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The Beginning

In the fall of 2003, Dima (= Prof. Damir Z. Arov) came to
work with me in Åbo for one month.

We decided to join forces to study the relationship between
the (external) reciprocal symmetry of a conservative linear
system and the (internal) symmetry structure of the system in
three different settings, namely the scattering, the impedance,
and the transmission setting.

Instead of writing three separate papers with three separate
sets of results and proofs we wanted to rationalize and to find
some “general setting” that would cover the “common part”
of the theory. The basic plan was to first develop the theory
in such a “general setting” as far as possible, before discussing
the three related symmetry problems mentioned above in
detail.
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After a couple of days we realized that the “behavioral
approach” of (BS06) seemed to provide a suitable “general
setting”.

As time went by the borderline between the “general theory”
and the application to the original symmetry problem keept
moving forward.

Our first paper had to be split in two because it became too
long. Then the second part had to be split in two because it
became too long, then the third part had to be split in to, and
so on.

We have by now written 13 papers on state/signal systems
with an average length of 50 pages (some of them together
with Dr. Mikael Kurula), and are presently writing the first
volume of a book on state/signal systems.

The original application of our state/signal theory to the
study of symmetries in the scattering, impedance, and
transmission settings is still “work in progress”.
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Stationary Discrete Time I/S/O System

A (well-posed) linear stationary discrete time i/s/o
(input/state/output) system is of the form

Σiso :

{
x(n + 1) = Ax(n) + Bu(n),

y(n) = Cx(n) + Du(n),
n ∈ Z+. (1)

A, B, C , D, are bounded linear operators and Z+ = {0, 1, 2, . . .}.
the input u(n) ∈ U = the input space,
the state x(n) ∈ X = the state space,
the output y(n) ∈ Y = the output space (all Hilbert spaces).
A future trajectory = a triple of sequences (u, x , y) satisfying (1).
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Stationary I/S/O System in Continuous Time

A uniformly continuous linear stationary continuous time i/s/o
(input/state/output) system is of the form

Σiso :

{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
t ∈ R+. (2)

A, B, C , D, are bounded linear operators and R+ = [0,∞).
the input u(t) ∈ U = the input space,
the state x(t) ∈ X = the state space,
the output y(t) ∈ Y = the output space (all Hilbert spaces).
A classical future trajectory = a triple of continuous functions
(u, x , y) satisfying (2) (in particular, x is continuously
differentiable).
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Typical stationary i/s/o systems modelled by partial
differential equations are not uniformly continuous.

Note that equation (2) can be rewritten in the form

Σiso :

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R+, (3)

where S is the bounded block matrix operator S =
[
A B
C D

]
.

We get a much more general class of equations by allowing S
in (3) bo be unbounded (but still closed) and rewriting (3) in
the form

Σiso :


[
x(t)
u(t)

]
∈ dom (S) ,[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
,

t ∈ R+. (4)

This class of systems covers “all” the standard models from
mathematical physics. We call S the generator of Σiso. A
classical future trajectory = a triple of continuous functions
(u, x , y), with x continuously differentiable, satisfying (4).
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Discrete Versus Continuous Time

The two easiest cases to study are the (well-posed) discrete
time case (with bounded A, B, C , and D) and the continuous
time case with bounded S , i.e., S is of the form S =

[
A B
C D

]
,

where A, B, C , and D are bounded.

However, from a mathematical physics point of view the
continuous time case with an unbounded generator S is the
most interesting one.

Our first joint papers with Dima were written in discrete time,
and the more recent ones in continous time, with an
unbounded generator S .

The motivation for the introduction of the class of
state/signal systems is the same in discrete and continuous
time. To explain this motivation we next look at conservative
i/s/o systems.
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The Adjoint I/S/O System

Recall the equation describing the dynamics of a linear stationary
continuous time system.

Σiso :


[
x(t)
u(t)

]
∈ dom (S) ,[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
,

t ∈ R+. (4)

I now assume that the generator S is closed and densely defined.
The adjoint i/s/o system is the one whose dynamics is described
by the same equation with S replaced by S∗:

Σ∗iso :


[
x‡(t)

y‡(t)

]
∈ dom (S∗) ,[

ẋ‡(t)
u‡(t)

]
= S

[
x‡(t)
y ‡(t)

]
,

t ∈ R+. (5)
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Assume Solvability

In the following discussion I assume that both Σiso and Σ∗iso are
forward solvable in the following weak sense:

Σiso is forward solvable if for every [ x0
u0 ] ∈ dom (S) there exists

at least one classical trajectory (u, x , y) of Σiso

with
[
x(0)
u(0)

]
= [ x0

u0 ].

Σ∗iso is forward solvable if for every [ x0
y0 ] ∈ dom (S∗) there

exists at least one classical trajectory (y ‡, x‡, y ‡) of Σ∗iso
with

[
x‡(0)

y‡(0)

]
= [ x0

y0 ].
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Conservative I/S/O System

Σiso is scattering conservative if all its classical future
trajectories (u, x , y) satisfy the balance equation

‖x(t)‖2
X+

∫ t

0
‖y(s)‖2

Y ds = ‖x(0)‖2
X+

∫ t

0
‖u(s)‖2

U ds, t ∈ R+,

(6)
(and the adjoint system Σ∗iso has the same property).

Σiso is Ψ-impedance conservative if all its classical future
trajectories (u, x , y) satisfy the balance equation

‖x(t)‖2
X = ‖x(0)‖2

X+2<
∫ t

0
〈u(s),Ψy(s)〉U ds t ∈ R+, (7)

(and the adjoint system Σ∗iso has the same property with Ψ
replaced by Ψ∗). Here Ψ: Y → U us a unitary operator.
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Conservative I/S/O System

Σiso is (JU , JY)-transmission conservative if all its classical
future trajectories (u, x , y) satisfy the balance equation

‖x(t)‖2
X +

∫ t

0
〈y(s), JYy(s)〉Y ds

= ‖x(0)‖2
X +

∫ t

0
〈u(s), JUu(s)〉U ds t ∈ R+,

(8)

and the adjoint system Σ∗iso has the same property with
(JU , JY) replaced by (JY , JU ). Here JU and JY are signature
operators in U and Y, respectively (usually with the same
negative index).
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J -Conservative I/S/O System

The three different balance equations can be rewritten into the
common form

‖x(t)‖2
X = ‖x(0)‖2

X +

∫ t

0

〈[
u(s)
y(s)

]
,J
[

u(s)
y(s)

]〉
U

ds t ∈ R+,

(9)
where J is a signature operator in the product space

[ U
Y
]
:

J = Jscat =
[

1U 0
0 −1Y

]
in the scattering case,

J = Jimp =
[

0 Ψ
Ψ∗ 0

]
in the impedance case,

J = Jtra =
[
JU 0
0 −JY

]
in the transmission case,

Formula (9) treats the input u and the output y in an equal way:
the operator J is simply a signature operator in the signal space
W =

[ U
Y
]
, and it defines a Krĕın space inner product in W. From

the point of (9) it does not matter if u is the input and y the
output, or the other way around, or if neither u nor y is the input
or output.
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It is well-known that one can pass from a Ψ-impedance or
(JU , JY)-transmission conservative i/s/o system to a scattering
conservative i/s/o system by simply reinterpreting which part of the
combined i/o signal [ uy ] is the input, and which part is the input.

If Σiso is Ψ-impedance conservative, and if we take the new
input and output to be[

uscat

yscat

]
= 1√

2

[
1U Ψ
Ψ∗ −1Y

] [
uimp

yimp

]
,

then the resulting i/s/o system is scattering conservative.
If Σiso is (JU , JY)-transmission conservative, and if we take
the new input and output to be[

uscat

yscat

]
=

[
PU+ PY−
PU− PY+

] [
utra

ytra

]
,

where (PU+ ,PU−) and (PY+ ,PY−) are complementary
projections onto the positive and negative subspaces of JU
and JY , respectively, then the resulting i/s/o system is again
scattering conservative.
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Of course, the transformations described above lead to new
dynamic equations with new generators Sscat, which can be
explicitly derived from the original generators Simp and Stra,
but the formulas for Sscat tend to be complicated, especially
when Simp and Stra are unbounded.

This motivated us to try to rewrite the original equation
describing the dynamics of Σiso in such a way that it does not
distinguish between inputs and outpus!

Olof StaffansÅbo Akademi University, Finland olof.staffans@abo.fi http://users.abo.fi/staffansThe Linear Stationary State/Signal Systems Story



Frame 19 of 69

Outline of Talk

Background

State/signal systems in the time domain

Stationary input/state/output systems
Conservative input/state/output systems
State/signal systems and their i/s/o representations

State/signal systems in the frequency domain

Input/state/output systems in the frequency domain
State/signal systems in the frequency domain

Conservative and non-conservative state/signal realizations

Further state/signal systems theory

The team behind the state/signal saga
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How to Go from an I/S/O System to a S/S system?

Recall the equation describing the i/s/o dynamics in continuous
time:

Σiso :


[
x(t)
u(t)

]
∈ dom (S) ,[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
,

t ∈ R+. (4)

1 First s/s formulation: Write W =
[ U
Y
]
, and move the output

equation into the domain of a new generator F (whose
domain is no longer dense in W):

Σ:


[

x(t)
w(t)

]
∈ dom (F ) ,

ẋ(t) = F
([

x(t)
w(t)

])
,

t ∈ R+, (10)

dom (F ) =
{[

x0

[ u0
y0 ]

]
∈
[ X
W
] ∣∣∣ [ x0

u0 ] ∈ dom (S) , y0 = PYS [ x0
u0 ]
}
,

F
[

x0

[ u0
y0 ]

]
= PXS [ x0

u0 ] .
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How to Go from an I/S/O System to a S/S system?

Σiso :


[
x(t)
u(t)

]
∈ dom (S) ,[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
,

t ∈ R+. (4)

2 Second s/s formulation: Use graph Representation of (4),

W =
[ U
Y
]
, K =

[ X
X
W

]
:

Σ:

[
ẋ(t)
x(t)
w(t)

]
∈ V , t ∈ R+. (11)

where the generating subspace V is the (reordered) graph of
S (or of F ):

V =

{[
z0
x0

[ u0
y0 ]

]
∈ K

∣∣∣∣ [ x0
u0 ] ∈ dom (S) , [ z0

y0 ] = S [ x0
u0 ]

}
=

{[
z0
x0

[ u0
y0 ]

]
∈ K

∣∣∣∣ [ x0

[ u0
y0 ]

]
∈ dom (F ) , z0 = F

[
x0

[ u0
y0 ]

]}
.
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Classical Future Trajectories

Σiso :


[
x(t)
u(t)

]
∈ dom (S) ,[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
,

t ∈ R+. (4)

Σ:


[

x(t)
w(t)

]
∈ dom (F ) ,

ẋ(t) = F
([

x(t)
w(t)

])
,

t ∈ R+, (10)

Σ:

[
ẋ(t)
x(t)
w(t)

]
∈ V , t ∈ R+. (11)

A classical future trajectory of (10) or (11) is a pair of
continuous functions (x ,w), with x continuously
differentiable, which satisfies (10) or (11).

If (u, x , y) is a classical future trajectory of the i/s/o system
Σiso, then

(
x , [ uy ]

)
is a classical future trajectory of the

corresponding s/s system Σ.
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Properties of S , F , and V

1 S :
[ X
U
]
→
[ X
Y
]

is a closed operator
⇔ F :

[ X
W
]
→ X is a closed operator

⇔ V is a closed subspace of K.

2 If the above conditions hold, then S is bounded if and only if
dom (F ) is closed. In this case S can be split into block matrix
form S =

[
A B
C D

]
with bounded operators A, B, C , and D.

3 dom (F ) is the projection of V onto the domain space of F :

dom (F ) =
{

[ x0
w0 ] ∈

[ X
W
] ∣∣∣ [ z0

w0
w0

]
∈ V for some z0 ∈ X

}
.

4 If dom (F ) is dense in
[ X
W
]
, then W = U and Y = {0} (there

is no output, only an input).

5 If
[

0
w0

]
∈ dom (F )⇒ w0 = 0, then W = Y and U = {0}

(there is no input, only an output).
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How to Go from an S/S System to an I/S/O system?

To go in the opposite direction and construct an i/s/o
representation Σiso of a s/s Σ we need to first decompose W into a
direct sum W = U u Y, where we want to interpret U as the input
space and Y as the output space. This is possible if and only if

If
[ z

0
y

]
∈ V where y ∈ Y, then [ zy ] = 0.

In other words, the z-component and the y -component of a vector[ z
x

u+y

]
∈ V must be uniquely determined by the x component and

the u-component. If this condition holds, and if we denote the

linear map from [ xu ] to [ zy ] by S (where
[ z

x
u+y

]
∈ V ), then S is the

generator of an i/s/o system Σiso, and V has the graph
representation

V :=


 z

x
w

 ⊂
XX
W

 ∣∣∣∣∣∣
[

x

PYU w

]
∈ dom (S) and

[
z

PUYw

]
= S

[
x

PYU w

] .

(12)
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Σ:

[
ẋ(t)
x(t)
w(t)

]
∈ V , t ∈ R+. (11)

Theorem

The state/signal system Σ in (11) has an i/s/o representation Σiso

with a bounded generator S =
[
A B
C D

]
if and only if V satisfies the

following four conditions:

1 V is a closed subspace of K =
[ X
X
W

]
.

2

[
z
0
0

]
∈ V ⇒ z = 0 (if x(t) = 0 and w(t) = 0 then ẋ(t) = 0),

3 For every x0 ∈ X there exists some [ z0
w0 ] ∈

[ X
W
]

such that[
z0
x0
w0

]
∈ V (every initial state x0 is possible).

4 dom (F ) is closed in
[ X
W
]

(this gives the boundedness).

Thus, this theorem tells when it is possible to decompose
W = U u Y in such a way that S is bounded and “V is the graph
of S”
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Discrete Time State/Singal Systems

The same result is is true in the discrete time setting. In all our
discrete time papers we assume that the generating subspace V
satisfies conditions (1)–(4) above. The discrete time dynamics is
analogous to the continuous time dynamics:

Σiso :

[
x(n + 1)

y(n)

]
= S

[
x(n)
u(n)

]
=

[
A B
C D

] [
x(n)
u(n)

]
, n ∈ Z+.

(13)

Σ:


[

x(n)
w(n)

]
∈ dom (F ) ,

x(n + 1) = F
([

x(n)
w(n)

])
,

n ∈ Z+, (14)

Σ:

[
x(n+1)
x(n)
w(n)

]
∈ V , n ∈ Z+. (15)
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Continuous Time State/Signal Systems

In the continuous time setting conditions (1)–(4) above are too
strong. Dima and I found it to be useful to define several different
classes of continuous time s/s systems:

In the most general case we assume only that V is closed. In
this case we use the name state/signal pre-system.

If a s/s pre-system has a nonempty resolvent set, then it is
possible and natural to work also in the frequency domain.

We reserve the name state/signal system for the case where
V satisfies the following three conditions

1 V is closed,
2

[
z
0
0

]
∈ V ⇒ z = 0 (if x(t) = 0 and w(t) = 0 then ẋ(t) = 0),

3 The projection of V onto its middle component is dense in X
(the set of all possible classical initial states is dense in X ).

Again, if a s/s system has a nonempty resolvent set, then it is
again possible and natural to work in the frequency domain.
(This is, in particular, true for conservative s/s systems.)
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The Resolvent of a Semigroup Generator

Every generator A of a C0 semigroup defines a linear
autonomous dynamical system in continuous time:

Σ:

{
x(t) ∈ dom (A) ,

ẋ(t) = Ax(t),
t ∈ R+, x(0) = x0. (16)

We call x a classical trajectory of (16) on R+ if
x ∈ C 1(R+;X ) and (16) holds.
By taking Laplace transforms in (16) we see that the Laplace
transform x̂ of x satisfies the resolvent equation

λx̂(λ)− x0 = Ax̂(λ), x̂(λ) ∈ dom (A) , (17)

for sufficiently large <λ (proof: multiply by e−λt and integrate
by parts.)
By definition, λ belongs to the resolvent set ρ(A) of A if it is
true for every x0 ∈ X that the resolvent equation (17) has a
unique solution x̂(λ).
x̂(λ) = (λ− A)−1x0, λ ∈ ρ(A). Here (λ− A)−1 ∈ L(X ).
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I/S/O Systems in the Frequency Domain

Σiso :


[
x(t)
u(t)

]
∈ dom (S) ,[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
,

t ∈ R+, x(0) = x0. (4)

If x , ẋ , u, and y in (4) are Laplace transformable, then it follows
from (4) (since we assume S to be closed) that the Laplace
transforms x̂ , û, and ŷ of x , u, and y satisfy the i/s/o resolvent
equation

Σ̂iso :


[
x̂(λ)
û(λ)

]
∈ dom (S) ,[

λx̂(λ)− x0

ŷ(λ)

]
= S

[
x̂(λ)
û(λ)

] (18)

(proof: multiply by e−λt and integrate by parts in the
ẋ-component.)
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The Resolvent Set of a Linear I/S/O System

Σ̂iso :


[
x̂(λ)
û(λ)

]
∈ dom (S) ,[

λx̂(λ)− x0

ŷ(λ)

]
= S

[
x̂(λ)
û(λ)

]
.

(18)

Definition

1 λ ∈ C belongs to the resolvent set ρ(Σiso) of Σiso if for every
x0 ∈ X and for every û(λ) ∈ U there is a unique pair of

vectors
[
x̂(λ)
ŷ(λ)

]
∈
[ X
Y
]

satisfying the i/s/o resolvent equation

(18).

2 For each λ ∈ ρ(Σiso) we define the i/s/o resolvent matrix

Ŝ(λ) of Σiso at λ to be the linear operator
[ x0

û(λ)

]
→
[
x̂(λ)
ŷ(λ)

]
.
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The I/S/O Resolvent Matrix

It follows from the closed graph theorem that the i/s/o
resolvent matrix Ŝ(λ) is a bounded linear operator for each
λ ∈ ρ(Σ).
In particular, this implies that Ŝ(λ) has a block matrix
representation

Ŝ(λ) =
[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
, λ ∈ ρ(Σ),

where each of the components Â(λ), B̂(λ), Ĉ(λ), D̂(λ) is a
bounded linear operator.
Ŝ(λ) is actually even an analytic function of λ, hence so are
Â(λ), B̂(λ), Ĉ(λ), and D̂(λ).
Ŝ satisfies the i/s/o resolvent identity

Ŝ(λ)− Ŝ(µ) = (µ− λ)

[
Â(µ)

Ĉ(µ)

] [
Â(λ) B̂(λ)

]
(19)

for all µ, λ ∈ ρiso(S).
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Components of the I/S/O Resolvent Matrix

Definition

The components Â, B̂, Ĉ, and D̂ of the i/s/o resolvent matrix Ŝ
are called as follows:

1 Â is the s/s (state/state) resolvent function of Σ,

2 B̂ is the i/s (input/state) resolvent function of Σ,

3 Ĉ is the s/o (state/output) resolvent function of Σ,

4 D̂ is the i/o (input/output) resolvent function of Σ,

Â is the(standard) resolvent of the main operator A of S
(both in the single-valued case and the multi-valued case).

The i/o resolvent function D̂ is know as the under different
names, such as “transfer function”, or “characteristic
function”, or “Weyl function”.

In operator theory the i/s resolvent function B̂ is sometimes
called the Γ-field.
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Outline of Talk

Background

State/signal systems in the time domain

Stationary input/state/output systems
Conservative input/state/output systems
State/signal systems and their i/s/o representations

State/signal systems in the frequency domain

Input/state/output systems in the frequency domain
State/signal systems in the frequency domain

Conservative and non-conservative state/signal realizations

Further state/signal systems theory

The team behind the state/signal saga
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S/S Systems in the Frequency Domain

Σ:

 ẋ(t)
x(t)
w(t)

 ∈ V , t ∈ R+, x(0) = x0. (11)

If x , ẋ , and w in (11) are Laplace transformable, then it follows
from (11) (since we assume V to be closed) that the Laplace
transforms x̂ and ŵ of x and w y satisfy

Σ̂iso :

λx̂(λ)− x0

x̂(λ)
ŵ(λ)

 ∈ V (20)

(proof: multiply by e−λt and integrate by parts in the
ẋ-component.)
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The Characteristic Node Bundle

Σ̂iso :

λx̂(λ)− x0

x̂(λ)
ŵ(λ)

 ∈ V . (21)

This formula can be rewritten in the form x0

x̂(λ)
ŵ(λ)

 ∈ Ê(λ) :=

−1X λ 0
0 1X 0
0 0 1W

V . (22)

Definition

The family of subspaces Ê : {Ê(λ) | λ ∈ C} of K =
[ X
X
W

]
is called

the characteristic node bundle. We refer to each of the subspaces
Ê(λ) as the fiber of Ê att the point λ ∈ C.

Thus, Ê is an “analytic subspace-valued function” defined on C.
Claim: Ê can be interpreted as the graph of the i/s/o resolvent
matrix of an arbitrary i/s/o representation Σiso of Σ.)
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I/S/O Interpretation of the Characteristic Node Bundle

Let Σiso be an i/s/o representation of Σ, and split the i/o signal w
into w = u + y , where u ∈ U is the input and y ∈ Y is the output.
Then

Σ̂iso :


[
x̂(λ)
û(λ)

]
∈ dom (S) ,[

λx̂(λ)− x0

ŷ(λ)

]
= S

[
x̂(λ)
û(λ)

]
.

(18)

If λ ∈ ρ(Σiso), then[
x̂(λ)
ŷ(λ)

]
= Ŝ(λ)

[
x0

û(λ)

]
=

[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

] [
x0

û(λ)

]
,

which can be rewritten in the form x0

x̂(λ)
ŵ(λ)

 =

 x0

x̂(λ)[
û(λ)
ŷ(λ)

]
 =

 1X 0

Â(λ) B̂(λ)[
0

Ĉ(λ)

] [
1U

D̂(λ)

]
[ x0

û(λ)

]
.

Here
[ x0

û(λ)

]
∈
[ X
U
]

can be arbitrary, and we get (see next slide)
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I/S/O Interpretation of the Characteristic Node Bundle

Lemma

Let Σiso be an i/s/o representation of the s/s system Σ, and
suppose that λ ∈ ρ(Σiso). Then the fiber Ê(λ) of the characteristic
node bundle Ê at λ has the representation

Ê(λ) = im


 1X 0

Â(λ) B̂(λ)[
0

Ĉ(λ)

] [
1U

D̂(λ)

]

 (23)

Note that this can be interpreted as a graph representation of Ê(λ)
over the first copy of X and the input space U .

Olof StaffansÅbo Akademi University, Finland olof.staffans@abo.fi http://users.abo.fi/staffansThe Linear Stationary State/Signal Systems Story



Frame 39 of 69

Frequency Domain Input/Output Behavior

In i/s/o systems theory one is often intersted in the “pure i/o
behavior”, which one gets by “ignoring the state”. More
precisely, one takes the inital state x0 = 0, and only looks at
the relationship between the input u and the output y ,
ignoring the state x .

If we in the frequency domain setting take x0 = 0 and ignore
x̂ , then the full frequency domain relation[

x̂(λ)
ŷ(λ)

]
=

[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

] [
x0

û(λ)

]
is replaced by the i/o relation ŷ(λ) = D̂(λ)û(λ), where
D̂(λ) is the i/o resolvent function.

The same procedure can be carried out in the case of a s/s
system: We take x0 = 0 and ignore the values of x̂(λ). (next
slide)
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Frequency Domain Signal Behavior

Recall the full frequency domain s/s signal behavior: x0

x̂(λ)
ŵ(λ)

 ∈ Ê(λ) :=

−1X λ 0
0 1X 0
0 0 1W

V . (22)

Taking x0 = 0 and ignoring the value of x̂(λ) we see that
ŵ(λ) ∈ F̂(λ), where

F̂(λ) =

w ∈ W

∣∣∣∣∣∣
0

z
w

 ∈ Ê(λ) for some z ∈ X

 . (24)
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The Characteristic Signal Bundle

F̂(λ) =

w ∈ W

∣∣∣∣∣∣
0

z
w

 ∈ Ê(λ) for some z ∈ X

 . (24)

Definition

The family of subspaces F̂ : {F̂(λ) | λ ∈ C} of W is called the
characteristic signal bundle. We refer to each of the subspaces
F̂(λ) as the fiber of F̂ att the point λ ∈ C.

Whereas the characteristic node bundle Ê is analytic
everywhere in C (i.e., the fibers depend on λ in an analytic
way), the same is not true for the singal bundle F̂. Even the
dimension of the fibers F̂(λ) may change from one point to
another.
However, if λ ∈ ρ(Σiso) for some i/s/o representation Σiso of
Σ, then F̂ is analytic at λ (see next slide).

Olof StaffansÅbo Akademi University, Finland olof.staffans@abo.fi http://users.abo.fi/staffansThe Linear Stationary State/Signal Systems Story



Frame 42 of 69

The Resolvent Set of a State/Signal System

Lemma

If Σiso is an i/s/o representation of Σ with ρ(Σiso) 6= ∅, then for
each λ ∈ ρ(Σiso) the fibers of the characteristic signal bundle have

the graph representation F̂(λ) = im
([

D̂(λ)
1U

])
, λ ∈ ρ(Σiso).

Thus, we may interpret F̂(λ) as the graph of the i/o resolvent
function of an arbitrary i/s/o representation of Σ.

Definition

1 By the resolvent set ρ(Σ) of a s/s system Σ we mean the
union of the resolvent sets of all i/s/o representations of Σ.

2 By the spectrum of a s/s system Σ we mean the intersection
of the spectra of all i/s/o representations Σiso of Σ.

Lemma

The characteristic signal bundle F̂ is analytic in ρ(Σ).
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Outline of Talk

Background

State/signal systems in the time domain

Stationary input/state/output systems
Conservative input/state/output systems
State/signal systems and their i/s/o representations

State/signal systems in the frequency domain

Input/state/output systems in the frequency domain
State/signal systems in the frequency domain

Conservative and non-conservative state/signal
realizations

Further state/signal systems theory

The team behind the state/signal saga
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Realization Theory

In i/s/o systems theory one is ofter interested in the “converse
problem” of finding a “realization” of a given analytic “transfer
function” ϕ. By this we mean an i/s/o system whose i/o resolvent
function coincides with ϕ is some specified open subset Ω of C.
For example,

1 ϕ is a Schur function over C+, and one wants to construct a
scattering conservative realization Σiso of ϕ,

2 ϕ is a positive real function over C+, and one wants to
construct an impedance conservative realization Σiso of ϕ.

3 ϕ is a Potapov function over C+, and one wants to construct
a transmission conservative realization Σiso of ϕ.

In the state/signal setting all these three problems collapse into one
and the same problem: We are given a passive signal bundle over
C+, and want to construct a conservative s/s realization Σ of this
signal bundle, i.e., Σ is a conservative s/s system with C+ ⊂ ρ(Σ),
and the given passive signal bundle coincides with F̂ in C+.
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Conservative State/Signal Systems

Recall the i/s/o J -energy balance equation

‖x(t)‖2
X = ‖x(0)‖2

X +

∫ t

0

〈[
u(s)
y(s)

]
,J
[

u(s)
y(s)

]〉
U

ds t ∈ R+,

(9)
where J is a signature operator in the product space

[ U
Y
]
. To get

a s/s system we write w(t) =
[
u(t)
y(t)

]
. We make W into a Krĕın

space with the inner product

[w1,w2]W =

[[
u1

y1

]
,J
[

u2

y2

]]
U⊕Y

,

after which (9) becomes

‖x(t)‖2
X = ‖x(0)‖2

X +

∫ t

0
[w(s),w(s)]W ds, t ∈ R+. (25)
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Conservative State/Signal Systems

‖x(t)‖2
X = ‖x(0)‖2

X +

∫ t

0
[w(s),w(s)]W ds, t ∈ R+. (25)

Differentiating this equation with respect to t we get

d

dt
‖x(t)‖2

X = [w(t),w(t)]W , t ∈ R+,

or equivalently,

− 〈ẋ(t), x(t)〉X − 〈x(t), ẋ(t)〉X + [w(t),w(t)]W = 0, t ∈ R+.
(26)

In particular, this equation is true for t = 0. Let us assume that Σ

is forward solvable, i.e., to each
[

z0
x0
w0

]
∈ V there exists at least one

classical future trajectory [ x
w ] of Σ with

[
ẋ(0)
x(0)
w(0)

]
=
[

z0
x0
w0

]
. Assuming

(26) to hold for all classical future trajectories of Σ, we get

− 〈z0, x0〉X − 〈x0, z0〉X + [w0,w0]W = 0,
[

z0
x0
w0

]
∈ V . (27)
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Conservative State/Signal Systems

−〈z0, x0〉X − 〈x0, z0〉X + [w0,w0]W = 0,
[

z0
x0
w0

]
∈ V . (27)

We can make the node space K =
[ X
X
W

]
into a Krĕın space by

introducing the node inner product[[
z1
x1
w1

]
,
[

z2
x2
w2

]]
K

= −(z1, x2)X−(x1, z2)X+[w1,w2]W ,
[

z1
x1
w1

]
,
[

z2
x2
w2

]
∈ K.

(28)
Then (27) says that
V ⊂ V [⊥], i.e., the generating subspace V of the s/s system Σ is a
neutral subpace of K with respect to the node inner product!
In the original definitions that I gave of a scattering, impedance, or
transmission i/s/o system I also asked the adjoint system to satisfy
an analogous condition, and if we also take that adjoint condition
into account we find that
V = V [⊥], i.e., V is a Lagrangian (or supermaximal neutral)
subspace of K!
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Conservative State/Signal Systems

Definition

1 By a conservative s/s system Σ we mean a s/s system whose
signal space W is a Krĕın space, and whose generating
subspace V is a Lagrangian subspace of the node space K
(with respect to the inner product (28)).

2 By a passive s/s system Σ we mean a s/s system whose signal
space W is a Krĕın space, and whose generating subspace V
is a maximal nonnegative subspace of the node space K (with
respect to the inner product (28)).

Thus, in particular, every conservative s/s system is also passive.
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The Conservative S/S Realization Problem

Theorem

Let Σ be a passive s/s system with signal space space W and
characteristic signal bundle F̂. Then

1 C+ ⊂ ρ(Σ) (and hence F̂ is analytic in C+),

2 for each λ ∈ C+ the fiber F̂(λ) of F̂ is a maximal nonnegative
subspace of W.

Definition

By a passive signal bundle in a Krĕın (signal) space W we mean an
analytic signal bundle Ψ in C+ with the property that for each
λ ∈ C+ the fiber Ψ(λ) is a maximal nonnegative subspace of W.

The Conservative State/Signal Realization Problem: Given a
passive signal bundle Ψ, find a conservative s/s system Σ such that
the characteristic signal bundle of Σ coincides with Ψ in C+. This
will be discussed by Mikael Kurula this afternoon.
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Outline of Talk

Background

State/signal systems in the time domain

Stationary input/state/output systems
Conservative input/state/output systems
State/signal systems and their i/s/o representations

State/signal systems in the frequency domain

Input/state/output systems in the frequency domain
State/signal systems in the frequency domain

Conservative and non-conservative state/signal realizations

Further state/signal systems theory

The team behind the state/signal saga
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Things I Have Discussed

I/s/o systems in discrete and continuous time

J -conservative i/s/o systems

Redefining the inputs and outputs of an i/s/o system

By conbining inputs and outputs we get a s/s system

The equations describing the dynamics of a s/s system

Relationship between a s/s system and its i/s/o
representations

Well-posed s/s systems in discrete time and uniformly
continuous s/s systems in continuous time

General s/s systems in continuous time and their classical
trajectories

State/signal systems in the frequency domain

The characteristic node and signal bundles of a s/s system

Passive and conservative state/signal systems

Passive signal bundles

Conservative realizations of passive signal bundles.
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Things I Have Not Discussed (Page 1/4)

Driving variable and output nulling representations of s/s
systems

Generalized time domain trajectories of s/s systems in
continuous time

Existence and uniqueness of classical and generalized
trajectories of s/s systems

Well-posed s/s systems in continuous time

Boundary control s/s systems

Stability, stabilizability, and detectability of s/s systems

Relationships between classical and generalized trajectories of
continuous time s/s systems

Past, future, and two-sided time domain behaviors of s/s
systems
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Things I Have Not Discussed (Page 2/4)

Frequency domain trajectories in discrete and continuous time

Frequency domain behaviors of s/s systems

Controllability and observability of s/s systems in time domain

Controllability and observability of s/s systems in the
frequency domain

Strongly invariant and unobservably invariant subspaces of a
s/s system

External equivalence of s/s systems

Intertwinements of s/s systems

Similarities and pseudo-similarities between s/s systems

Restrictions, projections, compressions, and dilations of s/s
systems

Minimal s/s systems
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Things I Have Not Discussed (Page 3/4)

The dual and the adjoint of a s/s system

Passive past, future, and two-sided time domain behaviors

Passive frequency domain behaviors

Optimal and ∗-optimal s/s systems (available storage and
required supply)

Normalized driving variable and output nulling realizations of
a signal bundle

Passive balanced s/s systems

Energy and co-energy preserving s/s systems

Controllable energy-preserving and observable co-energy
preserving realizations of passive signal bundles

Quadratic optimal control and KYP-theory for s/s systems
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Things I Have Not Discussed (Page 4/4)

S/s systems with extra symmetries (reality, reciprocity,
real-reciprocity)

Relationships between the symmetries of a s/s system and the
symmetries of its i/s/o representations

S/s versions of the de Branges complementary spaces of type
H and D
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Outline of Talk

Background

State/signal systems in the time domain

Stationary input/state/output systems
Conservative input/state/output systems
State/signal systems and their i/s/o representations

State/signal systems in the frequency domain

Input/state/output systems in the frequency domain
State/signal systems in the frequency domain

Conservative and non-conservative state/signal realizations

Further state/signal systems theory

The team behind the state/signal saga
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The Team Behind the State/Signal Saga

The state/signal saga that I have described above is based on joint
work with Dima (and partly also with Mikael Kurula).

What is it like to work with Dima?
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1. Dima can be trusted to attack any mathematical
problem

Dima is an internationally recognized expert in many different
fields of mathematics, such as

Ergodic theory

AAK-theory (Adamjan, Arov, and Krĕın)

Infinite-dimensional passive systems theory in discrete and
continuous time (many different aspects)

Interpolation and extension problems for J-inner matrix
functions (many variations)

Linear stationary state/signal systems

He is even able to do work on several different problems at the
same time (3 months in Finland with me, and then 4 months in
Israel with Harry on a totally different subject, sometimes
interrupted by heavy E-mail or Skype conversations with me)
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2. Dima can not always be trusted to solve practical
everyday problems

Dima can also be trusted to attack any practical problem, but
the result is not always the expected one.

He gets easily lost. Fortunately, he is not afraid to ask for
help, and eventually he always ends up in the right place.

Somehow he always manages to get things right at the end.
Like a cat, ha always “lands on his feet”.

His best support in practical matters is his wife Natalija. She
usually knows what should be done (or what he should have
done in the first place, when he forgets to ask her advice).
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3. Dima is a born optimist

Dima is a born optimist. He does not hesitate to attack
(very) difficult mathematical problems. Sometimes this leads
to new grand discoveries, but also to frustrations.

If you ask Dima for the time table when our s/s book will be
ready he will say: Maybe we finish the first volume this fall,
and then we shall need maybe one or two more years for the
second volume.

If you ask me, I will say: Maybe 2 years for the first volume if
we are lucky, and then maybe 3-4 years for the second
volume. (I am also an optimist, but less so than Dima.)
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4. Dima is a workaholic

Once Dima starts thinking about a problem he does not stop
until it gets resolved in one way or another. This includes
evenings and week-ends, and sometimes even nights.

On Monday he may show up with a 10 page handwritten
manuscript, and is very surprised if I have not had the time to
type it all up by Tuesday.

This is simply the way Dima is built. He simply does not stop
thinking about mathematics once he gets going.
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5. Dima has strong opinions

Dima is stubborn, and he has strong opinions!

I am also stubborn, and I also has strong opinions!

As a result, when we work together, the sound volumes rises.
Usually the whole department can hear us, and may think we
are quarreling. But we are just having loud discussions.

We do not argue about the mathematical correctness of a
particular result (there we do agree). But we do argue about

In which order should the results be presented? (Dima says
“strictly logical.”)
How general should the formulation be? (Dima says “more
general” and I “less general”.)
In which detail should a result be presented? (Mixed opinions.)
How carefully should we distinguish between closely related
notions? (Mixed opinions.)
Does every new notion also need a new notation? (Dima say
“yes” and I say “no”.)
And so on.
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6. Different background, common goal

One of the reasons that Dima and I fit so well together is that we
both have a common strong mathematical interest, but quite
different backgrounds.

Dima’s background is more in “operator theory” and
“complex function theory”, and mine is more in a “control
theory” and “infinite-dimensional dynamics”.

Together we cover a much broader field than either of us does
separately.
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7. Dima has a positive attitude and is very friendly

Most of the time Dima is smiling!

He has a great sense of humor, and we are joking and
laughing a lot when we work (except when we are shouting at
each other)

The first Facebook friend request that I ever got was from
Dima

The majority of all “wish you well”-greetings that I and
Marjatta have received in our lives have come from Dima and
Nata.
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8. Final conclusion

In our joint work with Dima

Dima is the genius

I am the independent secretary

Nata is the hidden support layer.
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