Passive Behaviors and their Passive State/Signal Realizations in Continuous Time

Damir Z. Arov and Mikael Kurula and Olof J. Staffans

Abstract— In this talk we discuss passive and conservative state/signal systems in continuous time. Such systems can be used to model, e.g., passive linear electrical circuits containing lumped and/or distributed resistances, capacitors, inductors, and wave guides, etc. Most of the standard partial differential equations appearing in physics on can be written in state/signal form.

A passive state/signal system $\Sigma = (V; \mathcal{X}, \mathcal{W})$ consists of three components: 1) an internal Hilbert state space \mathcal{X} , 2) a Krein signal space \mathcal{W} through which the system interacts with the external world, and 3) a generating subspace V of the product space $\mathcal{X} \times \mathcal{X} \times \mathcal{W}$. The generating subspace is required to be maximal nonnegative with respect to a certain power inner product and to satisfy an extra non-degeneracy condition.

A classical future trajectory $(x(\cdot), w(\cdot))$ of Σ consists of a par of functions $x(\cdot) \in C^1([0,\infty); \mathcal{X})$ and $w(\cdot) \in C([0,\infty); \mathcal{W})$ satisfying

$$(\dot{x}(t), x(t), w(t)) \in V, \qquad t \in [0, \infty).$$

The set of all generalized future trajectories of Σ is obtained from the family of all classical trajectories by a standard approximation procedure.

By the *future behavior* of Σ we mean the set of all signal parts $w(\cdot)$ of all stable future trajectories $(x(\cdot), w(\cdot))$ of Σ satisfying the extra condition x(0) = 0. The future behavior of a passive state/signal system is a right-shift invariant subspace of $L^2([0,\infty); W)$ and it is maximal nonnegative with respect to the Krein space inner product in $L^2([0,\infty); W)$ inherited from W. Such a subspace is called a *passive future behavior*.

Each passive future behavior can be realized as the future behavior of a passive state/signal system Σ , and it is possible to require Σ to have, for example, one of the following five additional sets of properties: Σ is a)

Damir Z. Arov is with Division of Applied Mathematics and Informatics, Institute of Physics and Mathematics, South-Ukrainian Pedagogical University, 65020 Odessa, damir_arov@mail.ru

Mikael Kurula is with Institute of Mathematics, Åbo Akademi, FIN-20500 Åbo, Finland, mikael.kurula@abo.fi, http://users.abo.fi/mkurula/

Olof J. Staffans is with Institute of Mathematics, Åbo Akademi, FIN-20500 Åbo, Finland, olof.staffans@abo.fi, http://users.abo.fi/staffans/ observable and co-energy preserving, b) controllable and energy preserving, c) simple and conservative, d) minimal and optimal, e) minimal and *-optimal. Realizations satisfying one of the sets of conditions a)-e) are determined by the given future behavior up to unitary similarity. It is even possible to construct *canonical* realizations, i.e., realizations with satisfy a)-e), and which are *uniquely determined by the given data*.

I. PASSIVE FUTURE BEHAVIORS

Let \mathcal{W} be a Kreĭn (signal) space. Let $K^2_+(\mathcal{W})$ be the Kreĭn space of \mathcal{W} -valued functions $w(\cdot)$ in $L^2_+(\mathcal{W}) := L^2([0,\infty);\mathcal{W})$ with indefinite inner product inhered from the inner product $[\cdot,\cdot]_{\mathcal{W}}$ in \mathcal{W} , i.e., $[w(\cdot), w(\cdot)]_{K^2_+(\mathcal{W})} := \int_0^\infty [w(t), w(t)] dt$. Let $s \mapsto T^s$ be the semigroup of right shifts in $K^2_+(\mathcal{W})$. A maximal nonnegative T^s -invariant subspace \mathfrak{W}_+ of $K^2_+(\mathcal{W})$ is called as *passive future behavior* on \mathcal{W} .

The notion of a passive future behavior plays a role in the passive s/s (state/signal) systems theory that is analogical to the role of a scattering operator S in the the passive i/o (input/output) systems theory. These two notions correspond to each other in the following way: if $\mathcal{W} = -\mathcal{Y}[+]\mathcal{U}$ is a fundamental decomposition of \mathcal{W} then $K^2_+(\mathcal{W}) = -L^2_+(\mathcal{Y})$ [+] $L^2_+(\mathcal{U})$ is a fundamental decomposition of $K^2_+(\mathcal{W})$, and \mathfrak{W}_+ is the graph of a linear contractive scattering operator operator S from $L^2_+(\mathcal{U})$ into $L^2_+(\mathcal{Y})$ that intertwines the semigroups of right shifts in these spaces. The converse is also true. Thus, to a passive future behavior corresponds a family of scattering operators, that are defined by this behavior and by a fundamental decomposition of \mathcal{W} .

The Laplace transformation is a unitary map from L^2_+ -spaces onto the Hardy H^2 spaces of holomorphic functions on the right half plane \mathbb{C}^+ , and also from the Kreĭn space $K^2_+(\mathcal{W})$ onto the Kreĭn space $\widetilde{K}^2_+(\mathcal{W}) = -H^2(\mathcal{Y})$ [$\dot{+}$] $H^2(\mathcal{U})$. The Laplace transformation maps \mathfrak{W}_+ onto a maximal nonnegative \widetilde{T}^s -invariant subspace $\widetilde{\mathfrak{W}}^+$ of $\widetilde{K}^2_+(\mathcal{W})$. Such a subspace is called a *passive future frequency domain behavior* on \mathcal{W} . Here $s \mapsto \widetilde{T}^s$ is the semigroup of multiplication of a function $\widetilde{w}(\cdot)$

in $\widetilde{K}^2_+(\mathcal{W})$) by the scalar function $z \mapsto \exp(-sz)$. The subspace $\widetilde{\mathfrak{W}}_+$ is the graph of the operator $H^2(\mathcal{U}) \to$ $H^2(\mathcal{Y})$ which multiplies a function $\widetilde{u}(\cdot)$ in $H^2(\mathcal{U})$ by a $\mathcal{B}(\mathcal{U}; \mathcal{Y})$ -valued holomorphic contractive function $\widetilde{S}(\cdot)$. The function $\widetilde{S}(\cdot)$ is the symbol of the scattering operator S and it is called a scattering matrix.

II. PASSIVE S/S SYSTEMS AND THEIR FUTURE BEHAVIORS

A passive linear continuous time invariant s/s system consists of three components: 1) an internal Hilbert state space \mathcal{X} , 2) a Kreĭn signal space \mathcal{W} , and 3) a generating subspace V of the node space $\mathfrak{K} :=$ $\mathcal{X} \times \mathcal{X} \times \mathcal{W}$. We equip \mathfrak{K} with the Kreĭn space inner product $[\cdot, \cdot]_{\mathfrak{K}}$, defined by

$$[k_1, k_2]_{\mathfrak{K}} = -(z_1, x_2)_X - (x_1, z_2)_X + [w_1, w_2]_W$$

for $k_i = (z_i, x, w_i) \in \mathfrak{K}$, i = 1, 2, and require the generating subspace to be a *maximal nonnegative* subspace of \mathfrak{K} . In addition we assume that V satisfies the condition that $(z, 0, 0) \in V$ only if z = 0. We denote this system by $\Sigma = (V; \mathcal{X}, \mathcal{W})$.

A classical future trajectory $(x(\cdot), w(\cdot))$ of Σ consists of a par of functions $x(\cdot) \in C^1([0,\infty); \mathcal{X})$ and $w(\cdot) \in C([0,\infty); \mathcal{W})$ satisfying

$$(\dot{x}(t), x(t), w(t)) \in V, \qquad t \in [0, \infty).$$

The set of all generalized future trajectories of Σ is the closure in $C([0,\infty); \mathcal{X}) \times L^2_{loc}([0,\infty); \mathcal{W})$ of the family of all classical future trajectories of Σ . A generalized future trajectory is *stable* if x is bounded on $[0,\infty)$ and $w \in K^2_+(\mathcal{W})$, and it is *externally generated* if x(0) = 0.

The set $\mathfrak{W}_{+}^{\Sigma}$ of all signal components $w(\cdot)$ of all externally generated stable generalized trajectories of Σ is called the *future behavior* of Σ . It is a passive future behavior on W. The converse is also true: any passive future behavior \mathfrak{W}_{+} on a Kreĭn space W may be realized as the future behavior $\mathfrak{W}_{+}^{\Sigma}$ of a passive s/s system Σ . Moreover, Σ may be chosen to belong to any one of the following classes of passive s/s systems: a) energy preserving and controllable, b) co-energy preserving and observable, c) conservative and simple, d) optimal and minimal, e) *-optimal and minimal. Each such system is defined by \mathfrak{W}_{+} up to unitary similarity.

III. DEFINITIONS OF CLASSES a)-e)

A system $\Sigma = (V, \mathcal{X}, \mathcal{W})$ is called *energy pre*serving, or *co-energy preserving*, or *conservative* if $V \subset V^{[\perp]}$, or $V^{[\perp]} \subset V$, or $V = V^{[\perp]}$, respectively, where $V^{[\perp]}$ is the orthogonal companion of V.

A system Σ is called *controllable* if the closure \Re_{Σ} of the set of all states x(t) taken from all externally generated trajectories of Σ is the full state space \mathcal{X} . A system Σ is called *observable* if the set \Re_{Σ} of all initial states x(0) of all unobservable trajectories of Σ , i.e., trajectories $(x(\cdot), w(\cdot))$ on $[0, \infty)$ with $w \equiv 0$, is the zero subspace of \mathcal{X} . A system Σ is called *simple* if $(\Re_{\Sigma})^{\perp} \cap \Re_{\Sigma} = \{0\}$. A system Σ is *minimal* if it is controllable and observable. A minimal system Σ is *optimal* (*-*optimal*) if its stable externally generated trajectories $(x(\cdot), w(\cdot))$ have the property that at any time t the norm ||x(t)|| is the smallest (largest) possible one among all externally generated trajectories with the same signal part $w(\cdot)$ of any minimal passive s/s systems with the same future behavior as Σ .

IV. SCATTERING REPRESENTATIONS OF PASSIVE S/S SYSTEMS

A passive linear continuous time i/s/o (input/state/ output) scattering system $\Sigma_{sc} = \left(\begin{bmatrix} A\&B\\C\&D \end{bmatrix}; \mathcal{X}, \mathcal{U}, \mathcal{Y}\right)$ consists of three Hilbert spaces $\mathcal{X}, \mathcal{U},$ and \mathcal{Y} and a closed linear operator $\begin{bmatrix} A\&B\\C\&D \end{bmatrix}: \mathcal{X} \times \mathcal{U} \to \mathcal{X} \times \mathcal{Y}$ with properties defined in [AN96] and [Sta05]. The definitions of trajectories $(x(\cdot), u(\cdot), y(\cdot))$ of such a system and of its scattering matrix $\widetilde{S}(\cdot)$ can also be found there, together with the definitions of the analogues of properties a)–e) for s/s systems listed above.

To any passive scattering system Σ_{sc} corresponds a unique passive s/s system $\Sigma = (V, \mathcal{X}, \mathcal{W})$ with the same state space \mathcal{X} and signal space $\mathcal{W} = -\mathcal{Y}[\dot{+}]\mathcal{U}$, such that there is a one-to-one correspondence between the trajectories $(x(\cdot), u(\cdot), y(\cdot))$ of Σ_{sc} and the trajectories $(x(\cdot), w(\cdot))$ of Σ with $w(\cdot) = y(\cdot) + u(\cdot)$, $y(\cdot) \in L^2_+(\mathcal{Y})$, and $u(\cdot) \in L^2_+(\mathcal{U})$. The future behavior of Σ is the graph of the corresponding i/o scattering operator S.

Conversely, if $\Sigma = (V, \mathcal{X}, \mathcal{W})$ is a passive linear continuous time invariant s/s system and $\mathcal{W} = -\mathcal{Y}[\dot{+}]\mathcal{U}$ is a fundamental decomposition of \mathcal{W} , then there is a unique passive scattering system Σ_{sc} such that Σ may be recovered from Σ_{sc} as described above. We call Σ_{sc} a scattering representation of Σ . This correspondence between passive scattering systems and passive s/s systems is invariant with respect to the above classifications a)–e).

V. CANONICAL MODELS

Canonical models of the passive s/s realizations in the classes a)–e) have been obtained that are continuous

time analogues of the discrete time models obtained earlier by D. Arov and O. Staffans, and presented in [AS09], [AS10]. Some of the results presented above have been obtained earlier in [AN96], [KS09], and [Kur10]. More details on the continuous time canonical models will be presented in [AKS10].

REFERENCES

- [AKS10] Damir Z. Arov, Mikael Kurula, and Olof J. Staffans, Canonical state/signal shift realizations of passive continuous time behaviors, In preparation, 2010.
- [AN96] Damir Z. Arov and Mark A. Nudelman, Passive linear stationary dynamical scattering systems with continuous time, Integral Equations Operator Theory 24 (1996), 1– 45.

- [AS09] Damir Z. Arov and Olof J. Staffans, Two canonical passive state/signal shift realizations of passive discrete time behaviors, J. Funct. Anal. 257 (2009), 2573–2634.
- [AS10] _____, Canonical conservative state/signal shift realizations of passive discrete time behaviors, Manuscript available at http://users.abo.fi/staffans, 2010.
- [KS09] Mikael Kurula and Olof J. Staffans, Well-posed state/signal systems, Complex Anal. Oper. Theory (2009), Published Online April 17.
- [Kur10] Mikael Kurula, On passive and conservative state/signal systems in continuous time, Integral Equations Operator Theory (2010), Published Online April 2.
- [Sta05] Olof J. Staffans, *Well-posed linear systems*, Cambridge University Press, Cambridge and New York, 2005.