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Abstract

We solve the standard (four-blockf® problem for regular well-posed linear systems (in
the sense of George Weiss). The state spacthe disturbance spad¥, the control space
U, the regulated output spaZeand the measurement output sp¥care all Hilbert spaces of
finite or infinite dimension. Our main result is an infinite-dimensional version of the following
standard result: there exist a dynamic controller which feeds the measured putputhe
control inputu, makes the closed loop system exponentially stable, and also makes the norm
of the mapping from the external disturbamve¢o the regulated outputless than a predefined
constanty > 0O if and only if two algebraic Riccati equations have exponentially stabilizing
solutionsPx and Py, respectively, and the spectral radiusRaPy is less thaty®. Another
equivalent condition which is given in terms of two nested Riccati equations is available as
well. Finally, we establish a generalized version of the standard parameterization of all sta-
bilizing solutions. The exact formulation varies depending on the regularity assumptions that
we make, but our assumptions allow for roughly twice as much unboundedness of the control
and observation operators as the Pritchard—Salamon class does, and they permit a countable
number of pure delays in the input/output responses. Analogous discrete time results are valid
as well.

1 Introduction

In this paper we studyvell-posed linear systemn the sense of Salamon [5] and Smuljan [6]
which areweakly regular in the sense of We[d2]. Roughly speaking, for sufficiently smooth
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and ‘compatible’ data the dynamics of the system is described by the system of equations

X (t) = AX(t) + Byu(t) + Bow(t) inH g,

Z(t) = (C1)wX(t) + D1au(t) + Diow(t)  in Z, )
y(t) = (C2)wX(t) +D21u(t) + Doow(t)  inY,

X(0) = Xo.

Herexo, X(t) € H, u(t) e U, w(t) e W, z(t) € Z, andy(t) € Y, where all these spaces are Hilbert
spaces of arbitrary dimensions (finite or infinite). The operAtsrthe generator of @y semigroup

A onH. We defineH; = D(A) andH{ = D (A*) (with the graph norms) and léd_; = (H{)*

andHY, = (H1)* (where we identify the dual off with H itself). ThenA € L(Hq;H), and

A has a natural extension to an operatolLi(H;H_;) (that we still denote by the same letter

A). The operators appearing in (1) are bounded linear operators between the appropriate spaces:

B=[B1 Byl eL([}]:H 1).C=[&]|eL(Hu[¥]), andD = B2 82| e L([§]:[4]). Fi-

nally, Cy = [Egm ‘= w—limgy_ ;w0 (a — A)~IC is the weak Yoshida—Weiss extension of the
observation operatdC. The well-posednesassumption means that, for sorme 0 (hence for
all t > 0), there is a constam€(t) such that for all sufficiently smooth and compatible data, the

solution of (1) (exists for all > 0 and) satisfies

2 2 2 2
||X(t)||H + ||Z|||_2(0,t;y) + ”y”LZ(O,t;Z) < K(t)(HXOH + ||u|||_2 0,t;W) + ||W|||_2 0,t;W) )

We can therefore (by continuity and by the density of the class of smooth and compatiblexdata)
tend the notion of a solution @fl) to arbitrary initial stategg € H, disturbances € LlOC(R+;W),
and controlai € L2 (R*;U), and still get a continuous state trajectafy) in H, a regulated out-
putze L2 (RT;Z), and a measurement output L2 .(R*;Y). Weak regularityof the system
means that, for some (hence allc p(A), the range of the operatéa — A) 1B is contained in
the domain of the operat@,,. In this case the equations in (1) remain valid almost everywhere
for arbitrary initial statego € H, disturbancess € L2 .(R*;W), and controlsi € L2 (R*;U). See
[9], [10] or [12] for detalils.

Throughout this article we assume thats a weakly regular well-posed linear system of the
type described above.

2 The standardH” problem

Lety > 0. The standaréi® problem amounts to finding another (weakly regular and well-posed)
systent, called a(exponentially) stabilizing suboptimal controlleuch that if we feed the mea-
surement outpuwy of Z into the controller, and feed the controller output into the control input
of Z, then the closed loop system becomes exponentially Staipié the norm of the map from

1For simplicity we here restrict ourselves to the case where the closed loop sysbepoientially stableSee [4]
for a number of other cases.



we L?(RT;W) toze L2(R*;Z) is less thay. It turns out that in some cases this class of controllers
is not sufficiently large, and it is often more appropriate to allow the controllers to be non-well-
posed (when disconnected from the system). The ‘correct’ class of controllers was introduced by
Curtain, Weiss, and Weiss in [2], and it is known under the naomtrollers with an internal loop
Unless otherwise specified, we shall allow our stabilizing suboptimal controllers to have an inter-
nal loop. Under sufficient regularity assumptions these controllers will actually be well-posed, and
a reader who is not familiar with this class of controllers may think about them as being weakly
regular and well-posed. We shall made some further comments on this point below.

As the following theorem shows, under standard coercivity assumptions and certain regularity
assumptions, the existence of a stabilizing suboptimal controller is equivalent to the two standard
algebraic Riccati equations with their standard signature and coupling conditions.

Theorem 2.1 H® 4BP & CARES).
(Al) (Regularity) Assume that at least one of (1)—(V) holds, where

(I) (Parabolic case)A generates an analytic semigroup on H. We lgt Bl€ R, be the
standard interpolation spaces of fractional order induced by A, and suppose that B
L(U,Hg,),Bo€ L(W,Hg,),C1 € L(Hy,,Z),Cae L(Hy,,Y),De L([W],[%]), where
the parameterfy, vk € (—1/2,1/2) (k= 1,2) satisfy the following additional restric-
tions:y1 < max{1/4,1/2+ min{B1,B2}} andBz > min{—1/4, max{y1,y2} — 1/2};

() Bis bounded i.e., Be L([{],H),and G € LL (RT;L(H,[Z]));?

() € is bounded i.e.,Ce L(H,[Z]),andAB € L (RT;L([{],H));
(V) AB[1§] € LE(R:H), CuaBIi] € LE(R™:[§]) and G2t € L3 (R*:L(H, [3]))

forall [w3] € [W];

(V) 2 is exponentially stable and both the functidn— Cy(A — A)~!B and its adjoint
belong to the strong version of4bver some right half-plan€; = {A € C | O\ > w}
with w < 0.

(A2) (Nonsingularity) Assume that B;D11 >> 0, D22D%, > 0,2 and that for some > 0,4

(ir — A)Xo = B1Up = ||(C1)wXo + D11lol|z > €||Xo0[|n, and
(ir — A*)xo = C3yo == ||(B5)wXo + Di2yollw > €[|%o[|H,

forallxoe H,upeU,yo €Y, and re R

2Recall thatl is the semigroup generated By

3The notatiorE > 0 or E < 0 means thaE is strictly positive or negative definite, i.€€,> € or E < —¢ for some
£>0.

“HereB;, = [Eg;m = W—Ilimg_, e a(a — A*)~1B* is the weak Yoshida-Weiss extensionsBsf

SThe first of the two equations above implies tkate D (C,), and the second equation implies thate D (B;,).
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Under the above assumptions (Al) and (A2), there is a suboptimal exponentially stabilizing con-
troller for Z (possibly with internal loop) if and only if conditions (1.)—(3.) below hold:

(1.) (Px-CARE) D;,D12— D’ilel(D’{lDll)—lD*l‘lDlg < y?, and the algebraic Riccati equation

K;S(Kx = A*Px + PxA+ CiCl,
_ [D11P11 Di3Di2
S = [DIZDM Dilezfvz] ’
_ 1 Dj *
K= =5 ([t 1+ BP).
has a solution triplPx € L (H; D (B})), Sx € L([W]). and Kx € L(Hy, [{%]), withPx >0,
such that the semigroup generated by BKyx is exponentially stable (in particular, this
implies that> is exponentially stabilizablé).

(1)

(2.) (Py-CARE) D12D},— D12D§2(D22D§2)—1D22D’12 < y?, and the algebraic Riccati equation

KySrKy = APy + PyA* + ByB3,
_ [D22D3;  D22D1,
Sr= [Dlzozz Dlzoiz—vz] ’
kv =-5.*([Bz] By +CuPy).
has a solution triplePy € L (H;D(Cw)), Sr € L([¥]), and K € L(HZ, [¥]), with Py >0,
such that the semigroup generated By4AC*Ky is exponentially stable (in particular, this
implies thatz is exponentially detectable).

(2)

(3.) (Coupling condition) p(PxPy) < y?.

The proof of this theorem is given in [4].

Assume that (A1)—(A2) and (1.)—(3.) in Theorem 2.1 are satisfied. Then it is possible to pa-
rameterize the set of all exponentially stabilizing suboptimal controllers in the ‘standard’ way. We
first choose any invertiblX € L ([{]) such thaf X* [} ©]X = Sx andXp1 = 0, and define the

operator quadrupl%é—;%] el ( [D(L?Z)] ; [\EVD by (hereKyx = [ﬁi;] e L(Hy, [w)):

A"+ Ko (Bo)w ‘ C+KoD3,  —Kxg
X55 (B)w ‘ X2 D3y X X{p

Az | Bz |
Cz | Dz N

0 0 1

with D(Az) == {x e H | Azx e H} = {x € D((B5)w) | Azx € H}. Then the algebraic Riccati

equation
K3SzKz = AyPz + PzAz + BoXoy X0 B3,

SZ - DE [% 701] Dz, (3)
D22Xos | v —# *
Kz — _Sz_l( |:xf§x§_221:| X22 Bz + (BZ)WPZ>7

6All the exponentially stabilizing solutions of the different Riccati equation appearing in this article are unique.
"We denote the identity operator in any Hilbert space by 1.
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has a unique solution tripz € L (H,D ((B)w)), Sz € L([¥]) andKz € L(D(Az), [} ]) such that
Pz >0,S11> 0, Szo0— Sz21$1115z12 < 0 andAz + BzKz is exponentially stable. The solution
of this Riccati equation gives us a suitably normalized doubly coprime factorization of the transfer
function from the control inputi to the measurement outpyt and by using this factorization
in the Youla parameterization and restricting the Youla parameter to be exponentially stable and
have norm less than one we get a parameterization of the set of all the exponentially stabilizing
suboptimal controllers.

Under the standard normalizing conditions

D12=0, Di;[C1 Dui)=[0 1],
condition (1.) can be written in the form
((BDwPx)* (BDwPx =Y 2((B3)wPx)"(B5)wPx = A"Px + PxA+CiCy, (4)

with the added requirements tist € L (H,D (B},)), Px > 0, and thal\+ (y~2Bz(B%)w — B1(B})w)Px
is exponentially stable. (Note that ndy = J, := [(1) 732] andKy = [\;Z(FQEYPPXX] eL(H,[R]))

2 )w
If B is bounded, then (4) takes the classical form

Px (B]_Bi — yﬁszBE) Px = A"Px + PxA+ CIC]_. (5)

Analogous remarks apply to (2.) and (4.). In this case the suboptimal controllers will even be
well-posed (i.e., no internal loops are needed). We thus observe that the clasSialiebraic
Riccati equations become special cases of (1.)—(4.).

Above we have given one necessary and sufficient condition for the existence of a stabilizing
suboptimal controller which involves the two independent algebraic Riccati equations @) for
and (2) forPy, plus the spectral radius conditigiiPxPy) < y?. This solution is symmetric with
respect to the original system and its dual. Another non-symmetric equivalent description is also
available. This solution is based on the two nested Riccati equations @) fand (3) forPz, and
it does not contain any further coupling conditions.

3 Extensions

The setting that we have described above is one of the most restrictive ones treated in [4]. Anal-
ogous results are true under weaker assumptions, but the weaker the assumptions become, the
more complicated the statements and the conclusions of the theorems become. One major class
of results found in [4] relaxes the exponential stabilizability assumption to other versions of sta-
bility, one of which is ‘output stability in the energy sense’ (every initial stafe& H and input

[w] € L2(RT; []) of the closed loop system produces an oufgpie L2(R*; [Z])). Furthermore,

it is possible to allow even more unbounded control and observation operators and less smooth
transfer functions than those appearing in Theorem 2.1. One major feature which complicates the
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theory is the following: if we allow pure delays in the input/output responses (such delays appear
naturally in transmission lines and other systems with a hyperbolic behaviour), then the formu-
las for the input, output, and mixed input/output cost opera®sSy, respectivelySy change,

and they are no longer determined exclusively by the feedthrough op&atéor example, the
formula for Sk in (1) should be replaced by

D:,D1; Di,D . . _
= DﬁDE D’ilellZl—z\/2 +a|—l>rr|]—°°BWPX (a—A) B,

and analogous changes are needed in the formulas deSpiagdS;. In particular, the standard
normalization condition®12 = 0 andD21 = 0 no longer simplify the theory significantly, since
these conditions no longer lead to the corresponding simplificatio§g,dy, andS;.

The early history of the problem is explained on [3]. The theory was extended to the class of
smooth Pritchard—Salamon systems by van Keulen in [11]. The stable full infornkafigmoblem
in the well-posed linear setting has been discussed in [7] and [8]. A frequency domain solution
(under more restrictive assumptions) is given in [1].

We refer the reader to the references cited above and to [4, Chapter 12] for further details and
for discussions of the remaining literature. Analogous discrete time results are also given in [4].
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