‖2U−2<

〈
A&B

[
xn − xm

un − um

]
, xn − xm

〉
X
→ 0 as n, m →∞

and the Claim follows.
It now follows from Proposition 4.4 that S is a system node. By the first part

of the proof, since GS is J -Lagrangian, it follows that the system Σ generated by
S is scattering-conservative. This completes the proof of Proposition 4.9 �

Setting T1 = 0 in (4.24) and assuming zero initial condition x(0) = 0 gives

0 ≤ ‖x(T2)‖2 =
∫ T2

0

[
‖u(s)‖2U − ‖y(s)‖2Y

]
ds

Letting T2 →∞ gives
‖y‖2L2(R+,Y) ≤ ‖u‖2L2(R+,U)

whenever u ∈ L2(R+,U). Application of the Plancherel theorem then gives

‖D̂ · û‖2H2(C+,Y) = ‖ŷ‖2H2(C+,Y) ≤ ‖û‖2H2(C+,U)

where C+ denotes the right-half plane and H2(C+,U) = H2(C+)⊗U is the Hardy
space of U-valued functions on C+ (with a similar convention for H2(C+,Y)). We
conclude that D̂ ∈ H∞(C+,L(U ,Y)) with ‖D̂‖∞ ≤ 1, i.e., D̂ is in the operator-
valued Schur-class S(C+,L(U ,Y)) over the right-half plane C+. The realization
question in this context is the problem of identifying which operator-valued func-
tions s 7→ S(s) on C+ conversely can be realized as the transfer function D(s) of
a continuous-time scattering-conservative linear system Σ. The next result gives a
definitive answer to this question.

Theorem 4.10. Suppose that s 7→ S(s) is an L(U ,Y)-valued function on the right-
half plane C+. Then the following conditions are equivalent:

1. S ∈ S(C+,L(U ,Y)), i.e., S is analytic on C+ with ‖S(s)‖ ≤ 1 for all s ∈ C+.
2. There exists a Hilbert space X0 and an L(U ,X0)-valued functions H on C+

so that
I − S(ω)∗S(z)

ω + s
= H(ω)∗H(s). (4.29)

3. S(s) has the form

S(s) = D̂(s) := C&D

[
(sI −A|X )−1B

IU

]
for a scattering-conservative system node S =

[
A&B
C&D

]
on (U ,X ,Y).

The equivalence of (1) and (3) in this theorem was first proved by Arov and
Nudelman in [4, Theorem 6.2].
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Proof. The proof of (3) =⇒ (1) was given immediately before the statement
of the theorem. We remark that the operator-theoretic interpretation of S ∈
S(C+,L(U ,Y)) is that the multiplication operator

MS : f(s) 7→ S(s) · f(s)

maps H2(C+,U) into H2(C+,Y). Thus one can prove (1) =⇒ (2) by the continuous-
time analogue of the reproducing-kernel argument done for the proof of (1) =⇒
(2) in Theorem 3.2, working with the kernel functions

kω(s) =
1

s + ω
, ω ∈ C+

for H2(C+). It remains therefore only to prove (2) =⇒ (3).
We therefore assume that we are given an L(U ,Y)-valued function S on C+

for which a factorization as in (4.29) for the kernel I−S(ω)∗S(s)
ω+s holds. We rearrange

(4.29) to write
I − S(ω)∗S(s) = (s + ω)H(ω)∗H(s). (4.30)

We view this identity (4.30) as saying that the subspace

G0 = span




sH(s)
S(s)
H(s)
IU

u : s ∈ C+, u ∈ U

 ⊂


X0

Y
X0

U

 (4.31)

is J0-isotropic, where we have set

J0 =


0 0 IX0 0
0 IY 0 0

IX0 0 0 0
0 0 0 −IU

 . (4.32)

By Proposition 2.5 we know that we can embed G0 into a J -Lagrangian subspace G
ofK = X⊕Y⊕X⊕U where we arrange to take X as a Hilbert space containing X0 as
a subspace and where we have set J = JCT−scat. given by (4.26). However we need
the finer result that G0 can be embedded into such a J -Lagrangian subspace which
is a graph space (with domain of its angle operator dense in {0}⊕{0}⊕X ⊕U). We
verify this as follows. In the analysis to follow, we assume that the factorization
(4.29) is arranged so that

span{H(s)u : s ∈ C+ and u ∈ U} = X0. (4.33)

We first need to verify the obvious necessary condition that G0 is itself a
graph space as a subspace of X0 ⊕ Y ⊕ X0 ⊕ U , i.e., we wish to check:

G0 ∩


X0

Y
{0}
{0}

 = {0}. (4.34)
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To verify (4.34), let us suppose that x′ ⊕ y′ ⊕ 0⊕ 0 ∈ G0. As G0 is isotropic,
in particular

0 =

〈
J


x′

y′

0
0

 ,


x′

y′

0
0


〉
X0⊕Y⊕X⊕U

= ‖y′‖2Y

and hence y′ = 0 and x′ ⊕ 0 ⊕ 0 ⊕ 0 ∈ G0. As G0 is isotropic, we must then also
have

0 =

〈
J


sH(s)
S(s)
H(s)
IU

u,


x′

0
0
0


〉
X0⊕Y⊕X0⊕U

= 〈H(s)u, x〉X0 .

From the assumption (4.33), it now follows that x′ = 0 as well, and (4.34) follows.
We now verify that G0 can be embedded in a J -Lagrangian subspace which is

also a graph as follows. Since G0 is J -isotropic, it follows that ΓG0 is J̃ -isotropic,
where Γ and J̃ are as in (4.27). By the angle-operator–graph correspondence, we
know that ΓG0 has the form

ΓG0 =
[
U0

I

]
D0

for some subspace D0 ⊂
[X0
U

]
and isometry U0 : D0 7→ R0 ⊂

[X0
Y

]
. As D0 may

not split with respect to the decomposition
[X0
U

]
=

[
X0
{0}

]
+̇

[ {0}
U

]
, we write U0 in

the matrix form

U0 =
[
U0

11&U0
12

U0
21&U0

22

]
.

We may express G0 in terms of U0 as

G0 = Γ−1

[
U0

I

]
D0 =


1√
2

(
U0

11&U0
12 −

[
IX0 0

])
U0

21&U0
22

1√
2

(
U0

11&U0
21 +

[
IX0 0

])[
0 IU

]
D0. (4.35)

The fact that G0 is a graph space (as verified in the previous paragraph), expressed
in terms of U0, is the assertion that the last two block rows of the matrix in (4.35),
namely [ 1√

2

(
U0

11&U0
12 +

[
IX0 0

])[
0 IU

] ]
, (4.36)

form an injective operator on D0. If we write D0
1 =

{
x ∈ X0 : [ x

0 ] ∈ D0
}

and define
U0

11 : D0
1 7→ X0 by

U0
11x = U0

11&U0
12

[
x
0

]
for x ∈ D0

1,

then the injectivity of the block matrix in (4.36) is in turn equivalent to U0
11 + I

being injective on D0
1. By Proposition 2.3 we know that J̃ -Lagrangian subspaces
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G̃ of K = X ⊕Y ⊕X ⊕U (where X is a Hilbert space containing X0 as a subspace
and J̃ = IX ⊕ IY ⊕−IX ⊕−IU ) containing ΓG0 as a subspace have the form

G̃ =


U11 U12

U21 U22

IX 0
0 IU

[
X
U

]

where

U =
[
U11 U12

U21 U22

]
:

[
X
U

]
7→

[
X
Y

]
.

is unitary and U |D0 = U0. For any such U , the subspace G := Γ−1G̃ is a J -
Lagrangian subspace containing G0 as a subspace. By an analysis parallel to that
done above for G̃0 and G0, we see that G is also a graph space if and only if −1 is
not an eigenvalue for U11. By Proposition 2.6, such unitary extensions exist. We
conclude that G0 can be embedded in a J -Lagrangian subspace G which is also a
graph space, i.e., such that

G =
[
S
I

]
D(S) =


A&B
C&D

IX 0
0 IU

D(S).

By Proposition 4.9, the associated angle operator S is in fact a system node which
generates a scattering-conservative linear system Σ.

It remains only to check that we recover S(s) as the transfer function S(s) =

D̂(s) := C&D

[
(sI −A|X )−1B

IU

]
of the system node S. For this purpose we use

the fact that GS ⊃ G0; thus, for each s ∈ C+ and u ∈ U ,
sH(s)u
S(s)u
H(s)u

u

 ∈


A&B
C&D
IX 0
0 IU

D(S).

Hence for each s ∈ C+ and u ∈ U there is xs,u ∈ X and u′s,u ∈ U so that[
xs,u

u′s,u

]
∈ D(S) and 

sH(s)u
S(s)u
H(s)u

u

 =


A&B
C&D
IX 0
0 IU

[
xs,u

u′s,u

]
. (4.37)

From the bottom two rows of (4.37) we get

H(s)u = xs,u, u = u′s,u.

Plugging these values in the top row of (4.37) then gives

sH(s)u = A|XH(s)u + Bu.
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As C+ ⊂ ρ(A), we can solve for H(s)u:

H(s)u = (sI −A|X )−1Bu.

Plugging this value into the second row of (4.37) then gives

S(s)u = C&D

[
(sI −A|X )−1B

IU

]
u

for each u ∈ U . Cancelling off the free vector variable u then reveals S(s) as the
transfer function of S, as required.

This completes the proof of Theorem 4.10. �

4.2. Continuous-time impedance-conservative systems

We say the system Σ generated by system node S with input space and out-
put space equal to the same Hilbert space U is a (continuous-time) impedance-
conservative system if it is conservative with respect to the supply rate sQimp. in
the sense given in Section 4, where

Qimp. =
[

0 IU
IU 0

]
.

As in Section 3.2, we see that

TQimp.
=

[
−IU 0

0 IU

]
, Qimp.∗ =

[
0 −Iimp.

−IU 0

]
.

Thus, by the general principle s explained in Section 4, we have the two equiv-
alent characterizations of the continuous-time linear system Σ being impedance-
conservative: the continuous-time system Σ is impedance-conservative if and only
if either

1. ((u(·), x(·), y(·)) is a trajectory of Σ if and only if (−u(·), x(·), y(·)) is a tra-
jectory of the adjoint system Σ∗, or, equivalently,

2. each trajectory (u(·), x(·), y(·)) of Σ satisfies the impedance-energy-balance
law

‖x(T2)‖2X − ‖x(T1)‖2X = 2<
∫ T2

T1

〈u(s), y(s)〉U ds (4.38)

and each trajectory (u∗(·), x∗(·), y∗(·)) of the adjoint system Σ∗ satisfies the
adjoint impedance-energy-balance law

‖x∗(T1)‖2X − ‖x∗(T2)‖2X = 2<
∫ T2

T1

〈u∗(s), y∗(s)〉U ds. (4.39)

We next seek an intrinsic characterization of system nodes S =
[

A&B
C&D

]
generating

impedance-conservative linear systems analogous to Proposition 4.9.

Proposition 4.11. Let S =
[

A&B
C&D

]
: [XU ] ⊃ D(S) 7→

[X
Y

]
be a closed linear oper-

ator. Then S is a system node which generates an impedance-conservative linear
system if and only if:
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1. for each u ∈ U there is an xu ∈ X so that
[
xu

u

]
∈ D(S), and

2. The graph of S

GS =


A&B
C&D

IX 0
0 IU

D(S) ⊂


X
U
X
U


is JCT−imp.-Lagrangian, where

JCT−imp. =


0 0 IX 0
0 0 0 −IU
IX 0 0 0
0 −IU 0 0

 . (4.40)

In view of Proposition (4.11), we shall refer to a system node S with the
additional property that GS is JCT−imp.-Lagrangian as a impedance-conservative
system node.

Proof. In this proof, we abbreviate JCT−imp. given by (4.40) to simply JCT−imp. =
J .

Suppose first that we know that S is a system node. Note that condition (1)
in 4.11 is part of being a system node. From the system equations (4.10) we see
that (u(·), x(·), y(·)) is a (smooth) system trajectory for system Σ generated by S
if and only if


ẋ(t)
y(t)
x(t)
u(t)

 ∈ GS for each t ∈ R+.

For the case where J = JCT−imp., we compute:


x′∗
y∗
x∗
u∗

 ∈ G[⊥]J
S
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means that, for all
[
x
u

]
∈ D(S),

0 =

〈
J


A&B
C&D

IX 0
0 IU

[
x
u

]
,


x′∗
y∗
x∗
u∗


〉
X⊕U⊕X⊕U

=

〈


x
−u

A&B

[
x
u

]
−C&D

[
x
u

]

 ,


x′∗
y∗
x∗
u∗


〉

X⊕U⊕X⊕U

=
〈[

x
u

]
,

[
x′∗
−y∗

]
+ S∗

[
x∗
−u∗

]〉
X⊕U

. (4.41)

The density of D(S) in [XU ] (as guaranteed by property (3) in Proposition 4.2)
then forces [

x′∗
y∗

]
=

[
−IX 0

0 IU

]
S∗

[
x∗
−u∗

]
.

By the adjoint-system-trajectory characterization of impedance-conservative linear
systems given at the beginning of this subsection, we see that Σ is impedance-
conservative if and only if GS = G[⊥]J

S (with J = JCT−imp. as in (4.40)), i.e., if
and only if GS is J -Lagrangian.

Now suppose only that S is a closed operator for which GS is J -Lagrangian
(with J = JCT−imp. as in (4.40)). As we are assuming condition (2) in Proposi-
tion 4.4 as part of our hypotheses, we need only verify conditions (1) and (3) of
Proposition 4.4 to see that S is a system node. Define X1 = {x : [ x

0 ] ∈ D(S)} and
define A : X1 7→ X by

A : x 7→ A&B

[
x
0

]
for x ∈ X1.

The calculation (4.41) shows that

G[⊥]J
S = GbS where Ŝ =

[
−IX 0

0 IU

]
S∗

[
IX 0
0 −IU

]
,

and hence

D(S∗) =
[
IX 0
0 −IU

]
D(S) and

[
−IX 0

0 IU

]
S∗

[
IX 0
0 −IU

]
= S.

Combining this identity with Proposition 4.7, we see that D(A) = D(A∗) and
A = −A∗. Thus A is skew-adjoint, and, by the easy direction of Stone’s Theorem,
generates a (even unitary) C0-semigroup. We have thus verified condition (1) in
Proposition 4.4.
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We next wish to verify condition (3) in Proposition 4.4. Therefore, assume
that we are given vectors [ xn

un
] ∈ D(S) with [ xn

un
] → [ x

u ] in X ⊕ U-norm and
A&B [ xn

un
] → x′ in X -norm as n →∞. Choose

[
h
u′

]
∈ D(S) and set

[
h′

y′

]
= S

[
h
u′

]
.

By the assumed J -isotropic property of G(S), we have

0 =

〈
J


A&B

[
xn

un

]
C&D

[
xn

un

]
xn

un

 ,


h′

y′

h
u′


〉

X⊕U⊕X⊕U

= 〈xn, h′〉X − 〈un, y′〉U + 〈A&B

[
xn

un

]
, h〉X − 〈C&D

[
xn

un

]
, u′〉U

from which we conclude that

lim
n→∞

〈
C&D

[
xn

un

]
, u′

〉
U

(4.42)

exists for each u′ ∈ U . By the Principle of Uniform Boundedness (see e.g. [39,
Theorem 9.4 page 171]), it follows that ‖C&D [ xn

un
] ‖U is uniformly bounded, and

that the limit (4.42) defines a continuous linear functional on Y induced by an
element y ∈ Y. Thus C&D [ xn

un
] → y weakly in Y, and condition (3) of Proposition

4.4 is verified. We have now established that S is a system node.
Once we know that S is a system node, we quote the first part of the proof

to conclude that S generates an impedance-conservative system. This completes
the proof of Proposition 4.11. �

Suppose now that D̂(s) = C&D
[

(sI−A|X )−1B
IU

]
is the transfer function for

an impedance-conservative system node S =
[

A&B
C&D

]
. From the energy-balance

relation (4.38), if we set T1 = 0 and impose the initial condition x(0) = 0 we get

0 ≤ ‖x(T2‖2X = 2<
∫ T2

0

〈y(τ), u(τ)〉U dτ.

If we restrict to inputs u in L2(R+,U) for which the associated output y is in
L2(R+,U), one can use the Plancherel theorem to then conclude that D̂(s) +
D̂(s)∗ ≥ 0 almost everywhere on C+, i.e., D is a positive-real function on C+

(sometimes also called Nevanlinna function).3 Given a positive-real function ϕ on
C+, one can apply the same argument as was done in the proof of (1) =⇒ (2) in
Theorem 3.3 (combined with the result (1) =⇒ (2) in Theorem 4.10) to see that
then the kernel ϕ(s)+ϕ(ω)∗

s+ω is a positive kernel over C+×C+. In [34] (see Theorem
7.4 there), it is shown that any D̂(s) coming from a impedance-conservative system

3In contrast to most engineering papers, we do not require a positive-real function to be real on

R+.
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node must have the additional property that 1
s D̂(s) → 0 as s → +∞, and con-

versely, any positive-real function on C+ satisfying this additional limit condition
at +∞ can be realized as the transfer function of an impedance-conservative (or at
least impedance-energy preserving) system node. We present this result here with
a new proof based on the connection of conservative system nodes with Lagrangian
subspaces.

Theorem 4.12. Suppose that s 7→ ϕ(s) is an L(U)-valued function on the right-half
plane C+. Then the following conditions are equivalent:

1. ϕ is analytic with <ϕ(s) ≥ 0 for all s ∈ C+ and

lim
s→+∞

s−1ϕ(s)u = 0 for each u ∈ U . (4.43)

2. There exists a Hilbert space X0 and an L(U ,X0)-valued functions H on C+

so that
ϕ(ω)∗ + ϕ(z)

ω + s
= H(ω)∗H(s) (4.44)

and ϕ satisfies the limit condition (4.43).
3. ϕ(s) has the form

ϕ(s) = D̂(s) := C&D

[
(sI −A|X )−1B

IU

]
for an impedance-conservative system node S =

[
A&B
C&D

]
.

Closely related results on realizations of positive-real functions on the right
half-plane (or equivalently, Nevanlinna-class functions on the upper-half plane)
under various other special hypotheses have been given in [7, 8, 9, 19].

Proof. The proofs of (3) =⇒ (1) and (1) =⇒ (2) were sketched in the discussion
preceding the statement of the theorem. We prove in detail here only (2) =⇒ (3).

Without loss of generality we assume that the factorization in (4.44) is con-
structed in such a way that

span{H(s)u : s ∈ C+, u ∈ U} = X0. (4.45)

We rewrite (4.44) in the form

(s + ω)H(ω)∗H(s) = ϕ(s) + ϕ(ω)∗. (4.46)

We view this equation as an expression of the fact that the subspace G0 defined
by

G0 = span




sH(s)
ϕ(s)
H(s)
IU

u : u ∈ U , s ∈ C+

 ⊂


X0

U
X0

U

 (4.47)

is J0-isotropic, where J = JCT−imp. is as in (4.40) but with X0 in place of X .
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We show next that G0 is a graph space, i.e., we wish to show that

G0 ∩


X0

U
{0}
{0}

 = {0}. (4.48)

Suppose therefore that an element of the form x ⊕ y ⊕ 0 ⊕ 0 ∈ G0. As G0 is
J0-isotropic, we must then have

0 =

〈
J0


sH(s)u
ϕ(s)u
H(s)u

u

 ,


x
y
0
0


〉
U⊕X0⊕U⊕X0

= 〈H(s)u, x〉X0 − 〈u, y〉U

for all u ∈ U and s ∈ C+. This forces y = H(ω)∗x for all ω ∈ C+. In particular, if
x has the form x = x0 where

x0 =
N∑

j=1

H(sj)uj (4.49)

for some s1, . . . , sN ∈ C+ and u1, . . . , uN ∈ U , then from (4.46) we see that

H(ω)∗x0 =
N∑

j=1

ϕ(sj) + ϕ(ω)∗

sj + ω
uj → 0 as ω → +∞ (4.50)

where we used the assumption (4.43) for the last step. Also from (4.46) and (4.43)
we see that

H(ω)∗H(ω) =
ϕ(ω) + ϕ(ω)∗

2<ω
→ 0 as ω → +∞

and hence
sup
ω>R

‖H(ω)‖ < ∞ for any R > 0. (4.51)

From the assumption (4.45) elements of the form x0 in (4.49) are dense in X .
Combining this with (4.50) and (4.51) we see that

y = H(ω)∗x = lim
ω→+∞

H(ω)∗x = 0.

Thus, in fact H(ω)∗x = 0 for all ω and we conclude from (4.45) that x = 0 as well,
and (4.48) follows.

We next embed G0 into a J -Lagrangian subspace G of X ⊕U ⊕X ⊕U , where
X is a Hilbert space containing X0 as a subspace and J = JCT−imp. is as in (4.40),
such that G is still a graph space. That this is possible follows from a variant of
Proposition 2.6. For this variant of Proposition 2.6, use the factorization

J = Γ∗J̃Γ
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where this time

J̃ =


IX 0 0 0
0 IU 0 0
0 0 −IX 0
0 0 0 −IU

 , Γ =
1√
2


IX 0 IX 0
0 IU 0 −IU
IX 0 −IX 0
0 IU 0 IU

 . (4.52)

to convert the problem to a problem involving extension of a partially defined
isometry to a unitary operator on a larger space with an eigenvalue-avoidance side
condition. We note that G automatically satisfies condition (1) in Proposition 4.11
since G0 by construction satisfies this condition. By Proposition 4.11 we conclude
that G is the graph of an impedance-conservative system node. The fact that
G ⊃ G0 then implies that we recover ϕ(s) as the transfer function of this impedance-
conservative system node, just as in the proof of Theorem 4.10. This concludes
the proof of Theorem 4.12. �

Remark 4.13. The function ϕ(s) = s is positive-real over C+. The factorization
(4.44) is solved with X0 = C and H(s) = 1. Then G0 has the form

G0 = span




s
s
1
1

 : s ∈ C+

 =




a
a
b
b

 : a, b ∈ C

 .

In particular, we see that a ⊕ a ⊕ 0 ⊕ 0 ∈ G0 for all a ∈ C and hence G0 is not
a graph space. This illustrates the necessity of the added condition (4.43) for the
validity of the proof of Theorem 4.12.

5. State-space realization in the behavioral framework

The nature of this last section is slightly different from what we have seen up to
now. In the earlier sections we have presented a fairly complete new solution of
some classical problems. Below we shall point out one possible direction for further
research. This approach unifies all our earlier results into one single framework
which has many of the features which we have seen earlier, but it still contains a
number of major open problems.

A key feature in the analysis in the preceding sections is the search for the
right set of hypotheses to ensure that a Lagrangian subspace of a certain Krĕın
space is a graph space with respect to the natural coordinates of the problem
(which often do not form a fundamental decomposition for the Krĕın space). To
obtain greater flexibility which avoids this constraint, it is natural to turn to
the behavioral framework introduced by Willems and coworkers (see [29] for a
good introduction) and also related to the graph approach to linear system theory
of Georgiou-Smith (see [17, 18]). One of the central features of the behavioral
framework is that inputs and outputs are no longer separated but lumped together
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into a single signal w(t) =
[

u(t)
y(t)

]
with values in the signal space W (so W =

[ U
Y

]
in the input-output setting).

For our limited purposes here, we define a behavior B to be a closed subspace
of L2(R+,W) which is invariant under time translations

Sτ : f(t) 7→ (Sτf)(t) =

{
0 if 0 ≤ t < τ,

f(t− τ) if t ≥ τ

for all τ > 0. We say that the behavior has an image representation if there is a
Hilbert space X`,0 (the space of latent variables) and a L(X`,0,W)-valued function
s 7→ M(s) bounded and analytic on the right half plane C+ and bounded below
on the imaginary line such that

B = {w ∈ L2(R+,W) : ŵ = M · ̂̀ for some ̂̀∈ H2(C+,X`,0)},
or we write more succinctly

B = M(
d

dt
) · L2(R+,X`0) (5.1)

where M( d
dt ) is the operator of multiplication by M on H2(C+,X`) premultiplied

by the Laplace transform and postmultiplied by the inverse Laplace transform.
By the Beurling-Lax theorem (see [31]), we may assume that M is inner, i.e., the
boundary-values of M on the imaginary axis are isometric almost everywhere with
respect to Lebesgue measure. More generally, we can allow M to have a nontrivial
but invertible outer part.

A very general state-space representation for a behavior B is a first-order
differential equation of the form

Σ:

ẋ(t)
x(t)
w(t)

 ∈ V, (5.2)

where V is a closed subspace of X ⊕ X ⊕ W. Here X is the state space and W
is the signal space. A pair of functions (w, x) is a system trajectory of (5.2) if it
is a solution of (5.2) in the sense that x ∈ W 1,2

loc (R+,X ), w ∈ L2
loc(R+,W), and

(5.2) holds for almost all t. The variable x in (5.2) has the state property (see [29,
page 119], i.e.: given two system trajectories (w1, x1) and (w2, x2) and a t0 > 0
where x1(t0) = x2(t0), if we set (w, x) equal to the concatenation of (w1, x1) and
(w2, x2), i.e., we define

w(t) =

{
w1(t), t < t0,

w2(t), t ≥ t0
and x(t) =

{
x1(t), t < t0,

x2(t), t ≥ t0,

then (w, x) is another system trajectory. By the behavior BΣ ⊂ L2(R+,W) induced
by (5.2) we mean the closure of the set of all w ∈ L2(R+,W) such that (x,w) is a
system trajectory of (5.2) for some x ∈ W 1,2

loc (R+,X ) with x(0) = 0. The extended
system behavior Be

Σ consists of all possible system trajectories of (5.2). Note that
Be

Σ is closed in L2
loc(R+,W)⊕W 1,2

loc (R+,X ).
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The closed subspace V in (5.2) has a kernel representation: we can write

V = ker
[
E′ A′ C ′] ,

where E′, A′ ∈ L(X , E) and C ′ ∈ L(W, E), and E is the equation space. Without
loss of generality, we may assume that

[
E′ A′ C ′] maps V onto E (for example,

we may take E = V⊥ and take
[
E′ A′ C ′] to be the orthogonal projection of

X ⊕ X ⊕W onto V⊥). Clearly (5.2) is equivalent to

Σ: E′ẋ(t) + A′x(t) + C ′w(t) = 0. (5.3)

More convenient for our purposes is a dual version of this formulation. We can
always parametrize V = ker

[
E′ A′ C ′] as the image of an injective operator[

A
E
C

]
from a parameter space X` into

[ X
X
W

]
:

V = ker
[
E′ A′ C ′] = im

A
E
C

 (5.4)

(for example, we may take X` = V, and let A, B, and C be the operators which
select the first, second, or third component of a vector in V). Then the state-space
representations (5.2) and (5.3) can be rewritten in the formẋ(t)

x(t)
w(t)

 ∈ im

A
E
C

 . (5.5)

Since
[

A
E
C

]
injective and has a closed range, it has a (unique) left-inverse defined on

its range, which we denote by
[
A′′ E′′ C ′′]. Define `(t) =

[
A′′ E′′ C ′′] [

ẋ(t)
x(t)
w(t)

]
.

Then we get the latent-variable state-space system

Σ:

 ẋ(t) = A`(t),
x(t) = E`(t),
w(t) = C`(t),

(5.6)

with the latent variable ` ∈ L2
loc(R+,X`). Thus, all the representations (5.2), (5.3)

and (5.6) are equivalent as long as (5.4) holds.
Given a latent-variable state-space system as in (5.6), we say that a triple

of functions (w, x, `) is a system trajectory of (5.6) if x ∈ W 1,2
loc (R+,X ), ` ∈

L2
loc(R+,X`), w ∈ L2

loc(R+,W), and the above equations hold for almost all t.
Clearly, there is a one-to-one correspondence between a trajectory (w, x) of (5.3)
and a system trajectory (w, x, `) of (5.6), as soon as

[
A
E
C

]
has been fixed. It is

also clear that the set of all system trajectories of (5.6) is a closed subset of
L2

loc(R+,W)⊕W 1,2
loc (R+,X )⊕L2

loc(R+,X`). The variable `(·) is considered “latent”
and not included in any formal behavior associated with the system. It is not “free”
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in the sense that it has to belong to the subspace of L2
loc(R+,X`) which is charac-

terized by the fact that for all ` in this subspace the function E` ∈ W 1,2
loc (R+,X )

and (by elimination of x from (5.6)), for almost all t,

˙(E`)(t) = A`(t)

w(t) = C`(t).
(5.7)

In the finite-dimensional case systems of this type are known under the name “de-
scriptor systems”. Following the prevailing trend in behavioral theory we shall not
make any attempt (at this time) to describe this subspace of admissible latent
functions; we just remark that ` must be taken from this subspace. A similar com-
ment applies to the kernel form of the system equations (5.3) where one can view
the state variable x as a latent variable.4 Note that our state variable x is absent
from (5.7). However, when we formulate our notion of conservative latent-variable
state-space system, the variable x will play a key role, namely, ‖x‖2 measures the
energy stored by the system.

Example 5.1. It is straightforward to incorporate the i/s/o linear systems of the
form (4.10) with bounded A, B, C, D as an example of a latent-variable state-space
linear system (5.6). More generally, if one enlarges the scope of latent-variable
state-space systems (5.6) to allow A, E, C to be certain types of unbounded
operators, one can incorporate the more general i/s/o linear systems of the form
(4.10) [

ẋ(t)
y(t)

]
=

[
A&B
C&D

] [
x(t)
u(t)

]
, (5.8)

as an example of a latent-variable state-space system (5.6) as follows. Take

`(t) =
[
x(t)
u(t)

]
, A = A&B, E =

[
IX 0

]
, C =

[
0 IU
C&D

]
to arrive at the behavior w(t) =

[
u(t)
y(t)

]
arising from all L2 input-output pairs

(u(t), y(t)) as the behavior BΣ of a latent-variable state-space system Σ (it is easy
to see that

[
A
E
C

]
is one-to-one and has closed range, where we take X` = D(S) with

the S-graph norm). Let us assume that the transfer function D̂(s) has a bounded
strongly-stable coprime factorization D̂(s) = N(s)D(s)−1. The bounded, strongly-
stable coprime assumption means N ∈ H∞(C+,L(U ,Y)), D ∈ H∞(C+,L(U)) and
that one can solve the Bezout equation

X(s)D(s) + Y (s)N(s) = IU

4The existence theory for infinite-dimensional descriptor systems seems to be more or less nonex-
istent, and one major open problem in the approach which we have taken here. The finite-

dimensional theory is discussed in, e.g., [14]. One solution to this problem will be given in a
forthcoming publication by Arov and the second author.
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for X ∈ H∞(C+,L(U ,Y)) and Y ∈ H∞(C+,L(Y)), so the operator of multiplica-
tion by

[
D(s)
N(s)

]
on H2(C+,U) is injective and has closed range in H2(C+,

[ U
Y

]
).5

Then the behavior

BΣ =
{ [

u(·)
y(·)

]
∈ L2

(
R+,

[ U
Y

])
: (u(·), x(·), y(·)) satisfies (5.8)

for some x(·) with x(0) = 0
}

associated with the i/s/o linear system Σ has the image representation

BΣ = M(
d

dt
)L2(R+,U)

where M(s) =
[

D(s)
N(s)

]
.

Given a state-space linear system in the form (5.2) we define the adjoint
system Σ∗ by the differential equation

Σ∗ :

ẋ∗(t)
x∗(t)
w∗(t)

 ∈ V∗, (5.9)

where V∗ is the subspace of X ⊕ X ⊕W defined by

V∗ =


z∗

x∗
w∗

 :

 x∗
z∗
−w∗

 ∈ V ⊥

 ; (5.10)

here V ⊥ is the orthogonal complement to V in X⊕X⊕W. From the latent-variable
representation (5.6) of Σ it is easy to derive the following kernel representation of
Σ∗ with equation space X`:

Σ∗ : E∗ẋ∗(t) + A∗x∗(t)− C∗w∗(t) = 0. (5.11)

Analogously, from the kernel representation (5.3) we get the following latent-
variable representation of Σ∗ with latent variable space E :

Σ∗ :

 ẋ∗(t) = (A′)∗`∗(t),
x∗(t) = (E′)∗`∗(t),
w∗(t) = −(C ′)∗`∗(t).

(5.12)

The connection between adjoint-system trajectories and an adjoint-pairing
relation is not quite as clean in the descriptor case as in the i/s/o case (see Theorem
4.8).

Proposition 5.2. For any system-trajectory (w(·), x(·)) of Σ and any adjoint-system-
trajectory (w∗(·), x∗(·)), it holds that

〈x(T2), x∗(T2)〉X − 〈x(T1), x∗(T1)〉X =
∫ T2

T1

〈w(τ), w∗(τ)〉W dτ. (5.13)

5In case U = Y and bD(s) = ϕ(s) has positive real part, one can take N(s) = ϕ(s)(IU + ϕ(s))−1,
D(s) = (IU + ϕ(s))−1 and X(s) = Y (s) = IU .
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Conversely, if the space of admissible latent functions ` in (5.6) has the property
that

{`(t) : ` smooth and admissible for (5.6)} is dense in X` for all t, (5.14)

then any pair (w∗(t), x∗(t)) which satisfies the adjoint pairing relation (5.13) for
each trajectory (w(·), x(·)) of Σ is itself a trajectory of Σ∗.6

Proof. If (w∗(t), x∗(t)) satisfies (5.11), then, for any trajectory (w(·), x(·)) of Σ we
have
d

dt
〈x(t), x∗(t)〉X − 〈w(t), w∗(t)〉W = 〈ẋ(t), x∗(t)〉X + 〈x(t), ẋ∗(t)〉X − 〈w(t), w∗(t)〉W

= 〈A`(t), x∗(t)〉X + 〈E`(t), ẋ∗(t)〉X − 〈C`(t), w∗(t)〉W
= 〈`(t), A∗x∗(t) + E∗ẋ∗(t)− C∗w∗(t)〉X`

= 0

and (5.13) follows.
Conversely, if the space of admissible latent functions in (5.6) has the property

(5.13), then the above computation shows that any pair (w∗(·), x∗(·)) satisfying
the adjoint pairing relation (5.13) satisfies (5.11). �

Remark 5.3. Note that our conventions here are not consistent with those for
the input-state-output (i/s/o) case in Theorem 4.8. If Σi/s/o is an i/s/o system
and we consider it as a latent-variable state-space system Σlv as in Example 5.1,
then we identify a trajectory (u∗, x∗, y∗) of the adjoint i/s/o system Σi/s/o∗ with
a trajectory (w∗, x∗) of the adjoint latent-variable state-space system Σlv∗ via
w∗ =

[ y∗
−u∗

]
(rather than w∗ = [ u∗

y∗ ] as in the conventions of Example 5.1).

To define the notion of conservative state-space representation, we assume
also that we are given a nondegenerate supply rate on the signal space W; as
in Section 4, we assume that s has the form s = sQ for an invertible selfadjoint
operator Q on W, where

sQ(w) = 〈Qw, w〉W .

We then say that the state-space system, expressed either in kernel form (5.3) or
latent-variable form (5.6), is energy-preserving with respect to the supply rate sQ

if the energy-balance relation

‖x(T2)‖2X − ‖x(T1)‖2X =
∫ T2

T1

sQ(w(τ)) dτ (5.15)

holds for all system trajectories (w(·), x(·)). We may alternatively use the differ-
ential form

d

dt
‖x(t)‖2X = 〈Qw(t), w(t)〉W .

6An open question is to understand exactly when condition (5.14) holds. As will be shown in a

forthcoming publication by Arov and the second author, the conservative system constructed in
Theorem 5.5 satisfies (5.14).
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of this balance equation. By polarization we see that in fact we have

d

dt
〈x(t), x′(t)〉X = 〈Qw(t), w′(t)〉W

for all pairs (w(·), x(·)) and (w′(·), x′(·)) of system trajectories for Σ. From the
definition of adjoint system and the adjoint pairing (5.13), we see that, whenever Σ
is energy-preserving with respect to sQ, then (w∗(·), x∗(·)) := (Qw(·), x(·)) satisfies
the adjoint-pairing relation (5.13) with respect to all system trajectories (w(·), x(·))
of Σ, and hence, in case condition (5.14) is satisfied, (Qw(·), x(·)) is a trajectory
of the adjoint system Σ∗ whenever (w(·), x(·)) is a trajectory of Σ.

If (w∗(·), x∗(·)) is an adjoint system trajectory of the special form (Qw(·), x(·))
for a system trajectory (w(·), x(·)) of Σ, then by backsolving for (w(·), x(·)) and
plugging back into (5.15) we see that (w∗(·), x∗(·)) satisfies the adjoint energy-
balance relation

‖x∗(T2)‖2X − ‖x∗(T1)‖2X =
∫ T2

T1

sQ−1(w∗(τ)) dτ. (5.16)

We say that the state-space system Σ is conservative with respect to supply rate
sQ if it is energy-preserving with respect to sQ (i.e., (5.15) is satisfied by all
system trajectories (w(·), x(·))) and, in addition, all adjoint-system trajectories
(w∗(·), x∗(·)) satisfy the adjoint energy-balance relation (5.16). From the preceding
discussion, we see that, in case assumption (5.14) holds, Σ being conservative
with respect to sQ is equivalent to the characterization of system trajectories
(w∗(·), x∗(·)) of the adjoint system Σ∗ as having the form (Qw(·), x(·)) for some
system trajectory (w(·), x(·)) of Σ.7

We have the following intrinsic characterization of conservative systems given
in terms of a latent-variable state-space description.

Proposition 5.4. The latent-variable state-space system Σ defined by (5.6) is con-
servative with respect to the supply rate sQ if and only if

A∗E + E∗A− C∗QC = 0

and
A′(E′)∗ + E′(A′)∗ − C ′Q−1(C ′)∗ = 0

where E′, A′ ∈ L(X , E) and C ′ ∈ L(W, E) are as in (5.3) (see also (5.12)).

We leave the easy proof to the reader.
Let us suppose that Σ is a conservative latent-variable state-space system

(with supply rate sQ) such that its behavior BΣ has an image representation

BΣ = M(
d

dt
) · L2(R+,X`0)

7We note that the discrepancy between (4.22)–(4.23) and (5.16) is explained by Remark 5.3.
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for some M ∈ H∞(C+,L(X`0,W)). If we set T1 = 0 and use that x(0) = 0 in the
energy balance relation (5.15), we see that

0 ≤ ‖x(T2)‖2 =
∫ T2

0

〈Qw(τ), w(τ)〉W dτ

for all T2 > 0 and for all w ∈ B. As each such w has the form w(t) = M( d
dt )`(t)

for an ` ∈ L2(R+,X`0), an application of the Plancherel theorem gives∫
iR
〈QM(s)̂̀(s),M(s)̂̀(s)〉W ds ≥ 0

for all ̂̀∈ H2(C+,X0) from which we conclude that

M(s)∗QM(s) ≥ 0 for s ∈ iR. (5.17)

By the reproducing kernel argument used in the proof of (1) =⇒ (2) in Theorem
4.10, we see next that that we have the positive-kernel condition

M(ω)∗QM(s)
ω + s

= H(ω)∗H(s) for some H(s) ∈ L(X`0,X0) (5.18)

for some other auxiliary Hilbert space X0. It is easily seen that conversely (5.18)
=⇒ (5.17). In fact the above analysis goes through if we only require containment

BΣ ⊃ M(
d

dt
) · L2(R+,X0).

The realization problem in this context is: given M ∈ H∞(C+,L(X`0,W)), find a
latent-variable, state-space linear system Σ as in (5.6) so that the image behavior
M( d

dt )L
2(R+,X`0) is contained in the system behavior BΣ. The discussion above

shows that (5.17), or equivalently (5.18), is a necessary condition for the realization
problem to have a solution. We now show that (5.17) or (5.18) is also sufficient.

Theorem 5.5. Suppose that M is a bounded L(X`0,W)-valued function over C+

for some Hilbert spaces X`,0 and W. Then the following conditions are equivalent.
1. M(s) is analytic on C+ with boundary-value function on iR satisfying (5.17).
2. There exists a Hilbert space X0 and an operator-valued function s 7→ H(s) ∈
L(X`0,X0) on C+ such that (5.18) holds.

3. There is a latent-variable, state-space linear system Σ as in (5.6) which is
conservative with respect to supply rate sQ so that

BΣ ⊃ M(
d

dt
) · L2(R+,X`,0).

Proof. We have already indicated the proofs of (3) =⇒ (1) and of (1) =⇒ (2), so
it remains only to consider (2) =⇒ (3).

We therefore assume that we are given a bounded operator-valued function
M on C+ satisfying (5.18). We then form the subspace

G0 = span


sH(s)

H(s)
M(s)

 ` : ` ∈ X ′`0

 ⊂

X0

X`0

W
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We interpret the identity (5.18) to mean that G0 is J0-isotropic, where

J0 =

 0 IX0 0
IX0 0 0
0 0 −Q

 on K0 =

X0

X0

W

 .

By Proposition 2.5 G0 can be embedded into a J -Lagrangian subspace of the space
K = X ⊕ X ⊕ W where X is a Hilbert space containing X0 as a subspace, and
where

J =

 0 IX 0
IX 0 0
0 0 −Q

 . (5.19)

Any closed subspace can be expressed as the image of an injective operator

G =

A
E
C

X`

for some parameter space X`, where A,E ∈ L(X`,X ) and C ∈ L(X`,W). Associ-
ated with these operators is the latent-variable, state-space system

Σ:

 ẋ(t) = A`(t)
x(t) = E`(t)
w(t) = C`(t).

with
[

A
E
C

]
injective. From the criterion in Proposition 5.4 and the J -Lagrangian

property of G, one can check that Σ is conservative with respect to sQ.
Suppose now that ŵ ∈ H2(C+,W) has the form ŵ(s) = M(s) · ̂̀′(s) for somề′(s) ∈ H2(C+,X`0). Since G0 ⊂ G, it follows thatsH(s)

H(s)
M(s)

 ̂̀′(s) =

A
E
C

 ̂̀(s)
for some ̂̀(s) ∈ H2(C+,X`). If we set x̂(s) = H(s)̂̀′(s), we then see that (w(·), x(·))
is a trajectory for Σ, and hence w ∈ BΣ. �

Remark 5.6. We note that the Krĕın-space inner product induced by J on
[ X
X
W

]
appearing in the proof of Theorem 5.5 appears already implicitly in the definition
of the adjoint system in (5.9). Indeed the subspace V∗ in (5.10) can alternatively
be defined as V [⊥]J if we take J as in (5.19) with Q = IW .

Remark 5.7. While there are a number of similarities, our behavioral framework
differs in several ways from the standard theory in [29].

1. In the standard theory, one often assumes that the behavior B lies in C∞(R,W)
or in L2

loc(R,W) rather than in L2(R+,W). Also the standard theory usu-
ally assumes that X , X` and W are all finite-dimensional. Conservative and
dissipative systems defined in terms of energy-balance relations involving a
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quadratic form on the behavior signal and a quadratic storage function on a
state-variable as we have here were studied in a general behavioral framework
in [41].

An advantage of the more general choice of M and of infinite-dimen-
sional state and latent-variable space as proposed here is that one then in-
cludes distributed-parameter systems. As in the standard functional-analysis
approach to distributed-parameter systems, one views the signals as a func-
tion of a single variable (i.e., time) with values in an infinite-dimensional
function space. In the behavioral approach to distributed-parameter systems
(see [27, 28]) on the other hand, one views the signals as scalar or (finite
column-vector) valued functions of several variables (time and space coordi-
nates) considered as a module over the ring of polynomials in several vari-
ables; one can then apply techniques from commutative algebra (rather than
functional analysis) to analyze the system. For this reason, there appears to
be essentially no work done up to this time on the behavioral theory with
infinite-dimensional state space, latent-variable space or signal space. We see
the results which we present here as a convenient way to unify the results in
the preceding sections.

2. If we combine the state variable and the latent variable into one augmented
state variable ξ(t) =

[
x(t)
`(t)

]
, then the system equations (5.6) have the pencil

first-order representation (P)

Gξ̇ = Fξ

w = Hξ

where

G =
[
IX 0

]
, F =

[
0 A

−IX E

]
, H =

[
0 C

]
studied in detail by Kuijper (see [22, page 56]). However, as the storage func-
tion for a conservative latent-variable state-space system involves only x (not
the whole vector [ x

` ]) , we prefer to keep the “latent-variable” interpretation
of the component `.

Acknowledgement: The authors are grateful to Prof. Damir Arov for his
comments in August 2003 which helped us clarify the final presentation (especially
Section 5).
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