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Abstract. We study the infinite horizon quadratic cost minimization problem for a well-posed
linear system in the sense of Salamon and Weiss. The quadratic cost function that we seek to
minimize need not be positive, but it is convex and bounded from below. We assume the system to
be jointly stabilizable and detectable and give a feedback solution to the cost minimization problem.
Moreover, we connect this solution to the computation of either a (J, S)-inner or an S-normalized
coprime factorization of the transfer function, depending on how the problem is formulated. We
apply the general theory to get factorization versions of the bounded and positive real lemmas. In
the case where the system is regular it is possible to show that the feedback operator can be expressed
in terms of the Riccati operator and that the Riccati operator is a stabilizing self-adjoint solution of
an algebraic Riccati equation. This Riccati equation is nonstandard in the sense that the weighting
operator in the quadratic term differs from the expected one, and the computation of the correct
weighting operator is a nontrivial task.
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1. Introduction. This work treats the infinite horizon quadratic cost minimiza-
tion problem for a time-invariant well-posed linear control system in the sense of Sala-
mon and Weiss and extends the results presented in [23] to unstable systems. The
approach is the same as in [22]: we first employ a preliminary state feedback to stabi-
lize the system, and then we apply the theory developed in [23] to solve the quadratic
cost minimization problem for the stable system. Working backwards we then obtain
a solution to the original problem.

We consider two different types of cost functions. In the standard case both the
control and the observation are equally penalized; we show that this leads to a prob-
lem that is equivalent to the computation of a normalized coprime factorization of
the transfer function (see Corollary 4.9). It is possible to embed this type of problem
into a more general class of problem where there is no cost on the control itself, only
on the observation. In this setting the problem of quadratic cost minimization be-
comes equivalent to the computation of an inner coprime factorization of the transfer
function, i.e., a coprime factorization with an inner numerator (see Theorem 4.4).

The infinite horizon quadratic cost minimization problem is also associated with
an algebraic Riccati equation. Indeed, we show that in the case where the optimally
controlled system and its adjoint are regular in the sense of Weiss, the Riccati operator
satisfies an algebraic Riccati equation, and the feedback operator can be computed
from the Riccati operator. However, in this connection we encounter a very interesting
phenomenon: the weighting operator in the quadratic term of the Riccati equation
differs from the expected one, and the computation of the correct weighting operator
is a nontrivial task. The same operator is present in the formula that connects the
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Riccati operator to the feedback operator. This phenomenon was first reported in [18]
in a stable setting for a more restricted class of transfer functions. Examples where
this phenomenon occurs are given in [21], [22], [30], and [33].

We have based the discussion above on transfer functions rather than input/out-
put maps since we believe that the former concept is more familiar to most readers.
However, in the main body of the text we phrase our results in terms of input/output
maps instead. In our opinion, this formulation is both easier and more intuitive than
the transfer function formulation, and it has the advantage that generalizations to
nonlinear and time-dependent systems are more immediate.

For a more detailed account of the existing Riccati equation theory for various
classes of systems we refer the reader to [14] (and its forthcoming new version) and to
the review [13]. However, we have to mention the very interesting paper by Flandoli,
Lasiecka, and Triggiani [5]. In that paper the observation operator is bounded, but
the authors have told us that the results of that paper can be extended to some
classes of unbounded observation operators. Their approach is quite different from
ours. They do not assume that the system is stabilizable and detectable. On the
other hand, they also do not prove that the optimal system is well posed in our sense.
They make no study of the input/output behavior of the closed loop system, and
in particular, they do not mention the all-pass property of the optimal closed loop
system (see Remark 2.8). In our opinion, this is the most characteristic property of
the closed loop system.

The results presented here were originally obtained in the spring of 1995, and they
were circulated in the form of two preprints [18, 19] with the titles “Coprime factoriza-
tions and optimal control of abstract linear systems” and “The nonstandard quadratic
cost minimization problem for abstract linear systems.” The former preprint treated
the “standard” cost minimization problem and the latter a “nonstandard” cost min-
imization problem, where the cost function contains a possibly indefinite weighting
operator but is still bounded from below. The latter was a straightforward modi-
fication of the former, and it was not included in the original submission to SIAM.
However, later work on the H∞ minimax problem has proved that the inclusion of the
indefinite weighting operator would improve the future reference value of this work
significantly.1 This was one of the reasons for a major revision that was carried out in
late 1996.2 In the meantime we received preprints of [32] and [33], which overlap our
section 2. The problem studied in [33] is essentially the same as in [23], summarized
here in section 2, plus a Riccati equation theory for stable systems. However, neither
paper fully contains the other.

This work is very closely related to [24]; in fact, they were both part of the same
original submission to SIAM. We expect the reader to have access to [24] and refer
freely to results in that paper. In particular, we send the reader to [24] for a short
presentation of the basic theory of well-posed linear systems.

We use the following notation:

L(U ;Y ), L(U): The set of bounded linear operators from U into Y or from U into
itself, respectively.

I: The identity operator.

A∗: The (Hilbert space) adjoint of the operator A.

1This is due to the fact that it makes the formulae look identical to those that are valid in the
H∞-case, although the underlying assumptions are different. See [25] and [26].

2At the same time [24] was separated into an independent paper.
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A ≥ 0: A is (self-adjoint and) positive definite.

A ≫ 0: A ≥ ǫI for some ǫ > 0, hence A is invertible.

dom(A): The domain of the (unbounded) operator A.

range(A): The range of the operator A.

R, R+, R−: R = (−∞,∞), R+ = [0,∞), and R− = (−∞, 0].

L2(J ;U): The set of U -valued L2-functions on the interval J .

L2
ω(J ;U): L2

ω(J ;U) =
{
u ∈ L2

loc(J ;U)
∣∣ (t 7→ e−ωtu(t)) ∈ L2(J ;U)

}
.

H∞
ω (U ;Y ): The set of L(U ;Y )-valued H∞ functions over the half-plane ℜz > ω.

TIω(U ;Y ), T Iω(U): The set of bounded linear time-invariant operators from
L2
ω(R;U) into L2

ω(R;Y ) or from L2
ω(R;U) into itself.

TICω(U ;Y ), T ICω(U): The set of causal operators in TIω(U ;Y ) or TIω(U).

TIC(U ;Y ), T IC(U): TIC(U ;Y ) = TIC0(U ;Y ) and TIC(U) = TIC0(U).

〈·, ·〉H : The inner product in the Hilbert space H.

τ(t): The time-shift group τ(t)u(s) = u(t + s) (this is a left shift when t > 0
and a right shift when t < 0).

πJ : (πJu)(s) = u(s) if s ∈ J and (πJu)(s) = 0 if s /∈ J . Here J ⊂ R.

π+, π−: π+ = πR+ and π− = πR− .
We extend a L2

ω-function u defined on a subinterval J of R to the whole real line
by requiring u to be zero outside of J , and we denote the extended function by πJu.
We use the same symbol πJ both for the embedding operator L2

ω(J) → L2
ω(R) and

for the corresponding projection operator L2
ω(R) → L2

ω(J). With this interpretation,
πJL

2
ω(R;U) = L2

ω(J ;U) ⊂ L2
ω(R;U) for each interval J ⊂ R.

2. The stable quadratic cost minimization problem. Before looking at the
general quadratic cost minimization problem for unstable systems, let us recall some
basic results valid for stable systems.

Definition 2.1. Let Ψ = [A B
C D ] be a stable well-posed linear system on (U,H, Y )

[23, Definition 1], and let J = J∗ ∈ L(Y ). The quadratic cost minimization problem
for Ψ with cost operator J consists of finding, for each x0 ∈ H, the infimum over all
u ∈ L2(R+;U) of the cost

Q(x0, u) = 〈y, Jy〉L2(R+;Y ) ,(2.1)

where y = Cx0 + Dπ+u is the observation of Ψ with initial value x0 ∈ H and control
u ∈ L2(R+;U). If there exists an operator Π = Π∗ ∈ L(H) such that the optimal cost
is given by

inf
u∈L2(R+;U)

Q(x0, u) = 〈x0,Πx0〉H ,

then Π is called the Riccati operator of Ψ with cost operator J .
We have studied this problem in [23], but unfortunately, at that time we took the

operator J to be the identity operator throughout. If J is positive definite, then it is
possible to reduce J to the identity by a simple change of variable in the output space
Y , but many applications, such as the positive (real) lemma and the bounded (real)
lemma, require the use of a nondefinite J .3 Fortunately, it turns out that the results

3We shall return elsewhere to the H∞ theory which requires both a nondefinite cost operator J

and a nondefinite sensitivity operator S.
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presented in [23] remain valid with trivial modifications as long as the input/output
map D of Ψ is J-coercive in the following sense:

Definition 2.2. Let J = J∗ ∈ L(Y ).
(i) The operator D ∈ TIC(U ;Y ) is J-coercive iff D∗JD ≫ 0, that is,

〈Du, JDu〉L2(R;Y ) ≥ ǫ‖u‖2
L2(R;U) for all u ∈ L2(R;U) and some ǫ > 0.

(ii) A stable well-posed linear system Ψ = [A B
C D ] is J-coercive iff its input-output

map D is J-coercive.
Indeed, this is the case that is important in the applications to the bounded and

positive (real) lemmas in section 8.
Since the solution to the cost minimization problem in the stable J-coercive case

is almost identical to the one in [23] we simply present this solution below, leaving
the proofs to the reader (it is done by inserting the operator J or S after each adjoint
operator defined on Y or U , respectively).

Definition 2.3 (see [23, Definitions 16 and 17]). Let J = J∗ ∈ L(Y ), and let
S = S∗ ∈ L(U).

(i) The operator N ∈ TIC(U ;Y ) is (J, S)-inner iff N ∗JN = S.
(ii) An operator X ∈ TIC(U ;Y ) is outer if the image of L2(R+;U) under Xπ+

is dense in L2(R+;Y ).
(iii) An operator X ∈ TIC(U) is an (invertible) S-spectral factor of D∗JD ∈

TI(U) iff X is invertible in TIC(U) and D∗JD = X ∗SX .
(iv) The factorization D = NX is a (J, S)-inner-outer factorization of D ∈

TIC(U ;Y ) if N ∈ TIC(U ;Y ) is (J, S)-inner and X ∈ TIC(U) is outer.
(v) In each case S is called the sensitivity operator of N or of the factorization.
Lemma 2.4 (see [23, Lemmas 13 and 18]). Let D ∈ TIC(U ;Y ), J = J∗ ∈ L(Y ),

S ∈ L(U), S ≫ 0, S̃ ∈ L(U), and S̃ ≫ 0.
(i) D∗JD has an S-spectral factor X iff D is J-coercive.
(ii) If X is an S-spectral factor of D∗JD, then NX =

(
DX−1

)
X is a (J, S)-

inner-outer factorization of D. Conversely, if D is J-coercive and NX is a
(J, S)-inner-outer factorization of D, then X is an S-spectral factor of D∗JD.

(iii) The set of all possible S-spectral factors X of D∗JD can be parameterized

as X = E−1X̃ and S = E∗S̃E, where X̃ is a fixed S̃-spectral factor and
E ∈ L(U) is an arbitrary invertible operator.

(iv) If D is J-coercive, then the Toeplitz operator π+D
∗JDπ+ is invertible, and

its inverse can be written in the form (π+D
∗JDπ+)−1 = X−1S−1π+(X ∗)−1.

Here X is an arbitrary S-spectral factor of D∗JD. (X−1S−1π+(X ∗)−1 does
not depend on the particular factorization, only on D and J .)

Lemma 2.5 (see [23, Lemma 13 and Theorem 27]). Let J = J∗ ∈ L(Y ), and
let Ψ = [A B

C D ] be a stable J-coercive well-posed linear system on (U,H, Y ). Then, for
each x0 ∈ H, there is a unique control uopt(x0) ∈ L2(R+;U) that minimizes the cost
function Q(x0, u) in Definition 2.1. This control uopt is given by

uopt(x0) = −X−1S−1π+N
∗JCx0,

where NX is an arbitrary (J, S)-inner-outer factorization of D (cf. Lemma 2.4). The
corresponding state xopt(x0), output yopt(x0), and the minimum Q(x0, u

opt(x0)) of
the cost function are given by

xopt(x0) = Ax0 − BX−1τS−1π+N
∗JCx0,

yopt(x0) = (I − P )Cx0,

Q(x0, u
opt(x0)) = 〈x0, C

∗J (I − P ) Cx0〉H ,
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where

P = Dπ+(π+D
∗JDπ+)−1π+D

∗J = I −NS−1π+N
∗J

is the projection onto the range of Dπ+ along the null space of π+D
∗J . In particular,

Ψ has a Riccati operator, namely

Π = C∗J (I − P ) C,

and yopt(x0) belongs to the null space of the projection P, i.e.,

π+D
∗Jyopt(x0) = π+D

∗J
(
Cx0 + Dπ+u

opt(x0)
)

= 0.

We remark that, although the factorization D = NX and the operator S are not
unique, the formulas given above produce the same result independently of how the
factorization is chosen. This follows from Lemma 2.4 (see, in particular, part (iv)).

Theorem 2.6 (see [23, Theorem 27]). Let J = J∗ ∈ L(Y ), and let Ψ =
[A B
C D ] be a stable J-coercive well-posed linear system on (U,H, Y ). Let x0 ∈ H,

let xopt(x0), y
opt(x0), and uopt(x0) be the optimal state, output, and control for the

quadratic cost minimization problem, and let Π be the corresponding Riccati operator
(see Lemma 2.5).

(i) Let D = NX be a (J, S)-inner-outer factorization of D, and define M = X−1.
Then

[
K F

]
=

[
−S−1π+N

∗JC (I −X )
]

is a stable and stabilizing state feedback pair for Ψ [23, Definition 22] and



xopt(t, x0)
yopt(x0)
uopt(x0)


 =



A	(t)
C	

K	


x0 =



A(t) + BMτ(t)K

C + NK
MK


x0

=



A(t)
C
0


x0 −



BMτ(t)

N
M


S−1π+N

∗JCx0

is equal to the state and output of the closed loop system Ψ	 defined by

Ψ	 =




A	 B	[
C	

K	

] [
D	

F	

]

 =



A + BτMK BM[
C + NK
MK

] [
N

M− I

]



with initial value x0, initial time zero, and zero control u	 (see Figure 2.1).
The Riccati operator Π of Ψ can be written in the following alternative forms:

Π = C∗JC − K∗SK = C∗JC	 = C∗
	JC	 = C∗

	JC.

(ii) Conversely, suppose that [
yopt(x0)
uopt(x0)

] is equal to the observation of some stable

state feedback perturbation Ψ	 of Ψ with initial value x0, initial time zero, zero
control u	, and some admissible stable state feedback pair [K F ]. Then there
exists an operator S ∈ L(U), S ≫ 0, such that NX is a (J, S)-inner-outer

factorization of D, where N = D (I −F)
−1

and X = (I −F). Moreover, K
is given by K = −S−1π+N

∗JC.
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A Bτ[
C
K

] [
D
F

]
❄
x0

✛x

✛y

✛z r

❄❝
+

+✲π+u	 ✲ur

✻

Fig. 2.1. Optimal state feedback connection Ψ	 in Theorem 2.6.

(iii) If y = C	x0 + D	π+u	 is the first output of the optimal closed loop system
Ψ	 with initial state x0 ∈ H and control u	 ∈ L2(R+;U) (see Figure 2.1),
then the closed loop cost Q	(x0, u	) is given by

Q	(x0, u	) = 〈y, Jy〉L2(R+;Y ) = 〈x0,Πx0〉H + 〈u	, Su	〉L2(R+;Y ) .(2.2)

Proof. Only (iii) requires a proof, since this identity is not found in [23]. This
proof goes as follows (the last equality follows from Lemma 2.5):

〈y, Jy〉L2(R+;Y ) =
〈
(yopt(x0) + Nπ+u	)(s), J(yopt(x0) + Nπ+u	)(s)

〉
L2(R+;Y )

=
〈
yopt(x0), Jy

opt(x0)
〉
L2(R+;Y )

+ 2ℜ
〈
Xπ+u	(s),D∗Jyopt(x0)

〉
L2(R+;U)

+ 〈u	,N
∗JNπ+u	〉L2(R+;U)

= 〈x0,Πx0〉H + 〈u	, Su	〉L2(R+;U) .

Remark 2.7. This theorem is actually true under weaker stability assumptions.
It suffices if C and D are stable, i.e., A and B need not be stable [24, Definition 2.11].
Of course, the corresponding closed loop A	 and B	 need not be stable in this case.
Stability of A was not assumed in [23], and the stability of B was never used in a
nontrivial way in the proofs (although it was assumed). See also [33] which requires
no stability of A and B.

Remark 2.8. The conclusion of part (iii) of Theorem 2.6 says that the frequency
response of the input/output map from the closed loop control u	 in Figure 2.1 to
the original output is completely flat, i.e., this input/output map is all-pass, with a
power amplification level equal to S. Thus, S measures the sensitivity of the closed
loop system with respect to deviations from the optimal strategy. This is the reason
why we call S the sensitivity operator of the closed loop system.

3. Quadratic cost minimization: Reduction to the stable case. We are
now ready to attack the unstable quadratic cost minimization problem. The definition
of the problem is essentially the same as in the stable case.

Definition 3.1. Let Ψ = [A B
C D ] be a well-posed linear system on (U,H, Y ), and

let J = J∗ ∈ L(Y ). The (nonstandard) quadratic cost minimization problem for Ψ
with cost operator J consists of finding, for each x0 ∈ H, the infimum of the cost
Q(x0, u) defined in (2.1) over all those u ∈ L2(R+;U) for which the corresponding
observation y = Cx0 +Dπ+u of Ψ satisfies y ∈ L2(R+;Y ). If there exists an operator
Π = Π∗ ∈ L(H) such that the optimal cost is given by

inf
u∈L2(R+;U)

Q(x0, u) = 〈x0,Πx0〉H ,
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then Π is called the Riccati operator of Ψ with cost operator J .
Clearly, Q is a quadratic, possibly unbounded, function of u ∈ L2(R+;U) due

to the fact that Dπ+ is a linear, possibly unbounded, operator in L2(R+;U). The
latter operator is not bounded on L2(R+;U) unless Ψ is input-output stable, but it
is always closed.

Lemma 3.2. Let D ∈ TICα(U ;Y ) for some α ≥ 0. Then the restriction D0 of
the Toeplitz operator Dπ+ to the domain

dom(D0) =
{
u ∈ L2(R+;U) | Dπ+u ∈ L2(R+;Y )

}

is a closed (possibly unbounded) linear operator from dom(D0) ⊂ L2(R+;U) into
L2(R+;Y ).

Proof. This follows directly from the fact that L2(R+) is continuously imbedded
in L2

α(R+).
We can say something more about how D0 maps L2(R+;U) into L2(R+;Y ) in

the case where D has a right coprime factorization.4

Lemma 3.3. Let D ∈ TICα(U ;Y ) for some α ≥ 0, and suppose that D has a
right coprime factorization (N ,M) [24, Definition 4.2].

(i) If u ∈ L2
loc(R

+;U), u♭ ∈ L2
loc(R

+;Y ), and y ∈ L2
loc(R

+;Y ) satisfy

u = Mπ+u♭ and y = Nπ+u♭,

then u♭ ∈ L2(R+;U) iff both u ∈ L2(R+;U) and y ∈ L2(R+;Y ). Thus,
dom(D0) is equal to the image of L2(R+;U) under Mπ+, and range(D0) is
equal to the image of L2(R+;U) under Nπ+. In particular, dom(D0) is dense
in L2(R+;U) iff M is outer.

(ii) With u, u♭, and y as above, there exist strictly positive constants ǫ and M
such that

ǫ
(
‖u‖2

L2(R+;U) + ‖y‖2
L2(R+;Y )

)
≤ ‖u♭‖

2
L2(R+;U)

≤ M
(
‖u‖2

L2(R+;U) + ‖y‖2
L2(R+;Y )

)
.

Proof. Clearly, if u♭ ∈ L2(R+;U), then both u ∈ L2(R+;U) and y ∈ L2(R+;Y ).
Conversely, if both u ∈ L2(R+;U) and y ∈ L2(R+;Y ), then we can use the right
coprimeness of N and M to write

u♭ =
(
ỸN + X̃M

)
π+u♭ = Ỹy + X̃u,

and this implies that u♭ ∈ L2(R+;U). The claims about the domain and range of D0

follow immediately, and so does claim (ii).
As a special case of this result (take N = D and M = I) we get the following

(trivial) estimate.
Lemma 3.4. For each D ∈ TIC(U ;Y ) there exist strictly positive constants ǫ

and M such that, for all u ∈ L2(R;U),

ǫ
(
‖u‖2

L2(R;U) + ‖Du‖2
L2(R;Y )

)
≤ ‖u‖2

L2(R;U) ≤ ‖u‖2
L2(R;U) + ‖Du‖2

L2(R;Y ).

A necessary and sufficient condition for the existence of a finite infimum for
the nonstandard quadratic cost minimization problem is that the cost function Q
is bounded from below as a function of u. This should be true for each fixed x0 ∈ H.
We shall actually impose a slightly stronger condition on Q which implies that not
only does the infimum exist, but it is in fact a minimum.5 However, before intro-

4This is true, e.g., when D is the input-output map of a jointly stabilizable and detectable
well-posed linear system. See [24, Theorem 4.4].

5See Lemma 3.9.
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ducing this condition, let us make the following simple observation about the stable
case.

Lemma 3.5. Let J = J∗ ∈ L(Y ). The operator D ∈ TIC(U ;Y ) is J-coercive
iff D∗JD ≥ ǫ(D∗D + I) for some ǫ > 0, i.e., 〈Du, JDu〉L2(R;Y ) ≥ ǫ

(
‖u‖2

L2(R;U) +

‖Du‖2
L2(R;U)

)
for all u ∈ L2(R;U).

Proof. This follows from Definition 2.2 and Corollary 3.4.
In the unstable case we turn the characterization of J-coercivity given in this

lemma into a definition.
Definition 3.6. Let J = J∗ ∈ L(Y ), and let α ≥ 0.
(i) The operator D ∈ TICα(U ;Y ) is J-coercive iff there exists a constant ǫ > 0

such that

〈Dπ+u, JDπ+u〉L2(R+;Y ) ≥ ǫ
(
‖u‖2

L2(R+;U) + ‖Dπ+u‖
2
L2(R+;Y )

)

for all those u ∈ L2(R+;U) for which Dπ+u ∈ L2(R+;Y ).
(ii) The system Ψ = [A B

C D ] on (U,H, Y ) is J-coercive if there exist constants
M > 0 and ǫ > 0 such that the cost function Q defined in (2.1) satisfies

Q(x0, u) ≥ ǫ
(
‖u‖2

L2(R+;U) + ‖y‖2
L2(R+;Y )

)
−M ‖x0‖

2
H(3.1)

for all those x0 ∈ H and u ∈ L2(R+;U) for which y = Cx0 + Dπ+u ∈
L2(R+;Y ).

By Lemma 3.5, part (i) of Definition 2.2 is consistent with part (i) of Definition
3.6. That the second half of these definitions is also consistent follows from the next
lemma.

Lemma 3.7. A stable system is J-coercive in the sense of Definition 3.6 iff its
input-output map is J-coercive.6

Proof. Trivially, the J-coercivity of an arbitrary system (stable or not) implies
that its input-output map is J-coercive (take x0 = 0).

Conversely, suppose that D is J-coercive, e.g., in the sense of Definition 2.2. For
each u ∈ L2(R+;U) we have

〈Dπ+u + Cx0, J(Dπ+u + Cx0)〉Y

≥ 〈Dπ+u, J(Dπ+u)〉Y − 2 ‖J‖ ‖D‖ ‖C‖ ‖u‖ ‖x0‖ − ‖J‖ ‖C‖2 ‖x0‖
2
.

Combining this with Lemma 3.5 and with the fact that for all positive constants a,
b, and δ it is true that 2ab ≤ δa2 + (1/δ)b2, we find that for some sufficiently large
constant M , independent of u and x0,

〈Dπ+u + Cx0, J(Dπ+u + Cx0)〉Y ≥ ǫ/2(‖u‖2
+ ‖y‖2) −M ‖x0‖

2
.

Thus, the system is J-coercive in the sense of Definition 3.6.
Lemma 3.8. Let J = J∗ ∈ L(U ;Y ), and let D ∈ TICα(U ;Y ) for some α ≥ 0. If

D has a right coprime factorization (N ,M), then D is J-coercive iff N is J-coercive.
Proof. This follows from Lemmas 3.3 and 3.5 and Definition 3.6.
Our approach to the quadratic cost minimization problem is to first use a prelim-

inary stabilizing feedback and to then minimize the stabilized problem. It is based on
the following result.

6The same statement is actually true for all jointly stabilizable and detectable systems. See
Lemma 3.9(iii).
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Lemma 3.9. Let J = J∗ ∈ L(Y ), and let Ψ = [A B
C D ] be a well-posed linear system

on (U,H, Y ) with jointly stabilizing feedback and output injection pairs [K1 F1] and
[HG ] [24, Definition 3.15]. Let

Ψ♭ =




A♭ B♭[
C♭
K1

♭

] [
D♭

F1
♭

]



=



A + Bτ

(
I −F1

)−1
K1 B

(
I −F1

)−1

[
C + D

(
I −F1

)−1
K1

(
I −F1

)−1
K1

] [
D
(
I −F1

)−1

(
I −F1

)−1
− I

]



be the state feedback perturbed version of Ψ [24, Lemma 3.13] with feedback pair
[K1 F1].

(i) The output y = Cx0 + Dπ+u of Ψ with initial value x0 ∈ H and control
u ∈ L2

loc(R
+;U) is equal to the first output y = C♭x0 +D♭π+u♭ of Ψ♭ with the

same initial value x0 ∈ H and control u♭ ∈ L2
loc(R

+;U) if we choose u and
u♭ to satisfy

u =
(
I −F1

)−1 (
K1x0 + π+u♭

)
= K1

♭x0 +
(
I + F1

♭

)
π+u♭,(3.2)

or equivalently,7

u♭ = −K1x0 +
(
I −F1

)
π+u.

With this choice of u and u♭, the states x(t) = A(t)x0 + Bτ(t)π+u and
x(t) = A♭(t)x0 +B♭τ(t)π+u♭ of the two systems are also equal for all t ∈ R+.
Moreover, u♭ ∈ L2(R+;U) iff both y ∈ L2(R+;Y ) and u ∈ L2(R+;U), and
there exists a constant M (independent of x0, u, and u♭) such that

‖u‖2
L2(R+;U) ≤ M

(
‖x0‖

2
H + ‖u♭‖

2
L2(R+;U)

)
,

‖u♭‖
2
L2(R+;U) ≤ M

(
‖x0‖

2
H + ‖y‖2

L2(R+;Y ) + ‖u‖2
L2(R+;U)

)
.

(ii) The original system Ψ is J-coercive iff the feedback stabilized system Ψ♭ is so.
(iii) The original system Ψ is J-coercive iff its input/output map D is J-coercive.
(iv) If either (hence both) of the two systems is J-coercive, then the controls u ∈

L2(R+;U) of Ψ and u♭ ∈ L2(R+;U) of Ψ♭ are uniquely determined by the
initial state x0 and the (first) output y. In particular, if the output y =
Cx0 + Dπ+u of Ψ with initial value x0 and control u ∈ L2(R+;U) is equal
to the first output C♭x0 + D♭π+u♭ of Ψ♭ with initial value x0 and control
u♭ ∈ L2(R+;U), then u and u♭ must satisfy (3.2).

Proof. (i) The output of Ψ is given by y = Cx0 + Dπ+u and the first output
of Ψ♭ is given by y = C♭x0 + D♭u♭ = (C + D(I − F1)−1K1)x0 + D(I − F1)−1π+u♭,
so we get the same output if we let u and u♭ satisfy (3.2). By [24, Theorem 4.4],
(D♭, (I + F1

♭ )) is a right coprime factorization of D. Since it is possible to write the
equations connecting u, u♭, and y in the form

u =
(
I + F1

♭

)
π+u♭ + K1

♭x0,

y = D♭π+u♭ + C♭x0,

7See the equivalent [24, Figures 3.4 and 3.7].
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and since (by the stability of Ψ♭) K♭x0 ∈ L2(R+;U) and C♭x0 ∈ L2(R+;Y ), it follows
from Lemma 3.3 that u♭ ∈ L2(R+;U) iff both y ∈ L2(R+;Y ) and u ∈ L2(R+;U).
Moreover, the listed inequalities are true.

(ii) Suppose that Ψ is J-coercive. By the second of the two inequalities in part (i),

ǫ/2 ‖u‖2
L2(R+;U) + ǫ/2 ‖y‖2

L2(R+;Y ) ≥ −ǫ/2 ‖x0‖
2
H + ǫ/(2M) ‖u♭‖

2
L2(R+;U) ,

and this combined with (3.1) implies that Ψ♭ is J-coercive (replace M by M + ǫ/2
and ǫ by min{ǫ/2, ǫ/(2M)}). The proof of the converse part is similar but simpler.

(iii) This follows from part (ii) and Lemmas 3.7 and 3.8.
(iv) If the two controls u1

♭ and u2
♭ produce the same output y = C♭x0 + D♭u

1
♭ =

C♭x0 + D♭u
2
♭ , then their difference u1

♭ − u2
♭ satisfies D♭π+(u1

♭ − u2
♭ ) = 0. As D♭ is

J-coercive, D♭π+ is one-to-one on L2(R+;U), and we find that π+(u1
♭ − u2

♭ ) = 0.
Similarly, if the two controls u1 and u2 produce the same output y = Cx0 +Dπ+u

1 =
Cx0 + Dπ+u

2, then their difference u1 − u2 satisfies Dπ+(u1 − u2) = 0. Define
z = (I + F1

♭ )−1π+(u1 − u2). Then (I + F1
♭ )z = u1 − u2 and D♭z = D(u1 − u2) = 0.

Recall that (D♭, (I + F1
♭ )) is a right coprime factorization of D [24, Theorem 4.4].

From Lemma 3.3 we conclude that z ∈ L2(R+;U), which combined with the J-
coercivity of D♭ implies that z = 0. Thus, u1 − u2 = 0 also.

4. The solution to the unstable quadratic cost minimization problem.

Lemma 3.9 gives us the following preliminary solution to the general quadratic cost
minimization problem.

Lemma 4.1. Let J = J∗ ∈ L(Y ), and let Ψ = [A B
C D ] be a jointly stabilizable

and detectable J-coercive well-posed linear system on (U,H, Y ). Then the quadratic
cost minimization problem with cost operator J has a unique minimizing solution
uopt(x0) ∈ L2(R+;U). This solution can be computed as follows: We first feed-
back stabilize Ψ as described in Lemma 3.9, and we then apply Lemma 2.5 with
Ψ replaced by the stabilized system Ψ♭ to get an optimal control uopt

♭ (x0), an opti-
mal output yopt(x0), and an optimal state trajectory xopt(x0) for the stabilized sys-
tem. The optimal control for the original system Ψ is then given by uopt(x0) =
K1

♭x0 + (I + F1
♭ )π+u

opt
♭ (x0), and the optimal output and state for the original min-

imization problem is equal to the optimal output yopt(x0) and state xopt(x0) for the
stabilized minimization problem. In particular, the original problem and the stabilized
problem have the same Riccati operator.

The solution given by Lemma 4.1 is not yet complete in the sense that it does
not contain the same type of feedback description as Theorem 2.6 does for the stable
case. Our next task will be to develop such a feedback description. This description
will be given in terms of a right coprime factorization of the input/output map D
with the special property that its numerator is (J, S)-inner. This notion is defined as
follows.

Definition 4.2. Let J = J∗ ∈ L(Y ), let S = S∗ ∈ L(U) be invertible, let
D ∈ TICα(U ;Y ) for some α ≥ 0, and let (N ,M) be a right coprime factorization of
D in TIC.

(i) If N is (J, S)-inner, then (N ,M) is a (J, S)-inner right coprime factorization
of D.

(ii) If [ N
M ] is (I, S)-inner, i.e., if N ∗N + M∗M = S, then (N ,M) is an S-

normalized right coprime factorization of D.
Lemma 4.3. Let J = J∗ ∈ L(Y ), and let S ∈ L(U), S ≫ 0, S̃ ∈ L(U), and

S̃ ≫ 0. Let D ∈ TICα(U ;Y ) for some α ≥ 0, and suppose that D has a right coprime
factorization (N ,M) in TIC(U ;Y ).
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(i) If D is stable, then (N ,M) is a (J, S)-inner right coprime factorization of D
iff NM−1 is a (J, S)-inner-outer factorization of D, or equivalently, iff M−1

is an S-spectral factor of D∗JD.
(ii) D has a (J, S)-inner right coprime factorization iff D is J-coercive.
(iii) The set of all possible (J, S)-inner right coprime factorizations (N ,M) of D

(where J and D are fixed while N , M and S vary) can be parameterized as

N = ÑE, M = M̃E, and S = E∗S̃E, where (Ñ ,M̃) is a fixed (J, S̃)-inner
right coprime factorization of D and E ∈ L(U) is an arbitrary invertible
operator.

Proof. (i) It is easy to see that if X is an S-spectral factor of D∗JD, and if
we define M = X−1 and N = DX , then (N ,M) is a (J, S)-inner right coprime
factorization of D (it is coprime since M is invertible in TIC(U)). Conversely, if
(N ,M) is a (J, S)-inner right coprime factorization of D, then (D, I) is another right
coprime factorization of D, and it follows from [24, Lemma 4.3(i)] that M has an
inverse in TIC(U). It is then obvious that X = M−1 is an S-spectral factor of
D∗JD.

(ii) If D is J-coercive, then by Lemmas 3.8 and 2.4(i), N is J-coercive and has a

(J, S)-inner-outer factorization N = ÑX . According to Lemma 2.4(ii), X is invertible,

and by [24, Lemma 4.3(i)], (Ñ ,M̃) = (NX−1,MX−1) is a (J, S)-inner right coprime
factorization of D.

On the other hand, if D has a (J, S)-inner right coprime factorization (N ,M),
then N is (J, S)-inner, hence J-coercive (since we assume that S ≫ 0). By Lemma
3.8, D is J-coercive.

(iii) This follows from [24, Lemma 4.3(i)] and Lemma 2.4(iii).
The following is our first main result.
Theorem 4.4. Let J = J∗ ∈ L(Y ), let S ∈ L(U), S ≫ 0, and let Ψ = [A B

C D ] be
a J-coercive jointly stabilizable and detectable well-posed linear system on (U,H, Y )
[24, Definition 3.16]. Let xopt(x0), y

opt(x0), and uopt(x0) be the optimal state, out-
put, and control for the quadratic cost minimization problem for Ψ, and let Π be the
corresponding Riccati operator (cf. Lemma 4.1).

(i) Let (N ,M) be a (J, S)-inner right coprime factorization of D. Then there is a
unique feedback map K such that [K F ] = [K (I −M−1)] is an admissible
stabilizing state feedback pair for Ψ and



xopt(t, x0)
yopt(x0)
uopt(x0)


 =



A	(t)
C	

K	


x0 =



A(t) + BMτ(t)K

C + NK
MK


x0

is equal to the state and output of the closed loop system Ψ	 defined by

Ψ	 =




A	 B	[
C	

K	

] [
D	

F	

]

 =



A + BτMK BM[
C + NK
MK

] [
N

M− I

]



with initial value x0, initial time zero, and zero control u	 (see Figure 2.1).
The feedback map K is uniquely determined by the fact that C	 = C + NK ∈
L(H;L2(R+;Y )), K	 = MK ∈ L(H;L2(R+;U)), and π+N

∗JC	 = 0.
Moreover, the Riccati operator of Ψ is given by

Π = C∗
	JC	 = (C + NK)∗J(C + NK).
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(ii) If y = C	x0 + D	π+u	 is the first output of the optimal closed loop system
Ψ	 in (i) with initial state x0 ∈ H and control u	 ∈ L2(R+;U) (see Figure
2.1), then the closed loop cost Q	(x0, u	) is given by

Q	(x0, u	) = 〈y, Jy〉L2(R+;Y ) = 〈x0,Πx0〉H + 〈u	, Su	〉L2(R+;Y ) .(4.1)

(iii) If Ψ is jointly ω-stabilizable and detectable for some ω < 0 [24, Definition
3.16], and if N and M in (i) are right ω-coprime [24, Definition 4.1], then
the closed loop system Ψ	 is ω-stable.

(iv) If (N ,M) are given, then the feedback map K, the Riccati operator Π, the
closed loop semigroup A	, and the closed loop controllability and feedback
maps C	 and K	 can be computed as follows: Choose some arbitrary jointly
stabilizing feedback and output injection pairs [K1 F1] and [ H

G ]. Then

K = M−1K1
♭ − S−1π+N

∗JC♭,

A	

C	

K	


 =



A♭

C♭
K1

♭


−



BMτ
N
M


S−1π+N

∗JC♭,

Π = C∗
♭ JC♭ −

(
K −M−1K1

♭

)∗
S
(
K −M−1K1

♭

)

= C∗
♭

(
J − JNS−1π+N

∗J
)
C♭ = C∗

♭ JC	 = C∗
	JC♭,

where A♭ = A + BτK1
♭ , C♭ = C + DK1

♭ , and K1
♭ = (I − F1)−1K1. (If Ψ is

stable, then we can can take K1
♭ = 0, A♭ = A, and C♭ = C and get the same

formulae as in Theorem 2.6).
Proof. Let us first show that the conditions on K in (i) determine K uniquely. Sup-

pose that we have two feedback maps K1 and K2 such that both C+NK1 and C+NK2

belong to L(H;L2(R+;Y )), both MK1 and MK2 belong to L(H;L2(R+;U)), and
π+N

∗J(C + NK1) = π+N
∗J(C + NK2). Then, for each x ∈ H, N (K1 − K2)x ∈

L2(R+;Y ), M(K1 − K2)x ∈ L2(R+;U), and π+N
∗J(N (K1 − K2)x) = 0. By

Lemma 3.3, (K1 −K2)x ∈ L2(R+;U), hence

0 = π+N
∗J(N (K1 −K2)x) = π+(N ∗JN )(K1 −K2)x = Sπ+(K1 −K2)x.

As (K1 − K2)x is supported on R+ and S invertible, we must have (K1 − K2)x = 0
for all x ∈ H.

In order to prove the remainder of (i) we proceed as suggested by (iv); i.e., we
choose preliminary jointly stabilizing feedback and output injection pairs [K1 F1]
and [ H

G ] with interaction operator E1. The output injection pair and the interaction

operator E1 play a very nonsignificant role below; they are only needed so that we can
apply [24, Theorem 4.4] in order to show that (D(I −F1)−1, (I −F1)−1) is a right
coprime factorization of D. We shall therefore ignore the output injection part of the
system for the rest of this proof, but we return to this question at the end of the
section.

We add the state feedback pair [K1 F1] to the system Ψ and close the state
feedback loop as in Lemma 3.9 to get the stable system Ψ♭ given in that lemma.
According to Lemma 4.1, the quadratic cost minimization problems for Ψ and Ψ♭

have the same optimal state xopt(x0) and output yopt(x0) and the optimal controls
uopt(x0) and uopt

♭ (x0) are related to each other as in (3.2).
We want to apply Theorem 2.6 to solve the quadratic cost minimization problem

for the closed loop system Ψ♭. By Lemmas 3.7 and 3.9, D♭ is coercive. Since both



QUADRATIC OPTIMAL CONTROL 13

(D♭, (I + F1
♭ )) and (N ,M) are right coprime factorizations of D, it follows from [24,

Lemma 4.3] that the operator

X = M−1
(
I + F1

♭

)
=

((
I −F1

)
M

)−1
(4.2)

belongs to TIC(U) and is invertible in TIC(U). Thus, NX is a (J, S)-inner-outer
factorization of D♭. By Theorem 2.6, the solution to the quadratic cost minimization
problem for Ψ♭ is of state feedback type. More precisely, the pair

[
K♮ F♮

]
=

[
−S−1π+N

∗JC♭ (I −X )
]

is a stable stabilizing state feedback pair for Ψ♭, and if we further extended the system
Ψ♭ into




A♭ B♭

C♭
K1

♭

K♮






D♭

F1
♭

F♮







by adding the extra state feedback pair, and then close the new state feedback loop
to get the stable closed loop system [24, Lemma 4.5]

Ψ♭	 =




A♭	 B♭	

C♭	
K1

♭	

K♮	






D♭	

F1
♭	

F♮	







=




A♭ + B♭τX
−1K♮ B♭X

−1


C♭ + D♭X

−1K♮

K1
♭ + F1

♭ X
−1K♮

X−1K♮






D♭X

−1

F1
♭ X

−1

X−1 − I







=




A + Bτ
(
K1

♭ + MK♮

)
BM


C + D

(
K1

♭ + MK♮

)

K1
♭ + F1MK♮(
I −F1

)
MK♮







N
F1M(

I −F1
)
M− I





 ,

then xopt(x0), y
opt(x0), and uopt

♭ (x0) are given by



xopt(x0)
yopt(x0)

uopt
♭ (x0)


 =



A♭	

C♭	
K♮	


x0 =



A + Bτ

(
K1

♭ + MK♮

)

C + D
(
K1

♭ + MK♮

)
(
I −F1

)
MK♮


x0

and C♭	 satisfies

N ∗JC♭	 = 0.

From this result we are able to derive the conclusions listed in (i) and (iv). Most
of the proof is ready. In particular, the formulae for the Riccati operator Π given in
(iv) follow from Lemma 3.9 and the corresponding formulae in Theorem 2.6. It only
remains to return to the original system Ψ and the original control uopt(x0).

The optimal control uopt
♭ (x0) for Ψ♭ corresponds to the optimal control

uopt(x0) =
(
I −F1

)−1 (
K1x0 + uopt

♭ (x0)
)

=
(
K1

♭ + MK♮

)
x0
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for the original system Ψ. We observe that uopt(x0) is equal to the sum of the two
last outputs of Ψ♭	 with zero control. Let us add these two rows and combine them
into one to get the system

Ψ	 =




A	 B	[
C	

K	

] [
D	

F	

]

 =



A + BτMK BM[
C + NK
MK

] [
N

M− I

]

 ,

where K = M−1K	 = K♮ + M−1K1
♭ . We then have



xopt(t, x0)
yopt(x0)
uopt(x0)


 =



A	(t)
C	

K	


x0 =



A(t) + BMτ(t)K

C + NK
MK


x0.

Moreover, since C	 = C♭	, we have N ∗JC	 = 0, and Ψ	 is the system that we get by
closing the state feedback loop in the system




A B[
C
K

] [
D
F

]

 ,

where K is the feedback map defined above and F = I −M−1. This completes the
proofs of both (i) and (iv).

The proof of (ii) is identical to the proof of Theorem 2.6(iii).
Finally, let us prove (iii). Under the assumption of (iii) we can throughout work

with the notion of ω-stability instead of just plain stability (the latter notion is the
same as ω-stability with ω = 0). The only part of the extended optimal system Ψ♭	

whose ω-stability is not obvious is the state feedback map K♮; all the other parts of
the system are bounded linear operators on the correct spaces. Thus, we must show
that K♮ ∈ L(H;L2

ω(R+;U)). Recalling the definition of K♮, we realize that it suffices
to show that the anticausal operator N ∗ belongs to TIω(Y ;U). Here the duality
is with respect to the inner product in the unweighted L2, so by standard duality
theory N ∗ ∈ TI−ω(Y ;U). However, since N ∗ is anticausal, this implies that N ∗ can
be extended to an anticausal operator in TIβ(Y ;U) for all β ≤ −ω [24, Lemmas 2.4
and 2.9]. In particular, since ω ≤ 0, N ∗ ∈ TIω(Y ;U). Thus, K♮ ∈ L(H;L2

ω(R+;U)),
and Ψ♭	 is stable.

Remark 4.5. An inspection of the proof of Theorem 2.6 shows that if the system
Ψ is jointly strongly stabilizable and detectable, then the optimal closed loop system
Ψ	 will be strongly stable, too [24, Lemma 3.5].

Theorem 4.4 does not contain a converse part like the one found in Theorem
2.6(ii), since we have been able to prove only the following partial converse.

Theorem 4.6. Make the same hypothesis as in Theorem 4.4. Suppose that
the solution to the quadratic cost minimization problem is of state feedback type in

the sense that [ yopt(x0)
uopt(x0) ] is equal to the output of the closed loop system Ψ	 with

initial value x0, initial time zero, zero input u	, and some stabilizing state feedback
pair [K F ]. Define M = (I − F)−1 and N = DM. Then there exists a positive
invertible operator S = S∗ ∈ L(U) such that N is (J, S)-inner, and the claim (ii) in
Theorem 4.4 is true for this closed loop system. If, moreover, N and M are right
coprime, then (N ,M) is a (J, S)-inner right coprime factorization of D. This is true,
in particular, whenever Ψ is exponentially stabilizable.
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Proof. We suppose that the solution to the quadratic cost minimization problem
for Ψ is of state feedback type and claim that this implies that the solution to the
quadratic cost minimization problem for the system Ψ♭ considered in the proof of
Theorem 4.4 is also of state feedback type. The proof of this is based on [24, Lemma
4.5] and Lemma 3.9. We consider the combined system




A B

C
K1

K






D
F1

F





 ,

where (K1,F1) is the same preliminary feedback pair that we used in the proof of
Theorem 4.4 and [K F ] is the optimal feedback pair. By [24, Lemma 4.5], [K F ]
is a stabilizing feedback pair for this combined system (due to the coprimeness of
D(I −F1)−1 and (I −F1)−1). Moreover, the pair

[
K♮ F♮

]
=

[
K − (I −F)(I −F1)−1K1 I − (I −F)(I −F1)−1

]

is a stabilizing feedback pair for Ψ♭. By combining this fact with Lemma 3.9, we
find that the optimal solution to the quadratic cost minimization problem for the
system Ψ♭ is of state feedback type. However, in contrast to the situation covered by
the converse part of Theorem 2.6, we do not know that the feedback pair [K♮ F♮]
itself is stable, and this causes some additional complications and prevents us from
applying part (ii) of Theorem 2.6. Instead we argue directly, examining the proof of
the converse part of Theorem 2.6 as presented in [23].

We know that F♮ ∈ TICα(U) for some α ≥ 0 (but not necessarily for α = 0) and
that (I−F♮)

−1 ∈ TIC(U). Fortunately, it was the latter property that was important
for a major part of the proof of Theorem 2.6(ii). By repeating the argument in [23]
we find that if we define M♮ = (I −F♮)

−1, then

M∗
♮D

∗
♭JD♭M♮ = S

for some nonnegative S = S∗ ∈ L(U). However, the proof given there of the invert-
ibility of S was based on the boundedness of F♮, so it does not apply.

Since M♮ is invertible in TICα(U), we know that M♮ is one-to-one. This together
with the invertibility of D∗

♭JD♭ (which is a consequence of the J-coercivity) implies
that S is one-to-one. Its inverse S−1 is a nonnegative, possibly unbounded, self-
adjoint operator which has a nonnegative self-adjoint square root S−1/2. Denote
the domain of S−1/2 by W . Then M♮S

−1/2 ∈ TIC(W ;U), and it can be extended
to an operator on TIC(U) since S−1/2M∗

♮D
∗
♭JD♭M♮S

1/2 can be extended to the

identity operator on TIC(U). We denote this extension of M♮S
−1/2 by M̃. Then

S−1/2 = M−1
♮ M̃ ∈ TICα(W ;U), and it can be extended to an operator in TICα(U)

since the right-hand side of this equation belongs to TICα(U). But this means that
S−1/2 can be extended to an operator in L(U), hence S1/2 and S must be invertible.

Since N = DM = D(I −F)−1 = D♭M
−1
♮ , and since M∗

♮D
∗
♭JD♭M♮ = S, we find

that N is (J, S)-inner as claimed. The proof of the statement given in part (ii) of
Theorem 4.4 remains the same as before.

We have not been able to prove that N and M must always be right coprime.
This will be true if and only if the feedback pair [K1 F1] stabilizes the original
system extended with the feedback pair [K F ], cf. [24, Lemma 4.5]. In particular,
it is true whenever [K1 F1] is exponentially stabilizing; see [24, Lemma 3.20].
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A Bτ[
C
K̃

] [
D
F̃

]

E

❄
x0

✛x

✛y

✛z̃ r

❄❝
+

+✲π+u	 ✲ ✲u
r

✻

Fig. 4.1. Externally parameterized optimal state feedback system.

According to Lemmas 2.4 and 4.3, Theorems 2.6 and 4.4 contain a hidden free
invertible parameter E ∈ L(U).8 For example, the set of all possible (J, S)-inner
coprime factorization of D in Theorem 4.4 can be parameterized as follows.

Proposition 4.7. Let (Ñ ,M̃) be a particular (J, S̃)-inner coprime factorization
of D. Then the set of all possible sensitivity operators S and all possible (J, S)-inner
coprime factorizations (N ,M) of D (where J and D are fixed while N , M, and S
vary) can be parameterized as

S = E∗S̃E, N = ÑE, M = M̃E,

where E varies over the set of all invertible operators in L(U). The corresponding
feedback pair [K F ] in Theorem 4.4 is given by

K = E−1K̃, (I −F) = E−1(I − F̃),

where K̃ = −S̃π+Ñ
∗JC and F̃ = (I − M̃−1); i.e., [K̃ F̃ ] is the feedback pair in

Theorem 4.4 corresponding to the factorization (Ñ ,M̃). The parameterized version
of the formula for the closed loop system in Theorem 4.4 is

Ψ	 =




A	 B	[
C	

K	

] [
D	

F	

]

 =



A + BM̃τK̃ BM̃E[
C + Ñ K̃
M̃K̃

] [
ÑE

M̃E − I

]

 .

The first column is independent of E (but the second is not).
This follows from Lemma 4.3.
The operator E has a very simple interpretation: it represents a coordinate change

in the input space for the closed loop system.
Proposition 4.8. Introduce the same notation as in Proposition 4.7. Then

the two diagrams drawn in Figures 2.1 and 4.1 are equivalent in the sense that the
relationships between all the signals with identical names are identical in the two
diagrams (but z differs in general from z̃.)

Proof. Clearly, if we can show that the relationships between u	 and u are the
same in both the diagrams, then all the other relationships will be the same, too,
since both diagrams say that

x = Ax0 + Bτu,

y = Cx0 + Du.

8In [23] this parameter was written out explicitly and it was explained why it cannot be avoided:
it represents an undetermined feed-forward term inside the feedback loop.
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In Figure 2.1 we have

u = Kx0 + Fu + π+u♭,

from which we can solve u in the form

u = (I −F)
−1

(Kx0 + π+u♭)

= (I − F̃)
−1

E
(
E−1K̃x0 + π+u♭

)

= (I − F̃)
−1

(K̃x0 + Eπ+u♭) .

On the other hand, Figure 4.1 says that

u = K̃x0 + F̃u + Eπ+u♭,

and this equation is equivalent to the one above.
The minimization problem considered in Theorem 4.4 leads to an inner coprime

factorization. If instead we use the different cost function

Q1(x0, u) = ‖y‖2
L2(R+;Y ) + ‖u‖2

L2(R+;U) ,(4.3)

then we get a normalized coprime factorization.
Corollary 4.9. Let Ψ = [A B

C D ] be a jointly stabilizable and detectable well-posed
linear system on (U,H, Y ). Let xopt(x0), y

opt(x0), and uopt(x0) be the optimal state,
output, and control for the quadratic cost minimization problem described in Defini-
tion 3.1, but with the cost function Q(x0, u) replaced by the cost function Q1(x0, u) in
(4.3). If S = S∗ ∈ L(U) and (N ,M) is an S-normalized right coprime factorization
of D (in the sense of Definition 4.2), then there is a unique feedback map K such that
[K F ] = [K

(
I −M−1

)
] is an admissible stabilizing state feedback pair for Ψ and



xopt(t, x0)
yopt(x0)
uopt(x0)


 =



A	(t)
C	

K	


x0 =



A(t) + BMτ(t)K

C + NK
MK


x0

is equal to the state and output of the closed loop system Ψ	 defined by

Ψ	 =




A	 B	[
C	

K	

] [
D	

F	

]

 =



A + BτMK BM[
C + NK
MK

] [
N

M− I

]



with initial value x0, initial time zero, and zero input u	 (see Figure 2.1). The feedback
map K is uniquely determined by the fact that C	 = C + NK ∈ L(H;L2(R+;Y )),
K	 = MK ∈ L(H;L2(R+;U)), and

π+ (N ∗C	 + M∗K	) = 0.

Moreover, the Riccati operator of Ψ is given by

Π = C∗
	C	 + K∗

	K	 = (C + NK)∗(C + NK) + (MK)∗(MK).

Proof. Apply Theorem 4.4 with Ψ replaced by the augmented system

Ψaug =




A B[
C
0

] [
D
I

]

 ,
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and use the fact that (N ,M) is an S-normalized right coprime factorization of D
iff ([ N

M ],M) is an (I, S)-inner right coprime factorization of [ D
I ]. Also observe

that the augmented system is always coercive. The net effect is that throughout one

replaces J by I, D by [DI ], N by [ N
M ], C by [ C0 ], C♭ by [

C♭

K1
♭
], and C	 by [

C	

K	
] in

Theorem 4.4.
Let us end this section with a discussion of the joint stabilizability and detectabil-

ity assumption in Theorem 4.4. This assumption was needed so that we could apply
[24, Theorem 4.4] and conclude that the preliminary feedback gives us a coprime
factorization of the input/output map. The optimal feedback given by Theorem 4.4
gives us another stabilizing feedback pair. However, we are not able to prove that
the optimal feedback pair and the original stabilizing output injection pair [HG ] are
jointly stabilizing (and we do not even expect this to be true in full generality). The
problem is that these two pairs need not have a well-defined interaction operator E .

By using the fact that the interaction operator E is determined (modulo a static
part) by its Hankel operator KH, it is possible to construct E (whenever such an
interaction operator exists). To do this we have to take a closer look at the proof of
Theorem 4.4. The critical step in the proof is the addition of the state feedback row
to the preliminary stabilized system Ψ♭. Let us redo this part of the proof, restoring
the omitted output injection column




H
G
E1




to the system Ψ1; i.e., let us start with the full system

Ψext =




A
[
H B

]
[
C
K1

] [
G D
E1 F1

]



and close the state feedback loop to get the stable system

Ψ♭ =




A♭

[
H♭ B♭

]
[
C♭
K1

♭

] [
G♭ D♭

E1♭ F1
♭

]



=




A + Bτ
(
I −F1

)−1
K1

[
H + B

(
I −F1

)−1
E1 B

(
I −F1

)−1
]

[
C + D

(
I −F1

)−1
K1

(
I −F1

)−1
K1

] [
G + D

(
I −F1

)−1
E1 D

(
I −F1

)−1

(
I −F1

)−1
E1

(
I −F1

)−1
− I

]

 .

To this system we want to add a new state feedback row [K♮ E♮ F♮]. To see how
this row should be constructed we examine the feedback pair

[
K♮ F♮

]
=

[
−S−1π+N

∗JC♭ (I −X )
]

that we used in the proof of Theorem 4.4. Since

X = M−1(I −F1)−1 = S−1N ∗JNM−1(I −F1)−1

= S−1N ∗JD(I −F1)−1 = S−1N ∗JD♭,

this pair can be rewritten in the alternative form
[
K♮ F♮

]
=

[
0 I

]
− S−1

[
π+N

∗JC♭ N ∗JD♭

]
,
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which gives us a clue to the correct definition of E♮.
Lemma 4.10. Let Ψ = [A B

C D ] be a stable well-posed linear system on (U,H, Y ),
and let N ∗ ∈ TI(Y ;Z) be anticausal. Define

K = π+N
∗C, E = N ∗D.

(i) The map K satisfies

KA(t) = π+τ(t)K, t ∈ R+,

and the Hankel operator of E is given by

π+Eπ− = KB.

(ii) If E can be written as a sum E = E− + E+, where both E− and E+ belong to
TI(Y ;Z) and E+ is causal and E− anticausal, then




A B[
C
K

] [
D
E+

]



is a stable well-posed linear system on (U,H, Y × Z).
(iii) Conversely, if there exists some E+ for which the system above is a stable well-

posed linear system on (U,H, Y × Z), then we get a splitting E = E− + E+

of the type described above by defining E− = E − E+. This splitting is unique
modulo a static operator E.

Proof. (i) To compute KA(t) we use the anticausality and time invariance of N ∗

and part (iii) of [24, Definition 2.1] to get

KA(t) = π+N
∗CA(t)

= π+N
∗π+τ(t)C

= π+N
∗τ(t)C

= π+τ(t)N ∗C

= π+τ(t)π+N
∗C

= π+τ(t)K.

Almost the same argument, but with part (iii) of [24, Definition 2.1] replaced by part
(iv), gives

π+Eπ− = π+N
∗Dπ−

= π+N
∗π+Dπ−

= π+N
∗CB

= KB.

(ii) This follows immediately from part (i) and [24, Definition 2.1] (the Hankel
operator of E− is zero).

(iii) Clearly E− is anticausal, since E and E+ have the same Hankel operator. The
uniqueness statement follows from [23, Lemma 6].

By applying this lemma to the crucial step in the proof of Theorem 4.4 (and using
[24, Lemma 3.5]) we get the following addition to Theorem 4.4.
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Corollary 4.11. Let [HG ] and E1 be the output injection pair and the inter-
action operator used in the proof of Theorem 4.4. Then the optimal state feedback
pair [K F ] and the output injection pair [HG ] are jointly stabilizing iff N ∗JG♭ =
N ∗J(G + (I −F1)−1E1) can be split into a causal and an anticausal part that both
belong to TI(Y ;U).

We shall not need this result here and leave the proof to the reader.
For completeness, let us also mention the following “dual” result, where one uses

an anticausal time-invariant operator to construct a new output injection pair for a
well-posed linear system. This result is needed in the solution to the “dual” quadratic
optimal filtering problem.

Lemma 4.12. Let Ψ = [A B
C D ] be a stable well-posed linear system on (U,H, Y ),

and let Ñ ∗ ∈ TI(Z;U) be anticausal. Define

H = BÑ ∗π−, E = DÑ ∗.

(i) The map H satisfies

A(t)H = Hτ(t)π−, t ∈ R+,

and the Hankel operator of E is given by

π+Eπ− = CH.

(ii) If E can be written as a sum E = E− + E+, where both E− and E+ belong to
TI(Z;U) and E+ is causal and E− anticausal, then

[
A

[
H B

]

C
[
E+ D

]
]

is a stable well-posed linear system on (Z × U,H, Y ).
(iii) Conversely, if there exists some E+ for which the system above is a stable well-

posed linear system on (Z × U,H, Y ), then we get a splitting E = E− + E+

of the type described above by defining E− = E − E+. This splitting is unique
modulo a static operator E.

The proof of this lemma is very similar to the proof of Lemma 4.10, and we leave
it to the reader.

Remark 4.13. Theorem 4.4 and Corollary 4.9 remain true in the case where we
minimize 〈y, Jy〉L2

β
(R+;Y ) instead, where β ∈ R is arbitrary. We must then throughout

replace the unweighted space L2 by the weighted space L2
β. In particular, the notion

of an inner operator should be redefined so that it refers to the weighted space L2
β ,

and the adjoints should be computed with respect to the inner product in the weighted
space L2

β.
Remark 4.14. The results of this section remain valid if throughout we replace

the algebra of time-invariant bounded linear operators from L2(R;U) into L2(R;Y )
by various subalgebras, for example, the algebra of convolution operators induced by
measures with finite total variation. The main exception is that spectral factoriza-
tions and inner-outer factorizations need not exist in all subalgebras. In particular,
Theorem 4.4 remains valid. In the algebra studied in [18] spectral factorizations and
inner-outer factorizations do exist and the input/output maps can always be decom-
posed into causal and anticausal parts, as required by Lemmas 4.10 and 4.12.
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5. The optimal problem on a finite time interval. Our next goal is to
show that the Riccati operator in Theorem 4.4 satisfies an algebraic Riccati equation
involving the generating operators of the system Ψ. Two such algebraic Riccati equa-
tions were given in [23], namely the open loop and the closed loop algebraic Riccati
equations. The derivation of the closed loop Riccati equation was based entirely on
the properties of the optimal closed loop system, and that argument remains valid
since the optimal closed loop system is stable. However, the open loop system can be
unstable, and in order to derive the open loop Riccati equation we have to study the
behavior of the optimal system on a finite time interval.

Lemma 5.1. Make the same assumption and introduce the same notations as in
Theorem 4.4. Then, for all x0 ∈ H and all t ≥ 0,

π[0,t]

(
D∗Jπ[0,t]C	 + τ(−t)B∗ΠA	(t)

)
= 0,(5.1)

π[0,t]

(
N ∗Jπ[0,t]C	 + τ(−t)M∗B∗ΠA	(t)

)
= 0,(5.2)

C∗
	Jπ[0,t]C	 + A∗

	(t)ΠA	(t) = Π,(5.3)

C∗Jπ[0,t]C	 + A∗(t)ΠA	(t) = Π.(5.4)

Proof. Fix t ≥ 0. Let us perform the minimization of the cost function Q(x0, u)
separately with respect to u1 = π[0,t]u and u2 = π[t,∞)u. To do this we write Q(x0, u)
in the form

Q(x0, u) =

∫ t

0

〈y(s), Jy(s)〉Y ds +

∫ ∞

t

〈y(s), Jy(s)〉Y ds,

where y is the output of Ψ with initial time zero, initial value x0, and control u. Let
x be the corresponding state of Ψ. Since

π[0,t]y = π[0,t]Cx0 + π[0,t]Dπ[0,t]u and π[t,∞)y = τ(−t)Cx(t) + Dπ[t,∞)u,

we observe that the first term depends only on x0 and u1 and the second term only
on x(t) and u2. If we fix u1 and minimize with respect to u2, then, because of the
time invariance of the problem, the minimum is equal to 〈x(t),Πx(t)〉H . Thus, we are
left with the problem of minimizing the cost function

Q(x0, u) =

∫ t

0

〈y(s), Jy(s)〉Y ds + 〈x(t),Πx(t)〉H(5.5)

with respect to u1, where π[0,t]y is the function given above and x(t) = A(t)x0 +
Bτ(t)u1. Differentiating (5.5) with respect to u1 and setting the result to be zero we
get (5.1). That also (5.2) holds follows from the time invariance and anticausality of
M∗ and the fact that M∗D∗ = N ∗.

By replacing y and x in (5.5) by yopt(x0) and xopt(x0) we find that

〈x0,Πx0〉H =

∫ t

0

〈
yopt(x0, s), Jy

opt(x0, s)
〉
Y

ds +
〈
xopt(t, x0),Πxopt(t, x0)

〉
Y
,

from which (5.3) follows since yopt(x0) = C	x0 and xopt(t, x0) = A	(t)x0. This
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Fig. 5.1. Primal-dual connection with primal feedback.

combined with (5.1) implies that for all x0 and x1 in H,

〈x1,Πx0〉H =

∫ t

0

〈(C	x1)(s), J(C	x0)(s)〉Y ds + 〈A	(t)x1,ΠA	(t)x0〉H

=

∫ t

0

〈
(Cx1 + Duopt(x1))(s), Jy

opt(x0, s)
〉
Y

ds

+
〈
A(t)x1 + Bτ(t)uopt(x1),Πxopt(x0, t)

〉
H

=

∫ t

0

〈(Cx1)(s), JC	x0(s)〉Y ds + 〈A(t)x1,A	(t)x0〉H ,

which gives us (5.4).
We remark that Lemma 5.1 has been proved independently by Hans Zwart [35]

under weaker assumptions.
The preceding lemma can be interpreted as a result concerning the state and

output of the adjoint system Ψ∗ if we use the state x multiplied by Π and the output
y multiplied by J of the original system as initial value and control for Ψ.

Corollary 5.2. Make the same assumption and introduce the same notations as
in Theorem 4.4. Let xopt(x0) and yopt(x0) denote the optimal state and optimal output
in the quadratic cost minimization problem for Ψ, and let x∗ and u∗ denote the state
and output of the adjoint system Ψ∗ with initial time t > 0, initial value Πxopt(t, x0),
and control yopt(x0) (see Figure 5.1 with u	 = 0). Then x∗(s) = Πxopt(x0, s) for all
s ∈ [0, t] and π[0,t]u

∗ = 0. The same formulae are true if instead x∗ and u∗ denote
the state and output of the optimal adjoint system Ψ∗

	 with initial time t > 0, initial
value Πxopt(t, x0), and control yopt(x0).

Proof. Fix 0 ≤ s ≤ t. By the definition of the state of the adjoint system Ψ∗, we
have

x∗(s) = A∗(t− s)Πxopt(t, x0) + C∗Jτ(s)π[s,t]y
opt(x0)

=
(
A∗(t− s)ΠA	(t− s) + C∗Jτ(s)π[s,t]τ(−s)C	

)
xopt(x0, s)

=
(
A∗(t− s)ΠA	(t− s) + C∗Jπ[0,t−s]C	

)
xopt(x0, s)

= Πxopt(x0, s),

where the last equality follows from (5.4). The same computation is valid if we replace
Ψ∗ by Ψ∗

	.
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The restriction of the output of Ψ∗ to [0, t] is given by

π[0,t]u
∗ = π[0,t]

(
τ(−t)B∗Πxopt(t, x0) + D∗Jπ[0,t]y

opt(x0)
)
,

and this is zero according to (5.1). To prove the same result with Ψ∗ replaced by the
optimal closed loop adjoint system Ψ∗

	 we argue in the same way, but replace (5.1)
by (5.2).

Remark 5.3. A similar result is true for nonzero inputs u	 to the primal and
Su	 to the dual system (see Figure 5.1). This follows from Corollary 5.7 below, since
the connection in Figure 5.3 becomes identical to the one in Figure 5.1 if we replace
u in Figure 5.3 by u	 + z.

Up to now we have in this section made only marginal use of Theorem 4.4, but
the remaining results depend heavily on the characterization of the optimal feedback
pair given in that theorem. We begin with the following key lemma.

Lemma 5.4. Make the same assumption and introduce the same notations as in
Theorem 4.4. Then, for all t ≥ 0,

π+τ(−t)B∗
	ΠB	τ(t)π+ + π[0,t]D

∗
	Jπ[0,t]D	π[0,t] = Sπ[0,t].

Proof. To prove this we compute, using the facts that Π = C∗
	JC	 and π+D	π− =

π+Nπ− = C	B	,

π+τ(−t)B∗
	ΠB	τ(t)π+ + π[0,t]D

∗
	Jπ[0,t]D	π[0,t]

= π+τ(−t)B∗
	C

∗
	JC	B	τ(t)π+ + π[0,t]D

∗
	Jπ[0,t]D	π[0,t]

= π[0,t]τ(−t)π−N
∗Jπ+Nπ−τ(t)π+ + π[0,t]D

∗
	Jπ[0,t]D	π[0,t].

The combination of operators in the first term on the last row satisfies

π+Nπ−τ(t)π+ = π+N τ(t)π[0,t]

= π+τ(t)Nπ[0,t]

= τ(t)π[t,∞)Nπ[0,t],

so we can continue the computation above as (recalling that N ∗JN = S)

π+τ(−t)B∗
	ΠB	τ(t)π+ + π[0,t]D

∗
	Jπ[0,t]D	π[0,t]

= π[0,t]N
∗Jπ[t,∞)τ(−t)τ(t)π[t,∞)Nπ[0,t] + π[0,t]D

∗
	Jπ[0,t]D	π[0,t]

= π[0,t]N
∗Jπ[t,∞)Nπ[0,t] + π[0,t]N

∗Jπ[0,t]Nπ[0,t]

= π[0,t]N
∗JNπ[0,t]

= Sπ[0,t],

from which the claim follows.
Lemma 5.5. Make the same assumption and introduce the same notations as in

Theorem 4.4. Then, for all t ≥ 0,

Sπ[0,t]K = −π[0,t]

(
N ∗Jπ[0,t]C + τ(−t)M∗B∗ΠA(t)

)
(5.6)

= −π[0,t]

(
D∗

	Jπ[0,t]C + τ(−t)B∗
	ΠA(t)

)
,

Sπ[0,t]M
−1π+ = π[0,t]

(
N ∗Jπ[0,t]D + τ(−t)M∗B∗ΠBτ(t)

)
π[0,t](5.7)

= π[0,t]

(
D∗

	Jπ[0,t]D + τ(−t)B∗
	ΠBτ(t)

)
π[0,t],

Π = A∗(t)ΠA(t) + C∗Jπ[0,t]C − K∗Sπ[0,t]K.(5.8)
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Fig. 5.2. Primal-dual connection with dual feedback.

Proof. Since yopt(x0) = (C +D	K)x0 and xopt(x0, t) = (A(t) +B	τ(t)K), we get
from (5.2) and Lemma 5.4

0 = π[0,t]D
∗
	Jπ[0,t]y

opt(x0) + π[0,t]τ(−t)B∗
	Πxopt(x0, t)

= π[0,t]D
∗
	Jπ[0,t] (C + D	K)x0

+ π[0,t]τ(−t)B∗
	Π (A(t) + B	τ(t)K)x0

= π[0,t]D
∗
	Jπ[0,t]Cx0 + π[0,t]τ(−t)B∗

	ΠA(t)x0

+ π[0,t]D
∗
	Jπ[0,t]D	Kx0

+ π[0,t]τ(−t)B∗
	ΠB	τ(t)Kx0

= π[0,t]D
∗
	Jπ[0,t]Cx0 + π[0,t]τ(−t)B∗

	ΠA(t)x0

+ π[0,t]SKx0.

This is (5.6).
The proof of (5.7) is very similar, and we leave it to the reader.
The identity (5.8) follows from (5.4) and (5.6) since they give

Π = A∗
	(t)ΠA(t) + C∗

	Jπ[0,t]C

= (A∗(t) + K∗M∗τ(−t)B∗) ΠA(t) + (C∗J + K∗N ∗J)π[0,t]C

= A∗(t)ΠA(t) + C∗Jπ[0,t]C − K∗Sπ[0,t]K.

Lemma 5.5 can be used to derive the following result.
Corollary 5.6. Make the same assumption and introduce the same notations

as in Theorem 4.4. Let x and y denote the state and output of Ψ with initial time zero,
initial state x0, and control u, and let x∗ and u∗ denote the state and output of the
closed loop optimal adjoint system Ψ∗

	 with initial time t > 0, initial value Πx(t), and
control Jy (see Figure 5.2). Then x∗(s) = Πx(s) for all s ∈ [0, t] and u∗ is given by

π[0,t]u
∗ = −Sπ[0,t]

(
Kx0 − (I −F)π[0,t]u

)
.

Thus, apart from the factor −S and the different feed-through term, this is the same
signal that is produced by the optimal state feedback output of Ψ.

We leave the proof of this corollary to the reader since it is essentially the same
as the proof of Corollary 5.2, with Lemma 5.1 replaced by Lemma 5.5.

It is possible to reformulate the preceding result in a way that does not involve
any feedback, only feed-forward.



QUADRATIC OPTIMAL CONTROL 25

A B[
C
K

] [
D
F

]
A∗

[
C∗ K∗

]

B∗
[
D∗ F∗

]

Π

J

S

❄
x0

x

✛

z

❄❝
−

+✛ π[0,t]ur

✻

u	✛

y

✛

❄

✻Πx(t)

x∗

✻
❝

−
+

✛✛ 0

u∗

❄❝
−

+
r

✻

✛✛ 0

Fig. 5.3. Feed-forward primal-dual connection.

Corollary 5.7. Make the same assumption and introduce the same notations
as in Theorem 4.4. Let x, y, and z denote the state, the output, and the state feedback
output of Ψ with initial time zero, initial state x0, and control u, and let x∗ and u∗

denote the state and output of the adjoint system Ψ∗ with initial time t > 0, initial
value Πx(t), control Jy, and output injection signal S(u − z) (see Figure 5.3). Then
x∗(s) = Πx(s) for all s ∈ [0, t] and u∗ is given by

π[0,t]u
∗ = −Sπ[0,t]

(
Kx0 − (I −F)π[0,t]u

)
.

Proof. This follows from Corollary 5.6, which tells us that all the input signals
(and initial states) in Figures 5.2 and 5.3 are identical; hence the outputs are also
identical.

6. The algebraic Riccati equation. With the aid of the formulae in the pre-
ceding section we can repeat the computations in [23, Sections 9 and 10] with the
following results. (We refer the reader to [2], [23, Sections 7 and 8], and [29] for
discussions on the generating operators of well-posed linear systems.)

Theorem 6.1. Make the same assumptions and introduce the same notations as
in Theorem 4.4. Extend the system Ψ into

Ψ =




A B[
C
K

] [
D
F

]



by adding the optimal state feedback pair (K,F). Let

Ψ	 =




A	 B	[
C	

K	

] [
D	

F	

]

 =



A + BτMK BM[
C + NK
MK

] [
N

M− I

]



be the optimal closed loop system given by Theorem 4.4. Denote the generating oper-
ators of Ψ and Ψ	 by the same letters as the corresponding operators [23, Sections 7
and 8].
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(i) The Riccati operator Π of Ψ satisfies the Lyapunov equations

〈Ax0,Πx1〉H + 〈x0,ΠAx1〉H = −〈Cx0, JCx1〉Y + 〈Kx0, SKx1〉U ,

x0, x1 ∈ dom(A),

〈Ax0,Πx1〉H + 〈x0,ΠA	x1〉H = −〈Cx0, JC	x1〉Y ,

x0 ∈ dom(A), x1 ∈ dom(A	),

〈A	x0,Πx1〉H + 〈x0,ΠA	x1〉H = −〈C	x0, JC	x1〉Y ,

x0, x1 ∈ dom(A	).

(ii) The Lyapunov equations in (i) can be rewritten in the form

ΠAx = − (A∗Π + C∗JC −K∗SK)x

= −
(
A∗

	Π + C∗
	JC

)
x, x ∈ dom(A),

ΠA	x = − (A∗Π + C∗JC	)x

= −
(
A∗

	Π + C∗
	JC	

)
x, x ∈ dom(A	).

(iii) In addition, suppose that the extended system Ψ is regular together with its
adjoint [28, Theorem 5.8]. Denote the feed-through operators with the same
letters as their corresponding input/output maps [23, Sections 7 and 8], and let
an over-line denote the strong Weiss extension of an observation map (see [23,
Proposition 36], for example, Cx = limλ→∞ Cλx, where Cλ = λC(λI −A)−1

is the “Yosida approximation” of C). Then




A	 B	[
C	

K	

] [
D	

F	

]

 =



A + BMK BM[
C + NK
MK

] [
N

M − I

]

 ,

where the equation for B	 should be interpreted as B∗
	 = M∗B∗.

(iv) In the regular case (iii) above, the operator B∗Π satisfies the equations

SKx = −M∗ (B∗Π + D∗JC)x, x ∈ dom(A),

0 = (B∗Π + D∗JC	)x, x ∈ dom(A	).

(v) In the regular case (iii) above, the Riccati operator Π satisfies the algebraic
Riccati equation

〈Ax0,Πx1〉H + 〈x0,ΠAx1〉H + 〈Cx0, JCx1〉Y
=

〈
M∗ (B∗Π + D∗JC)x0, S

−1M∗ (B∗Π + D∗JC)x1

〉
U
,

x0, x1 ∈ dom(A).

In particular, if M = I,9 then

〈Ax0,Πx1〉H + 〈x0,ΠAx1〉H + 〈Cx0, JCx1〉Y
=

〈
(B∗Π + D∗JC)x0, S

−1 (B∗Π + D∗JC)x1

〉
U
,

x0, x1 ∈ dom(A).

9This means that the feed-through operator of F is taken to be zero; i.e., there is “no feed-forward
term inside the feedback loop.” See the discussion after [23, Theorem 27].
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Proof. (i) Take x0 and x1 in the indicated domains, apply (5.3), (5.4), or (5.8)
to x1, take the inner product with x0, differentiate with respect to t, and substitute
t = 0.

(ii) This follows from (i).
(iii) These formulae are found in [23, Sections 7 and 8] and proved in [29].
(iv) Let x = Ax0 and y = Cx0 denote the state and output of Ψ with initial

time zero, initial state x0, and zero control u. Referring to Corollary 5.6, we let
x∗ = Πx and u∗ = −SKx0 be the state and output of the optimal adjoint system Ψ∗

	

with initial time t > 0, initial value Πx(t), and control Jy (restricted to the interval
[0, t]). Take x0 ∈ dom(A). Then all the inputs and outputs belong to W 1,2([0, t]),
x(t) ∈ dom(A), and, for all s ∈ [0, t],

y(s) = Cx(s), u∗(s) = −SKx(s)

(the proofs of these claims are analogous to the proofs of [23, Propositions 29 and 36]).
By part (ii), the initial values of the state x∗(t) = Πx(t) and control Jy(t) = JCx(t)
satisfy

A∗
	x

∗(t) + C∗
	Jy(t) = (A∗

	Π + C∗
	JC)x(t) = ΠAx(t) ∈ H.

Thus, by [23, Proposition 36(ii)], the output u∗ of Ψ∗
	 is related to the input y and

the state x∗ through the formula

u∗(s) = B∗
	x

∗(s) + D∗
	Jy(s),

which combined with (iii) gives us

−SKx(s) = u∗(s) = M∗B∗Πx(s) + N∗JCx(s) = M∗(B∗Π + D∗JC)x(s).

Taking s = 0 we get the first formula in (iv). We get the second formula by replacing
Corollary 5.6 by Corollary 5.2.

(v) Combine (i) and (iv).

7. Computation of the sensitivity operator. Looking at the different for-
mulae involving B∗Π in part (iv) of Theorem 6.1, a natural question to ask is whether
it is possible to compute B∗Πx for all x in the Hilbert space WB defined in [23,
Section 7]. This is the space of all possible initial values x0 satisfying the equation
Ax0 +Bu0 ∈ H for some u0 ∈ U [23, Lemma 32]. It is invariant in the sense that the
controlled state x(t) of Ψ stays in WB under the action of a control u in W 1,2(R+;U),
provided the initial values x0 and u0 = u(0) satisfy Ax0 +Bu0 ∈ H [23, Remark 34].
Moreover, it contains both the domains dom(A) and dom(A	); in fact, it contains
all the domains of the generators of any state feedback perturbed version of A [23,
Proposition 37]. Another related question is whether it is possible to write all the dif-
ferent Lyapunov equations given in part (ii) of Theorem 6.1 into one common form.
A third related question concerns the crucial sensitivity operator S appearing in The-
orem 6.1: is it possible to give a formula for this operator in terms of the original
data and the Riccati operator Π? The answers to all these questions are affirmative,
as can be shown with the aid of Corollary 5.7.

Theorem 7.1. Make the same assumptions and introduce the same notations
as in Theorem 4.4. Denote the generating operators of Ψ by the same letters as the
corresponding operators [23, Section 7], and let D̂ and F̂ be the transfer functions of
D and F [24, Lemma 2.9]. Let x0 ∈ H and u0 ∈ U satisfy Ax0 + Bu0 ∈ H.



28 OLOF J. STAFFANS

(i) If α ∈ C has real part bigger than the growth rate of Ψ, then the vectors
y0 ∈ Y and w0 ∈ U defined by10

y0 = C(αI −A)−1(αx0 −Ax0 −Bu0) + D̂(α)u0,(7.1)

w0 = −K(αI −A)−1(αx0 −Ax0 −Bu0) + (I − F̂(α))u0(7.2)

are independent of α. Moreover,

A∗Πx0 + C∗Jy0 + K∗Sw0 = −Π (Ax0 + Bu0) ∈ H,(7.3)

and, for all β ∈ C with real part bigger than the growth rate of Ψ,

(I − F̂(β))∗Sw0 = B∗(βI −A∗)−1Π(βx0 + Ax0 + Bu0) + (D̂(β))∗Jy0.

(7.4)

In particular, Π maps the space WB defined in [23, Section 7] continuously
into the space V ∗

(C,K) defined in [23, Proposition 39].

(ii) If Ψ is regular, then (7.1) and (7.2) can be written in the alternative forms

y0 = Cx0 + Du0,(7.5)

w0 = −Kx0 + (I − F )u0 = −Kx0 + Xu0,(7.6)

which substituted into (7.3) gives

(A∗Π + C∗JC −K∗SK)x0 + Π(Ax0 + Bu0)(7.7)

= −(C∗JD + K∗SX)u0.

(iii) If Ψ∗ is regular, then (7.4) can be written in the alternative form

(I − F ∗)Sw0 = X∗Sw0 = B∗Πx0 + D∗Jy0.(7.8)

(iv) If both Ψ and Ψ∗ are regular, then (7.5) and (7.6) combined with (7.8) give

(B∗Π + D∗JC + X∗SK)x0 = (X∗SX −D∗JD)u0.(7.9)

In particular, if X = I (i.e., F = 0 and there is “no feed-forward term inside
the feedback loop”), then

(B∗Π + D∗JC + SK)x0 = (S −D∗JD)u0.

A special case of the last formula is found in [18, Formula (60)]. (The setting in
[18] is different, and that formula is actually valid in a much larger (Banach) space
than WB .)

Proof. (i) Take some x0 ∈ H and u0 ∈ U satisfying Ax0 +Bu0 ∈ H. Choose some
u ∈ W 1,2([0, t];U) with u(0) = u0. Consider the connection described in Corollary 5.7.
As in that corollary, we let x = Ax0 +Bτπ+u, y = Cx0 +Dπ+u, and z = Kx0 +Fπ+u
denote the state, the output, and the state feedback output of Ψ with initial time
zero, initial state x0, and control u. Furthermore, let w = (u − z). Then, by [23,
Proposition 29], all the inputs and and outputs of the extended primal system Ψ

10For notational simplicity we have in this theorem replaced u	 in Figure 5.3 by w. It represents
the input to the optimal closed loop system; cf. Figure 5.1.
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belong to W 1,2([0, t]) and the state x is continuously differentiable in H. It follows
from, for example, [16, Formula (2.1;2)] combined with [23, Proposition 29] that (7.1)
and (7.2) hold with x0, u0, y0, and w0 replaced by x(t), u(t), u(t), and w(t) for all
t ≥ 0. In particular, defining y0 = y(0) and w0 = w(0) we get (7.1) and (7.2).

Let us continue with a discussion of the dual system Ψ∗ in Corollary 5.7. We
fix some t > 0 and let x∗(s) = A∗(t − s)Πx(t) + C∗Jτ(s)π[0,t]y + K∗Sτ(s)π[0,t]w,
0 ≤ s ≤ t, be the state and u∗ = τ(−t)B∗Πx(t) + D∗Jπ[0,t]y + F∗Sπ[0,t]w be the
output of Ψ∗ with initial time t > 0, initial value Πx(t), control Jy, and output
injection signal Sw (throughout restricting all the functions to the interval [0, t]).
According to Corollary 5.7, x∗ = Πx and u∗ = Sw. The former equation implies that
x∗ is continuously differentiable in H (since x is continuously differentiable in H). The
derivative of x is x′ = Ax + Bu (see [23, Proposition 29]), and the derivative of x∗ is
(x∗)′ = −A∗x∗ −C∗Jy −K∗Sw (this equation is always true in the larger space W ∗

defined in [23, Section 7], but this time we know that the derivative actually belongs
to the smaller space H). Equating the derivative of x∗ with the derivative of Πx we
get (7.3). Equation (7.4) is derived in the same way as equations (7.1) and (7.2) were
derived above, except that we also have to use the additional fact that u∗ = Sw (and
we have used (7.3) to slightly simplify the result).

(ii) If Ψ is regular, then (7.5) and (7.6) are the limits of (7.1) and (7.2) as α → ∞.
(iii) If Ψ∗ is regular, then (7.8) is the limit of (7.4) as β → ∞.
(iv) This is immediate.
The preceding theorem provides us with the following formula, among others, for

the sensitivity operator S.
Corollary 7.2. In the case where both the extended system Ψ and its adjoint

are regular and X = I11 the following additional claims are true:
(i) For all u0 ∈ U, we have

Su0 = D∗JDu0 + lim
α→∞

B∗Π(αI −A)−1Bu0.

In particular, S = D∗JD iff the limit above is zero for all u0 ∈ U .
(ii) If for some u0 ∈ U it is true that Bu0 ∈ H, then

Su0 = D∗JDu0.

(iii) If S = D∗JD, then, for all x0 ∈ WB ,

Kx0 = −S−1 (B∗Π + D∗JC)x0.

Proof. To prove part (i) it suffices to apply (7.9) with x0 = (αI − A)−1Bu0, let
α → ∞, and use the regularity of the system. Part (ii) follows directly from (7.9)
with x0 = 0. The final claim is obvious (see (7.9)).

Remark 7.3. As we shall prove elsewhere [25], the difference S−D∗JD is positive
(negative) definite whenever Π is positive (negative) definite on the reachable subspace.
(The proof is a fairly straightforward application of Lemma 5.4.) This is related to the
fact that the factorization is (J, S)-lossless iff Π is positive on the reachable subspace.

8. Applications: The bounded and positive real lemmas. By applying
the preceding theory we can derive the first available versions of the strict bounded
and positive (real) lemmas for general well-posed linear systems.

11We lose no generality by assuming that X = I; see Proposition 4.7.
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In the positive real lemma and the bounded real lemma we need a cost function
containing both the output y and the control u. For this reason we do in the same
way as in Corollary 4.9 and adjoin a copy of the control to the output; i.e., we study
the augmented system

Ψaug =




A B[
C
0

] [
D
I

]

 .(8.1)

By replacing the identity cost operator in Corollary 4.9 by a more general cost operator
J defined on U × Y, we get the following result.

Corollary 8.1. Let J = J∗ = [QL
L∗

R ] ∈ L(Y ×U), let S = S∗ ∈ L(U), S ≫ 0,
and let Ψ = [A B

C D ] be a jointly stabilizable and detectable well-posed linear system on
(U,H, Y ).

(i) The extended system Ψaug in (8.1) is J-coercive iff D has a right coprime
factorization (N ,M) for which [ N

M ] is (J, S)-inner.
(ii) Assuming J-coercivity, let xopt(x0), yopt(x0), and uopt(x0) be the optimal

state, output, and control for the quadratic cost minimization problem de-
scribed in Definition 3.1, but with the original system Ψ replaced by the ex-
tended system Ψaug. Let (N ,M) be a right coprime factorization of D of
the type described in (i). Then there is a unique feedback map K such that
[K F ] = [K (I −M−1)] is an admissible stabilizing state feedback pair for
Ψ and



xopt(t, x0)
yopt(x0)
uopt(x0)


 =



A	(t)
C	

K	


x0 =



A(t) + BMτ(t)K

C + NK
MK


x0

is equal to the state and output of the closed loop system Ψ	 defined by

Ψ	 =




A	 B	[
C	

K	

] [
D	

F	

]

 =



A + BτMK BM[
C + NK
MK

] [
N

M− I

]



with initial value x0, initial time zero, and zero input u	 (see Figure 2.1).
The feedback map K is uniquely determined by the fact that C	 = C + NK ∈
L(H;L2(R+;Y )), K	 = MK ∈ L(H;L2(R+;U)), and

π+

[
N ∗ M∗

]
J

[
C	

K	

]
= 0.

Moreover, the Riccati operator of Ψ is given by

Π =
[
C∗

	 K∗
	

]
J

[
C	

K	

]
.

(iii) If Ψ is stable, then

K = −S−1π+

[
N ∗ M∗

]
J

[
C
0

]
= −S−1π+ (N ∗Q + M∗L) C

and

Π = C∗QC − K∗SK.
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(iv) In the case where the extended system Ψ is regular together with its adjoint
the formulae connecting K and Π in Theorem 6.1(iv)–(v) become (with the
normalization M = I)

Kx0 = −S−1
(
B∗Π + (D∗Q + L∗)C

)
x0,

〈Ax0,Πx1〉H + 〈x0,ΠAx1〉H + 〈Cx0, QCx1〉Y = 〈Kx0, SKx1〉U ,

x0, x1 ∈ dom(A)

and the sensitivity operator S is given by the strong limit (for each fixed
u0 ∈ U)

Su0 =
[
D∗ I

]
J

[
D
I

]
u0 + lim

α→∞
B∗Π(αI −A)−1Bu0.

Proof. Part (i) follows from Lemma 4.3(ii). Part (ii) follows from Theorem 4.4 in
the same way as Corollary 4.9 does. Part (iii) follows from Theorem 2.6. Part (iv)
follows from Theorem 6.1 and Corollary 7.2(i).

From this result we can obtain a factorization version of the strict bounded (real)
lemma as follows: We let Ψ be stable and choose J to be

J =

[
−I 0
0 γ2I

]
,

where γ is a real constant. Then the extended system is J-coercive iff the input/output
map D satisfies

‖D‖TIC(U ;Y ) < γ.(8.2)

Thus, Corollary 8.1 applies iff (8.2) holds. In this case the formulae in Corollary
8.1(ii)–(iii) become

D = NM−1, γ2M∗M−N ∗N = S,

K = S−1π+N
∗C, γ2π+M

∗K	 = π+N
∗C	,[

C	

K	

]
=

[
C
0

]
+

[
N
M

]
K =

[
C
0

]
+

[
N
M

]
S−1π+N

∗C,

Π = γ2K∗
	K	 − C∗

	C	 = −C∗
(
I + NS−1π+N

∗
)
C.

The connecting and Lyapunov equations in Corollary 8.1(iv) become (for x0 and
x1 ∈ dom(A))

Kx0 = −S−1 (B∗Π −D∗C)x0,

〈Ax0,Πx1〉H + 〈x0,ΠAx1〉H = 〈Cx0, Cx1〉Y + 〈Kx0, SKx1〉U .

Observe that the parameter γ enters these equations only through the sensitivity
operator S, which is given by the strong limit (for each fixed u0 ∈ U)

Su0 =
(
γ2I −D∗D

)
u0 + lim

α→∞
B∗Π(αI −A)−1Bu0.

We remark that in our setting Π is negative definite; to get the standard setting where
Π is positive [12, Theorem 3.7.1], we must replace J by −J and maximize instead of
minimize. This will replace S by −S and Π by −Π.
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The strictly positive (real) lemma is a statement about a stable system Ψ = [A B
C D ]

on (U,H,U) (i.e., the output space of this system is equal to its input space). The
input/output map D of Ψ is strictly positive iff

∫

R+

(〈(Dπ+u)(s), u(s)〉U + 〈u(s), (Dπ+u)(s)〉U ) ds ≥ ǫ ‖u‖2
L2(R+;U)

for all u ∈ L2(R+;U) and some ǫ > 0. Clearly, D is strictly positive iff the extended
system Ψaug is J-coercive with respect to the operator

J =

[
0 I
I 0

]
.

Thus, Corollary 8.1 applies with this J iff D is strictly positive. The formulae of
Corollary 8.1(ii)–(iii) become in this case

D = NM−1, M∗N + N ∗M = S,

K = −S−1π+M
∗C, π+ (M∗C	 + N ∗K	) = 0,

[
C	

K	

]
=

[
C
0

]
+

[
N
M

]
K =

[
C
0

]
−

[
N
M

]
S−1π+M

∗C,

Π = K∗
	C	 + C∗

	K	 = −K∗SK = −C∗MS−1π+M
∗C.

The connecting and Lyapunov equations in Corollary 8.1(iv) become (for x0 and
x1 ∈ dom(A))

Kx0 = −S−1 (B∗Π + C)x0,

〈Ax0,Πx1〉H + 〈x0,ΠAx1〉H = 〈Kx0, SKx1〉U

and the sensitivity operator S is given by the strong limit (for each fixed u0 ∈ U)

Su0 = (D + D∗)u0 + lim
α→∞

B∗Π(αI −A)−1Bu0.

Again Π is negative; to get a positive Π we should change the sign of J and maximize
instead of minimize [12, Problem 3.25].

In the Pritchard–Salamon case the applications to the bounded and positive (real)
lemmas that we have presented above are found in [31, Remark 4.34].

REFERENCES

[1] J. Bontsema and R. F. Curtain, Perturbation properties of a class of infinite-dimensional
systems with unbounded control and observation, IMA J. Math. Control Inform., 5 (1988),
pp. 333–352.

[2] R. F. Curtain, Representations of infinite-dimensional systems, in Three Decades of Mathe-
matical Systems Theory, Lecture Notes in Control and Information Sciences 135, H. Ni-
jmeijer and J. M. Schumacher, eds., Springer-Verlag, Berlin, 1989, pp. 101–128.

[3] R. F. Curtain and G. Weiss, Well posedness of triples of operators (in the sense of linear
systems theory), in Control and Optimization of Distributed Parameter Systems, Basel,
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