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Abstract: During the last years the authors have studied a class of discrete time system, called
s/s (state/signal) systems, which has its roots in classical circuit theory, but which also contains
infinite-dimensional systems. Our systems are time-independent, and in this talk, they will also
be passive. Frequently circuits are studied from an i/s/o (input/state/output) point of view
where the port variables are divided into inputs and outputs, and in this setting the system
is characterized by its transfer function from the inputs to the outputs, which in the passive
scattering formalism is a Schur function. On the other hand, in the s/s setting one does not
distinguish between inputs and output, and the transfer function from inputs to outputs is
replaced by a shift-invariant subspace of H2 (equal to the graph of the scattering function),
which in the passive case is maximal nonnegative with respect to a certain indefinite inner
product in H2. We refer to this subspace as the (frequency domain future) “behavior” of the
system.
In the scattering version of the standard passive i/s/o realization problem (the “inverse”
problem) a Schur function ϕ is given, and one searches for a i/s/o function whose transfer
function is ϕ. Here we study the s/s version of the same problem: given a maximal nonnegative

shift-invariant subspace Ŵ+ of H2, we want to construct a s/s system whose behavior coincides

with Ŵ+. We present three such passive s/s realizations with different additional properties:
the first one is observable and backward conservative, the second is controllable and forward
conservative, and the third is simple and conservative. Our three models are ‘canonical’ in

the sense that they are determined uniquely by the given shift-invariant subspace Ŵ+. By
decomposing the signal space in different ways into inputs and outputs it is possible to use our
models to derive scattering, impedance, and transmission models for different i/s/o settings.

1. INTRODUCTION

The i/s/o (input/state/output) system

x(n + 1) = Ax(n) + Bu(n)

y(n) = Cx(n) + Du(n), n ∈ Z
+;

x(0) = x0,

(1)

is called a passive realization of the Schur function D if
[ A B
C D ] : [X

U
] →

[
X
Y

]
is contractive and D(z) = zC(1 −

zA)−1B + D, z ∈ D+ := {z ∈ C | |z| < 1}. We denote this
system by Σi/s/o :=

(
[ A B
C D ] ;X ,U ,Y

)
. If u ∈ ℓ2

+(U), then
the Z-transforms of x, u, and y satisfy[(

x̂(z) − x0

)
/z

ŷ(z)

]
=

[
A B
C D

] [
x̂(z)
û(z)

]
, z ∈ D

+. (2)

From this equation we can solve x̂(z) and ŷ(z) in terms of
x0 and û(z) as follows:[

x̂(z)
ŷ(z)

]
=

[
A(z) B(z)
C(z) D(z)

] [
x0

û(z)

]
, z ∈ D

+, (3)

where[
A(z) B(z)
C(z) D(z)

]
=

[
z(1 − zA)−1 z(1 − zA)−1B
C(1 − zA)−1 zC(1 − zA)−1B + D

]

(4)

for all z ∈ D+. The 2 × 2 block operator in (4) is the
input-state/state-output transfer function, and its lower
right corner D is the i/o (input/output) transfer function.
Thus, Σi/s/o is a realization of a given Schur function ϕ
if its i/o transfer function D coincides with ϕ in the unit
disk.

We get the corresponding passive s/s (state/signal) system
Σs/s = (V ;X ,W) by replacing [ A B

C D ] by its graph:
[
x(n + 1)

x(n)
w(n)

]
∈ V, n ∈ Z

+, x(0) = x0, (5)

where w(n) =
[

y(n)
u(n)

]
and

V =









Ax0 + Bu0

x0

Cx0 + Du0

u0




∣∣∣∣∣

[
x0

w0

]
∈

[
X
U

]




, W =

[
Y
U

]
. (6)

The corresponding graph representation of (2) is given by
[
(x̂(z) − x0)/z

x̂(z)
ŵ(z)

]
∈ V, z ∈ D+. (7)



Let W be the Krĕın space W = −Y [∔] U . The graph

Ŵ+ :=
{[

Dû
û

] ∣∣ û ∈ H2(D+;U)
}

of the Schur function

D in (3) is equal to the set of all ŵ ∈ H2(D+;W) for
which there exists some x̂ such that (7) holds with x0 = 0.
This set is a future frequency domain behavior, i.e., a closed
shift-invariant subspace of K2(D+;W), where K2(D+;W)
stands for H2(D+;W) equipped with the indefinite Krĕın
space inner product inherited from W . The system Σs/s is
called a s/s realization of this behavior. (Time domain be-
haviors are discussed at length in Polderman and Willems
[1998].)

The (passivity) requirement that the operator [ A B
C D ] in

(2) is a contraction is equivalent to the requirement that
the subspace V defined in (6) is a maximal nonnegative
subspace of the node space K = −X [∔] X [∔] W . It also

implies that the future frequency domain behavior Ŵ+

induced by Σs/s is passive, i.e., that Ŵ+ is a maximal
nonnegative shift-invariant subspace of the Krĕın space
K2(D+;W).

In the sequel we study the state signal system (5) without
requiring a priory that V has a representation of the
type (6). The standard assumption is that X is a Hilbert
space, W is a Krĕın space, and that V is a maximal
nonnegative subspace of the (Krĕın) node space K =
−X [∔]X [∔]W . (This implies that, given any fundamental
decomposition W = −Y [∔]U of W , V has a representation
of the type (6) for some contractive operator [ A B

C D ].)
Naturally, since we are here restricting our attention to
passive s/s systems, we are also restricting our attention
to passive future frequency domain behaviors, i.e., maximal

nonnegative shift-invariant subspaces Ŵ+ of the Krĕın
space K2(D+;W). For more details, see Arov and Staffans
[2009a,b]. Continuous time s/s systems have been studied
in Kurula and Staffans [2009].

2. PASSIVE AND CONSERVATIVE I/S/O
REALIZATIONS

One of the first researchers to study realization theory was
Kalman [1963a,b, 1965]. Among others, he showed that
every rational matrix-valued function which does not have
a pole at the origin has an i/s/o realization (i.e, it is the i/o
transfer function of some i/s/o system), and that any two
realizations with minimal state dimension are similar to
each other. Approximately at the same time Yakubovich
[1962] and Popov [1961] begun to study the passivity of
the system, which in the discrete time scattering setting
manifests itself in the contractivity of the matrix [ A B

C D ] in
(1). The transfer function of such a system is necessarily
a Schur function, i.e., it is analytic and contractive in the
unit disk. It was also clear more or less from the beginning
that lossless rational matrix-valued functions (i.e., Schur
functions which take unitary values on the unit circle) have
realizations where [ A B

C D ] is a unitary operator, and any
two such minimal realizations differ from each other by a
unitary similarity transformation. These realizations are
called conservative.

The next step was to construct conservative i/s/o realiza-
tions of Schur functions that are not lossless. Every such
realization must have an infinite-dimensional state space,
and it is typically not minimal in the sense that it should

be controllable and observable. However, if we instead
require it to be simple, i.e., that the closed linear span of
the reachable subspace and the orthogonal complement to
the unobservable subspace is equal to the full state space,
then any two such realizations are unitarily similar to each
other.

Over time several constructions of simple conservative
realizations of Schur functions have appeared. One of
the oldest construction is the one due to Sz.-Nagy and
Foiaş [1970]. This realization is not symmetric in the
sense that the adjoint of the Sz.-Nagy–Foiaş model for a
Schur function ϕ does not coincide with the Sz.-Nagy–
Foiaş model of the dual Schur function ϕ̃(z) := ϕ(z)∗.
Another model is the Pavlov model which is maybe most
easily found in Nikolskĭı and Vasyunin [1989]. This model
is symmetric with respect to duality. Yet another sym-
metric model was discovered by de Branges and Rovnyak
[1966a,b] (this model can also be found in, e.g., Alpay
et al. [1997]). Finally, Nikolskĭı and Vasyunin [1989, 1998]
developed a whole family of models that contains all the
above mentioned ones. In all these models the operator
A is a compressed shift operator acting on some space of
functions with values in

[
Y
U

]
, where U and Y are the input

and output spaces. Each of the three models mentioned
above, the Sz.-Nagy–Foiaş model, the Pavlov model, and
the deBranges–Rovnyak model are canonical in the sense
that they are determined uniquely by the given Schur func-
tion ϕ, and as we mentioned above, they are all unitarily
similar to each other.

3. PASSIVE AND CONSERVATIVE S/S
REALIZATIONS

The purpose of this note is to present some canonical
passive and conservative realizations of a passive future

frequency domain behavior Ŵ+. They can be interpreted
as s/s versions of the the three deBranges–Rovnyak model,
namely their backward conservative and observable model,
their forward conservative and controllable model, and the
symmetric simple conservative model mentioned above.
The requirement that our models should be canonical
means that they should be uniquely determined by the

given future behavior Ŵ+. In particular, they are therefore
not allowed to depend on any “coordinate representation”

of the Ŵ+ as the graph of some analytic operator-valued
function U → Y, where W = Y ∔ U is some (more or
less arbitrarily chosen) direct sum decomposition of W .
This requirement makes it impossible to directly convert
the existing i/s/o models into s/s models, since the i/s/o
models used in such a construction would have to depend
on the choice of the the particular decomposition W =
Y ∔ U , and hence the result would not be canonical.
However, it is possible to go in the other direction, and
to derive i/s/o models from our s/s models. Depending
on how the decomposition W = Y ∔ U is chosen it is

possible to interpret Ŵ+ as the graph of a scattering
matrix, or as the graph of an impedance matrix, or as the
graph of a transmission matrix. This interpretation has
no direct influence on our three s/s models. However, the
use of such decompositions makes it possible to convert
our s/s models into canonical i/s/o realizations of a given
scattering matrix, or a given impedance matrix, or a given



transmission matrix. In the scattering case the resulting
i/s/o models coincide with the corresponding deBranges–
Rovnyak models. For more details, see Arov and Staffans
[2005, 2007a,b,c].

The three models that we describe below are functional
models in the unit disk, i.e., they can be interpreted as dis-
crete time frequency domain models. The time domain ver-
sions of the first two models appear in Arov and Staffans
[2009a], but the third model has not been published before.

4. THE PASSIVE BACKWARD CONSERVATIVE
OBSERVABLE REALIZATION

We begin by presenting the backward conservative observ-
able s/s realization. The state space X+ of this realization

is a subspace of the quotient space K2(D+;W)/Ŵ+. Let us

denote the quotient map K2(D+;W) → K2(D+;W)/Ŵ+

by P+. Thus, for each w+ ∈ K2(D+;W), P+w+ = w+ +

Ŵ+ := {w+ + z+ | z+ ∈ Ŵ+}. The space X+ is the

subspace of equivalence classes in K2(D+;W)/Ŵ+which
have finite X+-norm:

X+ =
{
P+ŵ+ ∈ K2(D+;W)/Ŵ+

∣∣ ‖P+ŵ+‖X+ < ∞
}
,
(8)

where ∥∥P+ŵ+

∥∥2

X+
= sup

v̂+−ŵ+∈Ŵ+

−[v̂+, v̂+]K2(D+;W). (9)

Let us denote the inverse image under P+ of X+ by
K+(W), i.e., K+ := {w+ ∈ K2(D+;W) | P+w+ ∈ X+}.

The generating subspace V+ ⊂

[
X+

X+

W

]
of the passive back-

ward conservative observable realization has the image
representation

V+ =

{[
P+(ŵ+(z) − ŵ+(0))/z

P+ŵ+(z)
ŵ+(0)

] ∣∣∣∣∣ ŵ+(·) ∈ K+(W)

}
.

(10)
Explicitly, this means the following: Given any initial
state x0 ∈ X+ we choose some representative ŵ+ of x0

(i.e., P+ŵ+ = x0). Then ŵ+(0) represents an arbitrary
admissible signal value at time t = 0, and the state at time
one corresponding to the state x0 and the signal ŵ+(0)
at time zero is P+((ŵ+(z) − ŵ+(0))/z), where (ŵ+(z) −
ŵ+(0))/z is the function that one gets by applying the
incoming shift to ŵ+.

5. THE PAST AND FULL FREQUENCY DOMAIN
BEHAVIORS

Before presenting the passive forward conservative control-
lable realization and the simple conservative realization

we define the passive full frequency domain behavior Ŵ

and the orthogonal companion Ŵ
[⊥]
− of the passive past

frequency domain behavior Ŵ− induced by a given pas-

sive future frequency domain behavior Ŵ+. These two
behaviors can be defined, e.g., in the following way. Let
T := {z ∈ C | |z| = 1} be the unit circle, let D

− :=
{z ∈ C | |z| > 1} ∪ {∞}, and let W = −Y [∔] U be

a fundamental decomposition of W . Then Ŵ+ has the

graph representation Ŵ+ =
{[

ϕû
û

] ∣∣ û ∈ H2(D+;U)
}

for

some Schur function ϕ on D+ with values in B(U ;Y). We
denote the boundary function, defined on T, by the same
symbol ϕ, and we define the function ϕ̃ by ϕ̃(z) = ϕ∗(1/z),
z ∈ D−. The restriction of ϕ to T is an L∞-function with
values in B(U ;Y), and ϕ̃ is a Schur function in D− with
values in B(Y;U). We define

Ŵ :=

{[
ϕû
û

] ∣∣∣∣ û ∈ L2(T;U)

}
,

Ŵ
[⊥]
− :=

{[
ŷ

ϕ̃û

] ∣∣∣∣ ŷ ∈ H2(D−;Y)

}
.

It turns out that neither Ŵ nor Ŵ
[⊥]
− depends on the

particular fundamental decomposition W = −Y [∔] U ,

that Ŵ is a maximal nonnegative subspace of the Krĕın

space L2(T;W), and that Ŵ
[⊥]
− is a maximal nonnegative

subspace of the Krĕın space K2(D−;−W).

6. THE PASSIVE FORWARD CONSERVATIVE
CONTROLLABLE REALIZATION

The forward conservative controllable realization is in a
certain sense dual to the backward conservative observ-
able realization. The state space X− of this realization

is a subspace of the quotient space K2(D−;W)/Ŵ
[⊥]
− .

Let us denote the quotient map from K2(D−;W) to

K2(D−;W)/Ŵ
[⊥]
− by P−. Thus, P−w = w + Ŵ

[⊥]
− , w ∈

K2(D−;W). The space X− is the subspace of equivalence

classes in K2(D−;W)/Ŵ
[⊥]
− which have finite X−-norm:

X− =
{
P−ŵ ∈ K2(D−;W)/Ŵ

[⊥]
−

∣∣ ‖P−ŵ‖X−
< ∞

}
,
(11)

where ∥∥P−ŵ
∥∥2

X−

= sup
v̂−ŵ∈Ŵ

[⊥]

−

[v̂, v̂]K2(D−;W). (12)

Let us denote the inverse image under P− of X− by
K−(W), i.e., K− := {w ∈ K2(D−;W) | P−w ∈ X−}.

The definition of the generating subspace V− of the passive
forward conservative controllable s/s realization contains

the past/future map Γ̂. This is a contraction X− → X+

which is uniquely characterized by the fact that

P+w = Γ̂P−w w ∈ Ŵ.

The generating subspace V− ⊂

[
X−

X−

W

]
of the forward

conservative controllable realization has the image repre-
sentation

V− =

{[
P−(ŵ−(z) + w0)/z

P−ŵ−(z)
w0

] ∣∣∣∣∣
ŵ−(·) ∈ K−(W),

w0 ∈ (Γ̂P−ŵ−)(0)

}
.

(13)
Explicitly, this means the following: Given any initial state
x0 ∈ X− we first choose some representative ŵ− of x0 (i.e.,
P−ŵ− = x0). We then add a function ŵ+ ∈ K+(W) to w−

satisfying P+ŵ+ = Γ̂P−ŵ−. The signal at time zero is
equal to w0 = ŵ+(0), and the new state x1 is obtained by
first left-shifting ŵ− + ŵ+, then projecting the result onto
K(D−;W), and finally applying the quotient map P− to
this function.



7. THE SIMPLE CONSERVATIVE REALIZATION

The simple conservative realization can be regarded as a
“coupling” of the forward conservative controllable and the
backward conservative observable realizations. Its state
space is a subspace of the quotient space L2(T;W)/(Ŵ++

Ŵ
[⊥]
− ), where L2(T;W) is the Krĕın space of W-values L2-

functions on T with the indefinite inner product inherited
from W . Let us denote the orthogonal projections in
L2(T;W) onto K2(D±;W) by π±, and let P be the

quotient map L2(T;W) → L2(T;W)/(Ŵ+ + Ŵ
[⊥]
− ). Then

P = P+π+ + P−π−.

The state space X of the simple conservative s/s realization

is the subspace of equivalence classes in L2(T;W)/(Ŵ+ +

Ŵ
[⊥]
− ) which have finite X -norm:

X =
{
Pŵ ∈ L2(T;W)/(Ŵ+ + Ŵ

[⊥]
− )

∣∣ ‖Pŵ‖X < ∞
}
,

(14)
where∥∥Pŵ

∥∥2

X
= −[π+ŵ, π+ŵ]K2(D+;W)

+ lim sup
n→∞

‖P−π−ŵ(z)z−n‖2
X−

= [π−ŵ, π−ŵ]K2(D−;W)

+ lim sup
n→∞

‖P+π+ŵ(z)zn‖2
X+

.

(15)

Equivalently, the space X is the range space of the non-

negative operator
[

1 Γ̂

Γ̂∗ 1

]1/2

in X+ ⊕X−.

Let us denote the inverse image under P of X by K(W),
i.e., K := {w ∈ L2(T;W) | Pw ∈ X}. The generating

subspace V ⊂
[

X
X
W

]
of the simple conservative realization

has the image representation

V =

{[
Pŵ(z)/z
P ŵ(z)
ŵ(0)

] ∣∣∣∣∣ ŵ(·) ∈ K(W)

}
. (16)

Explicitly, this means the following: Given any initial state
x0 ∈ X we choose some representative ŵ of x0 (i.e.,
Pŵ = x0). Then ŵ(0) represents an arbitrary admissible
signal value at time t = 0, and the state at time one
corresponding to the state x0 and the signal ŵ(0) at time
zero is Pŵ+(z)/z, where ŵ(z)/z is the function that one
gets by applying the left-shift to ŵ.
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