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Abstrat. This paper is a sequel to a paper by the seond author on regular

linear systems (1994) referred to here as \Part I". We introdue the system

operator of a well-posed linear system, whih for a �nite-dimensional system

desribed by _x = Ax + Bu, y = Cx + Du would be the s-dependent matrix

S

�

(s) =

�

A�sI B

C D

�

. In the general ase, S

�

(s) is an unbounded operator and we

show that it an be split into four bloks, as in the �nite-dimensional ase, but

the splitting is non-unique (the upper row onsists of the uniquely determined

bloks A�sI and B, as in the �nite-dimensional ase, but the lower row is more

problemati). For weakly regular systems (whih are introdued and studied

here), there exists a speial splitting of S

�

(s) where the right lower blok is

the feedthrough operator of the system. Using S

�

(0), we give representation

theorems whih generalize those from Part I to well-posed linear systems and

also to the situation when the \initial time" is �1. We also introdue the

Lax-Phillips semigroup T indued by a well-posed linear system, whih is in

fat an alternative representation of a system, used in sattering theory. Our

onept of a Lax-Phillips semigroup di�ers in several respets from the lassial

one, for example, by allowing an index ! 2 R whih determines an exponential

weight in the input and output spaes. This index allows us to haraterize

the spetrum of A and also the points where S

�

(s) is not invertible, in terms

of the spetrum of the generator of T (for various values of !). The system �

is dissipative if and only if T (with index zero) is a ontration semigroup.

Key words. Well-posed linear system, (weakly) regular linear system, op-

erator semigroup, system operator, generating operators, well-posed transfer

funtion, sattering theory, Lax-Phillips semigroup.

1



1. Introdution

This is a ontinuation of the paper Weiss [41℄ whih addressed some fundamental

questions about well-posed linear systems and, in partiular, regular linear systems.

A well-posed linear system is a linear system whose input, state and output spaes

are Hilbert spaes, input and output funtions are loally L

2

, and on any �nite

time-interval, the �nal state and the output funtion depend ontinuously on the

initial state and the input funtion. Certain funtional equations must be satis�ed,

whih express time-invariane and ausality. If the transfer funtion of a well-posed

system has a strong limit at +1, then the system is alled regular. The preise

de�nitions of these and other onepts used in the Introdution were given in [41℄,

and we shall reall them in Setions 2 and 4.

The onept of a well-posed linear system was introdued by Salamon [28℄ and

equivalent de�nitions have sine been used by Arov and Nudelman [1℄, Sta�ans

[30℄, [31℄ and Weiss [40, 41℄. Regular linear systems were introdued in [40℄, and

most well-posed systems enountered in appliations are regular. There is now

a rih literature using this onept, ranging from partial di�erential equations to

engineering appliations, see for instane Avalos et al [2℄, Hinrihsen and Prithard

[8℄, Jaob and Zwart [10℄, Logemann at al [14℄, Logemann and Ryan [15℄, Logemann,

Ryan and Townley [16, 17℄, Logemann and Townley [18, 19℄, Morris [20℄, Rebarber

[25, 26℄, Rebarber and Townley [27℄, Sta�ans [30, 32, 33, 34℄, Weiss and Curtain

[44℄, Weiss and H�afele [46℄ and Weiss

2

[45℄.

The onept of a well-posed linear system is losely related to that of a satter-

ing semigroup, as studied in Lax and Phillips [12, 13℄ { we shall say more about

this onnetion later. Related de�nitions have been used by Helton [6℄, Ober and

Montgomery-Smith [21℄, Ober and Wu [22℄, Yamamoto [47℄ and others.

To make our aims more easily understood, we explain what some of our results

mean for a �nite-dimensional linear system � desribed by

_x(t) = Ax(t) +Bu(t);

y(t) = Cx(t) +Du(t):

(1.1)

Here u(�) is the input funtion, x(t) is the state at time t, and y(�) is the output

funtion. We all the matries A, B, C, D the generating operators of � and

S

�

(s) =

�

A� sI B

C D

�

(where s 2 C ) (1.2)

is alled the system operator of �. The transfer funtion of this system is

G(s) = C(sI � A)

�1

B +D (for s 2 �(A)): (1.3)

Note that for s 2 �(A) we have the Shur fatorization

S

�

(s) =

�

sI � A 0

�C I

� �

(A� sI)

�1

0

0 G(s)

� �

sI � A �B

0 I

�

; (1.4)
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whih shows that (for s 2 �(A)) dim KerG(s) = dim KerS

�

(s). A point z 2 C

where dim Ker S

�

(z) is larger than its minimal value over all s 2 C is alled an

invariant zero of �, see for example Zhou et al [48℄. There are only �nitely many

suh points z in C . In the partiular situation when there exists an s 2 C suh that

S

�

(s) is invertible (this implies an equal number of input and output omponents),

the invariant zeros of � are the points z where S

�

(z) is not invertible.

Take � � 0. We are usually interested in the solutions of (1.1) for t 2 [0; � ℄, but

of ourse, the solutions exist on the whole real line. Given an initial state x(0) and

the restrition of u to [0; � ℄, denoted by P

�

u, we an solve (1.1) to ompute x(�)

and the restrition of y to [0; � ℄, denoted by P

�

y. Formally, we have

�

x(�)

P

�

y

�

=

�

T

�

�

�

	

�

F

�

� �

x(0)

P

�

u

�

: (1.5)

The operators appearing in the blok 2� 2 matrix above are given by

T

�

= e

A�

; �

�

u =

Z

�

0

e

A(���)

Bu(�) d�;

(	

�

x

0

)(t) = Ce

At

x

0

; (F

�

u)(t) = C

Z

t

0

e

A(t��)

Bu(�) d� +Du(t);

(1.6)

where t 2 [0; � ℄. These families of operators (parametrized by � � 0) onstitute an

alternative desription of the system �. This is, of ourse, a muh more umbersome

desription of � than (1.1), but for in�nite-dimensional systems these operator

families are the natural starting point, see [41℄ or [31℄.

Let U; X and Y be the input, state and output spae of the system � from (1.1)

(so that now these spaes are �nite-dimensional) and denote U = L

2

([0;1);U),

Y = L

2

((�1; 0℄;Y ). For any t � 0, we denote by S

�t

the left shift by t on Y (this

is the restrition of the bilateral left shift to Y) and we denote by S

�

t

the left shift

by t on U . We de�ne on Y �X � U the operator T

t

by

T

t

=

2

4

S

�t

0 0

0 I 0

0 0 S

�

t

3

5

2

4

I 	

t

F

t

0 T

t

�

t

0 0 I

3

5

: (1.7)

Then T = (T

t

)

t�0

is a strongly ontinuous semigroup on Y � X � U , alled the

Lax-Phillips semigroup (of index zero) indued by �. We see that this semigroup

ontains every operator from (1.5), so that it ontains all the information about �.

The intuitive interpretation of the spae Y � X � U and of T

t

ating on it is that

the �rst omponent is the past output, the seond omponent is the urrent state,

while the third omponent is the future input. Indeed, let y

0

2 Y, x

0

2 X, u

0

2 U

and for t � 0 de�ne

2

4

y

t

x

t

u

t

3

5

= T

t

2

4

y

0

x

0

u

0

3

5

:
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Let x and y be the state trajetory and the output funtion of �, i.e., the solutions

of (1.1) orresponding to the initial state x(0) = x

0

and the input funtion u. We

extend y to R by putting y(t) = y

0

(t) for t � 0. Then

y(t� �) = y

t

(��); x(t) = x

t

; u(t+ �) = u

t

(�)

for all t � 0 and for almost every � � 0.

We have for almost every t � 0 (using the above notation)

d

dt













2

4

y

t

x

t

u

t

3

5













2

= ky(t)k

2

+

d

dt

kx(t)k

2

� ku(t)k

2

:

The system � is alled dissipative if

d

dt

kx(t)k

2

� ku(t)k

2

� ky(t)k

2

:

Thus, � is dissipative if and only if T is a ontration semigroup. In terms of the

matries A; B; C; D, the system � is dissipative if and only if

�

A + A

�

+ C

�

C B + C

�

D

B

�

+D

�

C D

�

D � I

�

� 0: (1.8)

Proposition 1.1. With the notation from (1.2) and (1.7), let A be the generator

of T. The spetrum �(A) ontains the imaginary axis. A point in the open right

half-plane is in �(A) if and only if it is in �(A), while a point z in the open left

half-plane is in �(A) if and only if S

�

(z) is not invertible.

Hene, if U and Y have unequal dimensions, then every point in the left half-plane

is in �(A). On the other hand, if S

�

(s) is invertible for some s 2 C , then a point in

the left half-plane is in �(A) if and only if it is an invariant zero of �. Everything

written starting with (1.7) and up to (1.8) (exlusive) remains valid for well-posed

linear systems. The haraterization (1.8) of dissipativity remains valid only under

restritive assumptions, see Remark 7.6, and in general the haraterization is more

ompliated (see Theorem 7.4). Proposition 1.1 remains valid pratially unhanged

for well-posed systems, and this is a onsequene of Theorem 6.3.

Some of our results annot be illustrated in the �nite-dimensional situation, be-

ause they beome trivialities. They onern the representation of well-posed sys-

tems by formulas similar to (1.1){(1.3) (Theorems 3.1 and 3.2). A major hurdle

is that in general, the operators involved are unbounded and there is no natural

deomposition of the seond row of S

�

(s), whih is denoted C&D, into an operator

with two omponents, suh as [C D℄. We show that suh deompositions always ex-

ist, but they are not unique in general (see Corollary 3.5). In Setion 4 we introdue

and study weakly regular systems, for whih there is a privileged deomposition of

C&D and for whih the representation formulas beome simpler. Setion 5 onerns

4



the behavior of well-posed systems on the time interval (�1;1) (i.e., with initial

time �1). Setion 6 is devoted to the Lax-Phillips semigroup and its generator,

and in Setion 7 we prove some basi fats about dissipative systems.

We will often use the terminology and results from [41℄, whih we refer to as

\Part I". In suh ases, we put the pre�x I in front of the number of the item

quoted. For example, De�nition I.2.1 refers to De�nition 2.1 in Part I, and (I.4.8)

refers to formula (4.8) in Part I.

2. Well-posed linear systems

In this setion we review some onepts and results about well-posed linear systems

from Part I. We do not give proofs.

Notation 2.1. LetW be a Hilbert spae. We regard L

2

lo

((�1;1);W ) as a Fr�ehet

spae, with the metri generated by the seminorms

ku

n

k =

�

Z

n

�n

ku(t)k

2

dt

�

1=2

; n 2 N :

For any interval J , we regard L

2

lo

(J ;W ) as a subspae of L

2

lo

((�1;1);W ) (iden-

tifying L

2

lo

(J ;W ) with the set of funtions in L

2

lo

((�1;1);W ) whih vanish out-

side of J), and similarly we regard L

2

(J ;W ) as a subspae of L

2

((�1;1);W ). Of

ourse, if J is bounded, then L

2

lo

(J ;W ) = L

2

(J ;W ). Let P

J

be the projetion

of L

2

lo

((�1;1);W ) onto L

2

lo

(J ;W ) (by trunation). We abbreviate P

�

= P

[0;� ℄

(where � � 0), P

�

= P

(�1;0℄

and P

+

= P

[0;1)

. The operator S

�

is the (unilateral)

right shift by � on L

2

lo

([0;1);W ), and S

�

�

is the left shift by � on the same spae.

(If we restrit S

�

and S

�

�

from L

2

lo

to L

2

, then they are adjoint to eah other.) For

any u; v 2 L

2

lo

([0;1);W ) and any � � 0, the � -onatenation of u and v, denoted

u}

�

v, is the funtion de�ned by

u}

�

v = P

�

u+ S

�

v:

Thus, (u}

�

v)(t) = u(t) for t 2 [0; �), while (u}

�

v)(t) = v(t� �) for t � � .

We now reall the preise de�nition of a well-posed linear system. In Part I, [42℄

and other earlier papers, the term \abstrat linear system" was used instead, but

it seems that \well-posed" is muh more to the point than \abstrat", and this is

urrently the aepted terminology.

De�nition 2.2. (This is following De�nition I.2.1.) Let U , X and Y be Hilbert

spaes and denote U = L

2

([0;1);U), Y = L

2

([0;1);Y ). A well-posed linear system

on U , X and Y is a quadruple � = (T;�;	; F), where

(i) T = (T

t

)

t�0

is a strongly ontinuous semigroup of linear operators on X,
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(ii) � = (�

t

)

t�0

is a family of bounded linear operators from U to X suh that

�

�+t

(u}

�

v) = T

t

�

�

u+ �

t

v; (2.1)

for every u; v 2 U and all �; t � 0,

(iii) 	 = (	

t

)

t�0

is a family of bounded linear operators from X to Y suh that

	

�+t

x

0

= 	

�

x

0

}

�

	

t

T

�

x

0

; (2.2)

for every x

0

2 X and all �; t � 0, and 	

0

= 0,

(iv) F = (F

t

)

t�0

is a family of bounded linear operators from U to Y suh that

F

�+t

(u}

�

v) = F

�

u}

�

(	

t

�

�

u+ F

t

v); (2.3)

for every u; v 2 U and all �; t � 0, and F

0

= 0.

We all U the input spae, X the state spae and Y the output spae of �. The

operators �

�

are alled input maps, the operators 	

�

are alled output maps, and

the operators F

�

are alled input-output maps.

It follows from (2.1) (with t = 0 and v = 0) that � is ausal, i.e., the present state

does not depend on the future input: for all � � 0,

�

�

P

�

= �

�

; (2.4)

in partiular �

0

= 0. It follows from the formulas (2.1){(2.4) that for all �; t � 0,

�

�+t

P

�

= T

t

�

�

; P

�

	

�+t

= 	

�

; P

�

F

�+t

P

�

= P

�

F

�+t

= F

�

; (2.5)

and hene P

�

F

�+t

P

[�;�+t℄

= 0. The last identity tells that F is ausal (i.e., the past

output does not depend on the future input).

We now reall some less immediate onsequenes of De�nition 2.2. For the re-

mainder of this setion, we use the assumptions of De�nition 2.2.

Denote the generator of T by A. The spae X

1

is de�ned as D(A) with the

norm kz

1

k = k(�I � A)zk, where � 2 �(A), and X

�1

is the ompletion of X with

respet to the norm kzk

�1

= k(�I�A)

�1

zk. The hoie of � is not important, sine

di�erent hoies lead to equivalent norms on X

1

and on X

�1

. It is easy to see that

k � k

1

is equivalent to the graph norm and X

�1

is isomorphi to the dual of D(A

�

)

with respet to the pivot spae X. T an be extended to a semigroup on X

�1

, the

generator of the extended semigroup is an extension of A and it has X as its domain.

We denote the extensions of T

t

and of A by the same symbols.

It follows from assumptions (i) and (ii) in the de�nition that there exists a unique

B 2 L(U ;X

�1

), alled the ontrol operator of �, suh that for all t � 0,

�

t

u =

Z

t

0

T

t��

Bu(�) d�; (2.6)
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see [29℄, [38℄. The funtion �

t

u depends ontinuously on t. The fat that �

t

u 2 X

means that B is an admissible ontrol operator for T. Admissible ontrol operators

are a subspae of L(U ;X

�1

), we refer to [4℄, [9℄, [36℄, [38℄ and [43℄ for investigations

of these operators. B is alled bounded if B 2 L(U;X) and unbounded otherwise.

Using the identity P

�

	

�+t

= 	

�

, we de�ne the operator 	

1

: X ! L

2

lo

([0;1);Y )

by 	

1

x

0

= lim

t!1

	

t

x

0

. Then 	

1

satis�es P

�

	

1

= 	

�

for all � � 0. 	

1

is alled

the extended output map of �. By letting t!1 in (2.2), we get

	

1

x

0

= 	

1

x

0

}

�

	

1

T

�

x

0

; (2.7)

for every x

0

2 X and all � � 0. More generally, any ontinuous linear operator

	

1

: X ! L

2

lo

([0;1);Y ) whih satis�es (2.7) for every x

0

2 X and all � � 0

is alled an extended output map for T. For every suh 	

1

there exists a unique

C 2 L(X

1

;Y ), alled the observation operator of 	

1

(or of �), suh that

(	

1

x

0

)(t) = CT

t

x

0

; (2.8)

for every x

0

2 X

1

and all t � 0. This determines 	

1

, sine X

1

is dense in X. The

Laplae transform of 	

1

x

0

is C(sI � A)

�1

x

0

, for every x

0

2 X.

An operator C 2 L(X

1

;Y ) is alled an admissible observation operator for T if

the estimate

Z

�

0

kCT

t

x

0

k

2

dt � kkx

0

k

2

holds for some � > 0 and for every x

0

2 D(A). For further details about suh

operators we refer to [5℄, [9℄, [36℄, [39℄ and [43℄. It is lear that if C is the observation

operator of a well-posed linear system, then C is admissible. C is alled bounded if

it an be extended to C 2 L(X;Y ), and unbounded otherwise.

For any C 2 L(X

1

; Y ) we de�ne its �-extension C

�

by

C

�

x

0

= lim

�!+1

C�(�I � A)

�1

x

0

: (2.9)

Its domain D(C

�

) onsists of all x

0

2 X for whih the above limit exists.

Proposition 2.3. If C is the observation operator of 	

1

, then for every x

0

2 X

and for almost every t � 0 we have that T

t

x

0

2 D(C

�

) and

(	

1

x

0

)(t) = C

�

T

t

x

0

: (2.10)

This extension of (2.8) and related results were derived in [39℄.

Using the identity P

�

F

�+t

= F

�

, we de�ne the operator F

1

: L

2

lo

([0;1);U) !

L

2

lo

([0;1);Y ) by F

1

u = lim

t!1

F

t

u. Then P

�

F

1

= F

�

for all � � 0. F

1

is alled

the extended input-output map of �. By letting t!1 in (2.3), we get

F

1

(u}

�

v) = F

1

u}

�

(	

1

�

�

u+ F

1

v); (2.11)
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for every u; v 2 U and all � � 0. Taking u = 0 in (2.11) we get that

F

1

S

�

= S

�

F

1

; (2.12)

for every � � 0. Any ontinuous operator F

1

: L

2

lo

([0;1);U) ! L

2

lo

([0;1);Y )

whih satis�es (2.12) is alled shift-invariant or time-invariant. Under mild assump-

tions, suh operators an be represented by transfer funtions, see Setion I.3. Every

shift-invariant operator is ausal, whih means that for all � � 0,

P

�

F

1

= P

�

F

1

P

�

: (2.13)

De�nition 2.4. For any x

0

2 X and any u 2 L

2

lo

([0;1);U), the state trajetory

x : [0;1)!X and the output funtion y 2 L

2

lo

([0;1);Y ) of � orresponding to

the initial state x

0

and the input funtion u are de�ned by

x(t) = T

t

x

0

+ �

t

u; t � 0;

y = 	

1

x

0

+ F

1

u:

(2.14)

From here we an reover (1.5) (whih refers to the �nite-dimensional ase but

remains unhanged in the general well-posed ase) by taking t = � , applying P

�

to

the seond equation in (2.14) and using (2.13).

Notation 2.5. For any Hilbert spae W , any interval J and any ! 2 R we put

L

2

!

(J ;W ) = e

!

L

2

(J ;W );

where (e

!

v)(t) = e

!t

v(t), with the norm ke

!

vk

L

2

!

= kvk

L

2

. We denote by H

1

(J ;W )

the subspae of L

2

(J ;W ) whih onsists of ontinuous funtions v for whih there

exists a fution _v 2 L

2

(J ;W ), alled the derivative of v, suh that

v(b)� v(a) =

Z

b

a

_v(�) d�;

for all a; b 2 J . The de�nition of H

1

lo

(J ;W ) is similar, replaing everywhere

L

2

(J ;W ) by L

2

lo

(J ;W ). We introdue a weighted version of H

1

(J ;W ):

H

1

!

(J ;W ) = e

!

H

1

(J ;W ):

We denote by C

!

the half-plane of all s 2 C with Re s > !. The growth bound of

the operator semigroup T with generator A is denoted by !

T

. Thus,

!

T

= lim

t!1

1

t

log kT

t

k = inf

t>0

1

t

log kT

t

k

and (sI � A)

�1

is uniformly bounded on C

!

if and only if ! > !

T

.
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Proposition 2.6. For any initial state x

0

2 X and any input u 2 L

2

lo

([0;1);U),

the state trajetory x de�ned in (2.14) is the unique strong solution in X

�1

of

_x(t) = Ax(t) +Bu(t); t � 0;

x(0) = x

0

:

(2.15)

More preisely, x is ontinuous with values in X, and it is the only funtion in

H

1

lo

([0;1);X

�1

) with x(0) = x

0

whose derivative _x satis�es (2.15) for almost every

t � 0. If moreover u 2 L

2

!

([0;1);U) with ! > !

T

, then x 2 L

2

!

([0;1);X) (in

addition to being ontinuous) and its Laplae transform is

x̂(s) = (sI � A)

�1

[x

0

+Bû(s)℄ ; Re s > !: (2.16)

This result (and also the existene of B) is ontained in [28℄, [29℄, [38℄.

As shown in [39, Proposition 2.3℄ and Proposition I.4.1, for every ! > !

T

, 	

1

is bounded from X to L

2

!

([0;1);Y ) and F

1

is bounded from L

2

!

([0;1);U) to

L

2

!

([0;1);Y ). This enables us to represent also the output funtion y from (2.14)

via its Laplae transform, as shown in the following theorem.

Theorem 2.7. There exists an analyti L(U ;Y )-valued funtion G on C

!

T

, alled

the transfer funtion of �, whih has the following properties:

(1) For every x

0

2 X and u 2 L

2

!

([0;1);U) with ! > !

T

, the orresponding

output funtion y = 	

1

x

0

+ F

1

u is in L

2

!

([0;1);Y ) and its Laplae transform is

ŷ(s) = C(sI � A)

�1

x

0

+G(s)û(s); Re s > !: (2.17)

(2) G satis�es for all s; � 2 C

!

T

G(s)�G(�) = C

�

(sI � A)

�1

� (�I � A)

�1

�

B (2.18)

(equivalently, G

0

(s) = �C(sI � A)

�2

B).

(3) G is bounded on C

!

for every ! > !

T

.

Point (1) above was proved in Part I (see Theorems I.3.6, I.4.1 and [39, formula

(3.6)℄). Point (2) is Remark I.4.10 or [28, formula (2.3)℄. For point (3) we refer

again to Theorems I.3.6 and I.4.1. Point (2) above shows that G is determined by

A, B and C up to an additive onstant operator.

We denote by 

F

the in�mum of those ! 2 R for whih F

1

is bounded from

L

2

!

([0;1);U) to L

2

!

([0;1);Y ). Equivalently, 

F

is the in�mum of those ! 2 R for

whih G has a bounded analyti ontinuation to C

!

, see Theorem I.3.6. This 

F

2

[�1;1) is alled the growth bound of F

1

. It follows from what we have already

said that 

F

� !

T

(see also Proposition I.4.1). The analyti ontinuation of G to

C



F

does not neessarily satisfy (2.18), see Remark I.4.8. The following extension of

(2.17) (with x

0

= 0) holds: if F

1

is bounded from L

2

!

([0;1);U) to L

2

!

([0;1);Y )

(for example, if ! > 

F

), if u 2 L

2

!

([0;1);U) and y = F

1

u, then

ŷ(s) = G(s)û(s); Re s > !: (2.19)

It follows that for suh !, the norm of F

1

from L

2

!

to L

2

!

is the supremum of kG(s)k

over all s 2 C

!

(see again Theorem I.3.6).
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3. The operators C&D and S

�

(s)

In this setion we introdue the system operator S

�

(s) of a well-posed linear system

�, whih we have enountered in (1.2) for the �nite-dimensional ase. The \seond

row" of this operator is the ombined observation/feedthrough operator C&D, whih

in the �nite-dimensional ase would be the matrix [C D℄. This operator has ap-

peared (somewhat impliitly) in Salamon [28℄ and aording to Arov and Nudelman

[1℄, it was introdued by Yu.L. Shmuljan in 1986. Theorems 3.1 and 3.2 give a

representation for the state trajetory and the output funtion of a well-posed lin-

ear system, in terms of S

�

(0) and an extension of C&D. These theorems give the

in�nite-dimensional version of the equations (1.1) and (1.3) in full generality. We

also show that C&D an be split as C&D = [C D℄, where C is one of many possible

extensions of C to a larger spae than D(A) and D is a bounded operator that

depends on the extension C (see Corollary 3.5).

Throughout this setion, we assume that � = (T;�;	; F) is a well-posed linear

system with input spae U , state spae X and output spae Y . We denote by A

the generator of T, by B the ontrol operator of �, by C its observation operator

and by G its transfer funtion. We use the notation introdued in Setion 2, suh

as P

�

, 	

1

, F

1

, X

1

, X

�1

, !

T

, C

�

, S

�

�

, L

2

!

(J ;W ), H

1

lo

(J ;W ), H

1

!

(J ;W ) and C

!

.

We introdue the dense subspae V of X � U de�ned by

V =

��

x

0

u

0

�

2 X � U

�

�

�

�

Ax

0

+Bu

0

2 X

�

: (3.1)

Then V is a Hilbert spae with the norm









�

x

0

u

0

�









V

=

�

kx

0

k

2

X

+ ku

0

k

2

U

+ kAx

0

+Bu

0

k

2

X

�

1=2

:

Note that [A B℄ 2 L(V ;X). We de�ne the operator C&D : V !Y by

C&D

�

x

0

u

0

�

= C

�

x

0

� (�I � A)

�1

Bu

0

�

+G(�)u

0

; (3.2)

where � 2 C

!

T

is arbitrary (i.e., the the result is independent of � as long as

Re� > !

T

, as is easy to verify). We all C&D the ombined observation/feedthrough

operator of �. In Arov and Nudelman [1℄, this operator is denoted by N . Note that

C&D 2 L(V; Y ), beause [I � (�I � A)

�1

B℄ 2 L(V ;X

1

).

We also introdue the system operator of �, S

�

(s) : V !X � Y by

S

�

(s) =

�

A B

C&D

�

�

�

sI 0

0 0

�

; for all s 2 C :

It is lear that S

�

(s) is bounded from V to X � Y . S

�

(s) an also be interpreted

as an unbounded operator from X �U to X � Y with dense domain D(S

�

(s)) = V

10



(independent of s), and a short argument shows that this unbounded operator is

losed. (The argument uses the fat that if x

n

! x in X, u

n

! u in U and

Ax

n

+Bu

n

! z in X, then [

x

n

u

n

℄! [

x

u

℄ in V .) If C is bounded, then we denote

D = G(�)� C(�I � A)

�1

B

where Re � > !

T

(note that D is independent of �, as follows from (2.18)). Then

we obtain that C&D = [C D℄ (whih is de�ned on all of X � U) and hene

S

�

(s) =

�

A� sI B

C D

�

;

like in the �nite-dimensional ase, see (1.2). A similar splitting of C&D is possible

also for systems with an unbounded observation operator C, but it requires an

extension of C whih is not unique, see Corollary 3.5.

Theorem 3.1. (i) Assume that u 2 H

1

lo

([0;1);U) and

�

x

0

u(0)

�

2 V . The state

trajetory x and the output funtion y are de�ned as in (2.14). Then

x 2 C

1

([0;1);X);

�

x

u

�

2 C([0;1);V ); y 2 H

1

lo

([0;1);Y );

and for every t � 0 we have that

�

_x(t)

y(t)

�

= S

�

(0)

�

x(t)

u(t)

�

: (3.3)

If u 2 H

1

!

([0;1);U) with ! > !

T

, then y 2 H

1

!

([0;1);Y ).

(ii) The transfer funtion G of � is given by

G(s) = C&D

�

(sI � A)

�1

B

I

�

; Re s > !

T

: (3.4)

This theorem is the in�nite-dimensional ounterpart of (1.1) and of (1.3). This

theorem an be derived from results in [1℄, [28℄, or [36℄, but for ompleteness we

inlude a proof. (Parts of this proof will be needed later, too.)

Proof. We begin by observing that it suÆes to prove (i) in the ase when u 2

H

1

!

([0;1);U) with ! > !

T

. This is true sine, for all � > 0, the restritions of x

and y to [0; � ℄ do not depend on the restrition of u to [�;1) (by ausality), and

it is possible to rede�ne any funtion u 2 H

1

lo

([0;1);U) on the interval [�;1) in

suh a way that the modi�ed funtion belongs to H

1

!

([0;1);U).

We denote U = L

2

!

([0;1);U). For every t � 0 we de�ne on X � U the bounded

operator G

t

by

G

t

=

�

T

t

�

t

0 S

�

t

�

:

11



Then G = (G

t

)

t�0

is a strongly ontinuous semigroup, whose growth bound is !.

(Suh semigroups were used in Grabowski and Callier [5℄ to study admissibility.

More elaborate semigroups of this kind will appear in Setion 6.) The generator of

this semigroup is

A =

�

A BÆ

0

0

d

d�

�

;

where Æ

0

u = u(0) and

D(A) =

��

x

0

u

�

2 X �H

1

!

([0;1);U)

�

�

�

�

�

x

0

u(0)

�

2 V

�

:

D(A) is a Hilbert spae with the norm









�

x

0

u

�









=









(�I �A)

�

x

0

u

�









X�U

(this is like the spae X

1

enountered earlier). The onditions in part (i) of the

theorem mean that [

x

0

u

℄ 2 D(A). It follows that the funtion z de�ned by z(t) =

G

t

[

x

0

u

℄ is of lass C

1

with values in X�U , whih implies that x (the �rst omponent

of z) is of lass C

1

with values inX, as laimed in part (i). The fat that [

x

0

u

℄ 2 D(A)

also implies that z is ontinuous with values inD(A), whih implies that the funtion

[

x

u

℄ =

�

I 0

0 Æ

0

�

z is ontinuous with values in V , as laimed in part (i).

We de�ne the operator C : D(A)! Y by C = C&D

�

I 0

0 Æ

0

�

, i.e.,

C

�

x

0

u

�

= C&D

�

x

0

u(0)

�

:

It follows from the ontinuity of C&D on V that C is bounded from D(A) to Y .

Now we show that C is an admissible observation operator for G. For [

x

0

u

℄ 2 D(A),

de�ne the funtion y for t � 0 by

y(t) = CG

t

�

x

0

u

�

= C&D

�

x(t)

u(t)

�

; (3.5)

so that obviously y 2 C([0;1);Y ) and e

�!t

y(t) is bounded. Hene, y has a Laplae

transform ŷ de�ned on C

!

and, by (2.16) and (3.2) with � = s,

ŷ(s) = C&D

�

x̂(s)

û(s)

�

= C&D

�

(sI � A)

�1

[x

0

+Bû(s)℄

û(s)

�

= C(sI � A)

�1

x

0

+G(s)û(s):

Comparing this with (2.17), we onlude that y is the output funtion of �. Hene,

the lower half of (3.3) holds. The upper half of (3.3) is a diret onsequene of

Proposition 2.6. By the well-posedness of �,

kyk

L

2

!

� k









�

x

0

u

�









X�U

: (3.6)
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This implies that C is admissible for the semigroup G.

It follows from the admissibility of C that for [

x

0

u

℄ 2 D(A), the output funtion y

of �, whih is given by (3.5), is in H

1

!

([0;1);Y ). Indeed, its derivative is given, for

almost every t � 0, by

_y(t) = C

�

G

t

A

�

x

0

u

�

;

and this funtion is in L

2

!

([0;1);Y ), beause it is of the same struture as the

funtion in (2.10), with C in plae of C, G in plae of T and A [

x

0

u

℄ in plae of x

0

(see the omments before Theorem 2.7). This ompletes the proof of part (i). Part

(ii) is an easy onsequene of (2.18) and (3.2).

We de�ne the �-extension of C&D by

[C&D℄

�

�

x

0

u

0

�

= C

�

�

x

0

� (�I � A)

�1

Bu

0

�

+G(�)u

0

;

where � 2 C

!

T

is arbitrary. Its domain D([C&D℄

�

) onsists of those [

x

0

u

0

℄ 2 X � U

for whih x

0

� (�I � A)

�1

Bu

0

2 D(C

�

). The following result was stated in [40℄

(without using the notation C&D), but so far no proof has been published.

Theorem 3.2. For x

0

2 X and u 2 L

2

lo

([0;1);U), let the state trajetory x and

the output funtion y be de�ned as in (2.14). Then for almost every t � 0 we have

h

x(t)

u(t)

i

2 D([C&D℄

�

) and

y(t) = [C&D℄

�

�

x(t)

u(t)

�

: (3.7)

A small lari�ation may be needed here: an element in L

2

lo

([0;1);U) or in

L

2

lo

([0;1);Y ) is an equivalene lass of funtions that are equal almost everywhere,

so that for a spei� t � 0, u(t) and y(t) are not de�ned. However, the theorem

holds for any hoie of funtions in the equivalene lasses of u and y.

In order to prove Theorem 3.2, we need the following lemma.

Lemma 3.3. We use the notation !; U ;G; A and C from the proof of Theorem 3.1,

and C

�

denotes the �-extension of C, de�ned in the usual way (see (2.9)) using the

generator A. If [

z

0

v

℄ 2 D(C

�

) is suh that the limit

lim

�!+1

�v̂(�) = v

0

(3.8)

exists in U , then [

z

0

v

0

℄ 2 D([C&D℄

�

) and

C

�

�

z

0

v

�

= [C&D℄

�

�

z

0

v

0

�

: (3.9)

This lemma justi�es the name \�-extension" used for [C&D℄

�

, even though C&D

is not an observation operator.
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Proof. Reall from the proof of Theorem 3.1 that for [

z

0

v

℄ 2 D(A), the funtion w

de�ned for t � 0 by w(t) = CG

t

[

z

0

v

℄ is the output funtion of � orresponding

to the initial state z

0

and the input funtion v, so that ŵ is given by ŵ(s) =

C(sI � A)

�1

z

0

+ G(s)v̂(s), see (2.17). On the other hand, omputing ŵ diretly

from the de�nition of w, we get an expression in terms of C and A, and the two

expressions for ŵ must be equal:

C(sI �A)

�1

�

z

0

v

�

= C(sI � A)

�1

z

0

+G(s)v̂(s); (3.10)

for all s 2 C

!

. By ontinuous extension, this formula remains valid for all [

z

0

v

℄ 2

X � U . From this formula and (2.18) we dedue that for large � > 0

C�(�I �A)

�1

�

z

0

v

�

= C�(�I � A)

�1

�

z

0

� (�I � A)

�1

Bv

0

�

+ �C(�I � A)

�1

(�I � A)

�1

Bv

0

+G(�)�v̂(�)

= C�(�I � A)

�1

�

z

0

� (�I � A)

�1

Bv

0

�

+

�

�� �

G(�)v

0

+G(�)

�

�v̂(�)�

�

�� �

v

0

�

:

If [

z

0

v

℄ 2 D(C

�

), then the above expression must have a limit as �!+1. If moreover

(3.8) holds, then the last term tends to zero. Hene, taking limits as �!+1, we

obtain that z

0

� (�I � A)

�1

Bv

0

2 D(C

�

) and the formula (3.9) holds.

Proof of Theorem 3.2. We use again the notation !; U ;G; A and C from the proof

of Theorem 3.1 (reall that ! > !

T

). First we assume that u 2 U . Then we know

from Theorem 2.7 that y 2 L

2

!

([0;1);Y ). Aording to (2.17) and (3.10),

ŷ(s) = C(sI �A)

�1

�

x

0

u

�

; Re s > !:

Thus, y is the output generated by C and G via (3.5) and ontinuous extension to

all of X � U . Aording to Proposition 2.3, we have for almost every t � 0 that

�

x(t)

S

�

t

u

�

= G

t

�

x

0

u

�

2 D(C

�

) and y(t) = C

�

�

x(t)

S

�

t

u

�

: (3.11)

On the other hand, onsider the strongly ontinuous semigroup S

�

= (S

�

t

)

t�0

ating on U , with generator

d

d�

and with the admissible observation operator Æ

0

de�ned on D(

d

d�

) = H

1

!

([0;1);U) by Æ

0

u = u(0). Obviously, for u 2 H

1

!

([0;1);U)

we have Æ

0

S

�

t

u = u(t), so that the extended output map orresponding to S

�

and Æ

0

(as in (2.8)) is the identity. Aording to Proposition 2.3, for almost every t � 0,

S

�

t

u 2 D(Æ

0�

) and u(t) = Æ

0�

S

�

t

u:
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It is easy to see that for any v 2 U we have v 2 D(Æ

0�

) if and only if lim

�!+1

�v̂(�)

exists, and then Æ

0�

v is this limit. Thus, for almost every t � 0,

u(t) = lim

�!+1

�

d

S

�

t

u(�):

This fat, together with (3.11) shows (by denoting z

0

= x(t), v = S

�

t

u and v

0

= u(t))

that for almost every t � 0,

h

x(t)

S

�

t

u

i

satis�es the onditions of Lemma 3.3. Aording

to this lemma, we obtain that (3.7) holds almost everywhere.

Now if we have an arbitrary u 2 L

2

lo

([0;1);U) then on any �nite time interval

[0; � ℄, the onlusion of the theorem holds. This is beause we an replae u by P

�

u,

whih is in U , and by the ausality of � neither x nor y will hange on [0; � ℄. This

implies that the onlusion of the theorem holds on the whole interval [0;1).

Now we address the question of splitting the operator C&D in a way similar to

the ase of a bounded C, disussed before Theorem 3.1. For some time it has been

onsidered an open question among speialists whether suh a splitting is possible

in general. We give here an aÆrmative answer, but the splitting is not unique, and

we annot point to a \privileged" or \best" way to split C&D. If the system is

regular, as de�ned in Part I, then of ourse we have a privileged splitting { this will

be disussed (among other things) in the next setion.

To disuss splittings of C&D, we need the following spae, whih has appeared

often in papers dealing with well-posed systems (inluding Part I):

Z = X

1

+ (�I � A)

�1

BU ;

where � 2 �(A) (the spae Z does not depend on the hoie of �). Z is a Hilbert

spae with the following fator spae norm:

kzk

Z

= inf

z=x+(�I�A)

�1

Bv

�

kxk

2

1

+ kvk

2

U

�

1

2

:

It is easy to see that X

1

� Z � X with ontinuous embeddings, but X

1

need not be

dense in Z. In fat, if BU \ X = f0g (suh a ontrol operator B is alled stritly

unbounded), then it is easy to see that X

1

is a losed subspae of Z.

Theorem 3.4. With the spae Z de�ned as above, the operator C an be extended

to an operator C 2 L(Z;Y ).

Proof. The �rst (and main) step is to show that C is ontinuous on D(A) endowed

with the norm of Z. In other words, we show that if the sequene (z

n

) in D(A) is

suh that kz

n

k

Z

! 0, then kCz

n

k

Y

! 0. If the sequene (z

n

) is as above, then we

an �nd sequenes (x

n

) in D(A) = X

1

and (v

n

) in U suh that

z

n

= x

n

+ (�I � A)

�1

Bv

n

; kx

n

k

1

! 0; kv

n

k

U

! 0: (3.12)

Sine both z

n

and x

n

are in D(A), so is (�I � A)

�1

Bv

n

, so that Bv

n

2 X.
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Consider the system �

n

obtained from � by restriting the input to salar mul-

tiples of v

n

. The ontrol operator of �

n

is Bv

n

and its transfer funtion is G(s)v

n

.

Clearly �

n

is regular in the sense of Part I, so that by Theorem I.4.7,

G(s)v

n

= C(sI � A)

�1

Bv

n

+D

n

; (3.13)

where D

n

2 Y is given, aording to Theorem I.5.8, by

D

n

= lim

�!+1

G(�)v

n

:

Choose ! > !

T

, so that G is bounded on C

!

, and denote

kGk

!

= sup

s2C

!

kG(s)k:

Then it is lear from the formula for D

n

that kD

n

k

Y

� kGk

!

kv

n

k

U

. Now it follows

from (3.13) that

kC(sI � A)

�1

Bv

n

k

Y

� 2kGk

!

kv

n

k

U

;

for all s 2 C

!

and for all n 2 N . Assume without loss of generality that � 2

C

!

. Then the above estimate shows that kC(�I � A)

�1

Bv

n

k

Y

! 0. Sine learly

kCx

n

k

Y

! 0, we see from the deomposition in (3.12) that kCz

n

k

Y

! 0.

Let us denote by Z

1

the losure of D(A) in Z. The ontinuity of C on D(A)

with the norm of Z implies that C has a unique ontinuous extension to Z

1

, and

we denote this extension also by C. Let Z

2

denote the orthogonal omplement of

Z

1

in Z, so that any z 2 Z has a unique deomposition z = z

1

+ z

2

, with z

1

2 Z

1

and z

2

2 Z

2

. For any E 2 L(Z

2

;Y ) we an de�ne the desired extension C by

C(z

1

+ z

2

) = Cz

1

+ Ez

2

.

The above proof shows learly that unless D(A) is dense in Z, the extension C is

not unique, it depends on the arbitrary bounded operator E.

Corollary 3.5. With the notation of Theorem 3.4, take � 2 C with Re � > !

T

and

de�ne D 2 L(U ;Y ) by

D = G(�)� C(�I � A)

�1

B:

Then D is independent of the hoie of � and the operator C&D an be extended to

an operator C&D 2 L(Z � U ;Y ) as follows:

C&D

�

x

0

u

0

�

= Cx

0

+Du

0

:

The proof of this orollary is easy and we omit it. Note that D depends on C. It

is lear how to write S

�

using C and D. The formula (3.4) simpli�es to

G(s) = C(sI � A)

�1

B +D; Re s > !

T

: (3.14)
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Finally, we give some fatorizations of S

�

(s). In the following proposition, we

denote G(s) = C&D

�

(sI�A)

�1

B

I

�

, for all s 2 �(A). For Re s > !

T

this is the

usual expression for the transfer funtion, see (3.4), but now we need also points

s with Re s � !

T

. The analyti funtion G de�ned in this way is not neessarily

the analyti ontinuation of the transfer funtion, as shown in a ounterexample in

Remark I.4.8. However, we hope that this notation will not lead to any onfusion.

Proposition 3.6. For s 2 �(A),

�

I (A�sI)

�1

B

0 I

�

maps V one-to-one onto X

1

� U .

Hene,

�

sI�A �B

0 I

�

maps V one-to-one onto X�U and hene, the produt of the last

two fators in (1.4) maps V to X

1

� Y . For s 2 �(A), the fatorization (1.4) holds,

so that S

�

(s) is invertible if and only if G(s) is invertible. Formula (1.4) an be

written also in the form

S

�

(s) =

�

I 0

C(A� sI)

�1

I

� �

A� sI 0

0 G(s)

� �

I (A� sI)

�1

B

0 I

�

:

Moreover, for every � 2 C and s 2 �(A), we have

S

�

(�) =

�

A� �I (�� s)(A� sI)

�1

B

C G(s)

� �

I (A� sI)

�1

B

0 I

�

: (3.15)

We leave the easy proof of this proposition to the reader (see the de�nitions of

V , C&D and S

�

(s)). Note that the seond fator in (3.15), when regarded as an

operator on X � U , tends to the identity (in norm) as Re s!+1.

4. Weakly regular systems

In this setion we introdue weakly regular linear systems following Weiss

2

[45℄

and we extend the main results of Part I to weakly regular systems. For a weakly

regular system there is a \privileged" extension of the observation operator, in the

sense of Theorem 3.4, whih has some speial properties.

We use the same standing assumptions and notation as in Setion 3. First we

turn our attention to ertain extensions of C, introdued in [39℄ and [45℄.

De�nition 4.1. Let X and Y be Hilbert spaes, let T be a strongly ontinuous

semigroup on X and let C 2 L(X

1

; Y ). The weak L-extension of C and the weak

�-extension of C are the operators

C

L

w

x

0

= weak lim

�#0

C

1

�

Z

�

0

T

�

x

0

d�;

C

�

w

x

0

= weak lim

�!+1

C�(�I � A)

�1

x

0

;

with their domains D(C

L

w

) and D(C

�

w

) onsisting of those x

0

2 X for whih the

respetive weak limits exist. Take �

0

2 R suh that [�

0

;1) � �(A). We de�ne on
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D(C

L

w

) and D(C

�

w

) the norms

kx

0

k

D(C

L

w

)

= kx

0

k

X

+ sup

�2(0;1℄









C

1

�

Z

�

0

T

�

x

0

d�









Y

;

kx

0

k

D(C

�

w

)

= kx

0

k

X

+ sup

�2[�

0

;1)





C�(�I � A)

�1

x

0





Y

:

The strong L-extension of C, denoted C

L

, and the strong �-extension of C, denoted

C

�

, are de�ned in the same way, but with weak limits replaed by strong limits.

1

The norms on D(C

L

) and D(C

�

) are the same as the norms on D(C

L

w

) and D(C

�

w

).

We remark that in Part I and [39℄ C

L

was alled the \Lebesgue extension" of

C, but for tehnial reasons we do not think that this name is suitable. We also

remark that C

�

was denoted by

e

C

L

in Part I, but this notation was later hanged

to C

�

in [42℄ and this is used in several other works. Stritly speaking, C

L

w

and C

L

are not needed to develop the theory in this paper: C

�

w

and C

�

would be enough.

However, we disuss all four extensions of C in order to larify the relation between

this material and earlier work, in partiular Part I.

Proposition 4.2. With the notation of De�nition 4.1, D(C

L

w

), D(C

�

w

), D(C

L

)

and D(C

�

) are Banah spaes, the orresponding extensions of C are bounded linear

operators from their domains into Y , and any two of these extensions oinide on

the intersetion of their domains. Moreover,

X

1

� D(C

L

)

�

D(C

L

w

) �

�

D(C

�

) �

D(C

�

w

) � X;

with ontinuous embeddings, and all the inlusions may be strit, even if C is required

to be admissible. If C is admissible, then the spae X

1

is dense in D(C

L

).

Proof. The ompleteness of D(C

L

) was proved in [39, Proposition 4.3℄, and the proof

of ompleteness for the other spaes is similar, exept that the spae C([0; 1℄; Y )

appearing there has to be replaed by the spae of ontinuous Y -valued funtions

on (0; 1℄ or on [�

0

;1) whih have a (weak) limit at 0 or 1, with the sup-norm. It

is obvious that X

1

� D(C

L

) and that D(C

L

) and D(C

�

) are losed subspaes of

D(C

L

w

) and D(C

�

w

), respetively. The inlusion D(C

L

) � D(C

�

) is ontained in

Remark I.5.7, and the orresponding weak inlusion is proved in the same way. It is

easy to onstrut examples where the inlusions X

1

� D(C

L

) and D(C

�

w

) � X are

strit (we leave this to the reader). The fat that the inlusions D(C

L

) � D(C

L

w

)

and D(C

�

) � D(C

�

w

) may be strit follows from an example with an admissible

C given in a sequel to this paper, whih we refer to as \Part III". (The example

belongs to \Part III" beause it illustrates a point about duality, whih is disussed

there.) It is shown in Katsnelson and Weiss [11, Example 2.7℄ that the inlusion

1

The existene of these limits means that 	

1

x has the Ces�aro mean of order one C

L

x or the

Abel mean C

�

x at zero; f. [7, pp. 504{505℄. For this reason Sta�ans [30, 31℄ uses the names

Ces�aro extension and Abel extension for C

L

and for C

�

.
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D(C

L

) � D(C

�

) may be strit, again with admissible C. In the example onstruted

there, Y = C so that D(C

L

w

) = D(C

L

) and D(C

�

w

) = D(C

�

); hene also the

inlusion D(C

L

w

) � D(C

�

w

) may be strit. The fat that (with admissible C) X

1

is dense in D(C

L

) is proved in [42, Theorem 5.2℄.

It is still an open problem whether the inlusion X

1

� D(C

�

) is dense, assuming

that C is admissible, see Setion 5 in [42℄.

We denote by � the harateristi funtion of [0;1) (i.e., �(t) = 1 for all t � 0).

De�nition 4.3. For any v 2 U , the funtion y

v

= F

1

(� � v) is the step response of

� orresponding to v. The system � is alled weakly regular if the following weak

limit exists in Y , for every v 2 U :

weak lim

�!0

1

�

Z

�

0

y

v

(�) d� = Dv : (4.1)

� is alled regular if the above limit exists in the norm topology. In either ase, the

operator D 2 L(U ;Y ) de�ned by (4.1) is alled the feedthrough operator of �.

The fat thatD is bounded follows from the uniform boundedness theorem. If Y is

�nite-dimensional, then weak regularity equals regularity, of ourse. In general, this

is not true, as demonstrated by the same example in \Part III" that was mentioned

a little earlier. The signi�ant use of regularity is that it simpli�es the omputation

of the operators A; B; C and D for losed-loop systems, see [42℄. Both weak and

strong regularity are used in quadrati optimal ontrol, see for example [30℄, [32℄

and [45℄. We do not deal with these issues in this paper.

The following result is the weak analogue of Theorem I.2.3 and Remark I.6.2.

Theorem 4.4. Let � = (T;�;	; F) be a weakly regular well-posed linear system,

with input spae U , state spae X, output spae Y , semigroup generator A, ontrol

operator B, observation operator C and feedthrough operator D.

Then the output y of � de�ned in (2.14) is given by

y(t) = C

L

w

x(t) +Du(t); (4.2)

for almost all t � 0 (in partiular, x(t) 2 D(C

L

w

) for almost all t � 0). If t � 0 is

suh that both u and y are weakly ontinuous from the right at t, then (using those

right limits) (4.2) holds at t (in partiular, x(t) 2 D(C

L

w

)).

The proof is very similar to the one for regular systems (see Setion I.6) and will

be omitted (in (I.4.8) we have to take the weak limits of all terms as � ! 0).

Theorem 4.4 implies the following formula for F

1

for weakly regular systems

(exatly as Theorem I.2.3 implies (I.2.16)):

(F

1

u)(t) = C

L

w

Z

t

0

T

t��

Bu(�) d� +Du(t); (4.3)
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valid for every u 2 L

2

lo

([0;1);U) and almost every t � 0 (in partiular, the integral

above is in D(C

L

w

) for almost every t � 0). It follows from Proposition 4.2 that

in (4.2) and (4.3), C

L

w

may be replaed by C

�

w

, and if � is regular then (by

Theorem I.2.3) also by C

L

or by C

�

.

The operators A, B, C and D are alled the generating operators of �, beause

� is ompletely determined by them via (2.15) and (4.2).

The following is the weak version of Theorem I.4.7.

Theorem 4.5. With the notation of Theorem 4.4, assume that � is weakly regular.

Let !

T

be the growth bound of T. Then the transfer funtion G of � is given by

G(s) = C

L

w

(sI � A)

�1

B +D; Re s > !

T

(in partiular, (sI � A)

�1

BU � D(C

L

w

)).

To prove this, it suÆes to take weak limits in (2.18) as � ! +1. Note that

this theorem implies that the spae Z de�ned before Theorem 3.4 is ontained in

D(C

L

w

). Hene, C from Theorem 3.4 an be hosen to be C

L

w

restrited to Z. The

formula for G given above is the same as (3.14) with this hoie of C.

The following is the weak version of Theorem I.5.8. We reall (from Setion I.5)

a notation for angular domains in C : for any  2 (0; �),

W( ) =

�

re

i�

�

�

r 2 (0;1); � 2 (� ;  )

	

:

Theorem 4.6. Let � = (T;�;	; F) be a well-posed linear system, with input spae

U , state spae X, output spae Y , semigroup generator A, ontrol operator B, ob-

servation operator C, transfer funtion G, and growth bound !

T

. Then the following

statements are equivalent:

(1) � is weakly regular, i.e., for every v 2 U the weak limit in (4.1) exists.

(2) For every s 2 �(A) we have that (sI�A)

�1

BU � D(C

L

w

) and C

L

w

(sI�A)

�1

B

is an analyti L(U ;Y )-valued funtion of s on �(A), uniformly bounded on any

half-plane C

!

with ! > !

T

.

(3) There exists s 2 �(A) suh that (sI � A)

�1

BU � D(C

L

w

).

(4) There exists s 2 �(A) suh that (sI � A)

�1

BU � D(C

�

w

).

(5) Any state trajetory of � is almost always in D(C

L

w

).

(6) Any state trajetory of � is almost always in D(C

�

w

).

(7) For every v 2 U and every  2

�

0; �=2

�

, G(s)v has a weak limit as jsj ! 1

and s 2 W( ).

(8) For every v 2 U , G(�)v has a weak limit as �! +1 in R.
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Moreover, if the limits mentioned in statements (1), (7) and (8) above exist, then

they are equal to Dv, where D is the feedthrough operator of �.

The proof is similar to that of Theorem I.5.8 and we leave the details to the reader.

Observe that (sI �A)

�1

BU in onditions (2){(4) ould be replaed by the spae Z

de�ned in Setion 3, both in Theorem I.5.8 and in Theorem 4.6.

5. System behavior for negative time

Until now we have onsidered the time to be positive. It is sometimes important

to think of a well-posed linear system � funtioning on the time intervals (�1; 0℄ or

(�1;1). To treat these ases, we introdue some further notation and we extend

�

t

and F

1

so that they depend also on the values of the input for negative times.

Some results related to those in this setion were in [30℄, [31℄ and [45℄.

Notation 5.1. Let W be a Hilbert spae. The operator S

�

(with � 2 R) is the

(bilateral) right shift by � on L

2

lo

((�1;1);W ), so that S

��

denotes the (bilateral)

left shift by � on the same spae. Reall the projetions P

�

, P

+

and the spaes

L

2

!

(J ;W ) introdued in Setion 2. The spae L

2

!;lo

((�1;1);W ) onsists of all

the funtions u 2 L

2

lo

((�1;1);W ) for whih P

�

u 2 L

2

!

((�1; 0℄;W ). We regard

L

2

!;lo

((�1;1);W ) as a Fr�ehet spae, with the metri generated by the seminorms

kuk

n

=

�

Z

n

�1

e

�2!t

ku(t)k

2

dt

�

1=2

; n 2 N :

The unilateral right shift S

�

(with � � 0) was originally de�ned on L

2

lo

([0;1);W ),

but we extend it to L

2

lo

((�1;1);W ) by S

�

= S

�

P

+

. Note that S

�

= P

[�;1)

S

�

.

Throughout this setion, we assume that � = (T;�;	; F) is a well-posed linear

system with input spae U , state spae X, output spae Y , transfer funtion G

and growth bounds !

T

and 

F

, and we use all the notation introdued in Setion 2.

Note that �

t

was originally de�ned on L

2

([0;1);U), but (2.4) shows that �

t

has

an obvious extension to L

2

lo

((�1;1);U), still given by (2.6).

Proposition 5.2. For all u 2 L

2

!;lo

((�1;1);U) with ! > !

T

and for all t 2 R,

the following limit exists in X:

e

�

t

u = lim

�!1

�

�+t

S

�

u: (5.1)

We have

e

�

t

u =

Z

t

�1

T

t��

Bu(�) d� (5.2)

and there exists a k

!

� 0 (independent of t and u) suh that

k

e

�

t

uk � k

!

e

!t

kP

(�1;t℄

uk

L

2

!

: (5.3)
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Proof. By (2.6), for all t 2 R and all � � �t,

�

�+t

S

�

u =

Z

�+t

0

T

�+t��

Bu(� � �) d� =

Z

t

��

T

t��

Bu(�) d�: (5.4)

Thus, to show that the limit in (5.1) exists, we have to show that (in X)

k�

T+t

S

T

u� �

�+t

S

�

uk =









Z

��

�T

T

t��

Bu(�) d�









tends to zero as �; T !1. Without loss of generality, assume that T � � .

Denote v(t) = e

�!t

u(t) and

e

T

t

= e

�!t

T

t

, so that P

(�1;t℄

v 2 L

2

((�1; t℄;U) and

the semigroup

e

T is exponentially stable (!

e

T

< 0). Then

k�

T+t

S

T

u� �

�+t

S

�

uk = e

!t









Z

��

�T

e

T

t��

Bv(�) d�









� e

!t

k

e

T

�+t

k �









Z

��

�T

e

T

����

Bv(�) d�









:

Denote q = S

T

v, so that kP

(�1;T+t℄

qk = kP

(�1;t℄

vk. We have

k�

T+t

S

T

u� �

�+t

S

�

uk � e

!t

k

e

T

�+t

k �









Z

T��

0

e

T

T����

Bq(�) d�









: (5.5)

Sine B is admissible for

e

T and

e

T is exponentially stable, the third fator above is

bounded by k

!

kP

T��

qk, with k

!

independent of T , � and q, see [38, Remark 2.6℄.

Sine

kP

T��

qk � kP

T+t

qk � kP

(�1;T+t℄

qk = kP

(�1;t℄

vk;

we get that

k�

T+t

S

T

u� �

�+t

S

�

uk � k

!

e

!t

k

e

T

�+t

k � kP

(�1;t℄

vk: (5.6)

The last expression tends to zero as � !1, so that the limit in (5.1) exists.

Combining the de�nition (5.1) of

e

�

t

with (5.4), we obtain (5.2). The integral in

(5.2) exists in X

�1

beause what we integrate is in L

1

((�1; t℄;X

�1

), as is easy to

see (but now we know from (5.1) that the integral is in X). Finally, (5.3) follows

from (5.6) by taking � = �t and using (5.1) (with T in plae of �).

We all the operators

e

�

t

from (5.1) the extended input maps of �. Using (2.1) to

express �

�+t

in (5.1), we obtain that for all t � 0,

e

�

t

= T

t

e

�

0

+ �

t

: (5.7)

By replaing � by T , t by � + t and u by S

�

u in (5.1), we �nd that for all t; � 2 R,

e

�

�+t

S

�

=

e

�

t

. Multiplying this by S

��

to the right and using (5.7), we get the

following extension of (2.1): for all � 2 R and all t � 0,

e

�

�+t

= T

t

e

�

�

+ �

t

S

��

: (5.8)

Reall that for eah ! > 

F

, F

1

is a bounded operator from L

2

!

([0;1);U) to

L

2

!

([0;1);Y ), and we denote by kF

1

k

!

the orresponding operator norm.
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Proposition 5.3. For all u 2 L

2

!;lo

((�1;1);U) with ! > 

F

, the following limit

exists in L

2

!;lo

((�1;1);Y ):

F u = lim

�!1

S

��

F

1

S

�

u: (5.9)

The operator F de�ned in this way is a bilaterally shift-invarant and ausal exten-

sion of F

1

, whih means that

FP

+

= F

1

; FS

t

= S

t

F ; P

(�1;t℄

FP

[t;1)

= 0 (5.10)

for all t 2 R. For eah ! > 

F

, F maps L

2

!

((�1;1);U) into L

2

!

((�1;1);Y ) and

we denote by kFk

!

the orresponding operator norm. We have

kFk

!

= kF

1

k

!

= sup

s2C

!

kG(s)k: (5.11)

Proof. Let u 2 L

2

!;lo

((�1;1);U). To prove that the limit on the right-hand side

of (5.9) exists, it suÆes to show that the di�erene

S

�T

F

1

S

T

u� S

��

F

1

S

�

u = S

�T

(F

1

� S

T��

F

1

S

��T

)S

T

u

tends to zero in L

2

!

(R;Y ) as �; T !1 with T � � . Multiplying (2.12) by S

�

�

to the

right, and then replaing � by T � � we get the seond equality in

S

T��

F

1

S

��T

= S

T��

F

1

S

�

T��

= F

1

P

[T��;1)

;

so that, using I �P

[T��;1)

= P

[0;T�� ℄

, we obtain

S

�T

F

1

S

T

u� S

��

F

1

S

�

u = S

�T

F

1

P

[0;T�� ℄

S

T

u = S

�T

F

1

S

T

P

[�T;�� ℄

u:

This implies

kS

�T

F

1

S

T

u� S

��

F

1

S

�

uk

L

2

!

� kS

�T

k

!

� kF

1

k

!

� kS

T

k

!

� kP

[�T;�� ℄

uk

L

2

!

;

where kS

�T

k

!

is the norm of S

�T

on the spae L

2

!

((�1;1);Y ), whih is easily seen

to be e

!T

, and similarly kS

T

k

!

= e

�!T

. Thus

kS

�T

F

1

S

T

u� S

��

F

1

S

�

uk

L

2

!

� kF

1

k

!

� kP

[�T;�� ℄

uk

L

2

!

;

and the right-hand side tends to zero as �; T ! 1 with T � � , showing that the

limit in (5.9) exists. The same argument shows that if u 2 L

2

!

(R;U), then the limit

on the right-hand side of (5.9) exists in L

2

!

(R;Y ), so F maps L

2

!

(R;U) into L

2

!

(R;Y ).

The identity FP

+

= F

1

follows from (2.12) and (5.9), using that S

�

= S

�

P

+

. To

get the shift-invariane (the seond part of (5.10)), it suÆes to replae u by S

t

u in

(5.9). The ausality (the third part of (5.10)) follows from the shift-invariane of

F and the fat that P

�

FP

+

= P

�

F

1

= 0. To prove that kFk

!

� kF

1

k

!

, we use

(5.9) with the limit taken in L

2

!

(R;Y ): we have for all � 2 R,

kS

��

F

1

S

�

uk

L

2

!

� kS

��

k

!

� kF

1

k

!

� kS

�

k

!

� kuk

L

2

!

= kF

1

k

!

� kuk

L

2

!

;

hene kFuk

L

2

!

� kF

1

k

!

� kuk

L

2

!

. The inequality kFk

!

� kF

1

k

!

is trivial sine

F

1

= FP

+

and kP

+

k

!

= 1. Finally, the fat that kF

1

k

!

= sup

s2C

!

kG(s)k was

proved in Theorem I.3.6, so that (5.11) holds.
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By replaing � in (2.11) by � +T , multiplying by S

T

u to the right, by S

�T

to the

left, and letting T !1 we get the following extension of (2.11): for all � 2 R,

F = P

(�1;� ℄

F + S

�

	

1

e

�

�

+ S

�

F

1

S

��

: (5.12)

Remark 5.4. In the formulation of Sta�ans [30, 31℄, a well-posed linear system is

de�ned in terms the semigroup T

t

(denoted by A(t)) and the extended operators

e

�

0

(denoted by B), 	

1

(denoted by C), and F (denoted by D). The original operator

families of input maps �

�

, output maps 	

�

, and and input-output maps F

�

an be

reovered from

e

�

0

, 	

1

, and F by means of

�

�

=

e

�

0

S

��

P

+

; 	

�

= P

�

	

1

; F

�

= P

�

FP

�

:

Moreover, Sta�ans writes the algebrai onditions (2.1){(2.3) as (in our notation)

T

t

e

�

0

=

e

�

0

S

�t

P

�

; t � 0;

	

1

T

t

= S

�

t

	

1

; t � 0;

P

�

FP

+

= 0; P

+

FP

�

= 	

1

e

�

0

; S

t

F = FS

t

; t 2 R:

De�nition 5.5. For eah u 2 L

2

!;lo

((�1;1);U) with ! > !

T

we de�ne the orre-

sponding state trajetory vanishing at �1, x : (�1;1)! X and the orrespond-

ing bilateral output funtion y 2 L

2

!;lo

((�1;1);Y ) by

x(t) =

e

�

t

u; y = Fu: (5.13)

These onepts of state trajetory and output funtion are idential to those used

by Sta�ans [30, De�nition 9℄, [31, De�nition 2.2℄ in \the time-invariant setting."

The following theorem represents the \bilateral" version of Proposition 2.6 and

Theorems 3.1, 3.2 and 4.4. We use the notation C&D, [C&D℄

�

and S

�

(s) introdued

in Setion 3, as well as C

L

w

and C

�

w

from Setion 4.

Theorem 5.6. Denote the generator of T by A, the ontrol operator of � by B, the

observation operator of � by C and the ombined observation/feedthrough operator of

� by C&D. Let ! > !

T

and u 2 L

2

!;lo

((�1;1);U), and de�ne the state trajetory

x and the output funtion y as in (5.13).

(i) The funtion x is the unique strong solution in X

�1

of

_x(t) = Ax(t) +Bu(t); t 2 R ;

lim

t!�1

e

�!t

x(t) = 0;

(5.14)

i.e., x is ontinuous with values in X, x 2 H

1

lo

((�1;1);X

�1

) and its deriva-

tive _x satis�es (5.14) for almost every t 2 R. Moreover, for almost every t 2 R

we have that

h

x(t)

u(t)

i

2 D([C&D℄

�

) and the output y(t) is given by (3.7).
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(ii) If u 2 H

1

!

((�1;1);U), then

x 2 C

1

((�1;1);X);

�

x

u

�

2 C((�1;1);V ); y 2 H

1

!

((�1;1);Y );

and for every t 2 R, the formula (3.3) holds.

(iii) If � is weakly regular, and if we denote the feedthrough operator of � by D,

then for almost every t 2 R we have that x(t) 2 D(C

L

w

) and the output y(t)

is given by the formula (4.2). If t 2 R is suh that both u and y are weakly

ontinuous from the right at t, then (using those right limits) (4.2) holds at t

(in partiular, x(t) 2 D(C

L

w

)).

We remark that the meaning of a strong solution of _x(t) = Ax(t) +Bu(t) in X

�1

on an interval J is as in Proposition 2.6, where we had J = [0;1).

Proof. (i) Fix � 2 R. By (5.8), we an interpret the funtion q(t) = x(�+t) =

e

�

�+t

u,

de�ned for t � 0, as the state trajetory of � (in the sense of De�nition 2.4) with

initial state x

0

=

e

�

�

u and input funtion v = P

+

S

��

u. By (5.12), the funtion w

de�ned by w = P

+

S

��

y is the orresponding output funtion. Indeed, by (5.12),

w = P

+

S

��

Fu = 	

1

e

�

�

u+ F

1

S

��

u = 	

1

x

0

+ F

1

v :

By Proposition 2.6, q is a strong solution in X

�1

of _q(t) = Aq(t) +Bv(t) on [0;1),

whene x is a strong solution in X

�1

of _x(t) = Ax(t) + Bu(t) on [�;1). By The-

orem 3.2,

h

q(t)

v(t)

i

2 D([C&D℄

�

) and w(t) = [C&D℄

�

h

q(t)

v(t)

i

hold for almost every

t � 0. As � was arbitrary, x is a strong solution in X

�1

of _x(t) = Ax(t) +Bu(t) on

(�1;1) and (3.7) holds for almost every t � 0.

To prove the uniqueness of this strong solution with the extra initial ondition at

�1, suppose that we have two suh solutions x

1

and x

2

. Then their di�erene z =

x

2

�x

1

is a strong solution of _z(t) = Az(t) on (�1;1), hene z(t) = T

t��

z(�) for all

t; � 2 R with t � � . The initial ondition in (5.14) implies that lim

�!�1

T

t��

z(�) =

0, so that z(t) = 0 for all t 2 R, proving uniqueness.

(ii) In this ase u 2 C((�1;1);U), so Ax + Bu 2 C((�1;1);X

�1

). Sine

x 2 H

1

lo

((�1;1);X

�1

) and _x(t) = Ax(t) + Bu(t) in X

�1

for almost every t 2 R,

we �nd that x 2 C

1

((�1;1);X

�1

) and that _x(t) = Ax(t) + Bu(t) for all t 2 R.

By the de�nition of x and the omment after (5.7), for all �; t 2 R ,

x(� + t)� x(�)

t

=

e

�

�+t

u�

e

�

�

u

t

=

e

�

�

S

�t

u� u

t

:

As t! 0, we have (S

�t

u�u)=t! _u in L

2

!

((�1;1);U), so by the ontinuity of

e

�

�

,

x is di�erentiable at � in the spae X (and _x(�) =

e

�

�

_u). Thus Ax(�) + Bu(�) =

_x(�) 2 X. This means that

h

x(�)

u(�)

i

2 V for all � 2 R. A similar argument with x(�)
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replaed by y and

e

�

�

replaed by F shows that y 2 H

1

!

((�1;1);Y ) (and that

_y = F _u). We an now repeat the argument in the proof of (i), with Proposition 2.6

and Theorem 3.2 replaed by Theorem 3.1(i), to show that x 2 C

1

((�1;1);X),

[

x

u

℄ 2 C((�1;1);V ), and (3.3) holds for all t 2 R.

(iii) The proof of this point is similar to the proof of (i), but now we replae

Theorem 3.2 by Theorem 4.4.

6. The onnetion with sattering theory

Starting from an arbitrary well-posed linear system �, it is possible to de�ne a

strongly ontinuous semigroup whih resembles those enountered in the sattering

theory of Lax and Phillips [12, 13℄, and whih ontains all the information about �.

Notation 6.1. Like in the previous setion, we assume that � = (T;�;	; F) is a

well-posed linear system with input spae U , state spae X, output spae Y , transfer

funtion G and the two growth bounds !

T

and 

F

. We ontinue to use the notation

P

�

, P

+

, S

t

, S

�

t

, C

!

, L

2

!

, H

1

!

, 	

1

and F

1

introdued in Setion 2 and S

t

,

e

�

t

and F

from Setion 5. We denote the generator of T by A, the ontrol operator of � by

B, its observation operator by C, its ombined observation/feedthrough operator

by C&D, and its system operator by S

�

(s). C&D and S

�

(s) were introdued in

Setion 3. The domain of C&D and of S

�

(s) is the spae V from (3.1).

Proposition 6.2. Let ! 2 R, Y = L

2

!

((�1; 0℄;Y ) and U = L

2

!

([0;1);U). For all

t � 0 we de�ne on Y �X � U the operator T

t

by

T

t

=

2

4

S

�t

0 0

0 I 0

0 0 S

�

t

3

5

2

4

I 	

t

F

t

0 T

t

�

t

0 0 I

3

5

(this looks like (1.7), but we are now in a more general ontext). Then T = (T

t

)

t�0

is a strongly ontinuous semigroup. Take y

0

2 Y; x

0

2 X and u

0

2 U . We denote

by x the state trajetory x(t) = T

t

x

0

+�

t

u

0

and by y the \bilateral" output funtion,

equal to y

0

for t < 0, and equal to 	

1

x

0

+ F

1

u

0

for t � 0. Then for all t � 0,

2

4

P

(�1;t℄

y

x(t)

P

[t;1)

u

0

3

5

=

2

4

S

t

0 0

0 I 0

0 0 S

t

3

5

T

t

2

4

y

0

x

0

u

0

3

5

: (6.1)

Formula (6.1) shows that at any time t � 0, the �rst omponent of T

t

h

y

0

x

0

u

0

i

represents the past output, the seond omponent represents the present state and

the third omponent represents the future input.

Proof. The semigroup property T

�+t

= T

t

T

�

follows (via elementary algebra) from

the semigroup property of T, (2.1){(2.3) and the fat that the left shifts S

�t

and
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S

�

t

are semigroups on Y and U , respetively. In a similar way, the initial ondition

T

0

= I follows from the initial onditions T

0

= I, �

0

= 0, 	

0

= 0, F

0

= 0, S

�

0

= I,

S

0

= I. The formula (6.1) is a diret onsequene of De�nition 2.4.

To prove the strong ontinuity, we split

h

y

0

x

0

u

0

i

2 Y �X �U into

h

y

0

0

0

i

+

h

0

x

0

u

0

i

. The

ontinuity of T

t

applied to the �rst vetor follows from the strong ontinuity of S

�t

.

The ontinuity of T

t

applied to the seond vetor follows from the strong ontinuity

of S

�

t

and S

�t

and from (6.1) (using the ontinuity of state trajetories).

In the ase where ! = 0 and T is ontrative (or unitary), T is isomorphi to a

semigroup of the type studied by Lax and Phillips (the unitary ase is treated in

[12℄ and the ontrative ase in [13℄; an extension to the general ase is in Helton

[6℄). For this reason, we all T the Lax-Phillips semigroup of index ! indued by �.

The generator A of the Lax{Phillips semigroup (A is a Gothi A) and the spe-

trum of A an be haraterized as follows:

Theorem 6.3. Let ! 2 R, and let T be the Lax{Phillips semigroup of index !

indued by �. We denote the generator of T by A.

(i) The domain of A, D(A) onsists of all the vetors

h

y

0

x

0

u

0

i

2 H

1

!

((�1; 0℄;Y )�

X � H

1

!

([0;1);U) whih satisfy

�

x

0

u

0

(0)

�

2 V and y

0

(0) = C&D

�

x

0

u

0

(0)

�

, and

on D(A), A is given by

A

2

4

y

0

x

0

u

0

3

5

=

2

4

y

0

0

Ax

0

+Bu

0

(0)

u

0

0

3

5

: (6.2)

(ii) The following two onditions are equivalent (for any � 2 C ):

(a)

h

y

0

x

0

u

0

i

2 D(A) and

h

y

x

u

i

= (A� �I)

h

y

0

x

0

u

0

i

,

(b) y

0

2 H

1

!

((�1; 0℄;Y ), x

0

2 X, u

0

2 H

1

!

([0;1);U),

�

x

0

u

0

(0)

�

2 V and

�

x

y

0

(0)

�

= S

�

(�)

�

x

0

u

0

(0)

�

;

�

y

u

�

=

�

y

0

0

u

0

0

�

� �

�

y

0

u

0

�

: (6.3)

(iii) The spetrum �(A) ontains the vertial line where Re� = !. A point � with

Re� > ! belongs to �(A) if and only if it belongs to �(A), and a point � with

Re� < ! belongs to �(A) if and only if S

�

(�) is not invertible.

Proof. (i) Let

h

y

0

x

0

u

0

i

2 D(A), and denote (for all t � 0)

2

4

y

t

x

t

u

t

3

5

= T

t

2

4

y

0

x

0

u

0

3

5

;

2

4

~y

~x

~u

3

5

= A

2

4

y

0

x

0

u

0

3

5

:
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Sine the limit lim

t#0

1

t

(u

t

� u

0

) = ~u exists in L

2

!

([0;1);U), u

0

belongs to the

domain of the generator of the left-shift semigroup S

�

ating on L

2

!

([0;1);U), i.e.,

u

0

2 H

1

!

([0;1);U) and ~u = u

0

0

. Sine x

t

is the state trajetory of � orresponding

to the initial state x

0

and the input funtion u

0

, it is in H

1

lo

([0;1); X

�1

) and we

have _x

t

= Ax

t

+Bu

0

(t) in X

�1

, for almost every t � 0 (see Proposition 2.6). Sine

Ax

t

+ Bu

0

(t) is a ontinuous funtion of t with values in X

�1

, we onlude that

_x

t

= Ax

t

+ Bu

0

(t) holds (in X

�1

) for every t � 0. Sine

h

y

0

x

0

u

0

i

2 D(A), x

t

is a

ontinuously di�erentiable funtion with values in X. Hene, Ax

t

+ Bu

0

(t) is a

ontinuous funtion of t with values in X, in partiular, Ax

0

+ Bu

0

(0) 2 X, so

that

�

x

0

u

0

(0)

�

2 V and ~x = lim

t#0

1

t

(x

t

� x

0

) = Ax

0

+ Bu

0

(0). Aording to Theorem

3.1, the output z of � belongs to H

1

!

([0;1);Y ) and satis�es z(t) = C&D

�

x

t

u

0

(t)

�

=

C&D

�

x

t

u

t

(0)

�

for every t � 0. By the de�nition of T, we an deompose y

t

as follows:

y

t

(�) =

(

y

0

(t + �) for � < �t;

z(t + �) for � t � � � 0:

Sine

h

y

0

x

0

u

0

i

2 D(A), the limit lim

t#0

1

t

(y

t

� y

0

) = ~y exists in L

2

!

((�1; 0℄;Y ). This

implies that y

0

2 H

1

!

((�1; 0℄;Y ) and y

0

(0) = z(0) = C&D

�

x

0

u

0

(0)

�

, and that the

limit is ~y = y

0

0

. Thus, y

0

, x

0

and u

0

satisfy the requirements listed in point (i), and

we have heked all three omponents of (6.2).

Conversely, suppose that y

0

, x

0

and u

0

satisfy the requirements in point (i). Then

by simple arguments using Theorem 3.1, we onlude that the three limits giving ~y,

~x and ~u exist, and hene

h

y

0

x

0

u

0

i

2 D(A).

(ii) This statement is a onsequene of (i) via simple algebrai manipulations.

(iii) If Re� = !, then u given in the last part of (6.3) (with u

0

2 H

1

!

([0;1);U))

annot be any funtion in L

2

!

([0;1);U). Indeed, the Laplae transform û

0

given by

û

0

(s) = (s��)

�1

(û(s)+u

0

(0)) must be square integrable on the line where Re s = !,

and this exludes funtions suh as û(s) = (s� �)

�0:3

(s� !+ 1)

�1

v with a nonzero

v 2 U . Thus, �I �A is not onto, so that the vertial line where Re� = ! belongs

to the spetrum of A (proving the �rst statement in (iii)).

If Re� > !, we show that the equation

h

y

x

u

i

= (A � �I)

h

y

0

x

0

u

0

i

, in the unknowns

y

0

; x

0

and u

0

, has a unique solution if and only if � 2 �(A). It will be more onvenient

to use the equivalent form (6.3) of this equation.

The equation u = u

0

0

� �u

0

(whih is ontained in (6.3)) has the unique solution

u

0

given via its Laplae transform by

û

0

(s) =

û(s)� û(�)

s� �

:

Observe that u

0

(0) = �û(�). We substitute this value into (A��I)x

0

+Bu

0

(0) = x

(whih is part of (6.3)), and observe that the resulting equation has a unique solution

x

0

for all x 2 X if and only if � 2 �(A). When this is the ase, we an ompute y

0

(0)
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from the �rst equation in (6.3). Then, y

0

an be omputed by solving its di�erential

equation y

0

0

��y

0

= y (ontained in (6.3)) with the boundary ondition y

0

(0) known.

We onlude that, for Re� > !, � 2 �(A) if and only if � 2 �(A).

For Re� < !, again (as for Re� > !) we examine the solvability of (6.3). The

equation y

0

0

� �y

0

= y (ontained in (6.3)) has a unique solution given by

y

0

(t) =

Z

t

�1

e

�(t��)

y(�) d� ;

for all t � 0, in partiular yielding y

0

(0). The �rst equation in (6.3) has a unique

solution

�

x

0

u

0

(0)

�

in terms of [

x

y

0

(0)

℄ if and only if S

�

(�) is invertible. One we have

u

0

(0), we an easily solve the di�erential equation u

0

0

��u

0

= u to obtain u

0

. Thus,

we onlude that for Re� < !, � 2 �(A) if and only if S

�

(�) is invertible.

The following proposition haraterizes the resolvent of A.

Proposition 6.4. Let ! 2 R, let T be the Lax{Phillips semigroup of index ! indued

by �, and let A be its generator. G is the analyti funtion de�ned on �(A) by (3.4)

(so that for Re s > !

T

it is the transfer funtion of �).

(i) Let s 2 �(A) with Re s > ! and let

h

y

x

u

i

2 L

2

!

((�1; 0℄;Y )�X�L

2

!

([0;1);U).

Then the following onditions are equivalent:

(a)

h

y

0

x

0

u

0

i

= (sI �A)

�1

h

y

x

u

i

,

(b)

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

�

x

0

y

0

(0)

�

=

�

I 0

C&D

� �

sI � A �B

0 I

�

�1

�

x

û(s)

�

=

�

(sI � A)

�1

(sI � A)

�1

B

C(sI � A)

�1

G(s)

� �

x

û(s)

�

;

y

0

(t) = e

st

y

0

(0) +

Z

0

t

e

s(t��)

y(�) d�; t � 0;

u

0

(t) =

Z

1

t

e

s(t��)

u(�) d�; t � 0 (hene; u

0

(0) = û(s)):

(ii) Let s 2 �(A) with Re s < ! and let

h

y

x

u

i

2 L

2

!

((�1; 0℄;Y )�X�L

2

!

([0;1);U).

Then the following onditions are equivalent:

(a)

h

y

0

x

0

u

0

i

= (sI �A)

�1

h

y

x

u

i

,

(b)

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

�

x

0

u

0

(0)

�

= �S

�

(s)

�1

�

x

ŷ(s)

�

;

y

0

(t) = �

Z

t

�1

e

s(t��)

y(�) d�; t � 0;

u

0

(t) = e

st

u

0

(0)�

Z

t

0

e

s(t��)

u(�) d�; t � 0:
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The proof onsists of straightforward omputations based on Theorem 6.3, its

proof as well as Proposition 3.6, and we omit it. Note that S

�

(s)

�1

an be expressed

using any of the fatorizations given in Proposition 3.6.

We omment on the onnetion with the work of Lax and Phillips: Assuming

U = Y and ! = 0, we identify the unperturbed unitary group in [12, 13℄ with the

left shift group S

�t

on L

2

((�1;1);U). The spaes U and Y from Proposition 6.2

(with ! = 0) are orthogonal inoming and outgoing subspaes for S

�t

, respetively,

and F from Proposition 5.3 is the sattering operator. Muh useful information on

how to translate sattering theory into the language of systems theory is found in

[6℄. We mention that in [12℄ and [13℄, in addition to the ontrativity assumption

on T, some further ontrollability and observability type assumptions are made.

The early development of the theory of well-posed linear systems that took plae

in the Soviet Union in the eighties appears to have used the one-to-one onnetion

between a (dissipative) well-posed linear system and a (ontrative) Lax-Phillips

semigroup of index zero as a starting point.

In [6, 12, 13℄, the operator

W

�

=

2

4

P

�

F

e

�

0

P

+

3

5

(denoted by very di�erent symbols) is alled the bakward wave operator, and its

ation on exponential inputs (restrited to (�1; 0℄) is investigated. Translated into

our language and our somewhat di�erent framework, the result is as follows:

Proposition 6.5. Denote the generator of T by A and the ontrol operator of � by

B. Then for every u

0

2 U , for all � 2 C

!

T

and for all t 2 R,

e

�

t

(e

�

u

0

) = e

�t

(�I � A)

�1

Bu

0

; (6.4)

F(e

�

u

0

) = e

�

G(�)u

0

; (6.5)

where e

�

is the funtion e

�

(t) = e

�t

, for all t 2 R.

Proof. To prove (6.4), we substitute u = e

�

u

0

in (5.2) to get

e

�

t

(e

�

u

0

) =

Z

0

�1

e

�(�+t)

T

��

Bu

0

d� = e

�t

Z

1

0

e

���

T

�

Bu

0

d� = e

�t

(�I � A)

�1

Bu

0

:

Let !; T 2 R with !

T

< ! < Re� and hoose u 2 H

1

!

((�1;1);U) suh that

P

(�1;T ℄

u = e

�

u

0

. Denote y = Fu. By ausality, P

(�1;T ℄

y = P

(�1;T ℄

F(e

�

u

0

).

Denote x(t) =

e

�

t

u, so that for t � T , x(t) = e

�t

(�I �A)

�1

Bu

0

. By Theorem 5.6(ii)

and the formula (3.4) for G, for all t 2 (�1; T ℄,

y(t) = C&D

�

x(t)

u(t)

�

= e

�t

C&D

�

(�I � A)

�1

B

I

�

u

0

= e

�t

G(�)u

0

:

Sine T 2 R was arbitrary, we get that (6.5) holds.
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Remark 6.6. The last proposition is not stated in the most general form. Indeed,

if 

F

< !

T

, where 

F

is the growth bound of F

1

, then formula (6.5) remains valid

on the larger half-plane � 2 C



F

. The most onise argument for this is to regard

both sides as analyti funtions de�ned on C

!

T

with values in the Fr�ehet spae

L

2

!;lo

((�1;1);Y ), where ! 2 (

F

; !

T

℄. Both sides have analyti extensions to C

!

,

and hene these extensions must be equal on C

!

. Sine ! 2 (

F

; !

T

℄ was arbitrary,

we get equal analyti extensions on C



F

, meaning that (6.5) holds on C



F

.

In the sattering theory of Lax and Phillips [12, 13℄ (and also in [36℄) the identity

(6.5) is taken as the de�nition of G(�), whih is alled the sattering matrix in that

ontext. We refer to Sta�ans [35℄ or [36℄ for further disussions of the onnetion

between sattering theory and the theory of well-posed linear systems.

Reall that if u 2 L

2

!

([0;1);U) with ! > 

F

, then the Laplae transform of F

1

u

is given by

d

F

1

u(s) = G(s)û(s) for all s 2 C

!

. A similar result is valid with F

1

replaed by F . To state this result, we need the bilateral Laplae transform:

De�nition 6.7. Let W be a Hilbert spae. The bilateral Laplae transform of a

funtion u 2 L

2

lo

((�1;1);W ) is de�ned by û(s) =

R

1

�1

e

�st

u(t) dt, for all those

s 2 C for whih the integral onverges absolutely.

Clearly, if u(t) = 0 for t < 0, then we reover the usual Laplae transform. It

is easy to see that the domain of de�nition of û, if nonempty, is a vertial strip

fs 2 C j Re s 2 Jg, where J is an interval in R. In the interior of this vertial strip

û is analyti. The interval J may be unbounded, at eah end it may be open or

losed, and it may onsist of a single point (see [3, 23℄). If u 2 L

2

!

((�1;1);W )

and if J is nonempty, then ! 2 J . If it happens that ! 2 J , i.e., if û is de�ned on

the line where Re s = !, then the funtion � 7! û(! + i�), �1 < � < 1, an be

interpreted as

p

2� times the Fourier transform of the funtion e

�!

u, and Parseval's

identity gives

Z

1

�1

ke

�!t

u(t)k

2

dt =

1

2�

Z

1

�1

kû(! + i�)k

2

d�:

The above fat motivates us to slightly extend the de�nition of the bilateral

Laplae transform. We de�ne the bilateral Laplae transform of a funtion u 2

L

2

!

((�1;1);W ) on the vertial line Re s = ! to be

p

2� times the (almost every-

where de�ned) Fourier transform of e

�!

u (in the L

2

sense). We still denote this

transform by û(! + i�), �1 < � <1, even if ! =2 J . If ! =2 J but ! 2 J , then for

almost every � 2 R, û(!+ i�) is the nontangential limit of û(s) with Re s 2 J (this

follows from well-known fats about Hardy spaes).

Proposition 6.8. Let ! > 

F

and u 2 L

2

!

((�1;1);U). Then



Fu(s) = G(s)û(s) (6.6)

for almost every s 2 C with Re s = !. (This means that, for almost every � 2 R,

(6.6) holds with s = ! + i�.) If P

+

u 2 L

2

�

([0;1);U) and P

�

u 2 L

2

�

((�1; 0℄;U)

with 

F

< � < �, then (6.6) holds for all s 2 C with � < Re s < � and for almost

every s 2 C with Re s = � or Re s = �.
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Proof. Take � 2 (

F

; !). If u has ompat support ontained in [0;1), then u 2

L

2

�

([0;1);U) and (6.6) holds for all s 2 C

�

beause of (2.19) and the fat that

FP

+

= F

1

. If u has ompat support ontained in [��;1), then by the ausality

of F , the supports of S

�

u and S

�

Fu are ontained in [0;1). Therefore we an apply

the preeding result, whih together with the shift-invariane of F gives

e

��s



Fu(s) =

\

S

�

Fu(s) =

\

FS

�

u(s) = G(s)

d

S

�

u(s) = e

��s

G(s)bu(s)

for all s 2 C with Re s > �. In partiular, (6.6) holds for Re s = ! in this ase,

too. Regarded as elements of L

2

of the vertial line where Re s = !, both sides of

(6.6) depend ontinuously on u 2 L

2

!

(((�1;1);U). Sine funtions with ompat

support are dense in L

2

!

((�1;1);U), we an extend (6.6) by ontinuity (as an

identity in L

2

) to all funtions u 2 L

2

!

((�1;1);U). Being an identity in L

2

, the

formula now holds only almost everywhere.

Suppose that the onditions in the seond part of the proposition hold. Then, by

elementary estimates, we �nd that u 2 L

2

�

((�1;1);U) and Fu 2 L

2

�

((�1;1);Y )

for all � 2 [�; �℄ and u 2 L

1

�

((�1;1);U) and Fu 2 L

1

�

((�1;1);Y ) for all

� 2 (�; �). By the �rst part of the proposition, (6.6) holds almost everywhere on

eah vertial line Re s = � with � 2 [�; �℄. Sine both sides are analyti in the strip

� < Re s < �, we must have equality everywhere in this strip.

We mention that for some systems, (6.6) remains valid for almost every s 2 C

with Re s = !, even if ! = 

F

, see the disussion in Thomas [37℄.

7. Dissipative system

In this setion we disuss briey dissipative well-posed linear systems, mainly

the haraterization of suh systems. We use the same notation as in Setion 6.

In partiular, the system � = (T;�;	; F) as well as the spaes U; X; Y; V and

the operators

~

�

t

; 	

1

; F

1

; F ; A; B; C; C&D are as in Notation 6.1. The system

operator of � is S

�

(s) and the growth bound of T is !

T

. The funtion G is de�ned

on �(A) by (3.4) (as in Proposition 6.4). Thus, for Re s > !

T

, G(s) is the transfer

funtion of � (see also the omments before Proposition 3.6).

De�nition 7.1. The system � is alled dissipative if for all x

0

2 X and all u 2

L

2

([0;1);U), the following holds: if x is the state trajetory and y is the output

funtion of �, as in (2.14), then for all t � 0,

kx(t)k

2

� kx

0

k

2

�

Z

t

0

ku(�)k

2

d� �

Z

t

0

ky(�)k

2

d�: (7.1)

The following proposition shows the onnetion between the dissipativity of �

and the Lax{Phillips semigroup indued by �.

Proposition 7.2. The following onditions are equivalent:
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(i) � is dissipative.

(ii) For every � > 0, the operator �

�

=

�

T

�

�

�

	

�

F

�

�

is a ontration from X �

L

2

([0; � ℄;U) to X � L

2

([0; � ℄;Y ).

(iii) The Lax{Phillips semigroup of index zero indued by � is ontrative.

Moreover, if � is dissipative, then its semigroup T is ontrative, we have

e

�

0

2 L(L

2

((�1; 0℄;U);X); 	

1

2 L(X;L

2

([0;1);Y ); (7.2)

F 2 L(L

2

((�1;1);U);L

2

((�1;1);Y ) (7.3)

and these three operators are ontrations.

Note that in (ii) we use the norm k[

x

0

u

℄k

2

= kx

0

k

2

+kuk

2

L

2

([0;� ℄;U)

onX�L

2

([0; � ℄;U)

and the analogous norm on X�L

2

([0; � ℄;Y ). Note also that (7.3) implies that F

1

is

a ontration from L

2

([0;1);U) to L

2

([0;1);Y ). Aording to the end of Setion

2, this implies sup

s2C

0

kG(s)k � 1. This will be further re�ned in Remark 7.5.

Proof. (i) , (ii): This follows from De�nitions 2.4 and 7.1, with (1.5).

(ii) , (iii): Let y

0

2 L

2

((�1; 0℄;Y ), x

0

2 X, u

0

2 L

2

([0;1);U), and let x be

the state trajetory and y the output funtion of �, as in (2.14) (with u

0

in plae

of u). We denote by T the Lax{Phillips semigroup of index zero indued by �, as

in Proposition 6.2. Aording to (6.1), for all t � 0,







T

t

h

y

0

x

0

u

0

i







2

�







h

y

0

x

0

u

0

i







2

=

Z

0

�1

ky

0

(�)k

2

d� +

Z

t

0

ky(�)k

2

d�

+ kx(t)k

2

+

Z

1

t

ku

0

(�)k

2

d�

�

Z

0

�1

ky

0

(�)k

2

d� � kx

0

k

2

�

Z

1

0

ku

0

(�)k

2

d�

=

Z

t

0

ky(�)k

2

d� + kx(t)k

2

� kx

0

k

2

�

Z

t

0

ku

0

(�)k

2

d�:

The left-hand side above is � 0 for all y

0

, x

0

, and u

0

if and only if T is ontrative,

and the right-hand side is � 0 for all x

0

and u

0

if and only if � is dissipative, so

that T is ontrative if and only if � is dissipative.

The �nal laims are onsequenes of (ii). Indeed, to show the �rst part of (7.2),

we use that for all v 2 L

2

((�1; 0℄;U) and for 0 � � � T we have

k�

T

S

T

v � �

�

S

�

vk � kT

�

k � k�

T��

S

T

vk :

This is proved exatly as (5.5) (with ! = 0 and t = 0). Sine, by (ii), T

�

and �

T��

are ontrations (and S

T

is also a ontration), we obtain k�

T

S

T

v � �

�

S

�

vk �

kP

[�T;�� ℄

vk

L

2

. This proves that the limit (5.1) (with t = 0) exists and, by taking

� = 0 and T!1, it shows that

e

�

0

is a ontration. The proof of the seond part

of (7.2) is muh easier. The proof of (7.3) is similar to the proof of the �rst part of

(7.2), by slightly modifying a part of the proof of Proposition 5.3.
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We denote by BC

1

([0;1);X) the spae of all the bounded funtions ontained in

C

1

([0;1);X), whose derivative is also bounded.

Proposition 7.3. Suppose that � is dissipative, x

0

2 X and u 2 H

1

([0;1);U) suh

that

�

x

0

u(0)

�

2 V . If x is the state trajetory and y is the output funtion orresponding

to x

0

and u (as in (2.14)), then

x 2 BC

1

([0;1);X); y 2 H

1

([0;1);Y ):

Proof. Aording to Theorem 3.1(i), x is ontinuously di�erentiable on [0;1) and

y 2 H

1

!

([0;1);Y ) for all ! > 0. The boundedness of the state trajetory x follows

from the fat that the operators T

�

and �

�

are uniformly bounded. The boundedness

of its derivative follows similarly, from the formula

_x(t) = T

t

(Ax

0

+Bu(0)) + �

t

_u:

To obtain that y 2 H

1

([0;1);Y ), we have to modify slightly the last part of the

proof of Theorem 3.1. Indeed, using the seond part of (7.2) and (7.3), we see that

(3.6) holds for ! = 0.

For the following theorem we need the spaes X

d

1

and X

d

�1

, whih are similar to

X

1

and X

�1

. The spae X

d

1

is D(A

�

) with the norm kzk

d

1

= k(�I � A

�

)zk, where

� 2 �(A

�

), while X

d

�1

is de�nd as the ompletion of X with respet to the norm

kzk

d

�1

= k(�I �A

�

)

�1

zk. It is easy to see that X

d

�1

is isomorphi to the dual of X

1

with respet to the pivot spae X. We identify U and Y with their duals, so that

B

�

2 L(X

d

1

;U) and C

�

2 L(Y ;X

d

�1

). If T 2 L(X

1

;X

d

�1

) then also T

�

2 L(X

1

;X

d

�1

).

For suh a T , we say that T � 0 if T

�

= T and hTz; zi � 0 for all z 2 X

1

. For an

operator T 2 L(X

1

� U ;X

d

�1

� U), the meaning of T � 0 is similar.

Theorem 7.4. The following onditions are equivalent:

(i) � is dissipative.

(ii) For all x

0

2 X and u 2 H

1

([0;1);U) satisfying

�

x

0

u(0)

�

2 V , the orresponding

state trajetory x and output funtion y (as in (2.14)) satisfy

d

dt

kx(t)k

2

� ku(t)k

2

� ky(t)k

2

; for all t � 0: (7.4)

(iii) For all [

x

u

℄ 2 V ,

2Re hAx +Bu; xi � kuk

2

�





C&D [

x

u

℄





2

: (7.5)

(iv) For some s 2 �(A) we have

�

A+ A

�

(sI + A

�

)(sI � A)

�1

B

B

�

(sI � A

�

)

�1

(sI + A)℄ B

�

(sI � A

�

)

�1

(2Re s)(sI � A)

�1

B

�

+

�

C

�

C C

�

G(s)

G(s)

�

C G(s)

�

G(s)

�

�

�

0 0

0 I

�

; (7.6)

whih is an operator inequality in L(X

1

� U ;X

d

�1

� U).
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(v) The inequality (7.6) holds for all s 2 �(A).

(vi) For some s 2 �(A) \ C

0

, the operator

�

A(s) B(s)

C(s) G(s)

�

=

�

(sI + A)(sI � A)

�1

p

2Re s (sI � A)

�1

B

p

2Re sC(sI � A)

�1

G(s)

�

(7.7)

is a ontration.

(vii) C

0

� �(A), and for all s 2 C

0

, the operator

h

A(s) B(s)

C(s) G(s)

i

de�ned in (7.7) is a

ontration.

Proof. (i)) (ii): We know from Theorem 3.1(i) (or from Proposition 7.3) that x is

ontinuously di�erentiable and u; y are ontinuous. To obtain (7.4), we di�erentiate

(7.1) with respet to t (we use the right derivative at t = 0).

(ii)) (i): If (ii) holds then, whenever x

0

and u satisfy the onditions listed in (ii),

we �nd that (7.1) holds (by integrating (7.4)). The sides of (7.1) depend ontinuously

on x

0

and u. Sine the set of possible x

0

and u in (ii) is dense in X �L

2

([0;1);U),

this implies that (7.1) holds for all x

0

2 X and all u 2 L

2

([0;1);U).

(ii) ) (iii): By Theorem 3.1(i), it follows from (ii) that (7.5) holds with [

x

u

℄

replaed by

h

x(t)

u(t)

i

for all t � 0 (beause

d

dt

kx(t)k

2

= 2Re h _x(t); x(t)i). In partiular,

taking t = 0 we get (7.5) for all [

x

u

℄ 2 V .

(iii) ) (ii): If (iii) holds, and if x

0

and u satisfy the onditions in (ii), then by

Theorem 3.1(i),

h

x(t)

u(t)

i

2 V and

h

_x(t)

y(t)

i

=

h

A B

C&D

i h

x(t)

u(t)

i

, so that (7.4) holds.

(iii) ) (v): It follows from Proposition 3.6 that, for all s 2 �(A),

�

I (sI�A)

�1

B

0 I

�

maps X

1

� U one-to-one onto V . Therefore we an replae [

x

u

℄ 2 V in (iii) by

�

I (sI�A)

�1

B

0 I

�

[

z

v

℄, where [

z

v

℄ 2 X

1

� U . Doing the substitution and rearranging

terms, the inequality (7.5) beomes (7.6) (the �rst term in (7.6) orresponds to the

term 2Re hAx + Bu; xi in (7.5), the seond term in (7.6) orresponds to the term





C&D [

x

u

℄





2

in (7.5), and the right-hand side of (7.6) orresponds to kuk

2

).

(v) ) (iv) ) (iii): It is obvious that (v) implies (iv). Finally, (iv) implies (iii)

by multiplying (7.6) with

�

I (A�sI)

�1

B

0 I

�

from the right and with its adjoint from the

left. This is the omputation from (iii) ) (v) done bakwards.

(vii) ) (vi) ) (iv): The �rst of these impliations is obvious. Statement (vi)

means that for some s 2 �(A) \ C

0

,

�

A(s) B(s)

C(s) G(s)

�

�

�

A(s) B(s)

C(s) G(s)

�

�

�

I 0

0 I

�

:

By substituting the de�nition of A(s); B(s);C(s) given in (7.7) into this inequality

and simplifying the resulting expression, we obtain that

�

M(s) N(s)

N

�

(s) Q(s)

�

�

�

0 0

0 I

�

; (7.8)
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where

M(s) = (2Re s)(sI � A

�

)

�1

(A+ A

�

+ C

�

C)(sI � A)

�1

;

N(s) =

p

2Re s(sI � A

�

)

�1

(sI + A

�

)(sI � A)

�1

B +

p

2Re s(sI � A

�

)

�1

C

�

G(s);

Q(s) = (2Re s)B

�

(sI � A

�

)

�1

(sI � A)

�1

B + G(s)

�

G(s):

If we multiply (7.8) with

h

(2Re s)

�

1

2

(sI�A) 0

0 I

i

from the right and with its adjoint from

the left, we get exatly (7.6), so that (iv) holds.

(iv)) (vii): If (iv) holds then (by the equivalene of (i) and (iv), proved earlier),

� is dissipative, so that (by Proposition 7.2) T is a ontration semigroup. This

implies that C

0

� �(A). By the equivalene of (iv) and (v) (proved earlier), (7.6)

holds for every s 2 C

0

. Doing the steps from the proof of (vi) ) (iv) in reversed

order, we obtain that (vii) holds.

Remark 7.5. The left upper orner of (7.6) implies that A+A

�

� �C

�

C. Similarly,

the right lower orner of (7.6) implies that for Re s > 0, G(s)

�

G(s) � I. Moreover,

if v 2 U is suh that Bv 6= 0, then kG(s)vk < kvk.

Remark 7.6. Suppose that B is bounded, i.e., B 2 L(U ;X) (so that, in partiular,

� is regular) and denote the feedthrough operator of � by D. Then � is dissipative

if and only if the inequality (1.8) holds. (In the ontext of Setion 1, this inequality

ontained matries, while now it ontains operators. The meaning of � 0 is as

explained before Theorem 7.4.) Indeed, it an be heked that (1.8) is equivalent

to (7.5), sine now V = X

1

� U and C&D [

x

u

℄ = Cx +Du. Now Theorem 7.4 (the

equivalene of (i) and (iii)) shows that (1.8) is equivalent to � being dissipative. We

remark that (1.8) an be derived also from (7.6) by taking limits as s!+1.

Suppose now that C is bounded, i.e., C 2 L(X;Y ) (but we do not assume B to be

bounded). Then we an apply the above reasoning to the dual system �

d

, as de�ned

for example in Weiss

2

[45℄. The ontrol operator of �

d

is C

�

, whih is bounded, so

that the haraterization (1.8) of dissipativity holds for �

d

. It is easy to see that �

d

is dissipative if and only if � is dissipative. This implies that � is dissipative if and

only if

�

A

�

+ A+BB

�

C

�

+BD

�

C +DB

�

DD

�

� I

�

� 0

in the spae L(X

d

1

� Y ;X

�1

� Y ).

Remark 7.7. Most of the results in this setion are also found in Arov and Nudel-

man [1℄, but our proofs are muh more diret than those given in [1℄, whih are based

on a redution to the orresponding disrete-time results via the Caley transform.

(The paper [1℄ ontains muh additional material on dissipative and onservative

systems.) Proposition 7.2 is mentioned in [1, Remark 4.1℄, and the reader is re-

ferred to earlier work by Adamjan, Arov and Shmuljan for its proof (see also [1,

Propositions 4.2 and 4.4℄). Arov and Nudelman use ondition (ii) in Theorem 7.4

as the de�nition of dissipativity (whih they all passivity), and the equivalene of

onditions (ii) and (iii) in Theorem 7.4 is proved in [1, Proposition 4.1℄. Via the

Cayley transform, Arov and Nudelman also arrive at ondition (vi) in Theorem 7.4

with s = 1 (see Theorem 5.2 in [1℄ and the omment following its proof).
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